1 | MODULE dynspg_flt |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE dynspg_flt *** |
---|
4 | !! Ocean dynamics: surface pressure gradient trend |
---|
5 | !!====================================================================== |
---|
6 | !! History OPA ! 1998-05 (G. Roullet) free surface |
---|
7 | !! ! 1998-10 (G. Madec, M. Imbard) release 8.2 |
---|
8 | !! NEMO O.1 ! 2002-08 (G. Madec) F90: Free form and module |
---|
9 | !! - ! 2002-11 (C. Talandier, A-M Treguier) Open boundaries |
---|
10 | !! 1.0 ! 2004-08 (C. Talandier) New trends organization |
---|
11 | !! - ! 2005-11 (V. Garnier) Surface pressure gradient organization |
---|
12 | !! 2.0 ! 2006-07 (S. Masson) distributed restart using iom |
---|
13 | !! - ! 2006-08 (J.Chanut, A.Sellar) Calls to BDY routines. |
---|
14 | !! 3.2 ! 2009-03 (G. Madec, M. Leclair, R. Benshila) introduce sshwzv module |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | #if defined key_dynspg_flt || defined key_esopa |
---|
17 | !!---------------------------------------------------------------------- |
---|
18 | !! 'key_dynspg_flt' filtered free surface |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | !! dyn_spg_flt : update the momentum trend with the surface pressure gradient in the filtered free surface case |
---|
21 | !! flt_rst : read/write the time-splitting restart fields in the ocean restart file |
---|
22 | !!---------------------------------------------------------------------- |
---|
23 | USE oce ! ocean dynamics and tracers |
---|
24 | USE dom_oce ! ocean space and time domain |
---|
25 | USE zdf_oce ! ocean vertical physics |
---|
26 | USE sbc_oce ! surface boundary condition: ocean |
---|
27 | USE obc_oce ! Lateral open boundary condition |
---|
28 | USE sol_oce ! ocean elliptic solver |
---|
29 | USE phycst ! physical constants |
---|
30 | USE domvvl ! variable volume |
---|
31 | USE dynadv ! advection |
---|
32 | USE solmat ! matrix construction for elliptic solvers |
---|
33 | USE solver ! solver initialization |
---|
34 | USE solpcg ! preconditionned conjugate gradient solver |
---|
35 | USE solsor ! Successive Over-relaxation solver |
---|
36 | USE obcdyn ! ocean open boundary condition (obc_dyn routines) |
---|
37 | USE obcvol ! ocean open boundary condition (obc_vol routines) |
---|
38 | USE bdy_oce ! Unstructured open boundaries condition |
---|
39 | USE bdydyn ! Unstructured open boundaries condition (bdy_dyn routine) |
---|
40 | USE bdyvol ! Unstructured open boundaries condition (bdy_vol routine) |
---|
41 | USE cla_dynspg ! cross land advection |
---|
42 | USE in_out_manager ! I/O manager |
---|
43 | USE lib_mpp ! distributed memory computing library |
---|
44 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
45 | USE prtctl ! Print control |
---|
46 | USE agrif_opa_interp |
---|
47 | USE iom |
---|
48 | USE restart ! only for lrst_oce |
---|
49 | USE lib_fortran |
---|
50 | |
---|
51 | IMPLICIT NONE |
---|
52 | PRIVATE |
---|
53 | |
---|
54 | PUBLIC dyn_spg_flt ! routine called by step.F90 |
---|
55 | PUBLIC flt_rst ! routine called by istate.F90 |
---|
56 | |
---|
57 | !! * Substitutions |
---|
58 | # include "domzgr_substitute.h90" |
---|
59 | # include "vectopt_loop_substitute.h90" |
---|
60 | !!---------------------------------------------------------------------- |
---|
61 | !! NEMO/OPA 3.2 , LOCEAN-IPSL (2009) |
---|
62 | !! $Id$ |
---|
63 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
64 | !!---------------------------------------------------------------------- |
---|
65 | |
---|
66 | CONTAINS |
---|
67 | |
---|
68 | SUBROUTINE dyn_spg_flt( kt, kindic ) |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | !! *** routine dyn_spg_flt *** |
---|
71 | !! |
---|
72 | !! ** Purpose : Compute the now trend due to the surface pressure |
---|
73 | !! gradient in case of filtered free surface formulation and add |
---|
74 | !! it to the general trend of momentum equation. |
---|
75 | !! |
---|
76 | !! ** Method : Filtered free surface formulation. The surface |
---|
77 | !! pressure gradient is given by: |
---|
78 | !! spgu = 1/rau0 d/dx(ps) = 1/e1u di( sshn + btda ) |
---|
79 | !! spgv = 1/rau0 d/dy(ps) = 1/e2v dj( sshn + btda ) |
---|
80 | !! where sshn is the free surface elevation and btda is the after |
---|
81 | !! time derivative of the free surface elevation |
---|
82 | !! -1- evaluate the surface presure trend (including the addi- |
---|
83 | !! tional force) in three steps: |
---|
84 | !! a- compute the right hand side of the elliptic equation: |
---|
85 | !! gcb = 1/(e1t e2t) [ di(e2u spgu) + dj(e1v spgv) ] |
---|
86 | !! where (spgu,spgv) are given by: |
---|
87 | !! spgu = vertical sum[ e3u (ub+ 2 rdt ua ) ] |
---|
88 | !! - grav 2 rdt hu /e1u di[sshn + emp] |
---|
89 | !! spgv = vertical sum[ e3v (vb+ 2 rdt va) ] |
---|
90 | !! - grav 2 rdt hv /e2v dj[sshn + emp] |
---|
91 | !! and define the first guess from previous computation : |
---|
92 | !! zbtd = btda |
---|
93 | !! btda = 2 zbtd - btdb |
---|
94 | !! btdb = zbtd |
---|
95 | !! b- compute the relative accuracy to be reached by the |
---|
96 | !! iterative solver |
---|
97 | !! c- apply the solver by a call to sol... routine |
---|
98 | !! -2- compute and add the free surface pressure gradient inclu- |
---|
99 | !! ding the additional force used to stabilize the equation. |
---|
100 | !! |
---|
101 | !! ** Action : - Update (ua,va) with the surf. pressure gradient trend |
---|
102 | !! |
---|
103 | !! References : Roullet and Madec 1999, JGR. |
---|
104 | !!--------------------------------------------------------------------- |
---|
105 | USE oce, ONLY : zub => ta ! ta used as workspace |
---|
106 | USE oce, ONLY : zvb => sa ! ta used as workspace |
---|
107 | !! |
---|
108 | INTEGER, INTENT(in ) :: kt ! ocean time-step index |
---|
109 | INTEGER, INTENT( out) :: kindic ! solver convergence flag (<0 if not converge) |
---|
110 | !! |
---|
111 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
112 | REAL(wp) :: z2dt, z2dtg ! temporary scalars |
---|
113 | REAL(wp) :: zgcb, zbtd ! - - |
---|
114 | REAL(wp) :: ztdgu, ztdgv ! - - |
---|
115 | !!---------------------------------------------------------------------- |
---|
116 | ! |
---|
117 | IF( kt == nit000 ) THEN |
---|
118 | IF(lwp) WRITE(numout,*) |
---|
119 | IF(lwp) WRITE(numout,*) 'dyn_spg_flt : surface pressure gradient trend' |
---|
120 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ (free surface constant volume case)' |
---|
121 | |
---|
122 | ! set to zero free surface specific arrays |
---|
123 | spgu(:,:) = 0.e0 ! surface pressure gradient (i-direction) |
---|
124 | spgv(:,:) = 0.e0 ! surface pressure gradient (j-direction) |
---|
125 | CALL solver_init( nit000 ) ! Elliptic solver initialisation |
---|
126 | |
---|
127 | ! read filtered free surface arrays in restart file |
---|
128 | ! when using agrif, sshn, gcx have to be read in istate |
---|
129 | IF(.NOT. lk_agrif) CALL flt_rst( nit000, 'READ' ) ! read or initialize the following fields: |
---|
130 | ! ! gcx, gcxb |
---|
131 | ENDIF |
---|
132 | |
---|
133 | ! Local constant initialization |
---|
134 | z2dt = 2. * rdt ! time step: leap-frog |
---|
135 | IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt ! time step: Euler if restart from rest |
---|
136 | IF( neuler == 0 .AND. kt == nit000+1 ) CALL sol_mat( kt ) |
---|
137 | z2dtg = grav * z2dt |
---|
138 | |
---|
139 | ! Evaluate the masked next velocity (effect of the additional force not included) |
---|
140 | ! --------------------------------- |
---|
141 | IF( lk_vvl ) THEN ! variable volume (surface pressure gradient already included in dyn_hpg) |
---|
142 | ! |
---|
143 | IF( ln_dynadv_vec ) THEN ! vector form : applied on velocity |
---|
144 | DO jk = 1, jpkm1 |
---|
145 | DO jj = 2, jpjm1 |
---|
146 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
147 | ua(ji,jj,jk) = ( ub(ji,jj,jk) + z2dt * ua(ji,jj,jk) ) * umask(ji,jj,jk) |
---|
148 | va(ji,jj,jk) = ( vb(ji,jj,jk) + z2dt * va(ji,jj,jk) ) * vmask(ji,jj,jk) |
---|
149 | END DO |
---|
150 | END DO |
---|
151 | END DO |
---|
152 | ! |
---|
153 | ELSE ! flux form : applied on thickness weighted velocity |
---|
154 | DO jk = 1, jpkm1 |
---|
155 | DO jj = 2, jpjm1 |
---|
156 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
157 | ua(ji,jj,jk) = ( ub(ji,jj,jk) * fse3u_b(ji,jj,jk) & |
---|
158 | & + z2dt * ua(ji,jj,jk) * fse3u_n(ji,jj,jk) ) & |
---|
159 | & / fse3u_a(ji,jj,jk) * umask(ji,jj,jk) |
---|
160 | va(ji,jj,jk) = ( vb(ji,jj,jk) * fse3v_b(ji,jj,jk) & |
---|
161 | & + z2dt * va(ji,jj,jk) * fse3v_n(ji,jj,jk) ) & |
---|
162 | & / fse3v_a(ji,jj,jk) * vmask(ji,jj,jk) |
---|
163 | END DO |
---|
164 | END DO |
---|
165 | END DO |
---|
166 | ! |
---|
167 | ENDIF |
---|
168 | ! |
---|
169 | ELSE ! fixed volume (add the surface pressure gradient + unweighted time stepping) |
---|
170 | ! |
---|
171 | DO jj = 2, jpjm1 ! Surface pressure gradient (now) |
---|
172 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
173 | spgu(ji,jj) = - grav * ( sshn(ji+1,jj) - sshn(ji,jj) ) / e1u(ji,jj) |
---|
174 | spgv(ji,jj) = - grav * ( sshn(ji,jj+1) - sshn(ji,jj) ) / e2v(ji,jj) |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | DO jk = 1, jpkm1 ! unweighted time stepping |
---|
178 | DO jj = 2, jpjm1 |
---|
179 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
180 | ua(ji,jj,jk) = ( ub(ji,jj,jk) + z2dt * ( ua(ji,jj,jk) + spgu(ji,jj) ) ) * umask(ji,jj,jk) |
---|
181 | va(ji,jj,jk) = ( vb(ji,jj,jk) + z2dt * ( va(ji,jj,jk) + spgv(ji,jj) ) ) * vmask(ji,jj,jk) |
---|
182 | END DO |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | ! |
---|
186 | ENDIF |
---|
187 | |
---|
188 | #if defined key_obc |
---|
189 | CALL obc_dyn( kt ) ! Update velocities on each open boundary with the radiation algorithm |
---|
190 | CALL obc_vol( kt ) ! Correction of the barotropic componant velocity to control the volume of the system |
---|
191 | #endif |
---|
192 | #if defined key_bdy |
---|
193 | ! Update velocities on unstructured boundary using the Flow Relaxation Scheme |
---|
194 | CALL bdy_dyn_frs( kt ) |
---|
195 | |
---|
196 | IF (ln_bdy_vol) THEN |
---|
197 | ! Correction of the barotropic component velocity to control the volume of the system |
---|
198 | CALL bdy_vol( kt ) |
---|
199 | ENDIF |
---|
200 | #endif |
---|
201 | #if defined key_agrif |
---|
202 | CALL Agrif_dyn( kt ) ! Update velocities on each coarse/fine interfaces |
---|
203 | #endif |
---|
204 | #if defined key_orca_r2 |
---|
205 | IF( n_cla == 1 ) CALL dyn_spg_cla( kt ) ! Cross Land Advection (update (ua,va)) |
---|
206 | #endif |
---|
207 | |
---|
208 | ! compute the next vertically averaged velocity (effect of the additional force not included) |
---|
209 | ! --------------------------------------------- |
---|
210 | DO jj = 2, jpjm1 |
---|
211 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
212 | spgu(ji,jj) = 0.e0 |
---|
213 | spgv(ji,jj) = 0.e0 |
---|
214 | END DO |
---|
215 | END DO |
---|
216 | |
---|
217 | ! vertical sum |
---|
218 | !CDIR NOLOOPCHG |
---|
219 | IF( lk_vopt_loop ) THEN ! vector opt., forced unroll |
---|
220 | DO jk = 1, jpkm1 |
---|
221 | DO ji = 1, jpij |
---|
222 | spgu(ji,1) = spgu(ji,1) + fse3u(ji,1,jk) * ua(ji,1,jk) |
---|
223 | spgv(ji,1) = spgv(ji,1) + fse3v(ji,1,jk) * va(ji,1,jk) |
---|
224 | END DO |
---|
225 | END DO |
---|
226 | ELSE ! No vector opt. |
---|
227 | DO jk = 1, jpkm1 |
---|
228 | DO jj = 2, jpjm1 |
---|
229 | DO ji = 2, jpim1 |
---|
230 | spgu(ji,jj) = spgu(ji,jj) + fse3u(ji,jj,jk) * ua(ji,jj,jk) |
---|
231 | spgv(ji,jj) = spgv(ji,jj) + fse3v(ji,jj,jk) * va(ji,jj,jk) |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | END DO |
---|
235 | ENDIF |
---|
236 | |
---|
237 | ! transport: multiplied by the horizontal scale factor |
---|
238 | DO jj = 2, jpjm1 |
---|
239 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
240 | spgu(ji,jj) = spgu(ji,jj) * e2u(ji,jj) |
---|
241 | spgv(ji,jj) = spgv(ji,jj) * e1v(ji,jj) |
---|
242 | END DO |
---|
243 | END DO |
---|
244 | CALL lbc_lnk( spgu, 'U', -1. ) ! lateral boundary conditions |
---|
245 | CALL lbc_lnk( spgv, 'V', -1. ) |
---|
246 | |
---|
247 | IF( lk_vvl ) CALL sol_mat( kt ) ! build the matrix at kt (vvl case only) |
---|
248 | |
---|
249 | ! Right hand side of the elliptic equation and first guess |
---|
250 | ! -------------------------------------------------------- |
---|
251 | DO jj = 2, jpjm1 |
---|
252 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
253 | ! Divergence of the after vertically averaged velocity |
---|
254 | zgcb = spgu(ji,jj) - spgu(ji-1,jj) & |
---|
255 | + spgv(ji,jj) - spgv(ji,jj-1) |
---|
256 | gcb(ji,jj) = gcdprc(ji,jj) * zgcb |
---|
257 | ! First guess of the after barotropic transport divergence |
---|
258 | zbtd = gcx(ji,jj) |
---|
259 | gcx (ji,jj) = 2. * zbtd - gcxb(ji,jj) |
---|
260 | gcxb(ji,jj) = zbtd |
---|
261 | END DO |
---|
262 | END DO |
---|
263 | ! applied the lateral boundary conditions |
---|
264 | IF( nn_solv == 2 .AND. MAX( jpr2di, jpr2dj ) > 0 ) CALL lbc_lnk_e( gcb, c_solver_pt, 1. ) |
---|
265 | |
---|
266 | #if defined key_agrif |
---|
267 | IF( .NOT. AGRIF_ROOT() ) THEN |
---|
268 | ! add contribution of gradient of after barotropic transport divergence |
---|
269 | IF( nbondi == -1 .OR. nbondi == 2 ) gcb(3 ,:) = & |
---|
270 | & gcb(3 ,:) - z2dtg * z2dt * laplacu(2 ,:) * gcdprc(3 ,:) * hu(2 ,:) * e2u(2 ,:) |
---|
271 | IF( nbondi == 1 .OR. nbondi == 2 ) gcb(nlci-2,:) = & |
---|
272 | & gcb(nlci-2,:) + z2dtg * z2dt * laplacu(nlci-2,:) * gcdprc(nlci-2,:) * hu(nlci-2,:) * e2u(nlci-2,:) |
---|
273 | IF( nbondj == -1 .OR. nbondj == 2 ) gcb(: ,3) = & |
---|
274 | & gcb(:,3 ) - z2dtg * z2dt * laplacv(:,2 ) * gcdprc(:,3 ) * hv(:,2 ) * e1v(:,2 ) |
---|
275 | IF( nbondj == 1 .OR. nbondj == 2 ) gcb(:,nlcj-2) = & |
---|
276 | & gcb(:,nlcj-2) + z2dtg * z2dt * laplacv(:,nlcj-2) * gcdprc(:,nlcj-2) * hv(:,nlcj-2) * e1v(:,nlcj-2) |
---|
277 | ENDIF |
---|
278 | #endif |
---|
279 | |
---|
280 | |
---|
281 | ! Relative precision (computation on one processor) |
---|
282 | ! ------------------ |
---|
283 | rnorme =0.e0 |
---|
284 | rnorme = GLOB_SUM( gcb(1:jpi,1:jpj) * gcdmat(1:jpi,1:jpj) * gcb(1:jpi,1:jpj) * bmask(:,:) ) |
---|
285 | |
---|
286 | epsr = eps * eps * rnorme |
---|
287 | ncut = 0 |
---|
288 | ! if rnorme is 0, the solution is 0, the solver is not called |
---|
289 | IF( rnorme == 0.e0 ) THEN |
---|
290 | gcx(:,:) = 0.e0 |
---|
291 | res = 0.e0 |
---|
292 | niter = 0 |
---|
293 | ncut = 999 |
---|
294 | ENDIF |
---|
295 | |
---|
296 | ! Evaluate the next transport divergence |
---|
297 | ! -------------------------------------- |
---|
298 | ! Iterarive solver for the elliptic equation (except IF sol.=0) |
---|
299 | ! (output in gcx with boundary conditions applied) |
---|
300 | kindic = 0 |
---|
301 | IF( ncut == 0 ) THEN |
---|
302 | IF ( nn_solv == 1 ) THEN ; CALL sol_pcg( kindic ) ! diagonal preconditioned conjuguate gradient |
---|
303 | ELSEIF( nn_solv == 2 ) THEN ; CALL sol_sor( kindic ) ! successive-over-relaxation |
---|
304 | ENDIF |
---|
305 | ENDIF |
---|
306 | |
---|
307 | ! Transport divergence gradient multiplied by z2dt |
---|
308 | ! --------------------------------------------==== |
---|
309 | DO jj = 2, jpjm1 |
---|
310 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
311 | ! trend of Transport divergence gradient |
---|
312 | ztdgu = z2dtg * (gcx(ji+1,jj ) - gcx(ji,jj) ) / e1u(ji,jj) |
---|
313 | ztdgv = z2dtg * (gcx(ji ,jj+1) - gcx(ji,jj) ) / e2v(ji,jj) |
---|
314 | ! multiplied by z2dt |
---|
315 | #if defined key_obc |
---|
316 | ! caution : grad D = 0 along open boundaries |
---|
317 | spgu(ji,jj) = z2dt * ztdgu * obcumask(ji,jj) |
---|
318 | spgv(ji,jj) = z2dt * ztdgv * obcvmask(ji,jj) |
---|
319 | #elif defined key_bdy |
---|
320 | ! caution : grad D = 0 along open boundaries |
---|
321 | ! Remark: The filtering force could be reduced here in the FRS zone |
---|
322 | ! by multiplying spgu/spgv by (1-alpha) ?? |
---|
323 | spgu(ji,jj) = z2dt * ztdgu * bdyumask(ji,jj) |
---|
324 | spgv(ji,jj) = z2dt * ztdgv * bdyvmask(ji,jj) |
---|
325 | #else |
---|
326 | spgu(ji,jj) = z2dt * ztdgu |
---|
327 | spgv(ji,jj) = z2dt * ztdgv |
---|
328 | #endif |
---|
329 | END DO |
---|
330 | END DO |
---|
331 | |
---|
332 | #if defined key_agrif |
---|
333 | IF( .NOT. Agrif_Root() ) THEN |
---|
334 | ! caution : grad D (fine) = grad D (coarse) at coarse/fine interface |
---|
335 | IF( nbondi == -1 .OR. nbondi == 2 ) spgu(2 ,:) = z2dtg * z2dt * laplacu(2 ,:) * umask(2 ,:,1) |
---|
336 | IF( nbondi == 1 .OR. nbondi == 2 ) spgu(nlci-2,:) = z2dtg * z2dt * laplacu(nlci-2,:) * umask(nlci-2,:,1) |
---|
337 | IF( nbondj == -1 .OR. nbondj == 2 ) spgv(:,2 ) = z2dtg * z2dt * laplacv(:,2 ) * vmask(: ,2,1) |
---|
338 | IF( nbondj == 1 .OR. nbondj == 2 ) spgv(:,nlcj-2) = z2dtg * z2dt * laplacv(:,nlcj-2) * vmask(:,nlcj-2,1) |
---|
339 | ENDIF |
---|
340 | #endif |
---|
341 | ! Add the trends multiplied by z2dt to the after velocity |
---|
342 | ! ------------------------------------------------------- |
---|
343 | ! ( c a u t i o n : (ua,va) here are the after velocity not the |
---|
344 | ! trend, the leap-frog time stepping will not |
---|
345 | ! be done in dynnxt.F90 routine) |
---|
346 | DO jk = 1, jpkm1 |
---|
347 | DO jj = 2, jpjm1 |
---|
348 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
349 | ua(ji,jj,jk) = ( ua(ji,jj,jk) + spgu(ji,jj) ) * umask(ji,jj,jk) |
---|
350 | va(ji,jj,jk) = ( va(ji,jj,jk) + spgv(ji,jj) ) * vmask(ji,jj,jk) |
---|
351 | END DO |
---|
352 | END DO |
---|
353 | END DO |
---|
354 | |
---|
355 | ! write filtered free surface arrays in restart file |
---|
356 | ! -------------------------------------------------- |
---|
357 | IF( lrst_oce ) CALL flt_rst( kt, 'WRITE' ) |
---|
358 | ! |
---|
359 | END SUBROUTINE dyn_spg_flt |
---|
360 | |
---|
361 | |
---|
362 | SUBROUTINE flt_rst( kt, cdrw ) |
---|
363 | !!--------------------------------------------------------------------- |
---|
364 | !! *** ROUTINE ts_rst *** |
---|
365 | !! |
---|
366 | !! ** Purpose : Read or write filtered free surface arrays in restart file |
---|
367 | !!---------------------------------------------------------------------- |
---|
368 | INTEGER , INTENT(in) :: kt ! ocean time-step |
---|
369 | CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
370 | !!---------------------------------------------------------------------- |
---|
371 | |
---|
372 | IF( TRIM(cdrw) == 'READ' ) THEN |
---|
373 | IF( iom_varid( numror, 'gcx', ldstop = .FALSE. ) > 0 ) THEN |
---|
374 | ! Caution : extra-hallow |
---|
375 | ! gcx and gcxb are defined as: DIMENSION(1-jpr2di:jpi+jpr2di,1-jpr2dj:jpj+jpr2dj) |
---|
376 | CALL iom_get( numror, jpdom_autoglo, 'gcx' , gcx (1:jpi,1:jpj) ) |
---|
377 | CALL iom_get( numror, jpdom_autoglo, 'gcxb', gcxb(1:jpi,1:jpj) ) |
---|
378 | IF( neuler == 0 ) gcxb(:,:) = gcx (:,:) |
---|
379 | ELSE |
---|
380 | gcx (:,:) = 0.e0 |
---|
381 | gcxb(:,:) = 0.e0 |
---|
382 | ENDIF |
---|
383 | ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN |
---|
384 | ! Caution : extra-hallow |
---|
385 | ! gcx and gcxb are defined as: DIMENSION(1-jpr2di:jpi+jpr2di,1-jpr2dj:jpj+jpr2dj) |
---|
386 | CALL iom_rstput( kt, nitrst, numrow, 'gcx' , gcx (1:jpi,1:jpj) ) |
---|
387 | CALL iom_rstput( kt, nitrst, numrow, 'gcxb', gcxb(1:jpi,1:jpj) ) |
---|
388 | ENDIF |
---|
389 | ! |
---|
390 | END SUBROUTINE flt_rst |
---|
391 | |
---|
392 | #else |
---|
393 | !!---------------------------------------------------------------------- |
---|
394 | !! Default case : Empty module No standart free surface cst volume |
---|
395 | !!---------------------------------------------------------------------- |
---|
396 | CONTAINS |
---|
397 | SUBROUTINE dyn_spg_flt( kt, kindic ) ! Empty routine |
---|
398 | WRITE(*,*) 'dyn_spg_flt: You should not have seen this print! error?', kt, kindic |
---|
399 | END SUBROUTINE dyn_spg_flt |
---|
400 | SUBROUTINE flt_rst ( kt, cdrw ) ! Empty routine |
---|
401 | INTEGER , INTENT(in) :: kt ! ocean time-step |
---|
402 | CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag |
---|
403 | WRITE(*,*) 'flt_rst: You should not have seen this print! error?', kt, cdrw |
---|
404 | END SUBROUTINE flt_rst |
---|
405 | #endif |
---|
406 | |
---|
407 | !!====================================================================== |
---|
408 | END MODULE dynspg_flt |
---|