1 | MODULE sbccpl |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbccpl *** |
---|
4 | !! Surface Boundary Condition : momentum, heat and freshwater fluxes in coupled mode |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 06-2007 (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod |
---|
7 | !! 3.0 ! 02-2008 (G. Madec, C Talandier) surface module |
---|
8 | !! 3.1 ! 02-2009 (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_oasis3 || defined key_oasis4 |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_oasis3' or 'key_oasis4' Coupled Ocean/Atmosphere formulation |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! namsbc_cpl : coupled formulation namlist |
---|
15 | !! sbc_cpl_init : initialisation of the coupled exchanges |
---|
16 | !! sbc_cpl_rcv : receive fields from the atmosphere over the ocean (ocean only) |
---|
17 | !! receive stress from the atmosphere over the ocean (ocean-ice case) |
---|
18 | !! sbc_cpl_ice_tau : receive stress from the atmosphere over ice |
---|
19 | !! sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice |
---|
20 | !! sbc_cpl_snd : send fields to the atmosphere |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE dom_oce ! ocean space and time domain |
---|
23 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
24 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
25 | USE phycst ! physical constants |
---|
26 | #if defined key_lim3 |
---|
27 | USE par_ice ! ice parameters |
---|
28 | #endif |
---|
29 | #if defined key_lim2 |
---|
30 | USE par_ice_2 ! ice parameters |
---|
31 | USE ice_2 ! ice variables |
---|
32 | #endif |
---|
33 | #if defined key_oasis3 |
---|
34 | USE cpl_oasis3 ! OASIS3 coupling |
---|
35 | #endif |
---|
36 | #if defined key_oasis4 |
---|
37 | USE cpl_oasis4 ! OASIS4 coupling |
---|
38 | #endif |
---|
39 | USE geo2ocean ! |
---|
40 | USE restart ! |
---|
41 | USE oce , ONLY : tn, un, vn |
---|
42 | USE albedo ! |
---|
43 | USE in_out_manager ! I/O manager |
---|
44 | USE iom ! NetCDF library |
---|
45 | USE lib_mpp ! distribued memory computing library |
---|
46 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
47 | #if defined key_cpl_carbon_cycle |
---|
48 | USE p4zflx, ONLY : oce_co2 |
---|
49 | #endif |
---|
50 | USE diaar5, ONLY : lk_diaar5 |
---|
51 | IMPLICIT NONE |
---|
52 | PRIVATE |
---|
53 | |
---|
54 | PUBLIC sbc_cpl_rcv ! routine called by sbc_ice_lim(_2).F90 |
---|
55 | PUBLIC sbc_cpl_snd ! routine called by step.F90 |
---|
56 | PUBLIC sbc_cpl_ice_tau ! routine called by sbc_ice_lim(_2).F90 |
---|
57 | PUBLIC sbc_cpl_ice_flx ! routine called by sbc_ice_lim(_2).F90 |
---|
58 | |
---|
59 | INTEGER, PARAMETER :: jpr_otx1 = 1 ! 3 atmosphere-ocean stress components on grid 1 |
---|
60 | INTEGER, PARAMETER :: jpr_oty1 = 2 ! |
---|
61 | INTEGER, PARAMETER :: jpr_otz1 = 3 ! |
---|
62 | INTEGER, PARAMETER :: jpr_otx2 = 4 ! 3 atmosphere-ocean stress components on grid 2 |
---|
63 | INTEGER, PARAMETER :: jpr_oty2 = 5 ! |
---|
64 | INTEGER, PARAMETER :: jpr_otz2 = 6 ! |
---|
65 | INTEGER, PARAMETER :: jpr_itx1 = 7 ! 3 atmosphere-ice stress components on grid 1 |
---|
66 | INTEGER, PARAMETER :: jpr_ity1 = 8 ! |
---|
67 | INTEGER, PARAMETER :: jpr_itz1 = 9 ! |
---|
68 | INTEGER, PARAMETER :: jpr_itx2 = 10 ! 3 atmosphere-ice stress components on grid 2 |
---|
69 | INTEGER, PARAMETER :: jpr_ity2 = 11 ! |
---|
70 | INTEGER, PARAMETER :: jpr_itz2 = 12 ! |
---|
71 | INTEGER, PARAMETER :: jpr_qsroce = 13 ! Qsr above the ocean |
---|
72 | INTEGER, PARAMETER :: jpr_qsrice = 14 ! Qsr above the ice |
---|
73 | INTEGER, PARAMETER :: jpr_qsrmix = 15 |
---|
74 | INTEGER, PARAMETER :: jpr_qnsoce = 16 ! Qns above the ocean |
---|
75 | INTEGER, PARAMETER :: jpr_qnsice = 17 ! Qns above the ice |
---|
76 | INTEGER, PARAMETER :: jpr_qnsmix = 18 |
---|
77 | INTEGER, PARAMETER :: jpr_rain = 19 ! total liquid precipitation (rain) |
---|
78 | INTEGER, PARAMETER :: jpr_snow = 20 ! solid precipitation over the ocean (snow) |
---|
79 | INTEGER, PARAMETER :: jpr_tevp = 21 ! total evaporation |
---|
80 | INTEGER, PARAMETER :: jpr_ievp = 22 ! solid evaporation (sublimation) |
---|
81 | INTEGER, PARAMETER :: jpr_sbpr = 23 ! sublimation - liquid precipitation - solid precipitation |
---|
82 | INTEGER, PARAMETER :: jpr_semp = 24 ! solid freshwater budget (sublimation - snow) |
---|
83 | INTEGER, PARAMETER :: jpr_oemp = 25 ! ocean freshwater budget (evap - precip) |
---|
84 | INTEGER, PARAMETER :: jpr_w10m = 26 ! 10m wind |
---|
85 | INTEGER, PARAMETER :: jpr_dqnsdt = 27 ! d(Q non solar)/d(temperature) |
---|
86 | INTEGER, PARAMETER :: jpr_rnf = 28 ! runoffs |
---|
87 | INTEGER, PARAMETER :: jpr_cal = 29 ! calving |
---|
88 | INTEGER, PARAMETER :: jpr_taum = 30 ! wind stress module |
---|
89 | #if ! defined key_cpl_carbon_cycle |
---|
90 | INTEGER, PARAMETER :: jprcv = 30 ! total number of fields received |
---|
91 | #else |
---|
92 | INTEGER, PARAMETER :: jpr_co2 = 31 |
---|
93 | INTEGER, PARAMETER :: jprcv = 31 ! total number of fields received |
---|
94 | #endif |
---|
95 | INTEGER, PARAMETER :: jps_fice = 1 ! ice fraction |
---|
96 | INTEGER, PARAMETER :: jps_toce = 2 ! ocean temperature |
---|
97 | INTEGER, PARAMETER :: jps_tice = 3 ! ice temperature |
---|
98 | INTEGER, PARAMETER :: jps_tmix = 4 ! mixed temperature (ocean+ice) |
---|
99 | INTEGER, PARAMETER :: jps_albice = 5 ! ice albedo |
---|
100 | INTEGER, PARAMETER :: jps_albmix = 6 ! mixed albedo |
---|
101 | INTEGER, PARAMETER :: jps_hice = 7 ! ice thickness |
---|
102 | INTEGER, PARAMETER :: jps_hsnw = 8 ! snow thickness |
---|
103 | INTEGER, PARAMETER :: jps_ocx1 = 9 ! ocean current on grid 1 |
---|
104 | INTEGER, PARAMETER :: jps_ocy1 = 10 ! |
---|
105 | INTEGER, PARAMETER :: jps_ocz1 = 11 ! |
---|
106 | INTEGER, PARAMETER :: jps_ivx1 = 12 ! ice current on grid 1 |
---|
107 | INTEGER, PARAMETER :: jps_ivy1 = 13 ! |
---|
108 | INTEGER, PARAMETER :: jps_ivz1 = 14 ! |
---|
109 | #if ! defined key_cpl_carbon_cycle |
---|
110 | INTEGER, PARAMETER :: jpsnd = 14 ! total number of fields sended |
---|
111 | #else |
---|
112 | INTEGER, PARAMETER :: jps_co2 = 15 |
---|
113 | INTEGER, PARAMETER :: jpsnd = 15 ! total number of fields sended |
---|
114 | #endif |
---|
115 | ! !!** namelist namsbc_cpl ** |
---|
116 | ! Send to the atmosphere ! |
---|
117 | CHARACTER(len=100) :: cn_snd_temperature = 'oce only' ! 'oce only' 'weighted oce and ice' or 'mixed oce-ice' |
---|
118 | CHARACTER(len=100) :: cn_snd_albedo = 'none' ! 'none' 'weighted ice' or 'mixed oce-ice' |
---|
119 | CHARACTER(len=100) :: cn_snd_thickness = 'none' ! 'none' or 'weighted ice and snow' |
---|
120 | CHARACTER(len=100) :: cn_snd_crt_nature = 'none' ! 'none' 'oce only' 'weighted oce and ice' or 'mixed oce-ice' |
---|
121 | CHARACTER(len=100) :: cn_snd_crt_refere = 'spherical' ! 'spherical' or 'cartesian' |
---|
122 | CHARACTER(len=100) :: cn_snd_crt_orient = 'local grid' ! 'eastward-northward' or 'local grid' |
---|
123 | CHARACTER(len=100) :: cn_snd_crt_grid = 'T' ! always at 'T' point |
---|
124 | #if defined key_cpl_carbon_cycle |
---|
125 | CHARACTER(len=100) :: cn_snd_co2 = 'none' ! 'none' or 'coupled' |
---|
126 | #endif |
---|
127 | ! Received from the atmosphere ! |
---|
128 | CHARACTER(len=100) :: cn_rcv_tau_nature = 'oce only' ! 'oce only' 'oce and ice' or 'mixed oce-ice' |
---|
129 | CHARACTER(len=100) :: cn_rcv_tau_refere = 'spherical' ! 'spherical' or 'cartesian' |
---|
130 | CHARACTER(len=100) :: cn_rcv_tau_orient = 'local grid' ! 'eastward-northward' or 'local grid' |
---|
131 | CHARACTER(len=100) :: cn_rcv_tau_grid = 'T' ! 'T', 'U,V', 'U,V,I', 'T,I', or 'T,U,V' |
---|
132 | CHARACTER(len=100) :: cn_rcv_w10m = 'none' ! 'none' or 'coupled' |
---|
133 | CHARACTER(len=100) :: cn_rcv_dqnsdt = 'none' ! 'none' or 'coupled' |
---|
134 | CHARACTER(len=100) :: cn_rcv_qsr = 'oce only' ! 'oce only' 'conservative' 'oce and ice' or 'mixed oce-ice' |
---|
135 | CHARACTER(len=100) :: cn_rcv_qns = 'oce only' ! 'oce only' 'conservative' 'oce and ice' or 'mixed oce-ice' |
---|
136 | CHARACTER(len=100) :: cn_rcv_emp = 'oce only' ! 'oce only' 'conservative' or 'oce and ice' |
---|
137 | CHARACTER(len=100) :: cn_rcv_rnf = 'coupled' ! 'coupled' 'climato' or 'mixed' |
---|
138 | CHARACTER(len=100) :: cn_rcv_cal = 'none' ! 'none' or 'coupled' |
---|
139 | CHARACTER(len=100) :: cn_rcv_taumod = 'none' ! 'none' or 'coupled' |
---|
140 | #if defined key_cpl_carbon_cycle |
---|
141 | CHARACTER(len=100) :: cn_rcv_co2 = 'none' ! 'none' or 'coupled' |
---|
142 | #endif |
---|
143 | |
---|
144 | !! CHARACTER(len=100), PUBLIC :: cn_rcv_rnf !: ??? ==>> !!gm treat this case in a different maner |
---|
145 | |
---|
146 | CHARACTER(len=100), DIMENSION(4) :: cn_snd_crt ! array combining cn_snd_crt_* |
---|
147 | CHARACTER(len=100), DIMENSION(4) :: cn_rcv_tau ! array combining cn_rcv_tau_* |
---|
148 | |
---|
149 | REAL(wp), DIMENSION(jpi,jpj) :: albedo_oce_mix ! ocean albedo sent to atmosphere (mix clear/overcast sky) |
---|
150 | |
---|
151 | REAL(wp), DIMENSION(jpi,jpj,jprcv) :: frcv ! all fields recieved from the atmosphere |
---|
152 | INTEGER , DIMENSION( jprcv) :: nrcvinfo ! OASIS info argument |
---|
153 | |
---|
154 | #if ! defined key_lim2 && ! defined key_lim3 |
---|
155 | ! quick patch to be able to run the coupled model without sea-ice... |
---|
156 | INTEGER, PARAMETER :: jpl = 1 |
---|
157 | REAL(wp), DIMENSION(jpi,jpj ) :: hicif, hsnif, u_ice, v_ice,fr1_i0,fr2_i0 |
---|
158 | REAL(wp), DIMENSION(jpi,jpj,jpl) :: tn_ice, alb_ice |
---|
159 | REAL(wp) :: lfus |
---|
160 | #endif |
---|
161 | |
---|
162 | !! Substitution |
---|
163 | # include "vectopt_loop_substitute.h90" |
---|
164 | !!---------------------------------------------------------------------- |
---|
165 | !! NEMO/OPA 3.0 , LOCEAN-IPSL (2008) |
---|
166 | !! $Id$ |
---|
167 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
168 | !!---------------------------------------------------------------------- |
---|
169 | |
---|
170 | CONTAINS |
---|
171 | |
---|
172 | SUBROUTINE sbc_cpl_init( k_ice ) |
---|
173 | !!---------------------------------------------------------------------- |
---|
174 | !! *** ROUTINE sbc_cpl_init *** |
---|
175 | !! |
---|
176 | !! ** Purpose : Initialisation of send and recieved information from |
---|
177 | !! the atmospheric component |
---|
178 | !! |
---|
179 | !! ** Method : * Read namsbc_cpl namelist |
---|
180 | !! * define the receive interface |
---|
181 | !! * define the send interface |
---|
182 | !! * initialise the OASIS coupler |
---|
183 | !!---------------------------------------------------------------------- |
---|
184 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
185 | !! |
---|
186 | INTEGER :: jn ! dummy loop index |
---|
187 | REAL(wp), DIMENSION(jpi,jpj) :: zacs, zaos ! 2D workspace (clear & overcast sky albedos) |
---|
188 | !! |
---|
189 | NAMELIST/namsbc_cpl/ cn_snd_temperature, cn_snd_albedo , cn_snd_thickness, & |
---|
190 | cn_snd_crt_nature, cn_snd_crt_refere , cn_snd_crt_orient, cn_snd_crt_grid , & |
---|
191 | cn_rcv_w10m , cn_rcv_taumod , & |
---|
192 | cn_rcv_tau_nature, cn_rcv_tau_refere , cn_rcv_tau_orient, cn_rcv_tau_grid , & |
---|
193 | cn_rcv_dqnsdt , cn_rcv_qsr , cn_rcv_qns , cn_rcv_emp , cn_rcv_rnf , cn_rcv_cal |
---|
194 | #if defined key_cpl_carbon_cycle |
---|
195 | NAMELIST/namsbc_cpl_co2/ cn_snd_co2, cn_rcv_co2 |
---|
196 | #endif |
---|
197 | !!--------------------------------------------------------------------- |
---|
198 | |
---|
199 | ! ================================ ! |
---|
200 | ! Namelist informations ! |
---|
201 | ! ================================ ! |
---|
202 | |
---|
203 | REWIND( numnam ) ! ... read namlist namsbc_cpl |
---|
204 | READ ( numnam, namsbc_cpl ) |
---|
205 | |
---|
206 | IF(lwp) THEN ! control print |
---|
207 | WRITE(numout,*) |
---|
208 | WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist ' |
---|
209 | WRITE(numout,*)'~~~~~~~~~~~~' |
---|
210 | WRITE(numout,*)' received fields' |
---|
211 | WRITE(numout,*)' 10m wind module cn_rcv_w10m = ', cn_rcv_w10m |
---|
212 | WRITE(numout,*)' surface stress - nature cn_rcv_tau_nature = ', cn_rcv_tau_nature |
---|
213 | WRITE(numout,*)' - referential cn_rcv_tau_refere = ', cn_rcv_tau_refere |
---|
214 | WRITE(numout,*)' - orientation cn_rcv_tau_orient = ', cn_rcv_tau_orient |
---|
215 | WRITE(numout,*)' - mesh cn_rcv_tau_grid = ', cn_rcv_tau_grid |
---|
216 | WRITE(numout,*)' non-solar heat flux sensitivity cn_rcv_dqnsdt = ', cn_rcv_dqnsdt |
---|
217 | WRITE(numout,*)' solar heat flux cn_rcv_qsr = ', cn_rcv_qsr |
---|
218 | WRITE(numout,*)' non-solar heat flux cn_rcv_qns = ', cn_rcv_qns |
---|
219 | WRITE(numout,*)' freshwater budget cn_rcv_emp = ', cn_rcv_emp |
---|
220 | WRITE(numout,*)' runoffs cn_rcv_rnf = ', cn_rcv_rnf |
---|
221 | WRITE(numout,*)' calving cn_rcv_cal = ', cn_rcv_cal |
---|
222 | WRITE(numout,*)' stress module cn_rcv_taumod = ', cn_rcv_taumod |
---|
223 | WRITE(numout,*)' sent fields' |
---|
224 | WRITE(numout,*)' surface temperature cn_snd_temperature = ', cn_snd_temperature |
---|
225 | WRITE(numout,*)' albedo cn_snd_albedo = ', cn_snd_albedo |
---|
226 | WRITE(numout,*)' ice/snow thickness cn_snd_thickness = ', cn_snd_thickness |
---|
227 | WRITE(numout,*)' surface current - nature cn_snd_crt_nature = ', cn_snd_crt_nature |
---|
228 | WRITE(numout,*)' - referential cn_snd_crt_refere = ', cn_snd_crt_refere |
---|
229 | WRITE(numout,*)' - orientation cn_snd_crt_orient = ', cn_snd_crt_orient |
---|
230 | WRITE(numout,*)' - mesh cn_snd_crt_grid = ', cn_snd_crt_grid |
---|
231 | ENDIF |
---|
232 | |
---|
233 | #if defined key_cpl_carbon_cycle |
---|
234 | REWIND( numnam ) ! ... read namlist namsbc_cpl_co2 |
---|
235 | READ ( numnam, namsbc_cpl_co2 ) |
---|
236 | IF(lwp) THEN ! control print |
---|
237 | WRITE(numout,*) |
---|
238 | WRITE(numout,*)'sbc_cpl_init : namsbc_cpl_co2 namelist ' |
---|
239 | WRITE(numout,*)'~~~~~~~~~~~~' |
---|
240 | WRITE(numout,*)' received fields' |
---|
241 | WRITE(numout,*)' atm co2 cn_rcv_co2 = ', cn_rcv_co2 |
---|
242 | WRITE(numout,*)' sent fields' |
---|
243 | WRITE(numout,*)' oce co2 flux cn_snd_co2 = ', cn_snd_co2 |
---|
244 | WRITE(numout,*) |
---|
245 | ENDIF |
---|
246 | #endif |
---|
247 | ! save current & stress in an array and suppress possible blank in the name |
---|
248 | cn_snd_crt(1) = TRIM( cn_snd_crt_nature ) ; cn_snd_crt(2) = TRIM( cn_snd_crt_refere ) |
---|
249 | cn_snd_crt(3) = TRIM( cn_snd_crt_orient ) ; cn_snd_crt(4) = TRIM( cn_snd_crt_grid ) |
---|
250 | cn_rcv_tau(1) = TRIM( cn_rcv_tau_nature ) ; cn_rcv_tau(2) = TRIM( cn_rcv_tau_refere ) |
---|
251 | cn_rcv_tau(3) = TRIM( cn_rcv_tau_orient ) ; cn_rcv_tau(4) = TRIM( cn_rcv_tau_grid ) |
---|
252 | |
---|
253 | ! ================================ ! |
---|
254 | ! Define the receive interface ! |
---|
255 | ! ================================ ! |
---|
256 | nrcvinfo(:) = OASIS_idle ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress |
---|
257 | |
---|
258 | ! for each field: define the OASIS name (srcv(:)%clname) |
---|
259 | ! define receive or not from the namelist parameters (srcv(:)%laction) |
---|
260 | ! define the north fold type of lbc (srcv(:)%nsgn) |
---|
261 | |
---|
262 | ! default definitions of srcv |
---|
263 | srcv(:)%laction = .FALSE. ; srcv(:)%clgrid = 'T' ; srcv(:)%nsgn = 1. |
---|
264 | |
---|
265 | ! ! ------------------------- ! |
---|
266 | ! ! ice and ocean wind stress ! |
---|
267 | ! ! ------------------------- ! |
---|
268 | ! ! Name |
---|
269 | srcv(jpr_otx1)%clname = 'O_OTaux1' ! 1st ocean component on grid ONE (T or U) |
---|
270 | srcv(jpr_oty1)%clname = 'O_OTauy1' ! 2nd - - - - |
---|
271 | srcv(jpr_otz1)%clname = 'O_OTauz1' ! 3rd - - - - |
---|
272 | srcv(jpr_otx2)%clname = 'O_OTaux2' ! 1st ocean component on grid TWO (V) |
---|
273 | srcv(jpr_oty2)%clname = 'O_OTauy2' ! 2nd - - - - |
---|
274 | srcv(jpr_otz2)%clname = 'O_OTauz2' ! 3rd - - - - |
---|
275 | ! |
---|
276 | srcv(jpr_itx1)%clname = 'O_ITaux1' ! 1st ice component on grid ONE (T, F, I or U) |
---|
277 | srcv(jpr_ity1)%clname = 'O_ITauy1' ! 2nd - - - - |
---|
278 | srcv(jpr_itz1)%clname = 'O_ITauz1' ! 3rd - - - - |
---|
279 | srcv(jpr_itx2)%clname = 'O_ITaux2' ! 1st ice component on grid TWO (V) |
---|
280 | srcv(jpr_ity2)%clname = 'O_ITauy2' ! 2nd - - - - |
---|
281 | srcv(jpr_itz2)%clname = 'O_ITauz2' ! 3rd - - - - |
---|
282 | ! |
---|
283 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
284 | IF( TRIM( cn_rcv_tau(3) ) == 'local grid' ) srcv(jpr_otx1:jpr_itz2)%nsgn = -1. |
---|
285 | |
---|
286 | ! ! Set grid and action |
---|
287 | SELECT CASE( TRIM( cn_rcv_tau(4) ) ) ! 'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V' |
---|
288 | CASE( 'T' ) |
---|
289 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
290 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
291 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
292 | CASE( 'U,V' ) |
---|
293 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
294 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
295 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
296 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
297 | srcv(jpr_otx1:jpr_itz2)%laction = .TRUE. ! receive oce and ice components on both grid 1 & 2 |
---|
298 | CASE( 'U,V,T' ) |
---|
299 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
300 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
301 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'T' ! ice components given at T-point |
---|
302 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
303 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
304 | CASE( 'U,V,I' ) |
---|
305 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
306 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
307 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
308 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
309 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
310 | CASE( 'U,V,F' ) |
---|
311 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
312 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
313 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
314 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
315 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
316 | CASE( 'T,I' ) |
---|
317 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
318 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
319 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
320 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
321 | CASE( 'T,F' ) |
---|
322 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
323 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
324 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
325 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
326 | CASE( 'T,U,V' ) |
---|
327 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'T' ! oce components given at T-point |
---|
328 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
329 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
330 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 only |
---|
331 | srcv(jpr_itx1:jpr_itz2)%laction = .TRUE. ! receive ice components on grid 1 & 2 |
---|
332 | CASE default |
---|
333 | CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_rcv_tau(4)' ) |
---|
334 | END SELECT |
---|
335 | ! |
---|
336 | IF( TRIM( cn_rcv_tau(2) ) == 'spherical' ) & ! spherical: 3rd component not received |
---|
337 | & srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE. |
---|
338 | ! |
---|
339 | IF( TRIM( cn_rcv_tau(1) ) /= 'oce and ice' ) THEN ! 'oce and ice' case ocean stress on ocean mesh used |
---|
340 | srcv(jpr_itx1:jpr_itz2)%laction = .FALSE. ! ice components not received |
---|
341 | srcv(jpr_itx1)%clgrid = 'U' ! ocean stress used after its transformation |
---|
342 | srcv(jpr_ity1)%clgrid = 'V' ! i.e. it is always at U- & V-points for i- & j-comp. resp. |
---|
343 | ENDIF |
---|
344 | |
---|
345 | ! ! ------------------------- ! |
---|
346 | ! ! freshwater budget ! E-P |
---|
347 | ! ! ------------------------- ! |
---|
348 | ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid) |
---|
349 | ! over ice of free ocean within the same atmospheric cell.cd |
---|
350 | srcv(jpr_rain)%clname = 'OTotRain' ! Rain = liquid precipitation |
---|
351 | srcv(jpr_snow)%clname = 'OTotSnow' ! Snow = solid precipitation |
---|
352 | srcv(jpr_tevp)%clname = 'OTotEvap' ! total evaporation (over oce + ice sublimation) |
---|
353 | srcv(jpr_ievp)%clname = 'OIceEvap' ! evaporation over ice = sublimation |
---|
354 | srcv(jpr_sbpr)%clname = 'OSubMPre' ! sublimation - liquid precipitation - solid precipitation |
---|
355 | srcv(jpr_semp)%clname = 'OISubMSn' ! ice solid water budget = sublimation - solid precipitation |
---|
356 | srcv(jpr_oemp)%clname = 'OOEvaMPr' ! ocean water budget = ocean Evap - ocean precip |
---|
357 | SELECT CASE( TRIM( cn_rcv_emp ) ) |
---|
358 | CASE( 'oce only' ) ; srcv( jpr_oemp )%laction = .TRUE. |
---|
359 | CASE( 'conservative' ) ; srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE. |
---|
360 | CASE( 'oce and ice' ) ; srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE. |
---|
361 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_rcv_emp' ) |
---|
362 | END SELECT |
---|
363 | |
---|
364 | ! ! ------------------------- ! |
---|
365 | ! ! Runoffs & Calving ! |
---|
366 | ! ! ------------------------- ! |
---|
367 | srcv(jpr_rnf )%clname = 'O_Runoff' ; IF( TRIM( cn_rcv_rnf ) == 'coupled' ) srcv(jpr_rnf)%laction = .TRUE. |
---|
368 | IF( TRIM( cn_rcv_rnf ) == 'climato' ) THEN ; ln_rnf = .TRUE. |
---|
369 | ELSE ; ln_rnf = .FALSE. |
---|
370 | ENDIF |
---|
371 | srcv(jpr_cal )%clname = 'OCalving' ; IF( TRIM( cn_rcv_cal ) == 'coupled' ) srcv(jpr_cal)%laction = .TRUE. |
---|
372 | |
---|
373 | ! ! ------------------------- ! |
---|
374 | ! ! non solar radiation ! Qns |
---|
375 | ! ! ------------------------- ! |
---|
376 | srcv(jpr_qnsoce)%clname = 'O_QnsOce' |
---|
377 | srcv(jpr_qnsice)%clname = 'O_QnsIce' |
---|
378 | srcv(jpr_qnsmix)%clname = 'O_QnsMix' |
---|
379 | SELECT CASE( TRIM( cn_rcv_qns ) ) |
---|
380 | CASE( 'oce only' ) ; srcv( jpr_qnsoce )%laction = .TRUE. |
---|
381 | CASE( 'conservative' ) ; srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE. |
---|
382 | CASE( 'oce and ice' ) ; srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE. |
---|
383 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qnsmix )%laction = .TRUE. |
---|
384 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_rcv_qns' ) |
---|
385 | END SELECT |
---|
386 | |
---|
387 | ! ! ------------------------- ! |
---|
388 | ! ! solar radiation ! Qsr |
---|
389 | ! ! ------------------------- ! |
---|
390 | srcv(jpr_qsroce)%clname = 'O_QsrOce' |
---|
391 | srcv(jpr_qsrice)%clname = 'O_QsrIce' |
---|
392 | srcv(jpr_qsrmix)%clname = 'O_QsrMix' |
---|
393 | SELECT CASE( TRIM( cn_rcv_qsr ) ) |
---|
394 | CASE( 'oce only' ) ; srcv( jpr_qsroce )%laction = .TRUE. |
---|
395 | CASE( 'conservative' ) ; srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE. |
---|
396 | CASE( 'oce and ice' ) ; srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE. |
---|
397 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qsrmix )%laction = .TRUE. |
---|
398 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_rcv_qsr' ) |
---|
399 | END SELECT |
---|
400 | |
---|
401 | ! ! ------------------------- ! |
---|
402 | ! ! non solar sensitivity ! d(Qns)/d(T) |
---|
403 | ! ! ------------------------- ! |
---|
404 | srcv(jpr_dqnsdt)%clname = 'O_dQnsdT' |
---|
405 | IF( TRIM( cn_rcv_dqnsdt ) == 'coupled' ) srcv(jpr_dqnsdt)%laction = .TRUE. |
---|
406 | ! |
---|
407 | ! non solar sensitivity mandatory for ice model |
---|
408 | IF( TRIM( cn_rcv_dqnsdt ) == 'none' .AND. k_ice /= 0 ) & |
---|
409 | CALL ctl_stop( 'sbc_cpl_init: cn_rcv_dqnsdt must be coupled in namsbc_cpl namelist' ) |
---|
410 | ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique |
---|
411 | IF( TRIM( cn_rcv_dqnsdt ) == 'none' .AND. TRIM( cn_rcv_qns ) == 'mixed oce-ice' ) & |
---|
412 | CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between cn_rcv_qns and cn_rcv_dqnsdt' ) |
---|
413 | ! ! ------------------------- ! |
---|
414 | ! ! Ice Qsr penetration ! |
---|
415 | ! ! ------------------------- ! |
---|
416 | ! fraction of net shortwave radiation which is not absorbed in the thin surface layer |
---|
417 | ! and penetrates inside the ice cover ( Maykut and Untersteiner, 1971 ; Elbert anbd Curry, 1993 ) |
---|
418 | ! Coupled case: since cloud cover is not received from atmosphere |
---|
419 | ! ===> defined as constant value -> definition done in sbc_cpl_init |
---|
420 | fr1_i0(:,:) = 0.18 |
---|
421 | fr2_i0(:,:) = 0.82 |
---|
422 | ! ! ------------------------- ! |
---|
423 | ! ! 10m wind module ! |
---|
424 | ! ! ------------------------- ! |
---|
425 | srcv(jpr_w10m)%clname = 'O_Wind10' ; IF( TRIM(cn_rcv_w10m ) == 'coupled' ) srcv(jpr_w10m)%laction = .TRUE. |
---|
426 | ! |
---|
427 | ! ! ------------------------- ! |
---|
428 | ! ! wind stress module ! |
---|
429 | ! ! ------------------------- ! |
---|
430 | srcv(jpr_taum)%clname = 'O_TauMod' ; IF( TRIM(cn_rcv_taumod) == 'coupled' ) srcv(jpr_taum)%laction = .TRUE. |
---|
431 | lhftau = srcv(jpr_taum)%laction |
---|
432 | |
---|
433 | #if defined key_cpl_carbon_cycle |
---|
434 | ! ! ------------------------- ! |
---|
435 | ! ! Atmospheric CO2 ! |
---|
436 | ! ! ------------------------- ! |
---|
437 | srcv(jpr_co2 )%clname = 'O_AtmCO2' ; IF( TRIM(cn_rcv_co2 ) == 'coupled' ) srcv(jpr_co2 )%laction = .TRUE. |
---|
438 | #endif |
---|
439 | |
---|
440 | ! ================================ ! |
---|
441 | ! Define the send interface ! |
---|
442 | ! ================================ ! |
---|
443 | ! for each field: define the OASIS name (srcv(:)%clname) |
---|
444 | ! define send or not from the namelist parameters (srcv(:)%laction) |
---|
445 | ! define the north fold type of lbc (srcv(:)%nsgn) |
---|
446 | |
---|
447 | ! default definitions of nsnd |
---|
448 | ssnd(:)%laction = .FALSE. ; ssnd(:)%clgrid = 'T' ; ssnd(:)%nsgn = 1. |
---|
449 | |
---|
450 | ! ! ------------------------- ! |
---|
451 | ! ! Surface temperature ! |
---|
452 | ! ! ------------------------- ! |
---|
453 | ssnd(jps_toce)%clname = 'O_SSTSST' |
---|
454 | ssnd(jps_tice)%clname = 'O_TepIce' |
---|
455 | ssnd(jps_tmix)%clname = 'O_TepMix' |
---|
456 | SELECT CASE( TRIM( cn_snd_temperature ) ) |
---|
457 | CASE( 'oce only' ) ; ssnd( jps_toce )%laction = .TRUE. |
---|
458 | CASE( 'weighted oce and ice' ) ; ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE. |
---|
459 | CASE( 'mixed oce-ice' ) ; ssnd( jps_tmix )%laction = .TRUE. |
---|
460 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_snd_temperature' ) |
---|
461 | END SELECT |
---|
462 | |
---|
463 | ! ! ------------------------- ! |
---|
464 | ! ! Albedo ! |
---|
465 | ! ! ------------------------- ! |
---|
466 | ssnd(jps_albice)%clname = 'O_AlbIce' |
---|
467 | ssnd(jps_albmix)%clname = 'O_AlbMix' |
---|
468 | SELECT CASE( TRIM( cn_snd_albedo ) ) |
---|
469 | CASE( 'none' ) ! nothing to do |
---|
470 | CASE( 'weighted ice' ) ; ssnd(jps_albice)%laction = .TRUE. |
---|
471 | CASE( 'mixed oce-ice' ) ; ssnd(jps_albmix)%laction = .TRUE. |
---|
472 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_snd_albedo' ) |
---|
473 | END SELECT |
---|
474 | ! |
---|
475 | ! Need to calculate oceanic albedo if |
---|
476 | ! 1. sending mixed oce-ice albedo or |
---|
477 | ! 2. receiving mixed oce-ice solar radiation |
---|
478 | IF ( TRIM ( cn_snd_albedo ) == 'mixed oce-ice' .OR. TRIM ( cn_rcv_qsr ) == 'mixed oce-ice' ) THEN |
---|
479 | CALL albedo_oce( zaos, zacs ) |
---|
480 | ! Due to lack of information on nebulosity : mean clear/overcast sky |
---|
481 | albedo_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5 |
---|
482 | ENDIF |
---|
483 | |
---|
484 | ! ! ------------------------- ! |
---|
485 | ! ! Ice fraction & Thickness ! |
---|
486 | ! ! ------------------------- ! |
---|
487 | ssnd(jps_fice)%clname = 'OIceFrac' |
---|
488 | ssnd(jps_hice)%clname = 'O_IceTck' |
---|
489 | ssnd(jps_hsnw)%clname = 'O_SnwTck' |
---|
490 | IF( k_ice /= 0 ) ssnd(jps_fice)%laction = .TRUE. ! if ice treated in the ocean (even in climato case) |
---|
491 | IF( TRIM( cn_snd_thickness ) == 'weighted ice and snow' ) ssnd( (/jps_hice, jps_hsnw/) )%laction = .TRUE. |
---|
492 | |
---|
493 | ! ! ------------------------- ! |
---|
494 | ! ! Surface current ! |
---|
495 | ! ! ------------------------- ! |
---|
496 | ! ocean currents ! ice velocities |
---|
497 | ssnd(jps_ocx1)%clname = 'O_OCurx1' ; ssnd(jps_ivx1)%clname = 'O_IVelx1' |
---|
498 | ssnd(jps_ocy1)%clname = 'O_OCury1' ; ssnd(jps_ivy1)%clname = 'O_IVely1' |
---|
499 | ssnd(jps_ocz1)%clname = 'O_OCurz1' ; ssnd(jps_ivz1)%clname = 'O_IVelz1' |
---|
500 | ! |
---|
501 | ssnd(jps_ocx1:jps_ivz1)%nsgn = -1. ! vectors: change of the sign at the north fold |
---|
502 | |
---|
503 | IF( cn_snd_crt(4) /= 'T' ) CALL ctl_stop( 'cn_snd_crt(4) must be equal to T' ) |
---|
504 | ssnd(jps_ocx1:jps_ivz1)%clgrid = 'T' ! all oce and ice components on the same unique grid |
---|
505 | |
---|
506 | ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE. ! default: all are send |
---|
507 | IF( TRIM( cn_snd_crt(2) ) == 'spherical' ) ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE. |
---|
508 | SELECT CASE( TRIM( cn_snd_crt(1) ) ) |
---|
509 | CASE( 'none' ) ; ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE. |
---|
510 | CASE( 'oce only' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
511 | CASE( 'weighted oce and ice' ) ! nothing to do |
---|
512 | CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
513 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of cn_snd_crt(1)' ) |
---|
514 | END SELECT |
---|
515 | |
---|
516 | #if defined key_cpl_carbon_cycle |
---|
517 | ! ! ------------------------- ! |
---|
518 | ! ! CO2 flux ! |
---|
519 | ! ! ------------------------- ! |
---|
520 | ssnd(jps_co2)%clname = 'O_CO2FLX' ; IF( TRIM(cn_snd_co2) == 'coupled' ) ssnd(jps_co2 )%laction = .TRUE. |
---|
521 | #endif |
---|
522 | ! |
---|
523 | ! ================================ ! |
---|
524 | ! initialisation of the coupler ! |
---|
525 | ! ================================ ! |
---|
526 | |
---|
527 | CALL cpl_prism_define(jprcv, jpsnd) |
---|
528 | ! |
---|
529 | END SUBROUTINE sbc_cpl_init |
---|
530 | |
---|
531 | |
---|
532 | SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice ) |
---|
533 | !!---------------------------------------------------------------------- |
---|
534 | !! *** ROUTINE sbc_cpl_rcv *** |
---|
535 | !! |
---|
536 | !! ** Purpose : provide the stress over the ocean and, if no sea-ice, |
---|
537 | !! provide the ocean heat and freshwater fluxes. |
---|
538 | !! |
---|
539 | !! ** Method : - Receive all the atmospheric fields (stored in frcv array). called at each time step. |
---|
540 | !! OASIS controls if there is something do receive or not. nrcvinfo contains the info |
---|
541 | !! to know if the field was really received or not |
---|
542 | !! |
---|
543 | !! --> If ocean stress was really received: |
---|
544 | !! |
---|
545 | !! - transform the received ocean stress vector from the received |
---|
546 | !! referential and grid into an atmosphere-ocean stress in |
---|
547 | !! the (i,j) ocean referencial and at the ocean velocity point. |
---|
548 | !! The received stress are : |
---|
549 | !! - defined by 3 components (if cartesian coordinate) |
---|
550 | !! or by 2 components (if spherical) |
---|
551 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
552 | !! or along the local grid coordinate (if local grid) |
---|
553 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
554 | !! or at T-point if received on 1 grid |
---|
555 | !! Therefore and if necessary, they are successively |
---|
556 | !! processed in order to obtain them |
---|
557 | !! first as 2 components on the sphere |
---|
558 | !! second as 2 components oriented along the local grid |
---|
559 | !! third as 2 components on the U,V grid |
---|
560 | !! |
---|
561 | !! --> |
---|
562 | !! |
---|
563 | !! - In 'ocean only' case, non solar and solar ocean heat fluxes |
---|
564 | !! and total ocean freshwater fluxes |
---|
565 | !! |
---|
566 | !! ** Method : receive all fields from the atmosphere and transform |
---|
567 | !! them into ocean surface boundary condition fields |
---|
568 | !! |
---|
569 | !! ** Action : update utau, vtau ocean stress at U,V grid |
---|
570 | !! taum, wndm wind stres and wind speed module at T-point |
---|
571 | !! qns , qsr non solar and solar ocean heat fluxes ('ocean only case) |
---|
572 | !! emp = emps evap. - precip. (- runoffs) (- calving) ('ocean only case) |
---|
573 | !!---------------------------------------------------------------------- |
---|
574 | INTEGER, INTENT(in) :: kt ! ocean model time step index |
---|
575 | INTEGER, INTENT(in) :: k_fsbc ! frequency of sbc (-> ice model) computation |
---|
576 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
577 | !! |
---|
578 | LOGICAL :: llnewtx, llnewtau ! update wind stress components and module?? |
---|
579 | INTEGER :: ji, jj, jn ! dummy loop indices |
---|
580 | INTEGER :: isec ! number of seconds since nit000 (assuming rdttra did not change since nit000) |
---|
581 | REAL(wp) :: zcumulneg, zcumulpos ! temporary scalars |
---|
582 | REAL(wp) :: zcoef ! temporary scalar |
---|
583 | REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 |
---|
584 | REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient |
---|
585 | REAL(wp) :: zzx, zzy ! temporary variables |
---|
586 | REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty ! 2D workspace |
---|
587 | !!---------------------------------------------------------------------- |
---|
588 | |
---|
589 | IF( kt == nit000 ) CALL sbc_cpl_init( k_ice ) ! initialisation |
---|
590 | |
---|
591 | ! ! Receive all the atmos. fields (including ice information) |
---|
592 | isec = ( kt - nit000 ) * NINT( rdttra(1) ) ! date of exchanges |
---|
593 | DO jn = 1, jprcv ! received fields sent by the atmosphere |
---|
594 | IF( srcv(jn)%laction ) CALL cpl_prism_rcv( jn, isec, frcv(:,:,jn), nrcvinfo(jn) ) |
---|
595 | END DO |
---|
596 | |
---|
597 | ! ! ========================= ! |
---|
598 | IF( srcv(jpr_otx1)%laction ) THEN ! ocean stress components ! |
---|
599 | ! ! ========================= ! |
---|
600 | ! define frcv(:,:,jpr_otx1) and frcv(:,:,jpr_oty1): stress at U/V point along model grid |
---|
601 | ! => need to be done only when we receive the field |
---|
602 | IF( nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN |
---|
603 | ! |
---|
604 | IF( TRIM( cn_rcv_tau(2) ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
605 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
606 | ! |
---|
607 | CALL geo2oce( frcv(:,:,jpr_otx1), frcv(:,:,jpr_oty1), frcv(:,:,jpr_otz1), & |
---|
608 | & srcv(jpr_otx1)%clgrid, ztx, zty ) |
---|
609 | frcv(:,:,jpr_otx1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
610 | frcv(:,:,jpr_oty1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
611 | ! |
---|
612 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
613 | CALL geo2oce( frcv(:,:,jpr_otx2), frcv(:,:,jpr_oty2), frcv(:,:,jpr_otz2), & |
---|
614 | & srcv(jpr_otx2)%clgrid, ztx, zty ) |
---|
615 | frcv(:,:,jpr_otx2) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
616 | frcv(:,:,jpr_oty2) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
617 | ENDIF |
---|
618 | ! |
---|
619 | ENDIF |
---|
620 | ! |
---|
621 | IF( TRIM( cn_rcv_tau(3) ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
622 | ! ! (geographical to local grid -> rotate the components) |
---|
623 | CALL rot_rep( frcv(:,:,jpr_otx1), frcv(:,:,jpr_oty1), srcv(jpr_otx1)%clgrid, 'en->i', ztx ) |
---|
624 | frcv(:,:,jpr_otx1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
625 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
626 | CALL rot_rep( frcv(:,:,jpr_otx2), frcv(:,:,jpr_oty2), srcv(jpr_otx2)%clgrid, 'en->j', zty ) |
---|
627 | ELSE |
---|
628 | CALL rot_rep( frcv(:,:,jpr_otx1), frcv(:,:,jpr_oty1), srcv(jpr_otx1)%clgrid, 'en->j', zty ) |
---|
629 | ENDIF |
---|
630 | frcv(:,:,jpr_oty1) = zty(:,:) ! overwrite 2nd component on the 2nd grid |
---|
631 | ENDIF |
---|
632 | ! |
---|
633 | IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN |
---|
634 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
635 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
636 | frcv(ji,jj,jpr_otx1) = 0.5 * ( frcv(ji+1,jj ,jpr_otx1) + frcv(ji,jj,jpr_otx1) ) |
---|
637 | frcv(ji,jj,jpr_oty1) = 0.5 * ( frcv(ji ,jj+1,jpr_oty1) + frcv(ji,jj,jpr_oty1) ) |
---|
638 | END DO |
---|
639 | END DO |
---|
640 | CALL lbc_lnk( frcv(:,:,jpr_otx1), 'U', -1. ) ; CALL lbc_lnk( frcv(:,:,jpr_oty1), 'V', -1. ) |
---|
641 | ENDIF |
---|
642 | llnewtx = .TRUE. |
---|
643 | ELSE |
---|
644 | llnewtx = .FALSE. |
---|
645 | ENDIF |
---|
646 | ! ! ========================= ! |
---|
647 | ELSE ! No dynamical coupling ! |
---|
648 | ! ! ========================= ! |
---|
649 | frcv(:,:,jpr_otx1) = 0.e0 ! here simply set to zero |
---|
650 | frcv(:,:,jpr_oty1) = 0.e0 ! an external read in a file can be added instead |
---|
651 | llnewtx = .TRUE. |
---|
652 | ! |
---|
653 | ENDIF |
---|
654 | |
---|
655 | ! ! ========================= ! |
---|
656 | ! ! wind stress module ! (taum) |
---|
657 | ! ! ========================= ! |
---|
658 | ! |
---|
659 | IF( .NOT. srcv(jpr_taum)%laction ) THEN ! compute wind stress module from its components if not received |
---|
660 | ! => need to be done only when otx1 was changed |
---|
661 | IF( llnewtx ) THEN |
---|
662 | !CDIR NOVERRCHK |
---|
663 | DO jj = 2, jpjm1 |
---|
664 | !CDIR NOVERRCHK |
---|
665 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
666 | zzx = frcv(ji-1,jj ,jpr_otx1) + frcv(ji,jj,jpr_otx1) |
---|
667 | zzy = frcv(ji ,jj-1,jpr_oty1) + frcv(ji,jj,jpr_oty1) |
---|
668 | frcv(ji,jj,jpr_taum) = 0.5 * SQRT( zzx * zzx + zzy * zzy ) |
---|
669 | END DO |
---|
670 | END DO |
---|
671 | CALL lbc_lnk( frcv(:,:,jpr_taum), 'T', 1. ) |
---|
672 | llnewtau = .TRUE. |
---|
673 | ELSE |
---|
674 | llnewtau = .FALSE. |
---|
675 | ENDIF |
---|
676 | ELSE |
---|
677 | llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv |
---|
678 | ! Stress module can be negative when received (interpolation problem) |
---|
679 | IF( llnewtau ) THEN |
---|
680 | DO jj = 1, jpj |
---|
681 | DO ji = 1, jpi |
---|
682 | frcv(ji,jj,jpr_taum) = MAX( 0.0e0, frcv(ji,jj,jpr_taum) ) |
---|
683 | END DO |
---|
684 | END DO |
---|
685 | ENDIF |
---|
686 | ENDIF |
---|
687 | |
---|
688 | ! ! ========================= ! |
---|
689 | ! ! 10 m wind speed ! (wndm) |
---|
690 | ! ! ========================= ! |
---|
691 | ! |
---|
692 | IF( .NOT. srcv(jpr_w10m)%laction ) THEN ! compute wind spreed from wind stress module if not received |
---|
693 | ! => need to be done only when taumod was changed |
---|
694 | IF( llnewtau ) THEN |
---|
695 | zcoef = 1. / ( zrhoa * zcdrag ) |
---|
696 | !CDIR NOVERRCHK |
---|
697 | DO jj = 1, jpj |
---|
698 | !CDIR NOVERRCHK |
---|
699 | DO ji = 1, jpi |
---|
700 | frcv(ji,jj,jpr_w10m) = SQRT( frcv(ji,jj,jpr_taum) * zcoef ) |
---|
701 | END DO |
---|
702 | END DO |
---|
703 | ENDIF |
---|
704 | ENDIF |
---|
705 | |
---|
706 | ! u(v)tau and taum will be modified by ice model (wndm will be changed by PISCES) |
---|
707 | ! -> need to be reset before each call of the ice/fsbc |
---|
708 | IF( MOD( kt-1, k_fsbc ) == 0 ) THEN |
---|
709 | ! |
---|
710 | utau(:,:) = frcv(:,:,jpr_otx1) |
---|
711 | vtau(:,:) = frcv(:,:,jpr_oty1) |
---|
712 | taum(:,:) = frcv(:,:,jpr_taum) |
---|
713 | wndm(:,:) = frcv(:,:,jpr_w10m) |
---|
714 | CALL iom_put( "taum_oce", taum ) ! output wind stress module |
---|
715 | ! |
---|
716 | ENDIF |
---|
717 | ! ! ========================= ! |
---|
718 | IF( k_ice <= 1 ) THEN ! heat & freshwater fluxes ! (Ocean only case) |
---|
719 | ! ! ========================= ! |
---|
720 | ! |
---|
721 | ! ! non solar heat flux over the ocean (qns) |
---|
722 | IF( srcv(jpr_qnsoce)%laction ) qns(:,:) = frcv(:,:,jpr_qnsoce) |
---|
723 | IF( srcv(jpr_qnsmix)%laction ) qns(:,:) = frcv(:,:,jpr_qnsmix) |
---|
724 | ! add the latent heat of solid precip. melting |
---|
725 | IF( srcv(jpr_snow )%laction ) qns(:,:) = qns(:,:) - frcv(:,:,jpr_snow) * lfus |
---|
726 | |
---|
727 | ! ! solar flux over the ocean (qsr) |
---|
728 | IF( srcv(jpr_qsroce)%laction ) qsr(:,:) = frcv(:,:,jpr_qsroce) |
---|
729 | IF( srcv(jpr_qsrmix)%laction ) qsr(:,:) = frcv(:,:,jpr_qsrmix) |
---|
730 | ! |
---|
731 | ! ! total freshwater fluxes over the ocean (emp, emps) |
---|
732 | SELECT CASE( TRIM( cn_rcv_emp ) ) ! evaporation - precipitation |
---|
733 | CASE( 'conservative' ) |
---|
734 | emp(:,:) = frcv(:,:,jpr_tevp) - ( frcv(:,:,jpr_rain) + frcv(:,:,jpr_snow) ) |
---|
735 | CASE( 'oce only', 'oce and ice' ) |
---|
736 | emp(:,:) = frcv(:,:,jpr_oemp) |
---|
737 | CASE default |
---|
738 | CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of cn_rcv_emp' ) |
---|
739 | END SELECT |
---|
740 | ! |
---|
741 | ! ! runoffs and calving (added in emp) |
---|
742 | IF( srcv(jpr_rnf)%laction ) emp(:,:) = emp(:,:) - frcv(:,:,jpr_rnf) |
---|
743 | IF( srcv(jpr_cal)%laction ) emp(:,:) = emp(:,:) - frcv(:,:,jpr_cal) |
---|
744 | ! |
---|
745 | !!gm : this seems to be internal cooking, not sure to need that in a generic interface |
---|
746 | !!gm at least should be optional... |
---|
747 | !! IF( TRIM( cn_rcv_rnf ) == 'coupled' ) THEN ! add to the total freshwater budget |
---|
748 | !! ! remove negative runoff |
---|
749 | !! zcumulpos = SUM( MAX( frcv(:,:,jpr_rnf), 0.e0 ) * e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) |
---|
750 | !! zcumulneg = SUM( MIN( frcv(:,:,jpr_rnf), 0.e0 ) * e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) |
---|
751 | !! IF( lk_mpp ) CALL mpp_sum( zcumulpos ) ! sum over the global domain |
---|
752 | !! IF( lk_mpp ) CALL mpp_sum( zcumulneg ) |
---|
753 | !! IF( zcumulpos /= 0. ) THEN ! distribute negative runoff on positive runoff grid points |
---|
754 | !! zcumulneg = 1.e0 + zcumulneg / zcumulpos |
---|
755 | !! frcv(:,:,jpr_rnf) = MAX( frcv(:,:,jpr_rnf), 0.e0 ) * zcumulneg |
---|
756 | !! ENDIF |
---|
757 | !! ! add runoff to e-p |
---|
758 | !! emp(:,:) = emp(:,:) - frcv(:,:,jpr_rnf) |
---|
759 | !! ENDIF |
---|
760 | !!gm end of internal cooking |
---|
761 | ! |
---|
762 | emps(:,:) = emp(:,:) ! concentration/dilution = emp |
---|
763 | |
---|
764 | ! ! 10 m wind speed |
---|
765 | IF( srcv(jpr_w10m)%laction ) wndm(:,:) = frcv(:,:,jpr_w10m) |
---|
766 | ! |
---|
767 | #if defined key_cpl_carbon_cycle |
---|
768 | ! ! atmosph. CO2 (ppm) |
---|
769 | IF( srcv(jpr_co2)%laction ) atm_co2(:,:) = frcv(:,:,jpr_co2) |
---|
770 | #endif |
---|
771 | |
---|
772 | ENDIF |
---|
773 | ! |
---|
774 | END SUBROUTINE sbc_cpl_rcv |
---|
775 | |
---|
776 | |
---|
777 | SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj ) |
---|
778 | !!---------------------------------------------------------------------- |
---|
779 | !! *** ROUTINE sbc_cpl_ice_tau *** |
---|
780 | !! |
---|
781 | !! ** Purpose : provide the stress over sea-ice in coupled mode |
---|
782 | !! |
---|
783 | !! ** Method : transform the received stress from the atmosphere into |
---|
784 | !! an atmosphere-ice stress in the (i,j) ocean referencial |
---|
785 | !! and at the velocity point of the sea-ice model (cigr_type): |
---|
786 | !! 'C'-grid : i- (j-) components given at U- (V-) point |
---|
787 | !! 'B'-grid : both components given at I-point |
---|
788 | !! |
---|
789 | !! The received stress are : |
---|
790 | !! - defined by 3 components (if cartesian coordinate) |
---|
791 | !! or by 2 components (if spherical) |
---|
792 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
793 | !! or along the local grid coordinate (if local grid) |
---|
794 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
795 | !! or at a same point (T or I) if received on 1 grid |
---|
796 | !! Therefore and if necessary, they are successively |
---|
797 | !! processed in order to obtain them |
---|
798 | !! first as 2 components on the sphere |
---|
799 | !! second as 2 components oriented along the local grid |
---|
800 | !! third as 2 components on the cigr_type point |
---|
801 | !! |
---|
802 | !! In 'oce and ice' case, only one vector stress field |
---|
803 | !! is received. It has already been processed in sbc_cpl_rcv |
---|
804 | !! so that it is now defined as (i,j) components given at U- |
---|
805 | !! and V-points, respectively. Therefore, here only the third |
---|
806 | !! transformation is done and only if the ice-grid is a 'B'-grid. |
---|
807 | !! |
---|
808 | !! ** Action : return ptau_i, ptau_j, the stress over the ice at cigr_type point |
---|
809 | !!---------------------------------------------------------------------- |
---|
810 | REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: p_taui ! i- & j-components of atmos-ice stress [N/m2] |
---|
811 | REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid) |
---|
812 | !! |
---|
813 | INTEGER :: ji, jj ! dummy loop indices |
---|
814 | INTEGER :: itx ! index of taux over ice |
---|
815 | REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty ! 2D workspace |
---|
816 | !!---------------------------------------------------------------------- |
---|
817 | |
---|
818 | IF( srcv(jpr_itx1)%laction ) THEN ; itx = jpr_itx1 |
---|
819 | ELSE ; itx = jpr_otx1 |
---|
820 | ENDIF |
---|
821 | |
---|
822 | ! do something only if we just received the stress from atmosphere |
---|
823 | IF( nrcvinfo(itx) == OASIS_Rcv ) THEN |
---|
824 | |
---|
825 | ! ! ======================= ! |
---|
826 | IF( srcv(jpr_itx1)%laction ) THEN ! ice stress received ! |
---|
827 | ! ! ======================= ! |
---|
828 | ! |
---|
829 | IF( TRIM( cn_rcv_tau(2) ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
830 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
831 | CALL geo2oce( frcv(:,:,jpr_itx1), frcv(:,:,jpr_ity1), frcv(:,:,jpr_itz1), & |
---|
832 | & srcv(jpr_itx1)%clgrid, ztx, zty ) |
---|
833 | frcv(:,:,jpr_itx1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
834 | frcv(:,:,jpr_itx1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
835 | ! |
---|
836 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
837 | CALL geo2oce( frcv(:,:,jpr_itx2), frcv(:,:,jpr_ity2), frcv(:,:,jpr_itz2), & |
---|
838 | & srcv(jpr_itx2)%clgrid, ztx, zty ) |
---|
839 | frcv(:,:,jpr_itx2) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
840 | frcv(:,:,jpr_ity2) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
841 | ENDIF |
---|
842 | ! |
---|
843 | ENDIF |
---|
844 | ! |
---|
845 | IF( TRIM( cn_rcv_tau(3) ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
846 | ! ! (geographical to local grid -> rotate the components) |
---|
847 | CALL rot_rep( frcv(:,:,jpr_itx1), frcv(:,:,jpr_ity1), srcv(jpr_itx1)%clgrid, 'en->i', ztx ) |
---|
848 | frcv(:,:,jpr_itx1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
849 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
850 | CALL rot_rep( frcv(:,:,jpr_itx2), frcv(:,:,jpr_ity2), srcv(jpr_itx2)%clgrid, 'en->j', zty ) |
---|
851 | ELSE |
---|
852 | CALL rot_rep( frcv(:,:,jpr_itx1), frcv(:,:,jpr_ity1), srcv(jpr_itx1)%clgrid, 'en->j', zty ) |
---|
853 | ENDIF |
---|
854 | frcv(:,:,jpr_ity1) = zty(:,:) ! overwrite 2nd component on the 1st grid |
---|
855 | ENDIF |
---|
856 | ! ! ======================= ! |
---|
857 | ELSE ! use ocean stress ! |
---|
858 | ! ! ======================= ! |
---|
859 | frcv(:,:,jpr_itx1) = frcv(:,:,jpr_otx1) |
---|
860 | frcv(:,:,jpr_ity1) = frcv(:,:,jpr_oty1) |
---|
861 | ! |
---|
862 | ENDIF |
---|
863 | |
---|
864 | ! ! ======================= ! |
---|
865 | ! ! put on ice grid ! |
---|
866 | ! ! ======================= ! |
---|
867 | ! |
---|
868 | ! j+1 j -----V---F |
---|
869 | ! ice stress on ice velocity point (cigr_type) ! | |
---|
870 | ! (C-grid ==>(U,V) or B-grid ==> I or F) j | T U |
---|
871 | ! | | |
---|
872 | ! j j-1 -I-------| |
---|
873 | ! (for I) | | |
---|
874 | ! i-1 i i |
---|
875 | ! i i+1 (for I) |
---|
876 | SELECT CASE ( cigr_type ) |
---|
877 | ! |
---|
878 | CASE( 'I' ) ! B-grid ==> I |
---|
879 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
880 | CASE( 'U' ) |
---|
881 | DO jj = 2, jpjm1 ! (U,V) ==> I |
---|
882 | DO ji = 2, jpim1 ! NO vector opt. |
---|
883 | p_taui(ji,jj) = 0.5 * ( frcv(ji-1,jj ,jpr_itx1) + frcv(ji-1,jj-1,jpr_itx1) ) |
---|
884 | p_tauj(ji,jj) = 0.5 * ( frcv(ji ,jj-1,jpr_ity1) + frcv(ji-1,jj-1,jpr_ity1) ) |
---|
885 | END DO |
---|
886 | END DO |
---|
887 | CASE( 'F' ) |
---|
888 | DO jj = 2, jpjm1 ! F ==> I |
---|
889 | DO ji = 2, jpim1 ! NO vector opt. |
---|
890 | p_taui(ji,jj) = frcv(ji-1,jj-1,jpr_itx1) |
---|
891 | p_tauj(ji,jj) = frcv(ji-1,jj-1,jpr_ity1) |
---|
892 | END DO |
---|
893 | END DO |
---|
894 | CASE( 'T' ) |
---|
895 | DO jj = 2, jpjm1 ! T ==> I |
---|
896 | DO ji = 2, jpim1 ! NO vector opt. |
---|
897 | p_taui(ji,jj) = 0.25 * ( frcv(ji,jj ,jpr_itx1) + frcv(ji-1,jj ,jpr_itx1) & |
---|
898 | & + frcv(ji,jj-1,jpr_itx1) + frcv(ji-1,jj-1,jpr_itx1) ) |
---|
899 | p_tauj(ji,jj) = 0.25 * ( frcv(ji,jj ,jpr_ity1) + frcv(ji-1,jj ,jpr_ity1) & |
---|
900 | & + frcv(ji,jj-1,jpr_ity1) + frcv(ji-1,jj-1,jpr_ity1) ) |
---|
901 | END DO |
---|
902 | END DO |
---|
903 | CASE( 'I' ) |
---|
904 | p_taui(:,:) = frcv(:,:,jpr_itx1) ! I ==> I |
---|
905 | p_tauj(:,:) = frcv(:,:,jpr_ity1) |
---|
906 | END SELECT |
---|
907 | IF( srcv(jpr_itx1)%clgrid /= 'I' ) THEN |
---|
908 | CALL lbc_lnk( p_taui, 'I', -1. ) ; CALL lbc_lnk( p_tauj, 'I', -1. ) |
---|
909 | ENDIF |
---|
910 | ! |
---|
911 | CASE( 'F' ) ! B-grid ==> F |
---|
912 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
913 | CASE( 'U' ) |
---|
914 | DO jj = 2, jpjm1 ! (U,V) ==> F |
---|
915 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
916 | p_taui(ji,jj) = 0.5 * ( frcv(ji,jj,jpr_itx1) + frcv(ji ,jj+1,jpr_itx1) ) |
---|
917 | p_tauj(ji,jj) = 0.5 * ( frcv(ji,jj,jpr_ity1) + frcv(ji+1,jj ,jpr_ity1) ) |
---|
918 | END DO |
---|
919 | END DO |
---|
920 | CASE( 'I' ) |
---|
921 | DO jj = 2, jpjm1 ! I ==> F |
---|
922 | DO ji = 2, jpim1 ! NO vector opt. |
---|
923 | p_taui(ji,jj) = frcv(ji+1,jj+1,jpr_itx1) |
---|
924 | p_tauj(ji,jj) = frcv(ji+1,jj+1,jpr_ity1) |
---|
925 | END DO |
---|
926 | END DO |
---|
927 | CASE( 'T' ) |
---|
928 | DO jj = 2, jpjm1 ! T ==> F |
---|
929 | DO ji = 2, jpim1 ! NO vector opt. |
---|
930 | p_taui(ji,jj) = 0.25 * ( frcv(ji,jj ,jpr_itx1) + frcv(ji+1,jj ,jpr_itx1) & |
---|
931 | & + frcv(ji,jj+1,jpr_itx1) + frcv(ji+1,jj+1,jpr_itx1) ) |
---|
932 | p_tauj(ji,jj) = 0.25 * ( frcv(ji,jj ,jpr_ity1) + frcv(ji+1,jj ,jpr_ity1) & |
---|
933 | & + frcv(ji,jj+1,jpr_ity1) + frcv(ji+1,jj+1,jpr_ity1) ) |
---|
934 | END DO |
---|
935 | END DO |
---|
936 | CASE( 'F' ) |
---|
937 | p_taui(:,:) = frcv(:,:,jpr_itx1) ! F ==> F |
---|
938 | p_tauj(:,:) = frcv(:,:,jpr_ity1) |
---|
939 | END SELECT |
---|
940 | IF( srcv(jpr_itx1)%clgrid /= 'F' ) THEN |
---|
941 | CALL lbc_lnk( p_taui, 'F', -1. ) ; CALL lbc_lnk( p_tauj, 'F', -1. ) |
---|
942 | ENDIF |
---|
943 | ! |
---|
944 | CASE( 'C' ) ! C-grid ==> U,V |
---|
945 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
946 | CASE( 'U' ) |
---|
947 | p_taui(:,:) = frcv(:,:,jpr_itx1) ! (U,V) ==> (U,V) |
---|
948 | p_tauj(:,:) = frcv(:,:,jpr_ity1) |
---|
949 | CASE( 'F' ) |
---|
950 | DO jj = 2, jpjm1 ! F ==> (U,V) |
---|
951 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
952 | p_taui(ji,jj) = 0.5 * ( frcv(ji,jj,jpr_itx1) + frcv(ji ,jj-1,jpr_itx1) ) |
---|
953 | p_tauj(ji,jj) = 0.5 * ( frcv(ji,jj,jpr_ity1) + frcv(ji-1,jj ,jpr_ity1) ) |
---|
954 | END DO |
---|
955 | END DO |
---|
956 | CASE( 'T' ) |
---|
957 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
958 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
959 | p_taui(ji,jj) = 0.5 * ( frcv(ji+1,jj ,jpr_itx1) + frcv(ji,jj,jpr_itx1) ) |
---|
960 | p_tauj(ji,jj) = 0.5 * ( frcv(ji ,jj+1,jpr_ity1) + frcv(ji,jj,jpr_ity1) ) |
---|
961 | END DO |
---|
962 | END DO |
---|
963 | CASE( 'I' ) |
---|
964 | DO jj = 2, jpjm1 ! I ==> (U,V) |
---|
965 | DO ji = 2, jpim1 ! NO vector opt. |
---|
966 | p_taui(ji,jj) = 0.5 * ( frcv(ji+1,jj+1,jpr_itx1) + frcv(ji+1,jj ,jpr_itx1) ) |
---|
967 | p_tauj(ji,jj) = 0.5 * ( frcv(ji+1,jj+1,jpr_ity1) + frcv(ji ,jj+1,jpr_ity1) ) |
---|
968 | END DO |
---|
969 | END DO |
---|
970 | END SELECT |
---|
971 | IF( srcv(jpr_itx1)%clgrid /= 'U' ) THEN |
---|
972 | CALL lbc_lnk( p_taui, 'U', -1. ) ; CALL lbc_lnk( p_tauj, 'V', -1. ) |
---|
973 | ENDIF |
---|
974 | END SELECT |
---|
975 | |
---|
976 | !!gm Should be useless as sbc_cpl_ice_tau only called at coupled frequency |
---|
977 | ! The receive stress are transformed such that in all case frcv(:,:,jpr_itx1), frcv(:,:,jpr_ity1) |
---|
978 | ! become the i-component and j-component of the stress at the right grid point |
---|
979 | !!gm frcv(:,:,jpr_itx1) = p_taui(:,:) |
---|
980 | !!gm frcv(:,:,jpr_ity1) = p_tauj(:,:) |
---|
981 | !!gm |
---|
982 | ENDIF |
---|
983 | ! |
---|
984 | END SUBROUTINE sbc_cpl_ice_tau |
---|
985 | |
---|
986 | |
---|
987 | SUBROUTINE sbc_cpl_ice_flx( p_frld , & |
---|
988 | & pqns_tot, pqns_ice, pqsr_tot , pqsr_ice, & |
---|
989 | & pemp_tot, pemp_ice, pdqns_ice, psprecip, & |
---|
990 | & palbi , psst , pist ) |
---|
991 | !!---------------------------------------------------------------------- |
---|
992 | !! *** ROUTINE sbc_cpl_ice_flx_rcv *** |
---|
993 | !! |
---|
994 | !! ** Purpose : provide the heat and freshwater fluxes of the |
---|
995 | !! ocean-ice system. |
---|
996 | !! |
---|
997 | !! ** Method : transform the fields received from the atmosphere into |
---|
998 | !! surface heat and fresh water boundary condition for the |
---|
999 | !! ice-ocean system. The following fields are provided: |
---|
1000 | !! * total non solar, solar and freshwater fluxes (qns_tot, |
---|
1001 | !! qsr_tot and emp_tot) (total means weighted ice-ocean flux) |
---|
1002 | !! NB: emp_tot include runoffs and calving. |
---|
1003 | !! * fluxes over ice (qns_ice, qsr_ice, emp_ice) where |
---|
1004 | !! emp_ice = sublimation - solid precipitation as liquid |
---|
1005 | !! precipitation are re-routed directly to the ocean and |
---|
1006 | !! runoffs and calving directly enter the ocean. |
---|
1007 | !! * solid precipitation (sprecip), used to add to qns_tot |
---|
1008 | !! the heat lost associated to melting solid precipitation |
---|
1009 | !! over the ocean fraction. |
---|
1010 | !! ===>> CAUTION here this changes the net heat flux received from |
---|
1011 | !! the atmosphere |
---|
1012 | !! |
---|
1013 | !! N.B. - fields over sea-ice are passed in argument so that |
---|
1014 | !! the module can be compile without sea-ice. |
---|
1015 | !! - the fluxes have been separated from the stress as |
---|
1016 | !! (a) they are updated at each ice time step compare to |
---|
1017 | !! an update at each coupled time step for the stress, and |
---|
1018 | !! (b) the conservative computation of the fluxes over the |
---|
1019 | !! sea-ice area requires the knowledge of the ice fraction |
---|
1020 | !! after the ice advection and before the ice thermodynamics, |
---|
1021 | !! so that the stress is updated before the ice dynamics |
---|
1022 | !! while the fluxes are updated after it. |
---|
1023 | !! |
---|
1024 | !! ** Action : update at each nf_ice time step: |
---|
1025 | !! pqns_tot, pqsr_tot non-solar and solar total heat fluxes |
---|
1026 | !! pqns_ice, pqsr_ice non-solar and solar heat fluxes over the ice |
---|
1027 | !! pemp_tot total evaporation - precipitation(liquid and solid) (-runoff)(-calving) |
---|
1028 | !! pemp_ice ice sublimation - solid precipitation over the ice |
---|
1029 | !! pdqns_ice d(non-solar heat flux)/d(Temperature) over the ice |
---|
1030 | !! sprecip solid precipitation over the ocean |
---|
1031 | !!---------------------------------------------------------------------- |
---|
1032 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj,jpl) :: p_frld ! lead fraction [0 to 1] |
---|
1033 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj ) :: pqns_tot ! total non solar heat flux [W/m2] |
---|
1034 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj,jpl) :: pqns_ice ! ice non solar heat flux [W/m2] |
---|
1035 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj ) :: pqsr_tot ! total solar heat flux [W/m2] |
---|
1036 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj,jpl) :: pqsr_ice ! ice solar heat flux [W/m2] |
---|
1037 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj ) :: pemp_tot ! total freshwater budget [Kg/m2/s] |
---|
1038 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj ) :: pemp_ice ! solid freshwater budget over ice [Kg/m2/s] |
---|
1039 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj ) :: psprecip ! Net solid precipitation (=emp_ice) [Kg/m2/s] |
---|
1040 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj,jpl) :: pdqns_ice ! d(Q non solar)/d(Temperature) over ice |
---|
1041 | ! optional arguments, used only in 'mixed oce-ice' case |
---|
1042 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj,jpl), OPTIONAL :: palbi ! ice albedo |
---|
1043 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj ), OPTIONAL :: psst ! sea surface temperature [Celcius] |
---|
1044 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj,jpl), OPTIONAL :: pist ! ice surface temperature [Kelvin] |
---|
1045 | !! |
---|
1046 | INTEGER :: ji, jj ! dummy loop indices |
---|
1047 | INTEGER :: isec, info ! temporary integer |
---|
1048 | REAL(wp):: zcoef, ztsurf ! temporary scalar |
---|
1049 | REAL(wp), DIMENSION(jpi,jpj ):: zcptn ! rcp * tn(:,:,1) |
---|
1050 | REAL(wp), DIMENSION(jpi,jpj ):: ztmp ! temporary array |
---|
1051 | REAL(wp), DIMENSION(jpi,jpj ):: zsnow ! snow precipitation |
---|
1052 | REAL(wp), DIMENSION(jpi,jpj,jpl):: zicefr ! ice fraction |
---|
1053 | !!---------------------------------------------------------------------- |
---|
1054 | zicefr(:,:,1) = 1.- p_frld(:,:,1) |
---|
1055 | IF( lk_diaar5 ) zcptn(:,:) = rcp * tn(:,:,1) |
---|
1056 | ! |
---|
1057 | ! ! ========================= ! |
---|
1058 | ! ! freshwater budget ! (emp) |
---|
1059 | ! ! ========================= ! |
---|
1060 | ! |
---|
1061 | ! ! total Precipitations - total Evaporation (emp_tot) |
---|
1062 | ! ! solid precipitation - sublimation (emp_ice) |
---|
1063 | ! ! solid Precipitation (sprecip) |
---|
1064 | SELECT CASE( TRIM( cn_rcv_emp ) ) |
---|
1065 | CASE( 'conservative' ) ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp |
---|
1066 | pemp_tot(:,:) = frcv(:,:,jpr_tevp) - frcv(:,:,jpr_rain) - frcv(:,:,jpr_snow) |
---|
1067 | pemp_ice(:,:) = frcv(:,:,jpr_ievp) - frcv(:,:,jpr_snow) |
---|
1068 | zsnow (:,:) = frcv(:,:,jpr_snow) |
---|
1069 | CALL iom_put( 'rain' , frcv(:,:,jpr_rain) ) ! liquid precipitation |
---|
1070 | IF( lk_diaar5 ) CALL iom_put( 'hflx_rain_cea', frcv(:,:,jpr_rain) * zcptn(:,:) ) ! heat flux from liq. precip. |
---|
1071 | ztmp(:,:) = frcv(:,:,jpr_tevp) - frcv(:,:,jpr_ievp) * zicefr(:,:,1) |
---|
1072 | CALL iom_put( 'evap_ao_cea' , ztmp ) ! ice-free oce evap (cell average) |
---|
1073 | IF( lk_diaar5 ) CALL iom_put( 'hflx_evap_cea', ztmp(:,: ) * zcptn(:,:) ) ! heat flux from from evap (cell ave) |
---|
1074 | CASE( 'oce and ice' ) ! received fields: jpr_sbpr, jpr_semp, jpr_oemp |
---|
1075 | pemp_tot(:,:) = p_frld(:,:,1) * frcv(:,:,jpr_oemp) + zicefr(:,:,1) * frcv(:,:,jpr_sbpr) |
---|
1076 | pemp_ice(:,:) = frcv(:,:,jpr_semp) |
---|
1077 | zsnow (:,:) = - frcv(:,:,jpr_semp) + frcv(:,:,jpr_ievp) |
---|
1078 | END SELECT |
---|
1079 | psprecip(:,:) = - pemp_ice(:,:) |
---|
1080 | CALL iom_put( 'snowpre' , zsnow ) ! Snow |
---|
1081 | CALL iom_put( 'snow_ao_cea', zsnow(:,: ) * p_frld(:,:,1) ) ! Snow over ice-free ocean (cell average) |
---|
1082 | CALL iom_put( 'snow_ai_cea', zsnow(:,: ) * zicefr(:,:,1) ) ! Snow over sea-ice (cell average) |
---|
1083 | CALL iom_put( 'subl_ai_cea', frcv (:,:,jpr_ievp) * zicefr(:,:,1) ) ! Sublimation over sea-ice (cell average) |
---|
1084 | ! |
---|
1085 | ! ! runoffs and calving (put in emp_tot) |
---|
1086 | IF( srcv(jpr_rnf)%laction ) THEN |
---|
1087 | pemp_tot(:,:) = pemp_tot(:,:) - frcv(:,:,jpr_rnf) |
---|
1088 | CALL iom_put( 'runoffs' , frcv(:,:,jpr_rnf ) ) ! rivers |
---|
1089 | IF( lk_diaar5 ) CALL iom_put( 'hflx_rnf_cea' , frcv(:,:,jpr_rnf ) * zcptn(:,:) ) ! heat flux from rivers |
---|
1090 | ENDIF |
---|
1091 | IF( srcv(jpr_cal)%laction ) THEN |
---|
1092 | pemp_tot(:,:) = pemp_tot(:,:) - frcv(:,:,jpr_cal) |
---|
1093 | CALL iom_put( 'calving', frcv(:,:,jpr_cal) ) |
---|
1094 | ENDIF |
---|
1095 | ! |
---|
1096 | !!gm : this seems to be internal cooking, not sure to need that in a generic interface |
---|
1097 | !!gm at least should be optional... |
---|
1098 | !! ! remove negative runoff ! sum over the global domain |
---|
1099 | !! zcumulpos = SUM( MAX( frcv(:,:,jpr_rnf), 0.e0 ) * e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) |
---|
1100 | !! zcumulneg = SUM( MIN( frcv(:,:,jpr_rnf), 0.e0 ) * e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) |
---|
1101 | !! IF( lk_mpp ) CALL mpp_sum( zcumulpos ) |
---|
1102 | !! IF( lk_mpp ) CALL mpp_sum( zcumulneg ) |
---|
1103 | !! IF( zcumulpos /= 0. ) THEN ! distribute negative runoff on positive runoff grid points |
---|
1104 | !! zcumulneg = 1.e0 + zcumulneg / zcumulpos |
---|
1105 | !! frcv(:,:,jpr_rnf) = MAX( frcv(:,:,jpr_rnf), 0.e0 ) * zcumulneg |
---|
1106 | !! ENDIF |
---|
1107 | !! pemp_tot(:,:) = pemp_tot(:,:) - frcv(:,:,jpr_rnf) ! add runoff to e-p |
---|
1108 | !! |
---|
1109 | !!gm end of internal cooking |
---|
1110 | |
---|
1111 | |
---|
1112 | ! ! ========================= ! |
---|
1113 | SELECT CASE( TRIM( cn_rcv_qns ) ) ! non solar heat fluxes ! (qns) |
---|
1114 | ! ! ========================= ! |
---|
1115 | CASE( 'conservative' ) ! the required fields are directly provided |
---|
1116 | pqns_tot(:,: ) = frcv(:,:,jpr_qnsmix) |
---|
1117 | pqns_ice(:,:,1) = frcv(:,:,jpr_qnsice) |
---|
1118 | CASE( 'oce and ice' ) ! the total flux is computed from ocean and ice fluxes |
---|
1119 | pqns_tot(:,: ) = p_frld(:,:,1) * frcv(:,:,jpr_qnsoce) + zicefr(:,:,1) * frcv(:,:,jpr_qnsice) |
---|
1120 | pqns_ice(:,:,1) = frcv(:,:,jpr_qnsice) |
---|
1121 | CASE( 'mixed oce-ice' ) ! the ice flux is cumputed from the total flux, the SST and ice informations |
---|
1122 | pqns_tot(:,: ) = frcv(:,:,jpr_qnsmix) |
---|
1123 | pqns_ice(:,:,1) = frcv(:,:,jpr_qnsmix) & |
---|
1124 | & + frcv(:,:,jpr_dqnsdt) * ( pist(:,:,1) - ( (rt0 + psst(:,: ) ) * p_frld(:,:,1) & |
---|
1125 | & + pist(:,:,1) * zicefr(:,:,1) ) ) |
---|
1126 | END SELECT |
---|
1127 | ztmp(:,:) = p_frld(:,:,1) * zsnow(:,:) * lfus ! add the latent heat of solid precip. melting |
---|
1128 | pqns_tot(:,:) = pqns_tot(:,:) - ztmp(:,:) ! over free ocean |
---|
1129 | IF( lk_diaar5 ) CALL iom_put( 'hflx_snow_cea', ztmp + zsnow(:,:) * zcptn(:,:) ) ! heat flux from snow (cell average) |
---|
1130 | !!gm |
---|
1131 | !! currently it is taken into account in leads budget but not in the qns_tot, and thus not in |
---|
1132 | !! the flux that enter the ocean.... |
---|
1133 | !! moreover 1 - it is not diagnose anywhere.... |
---|
1134 | !! 2 - it is unclear for me whether this heat lost is taken into account in the atmosphere or not... |
---|
1135 | !! |
---|
1136 | !! similar job should be done for snow and precipitation temperature |
---|
1137 | ! |
---|
1138 | IF( srcv(jpr_cal)%laction ) THEN ! Iceberg melting |
---|
1139 | ztmp(:,:) = frcv(:,:,jpr_cal) * lfus ! add the latent heat of iceberg melting |
---|
1140 | pqns_tot(:,:) = pqns_tot(:,:) - ztmp(:,:) |
---|
1141 | IF( lk_diaar5 ) CALL iom_put( 'hflx_cal_cea', ztmp + frcv(:,:,jpr_cal) * zcptn(:,:) ) ! heat flux from calving |
---|
1142 | ENDIF |
---|
1143 | |
---|
1144 | ! ! ========================= ! |
---|
1145 | SELECT CASE( TRIM( cn_rcv_qsr ) ) ! solar heat fluxes ! (qsr) |
---|
1146 | ! ! ========================= ! |
---|
1147 | CASE( 'conservative' ) |
---|
1148 | pqsr_tot(:,: ) = frcv(:,:,jpr_qsrmix) |
---|
1149 | pqsr_ice(:,:,1) = frcv(:,:,jpr_qsrice) |
---|
1150 | CASE( 'oce and ice' ) |
---|
1151 | pqsr_tot(:,: ) = p_frld(:,:,1) * frcv(:,:,jpr_qsroce) + zicefr(:,:,1) * frcv(:,:,jpr_qsrice) |
---|
1152 | pqsr_ice(:,:,1) = frcv(:,:,jpr_qsrice) |
---|
1153 | CASE( 'mixed oce-ice' ) |
---|
1154 | pqsr_tot(:,: ) = frcv(:,:,jpr_qsrmix) |
---|
1155 | ! Create solar heat flux over ice using incoming solar heat flux and albedos |
---|
1156 | ! ( see OASIS3 user guide, 5th edition, p39 ) |
---|
1157 | pqsr_ice(:,:,1) = frcv(:,:,jpr_qsrmix) * ( 1.- palbi(:,:,1) ) & |
---|
1158 | & / ( 1.- ( albedo_oce_mix(:,: ) * p_frld(:,:,1) & |
---|
1159 | & + palbi (:,:,1) * zicefr(:,:,1) ) ) |
---|
1160 | END SELECT |
---|
1161 | |
---|
1162 | SELECT CASE( TRIM( cn_rcv_dqnsdt ) ) |
---|
1163 | CASE ('coupled') |
---|
1164 | pdqns_ice(:,:,1) = frcv(:,:,jpr_dqnsdt) |
---|
1165 | END SELECT |
---|
1166 | |
---|
1167 | END SUBROUTINE sbc_cpl_ice_flx |
---|
1168 | |
---|
1169 | |
---|
1170 | SUBROUTINE sbc_cpl_snd( kt ) |
---|
1171 | !!---------------------------------------------------------------------- |
---|
1172 | !! *** ROUTINE sbc_cpl_snd *** |
---|
1173 | !! |
---|
1174 | !! ** Purpose : provide the ocean-ice informations to the atmosphere |
---|
1175 | !! |
---|
1176 | !! ** Method : send to the atmosphere through a call to cpl_prism_snd |
---|
1177 | !! all the needed fields (as defined in sbc_cpl_init) |
---|
1178 | !!---------------------------------------------------------------------- |
---|
1179 | INTEGER, INTENT(in) :: kt |
---|
1180 | !! |
---|
1181 | INTEGER :: ji, jj ! dummy loop indices |
---|
1182 | INTEGER :: isec, info ! temporary integer |
---|
1183 | REAL(wp), DIMENSION(jpi,jpj) :: zfr_l ! 1. - fr_i(:,:) |
---|
1184 | REAL(wp), DIMENSION(jpi,jpj) :: ztmp1, ztmp2 |
---|
1185 | REAL(wp), DIMENSION(jpi,jpj) :: zotx1 , zoty1 , zotz1, zitx1, zity1, zitz1 |
---|
1186 | !!---------------------------------------------------------------------- |
---|
1187 | |
---|
1188 | isec = ( kt - nit000 ) * NINT(rdttra(1)) ! date of exchanges |
---|
1189 | |
---|
1190 | zfr_l(:,:) = 1.- fr_i(:,:) |
---|
1191 | |
---|
1192 | ! ! ------------------------- ! |
---|
1193 | ! ! Surface temperature ! in Kelvin |
---|
1194 | ! ! ------------------------- ! |
---|
1195 | SELECT CASE( cn_snd_temperature) |
---|
1196 | CASE( 'oce only' ) ; ztmp1(:,:) = tn(:,:,1) + rt0 |
---|
1197 | CASE( 'weighted oce and ice' ) ; ztmp1(:,:) = ( tn(:,:,1) + rt0 ) * zfr_l(:,:) |
---|
1198 | ztmp2(:,:) = tn_ice(:,:,1) * fr_i(:,:) |
---|
1199 | CASE( 'mixed oce-ice' ) ; ztmp1(:,:) = ( tn(:,:,1) + rt0 ) * zfr_l(:,:) + tn_ice(:,:,1) * fr_i(:,:) |
---|
1200 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of cn_snd_temperature' ) |
---|
1201 | END SELECT |
---|
1202 | IF( ssnd(jps_toce)%laction ) CALL cpl_prism_snd( jps_toce, isec, ztmp1, info ) |
---|
1203 | IF( ssnd(jps_tice)%laction ) CALL cpl_prism_snd( jps_tice, isec, ztmp2, info ) |
---|
1204 | IF( ssnd(jps_tmix)%laction ) CALL cpl_prism_snd( jps_tmix, isec, ztmp1, info ) |
---|
1205 | ! |
---|
1206 | ! ! ------------------------- ! |
---|
1207 | ! ! Albedo ! |
---|
1208 | ! ! ------------------------- ! |
---|
1209 | IF( ssnd(jps_albice)%laction ) THEN ! ice |
---|
1210 | ztmp1(:,:) = alb_ice(:,:,1) * fr_i(:,:) |
---|
1211 | CALL cpl_prism_snd( jps_albice, isec, ztmp1, info ) |
---|
1212 | ENDIF |
---|
1213 | IF( ssnd(jps_albmix)%laction ) THEN ! mixed ice-ocean |
---|
1214 | ztmp1(:,:) = albedo_oce_mix(:,:) * zfr_l(:,:) + alb_ice(:,:,1) * fr_i(:,:) |
---|
1215 | CALL cpl_prism_snd( jps_albmix, isec, ztmp1, info ) |
---|
1216 | ENDIF |
---|
1217 | ! ! ------------------------- ! |
---|
1218 | ! ! Ice fraction & Thickness ! |
---|
1219 | ! ! ------------------------- ! |
---|
1220 | IF( ssnd(jps_fice)%laction ) CALL cpl_prism_snd( jps_fice, isec, fr_i , info ) |
---|
1221 | IF( ssnd(jps_hice)%laction ) CALL cpl_prism_snd( jps_hice, isec, hicif(:,:) * fr_i(:,:), info ) |
---|
1222 | IF( ssnd(jps_hsnw)%laction ) CALL cpl_prism_snd( jps_hsnw, isec, hsnif(:,:) * fr_i(:,:), info ) |
---|
1223 | ! |
---|
1224 | #if defined key_cpl_carbon_cycle |
---|
1225 | ! ! ------------------------- ! |
---|
1226 | ! ! CO2 flux from PISCES ! |
---|
1227 | ! ! ------------------------- ! |
---|
1228 | IF( ssnd(jps_co2)%laction ) CALL cpl_prism_snd( jps_co2, isec, oce_co2 , info ) |
---|
1229 | ! |
---|
1230 | #endif |
---|
1231 | IF( ssnd(jps_ocx1)%laction ) THEN ! Surface current ! |
---|
1232 | ! ! ------------------------- ! |
---|
1233 | ! |
---|
1234 | ! j+1 j -----V---F |
---|
1235 | ! surface velocity always sent from T point ! | |
---|
1236 | ! j | T U |
---|
1237 | ! | | |
---|
1238 | ! j j-1 -I-------| |
---|
1239 | ! (for I) | | |
---|
1240 | ! i-1 i i |
---|
1241 | ! i i+1 (for I) |
---|
1242 | SELECT CASE( TRIM( cn_snd_crt(1) ) ) |
---|
1243 | CASE( 'oce only' ) ! C-grid ==> T |
---|
1244 | DO jj = 2, jpjm1 |
---|
1245 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1246 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) |
---|
1247 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) |
---|
1248 | END DO |
---|
1249 | END DO |
---|
1250 | CASE( 'weighted oce and ice' ) |
---|
1251 | SELECT CASE ( cigr_type ) |
---|
1252 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
1253 | DO jj = 2, jpjm1 |
---|
1254 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1255 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
1256 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
1257 | zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
1258 | zity1(ji,jj) = 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
1259 | END DO |
---|
1260 | END DO |
---|
1261 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
1262 | DO jj = 2, jpjm1 |
---|
1263 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1264 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
1265 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
1266 | zitx1(ji,jj) = 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
1267 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1268 | zity1(ji,jj) = 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
1269 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1270 | END DO |
---|
1271 | END DO |
---|
1272 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
1273 | DO jj = 2, jpjm1 |
---|
1274 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1275 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
1276 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
1277 | zitx1(ji,jj) = 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
1278 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1279 | zity1(ji,jj) = 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
1280 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1281 | END DO |
---|
1282 | END DO |
---|
1283 | END SELECT |
---|
1284 | CALL lbc_lnk( zitx1, 'T', -1. ) ; CALL lbc_lnk( zity1, 'T', -1. ) |
---|
1285 | CASE( 'mixed oce-ice' ) |
---|
1286 | SELECT CASE ( cigr_type ) |
---|
1287 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
1288 | DO jj = 2, jpjm1 |
---|
1289 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1290 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
1291 | & + 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
1292 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
1293 | & + 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
1294 | END DO |
---|
1295 | END DO |
---|
1296 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
1297 | DO jj = 2, jpjm1 |
---|
1298 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1299 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
1300 | & + 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
1301 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1302 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
1303 | & + 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
1304 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1305 | END DO |
---|
1306 | END DO |
---|
1307 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
1308 | DO jj = 2, jpjm1 |
---|
1309 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1310 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
1311 | & + 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
1312 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1313 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
1314 | & + 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
1315 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
1316 | END DO |
---|
1317 | END DO |
---|
1318 | END SELECT |
---|
1319 | END SELECT |
---|
1320 | CALL lbc_lnk( zotx1, 'T', -1. ) ; CALL lbc_lnk( zoty1, 'T', -1. ) |
---|
1321 | ! |
---|
1322 | ! |
---|
1323 | IF( TRIM( cn_snd_crt(3) ) == 'eastward-northward' ) THEN ! Rotation of the components |
---|
1324 | ! ! Ocean component |
---|
1325 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
1326 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
1327 | zotx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
1328 | zoty1(:,:) = ztmp2(:,:) |
---|
1329 | IF( ssnd(jps_ivx1)%laction ) THEN ! Ice component |
---|
1330 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
1331 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
1332 | zitx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
1333 | zity1(:,:) = ztmp2(:,:) |
---|
1334 | ENDIF |
---|
1335 | ENDIF |
---|
1336 | ! |
---|
1337 | ! spherical coordinates to cartesian -> 2 components to 3 components |
---|
1338 | IF( TRIM( cn_snd_crt(2) ) == 'cartesian' ) THEN |
---|
1339 | ztmp1(:,:) = zotx1(:,:) ! ocean currents |
---|
1340 | ztmp2(:,:) = zoty1(:,:) |
---|
1341 | CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 ) |
---|
1342 | ! |
---|
1343 | IF( ssnd(jps_ivx1)%laction ) THEN ! ice velocities |
---|
1344 | ztmp1(:,:) = zitx1(:,:) |
---|
1345 | ztmp1(:,:) = zity1(:,:) |
---|
1346 | CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 ) |
---|
1347 | ENDIF |
---|
1348 | ENDIF |
---|
1349 | ! |
---|
1350 | IF( ssnd(jps_ocx1)%laction ) CALL cpl_prism_snd( jps_ocx1, isec, zotx1, info ) ! ocean x current 1st grid |
---|
1351 | IF( ssnd(jps_ocy1)%laction ) CALL cpl_prism_snd( jps_ocy1, isec, zoty1, info ) ! ocean y current 1st grid |
---|
1352 | IF( ssnd(jps_ocz1)%laction ) CALL cpl_prism_snd( jps_ocz1, isec, zotz1, info ) ! ocean z current 1st grid |
---|
1353 | ! |
---|
1354 | IF( ssnd(jps_ivx1)%laction ) CALL cpl_prism_snd( jps_ivx1, isec, zitx1, info ) ! ice x current 1st grid |
---|
1355 | IF( ssnd(jps_ivy1)%laction ) CALL cpl_prism_snd( jps_ivy1, isec, zity1, info ) ! ice y current 1st grid |
---|
1356 | IF( ssnd(jps_ivz1)%laction ) CALL cpl_prism_snd( jps_ivz1, isec, zitz1, info ) ! ice z current 1st grid |
---|
1357 | ! |
---|
1358 | ENDIF |
---|
1359 | ! |
---|
1360 | END SUBROUTINE sbc_cpl_snd |
---|
1361 | |
---|
1362 | #else |
---|
1363 | !!---------------------------------------------------------------------- |
---|
1364 | !! Dummy module NO coupling |
---|
1365 | !!---------------------------------------------------------------------- |
---|
1366 | USE par_kind ! kind definition |
---|
1367 | CONTAINS |
---|
1368 | SUBROUTINE sbc_cpl_snd( kt ) |
---|
1369 | WRITE(*,*) 'sbc_cpl_snd: You should not have seen this print! error?', kt |
---|
1370 | END SUBROUTINE sbc_cpl_snd |
---|
1371 | ! |
---|
1372 | SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice ) |
---|
1373 | WRITE(*,*) 'sbc_cpl_snd: You should not have seen this print! error?', kt, k_fsbc, k_ice |
---|
1374 | END SUBROUTINE sbc_cpl_rcv |
---|
1375 | ! |
---|
1376 | SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj ) |
---|
1377 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_taui ! i- & j-components of atmos-ice stress [N/m2] |
---|
1378 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid) |
---|
1379 | p_taui(:,:) = 0. ; p_tauj(:,:) = 0. ! stupid definition to avoid warning message when compiling... |
---|
1380 | WRITE(*,*) 'sbc_cpl_snd: You should not have seen this print! error?' |
---|
1381 | END SUBROUTINE sbc_cpl_ice_tau |
---|
1382 | ! |
---|
1383 | SUBROUTINE sbc_cpl_ice_flx( p_frld , & |
---|
1384 | & pqns_tot, pqns_ice, pqsr_tot , pqsr_ice, & |
---|
1385 | & pemp_tot, pemp_ice, pdqns_ice, psprecip, & |
---|
1386 | & palbi , psst , pist ) |
---|
1387 | REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: p_frld ! lead fraction [0 to 1] |
---|
1388 | REAL(wp), INTENT( out), DIMENSION(:,: ) :: pqns_tot ! total non solar heat flux [W/m2] |
---|
1389 | REAL(wp), INTENT( out), DIMENSION(:,:,:) :: pqns_ice ! ice non solar heat flux [W/m2] |
---|
1390 | REAL(wp), INTENT( out), DIMENSION(:,: ) :: pqsr_tot ! total solar heat flux [W/m2] |
---|
1391 | REAL(wp), INTENT( out), DIMENSION(:,:,:) :: pqsr_ice ! ice solar heat flux [W/m2] |
---|
1392 | REAL(wp), INTENT( out), DIMENSION(:,: ) :: pemp_tot ! total freshwater budget [Kg/m2/s] |
---|
1393 | REAL(wp), INTENT( out), DIMENSION(:,: ) :: pemp_ice ! ice solid freshwater budget [Kg/m2/s] |
---|
1394 | REAL(wp), INTENT( out), DIMENSION(:,:,:) :: pdqns_ice ! d(Q non solar)/d(Temperature) over ice |
---|
1395 | REAL(wp), INTENT( out), DIMENSION(:,: ) :: psprecip ! solid precipitation [Kg/m2/s] |
---|
1396 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: palbi ! ice albedo |
---|
1397 | REAL(wp), INTENT(in ), DIMENSION(:,: ), OPTIONAL :: psst ! sea surface temperature [Celcius] |
---|
1398 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: pist ! ice surface temperature [Kelvin] |
---|
1399 | WRITE(*,*) 'sbc_cpl_snd: You should not have seen this print! error?', p_frld(1,1,1), palbi(1,1,1), psst(1,1), pist(1,1,1) |
---|
1400 | ! stupid definition to avoid warning message when compiling... |
---|
1401 | pqns_tot(:,:) = 0. ; pqns_ice(:,:,:) = 0. ; pdqns_ice(:,:,:) = 0. |
---|
1402 | pqsr_tot(:,:) = 0. ; pqsr_ice(:,:,:) = 0. |
---|
1403 | pemp_tot(:,:) = 0. ; pemp_ice(:,:) = 0. ; psprecip(:,:) = 0. |
---|
1404 | END SUBROUTINE sbc_cpl_ice_flx |
---|
1405 | |
---|
1406 | #endif |
---|
1407 | |
---|
1408 | !!====================================================================== |
---|
1409 | END MODULE sbccpl |
---|