1 | MODULE sshwzv |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE sshwzv *** |
---|
4 | !! Ocean dynamics : sea surface height and vertical velocity |
---|
5 | !!============================================================================== |
---|
6 | !! History : 3.1 ! 2009-02 (G. Madec, M. Leclair) Original code |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! ssh_wzv : after ssh & now vertical velocity |
---|
11 | !! ssh_nxt : filter ans swap the ssh arrays |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | USE oce ! ocean dynamics and tracers variables |
---|
14 | USE dom_oce ! ocean space and time domain variables |
---|
15 | USE sbc_oce ! surface boundary condition: ocean |
---|
16 | USE domvvl ! Variable volume |
---|
17 | USE divcur ! hor. divergence and curl (div & cur routines) |
---|
18 | USE cla_div ! cross land: hor. divergence (div_cla routine) |
---|
19 | USE iom ! I/O library |
---|
20 | USE restart ! only for lrst_oce |
---|
21 | USE in_out_manager ! I/O manager |
---|
22 | USE prtctl ! Print control |
---|
23 | USE phycst |
---|
24 | USE lbclnk ! ocean lateral boundary condition (or mpp link) |
---|
25 | USE obc_par ! open boundary cond. parameter |
---|
26 | USE obc_oce |
---|
27 | USE diaar5, ONLY : lk_diaar5 |
---|
28 | USE iom |
---|
29 | USE sbcrnf, ONLY : rnf_dep, rnf_mod_dep ! River runoff |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC ssh_wzv ! called by step.F90 |
---|
35 | PUBLIC ssh_nxt ! called by step.F90 |
---|
36 | |
---|
37 | !! * Substitutions |
---|
38 | # include "domzgr_substitute.h90" |
---|
39 | # include "vectopt_loop_substitute.h90" |
---|
40 | |
---|
41 | !!---------------------------------------------------------------------- |
---|
42 | !! NEMO/OPA 3.2 , LOCEAN-IPSL (2009) |
---|
43 | !! $Id$ |
---|
44 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | |
---|
47 | CONTAINS |
---|
48 | |
---|
49 | SUBROUTINE ssh_wzv( kt ) |
---|
50 | !!---------------------------------------------------------------------- |
---|
51 | !! *** ROUTINE ssh_wzv *** |
---|
52 | !! |
---|
53 | !! ** Purpose : compute the after ssh (ssha), the now vertical velocity |
---|
54 | !! and update the now vertical coordinate (lk_vvl=T). |
---|
55 | !! |
---|
56 | !! ** Method : - |
---|
57 | !! |
---|
58 | !! - Using the incompressibility hypothesis, the vertical |
---|
59 | !! velocity is computed by integrating the horizontal divergence |
---|
60 | !! from the bottom to the surface minus the scale factor evolution. |
---|
61 | !! The boundary conditions are w=0 at the bottom (no flux) and. |
---|
62 | !! |
---|
63 | !! ** action : ssha : after sea surface height |
---|
64 | !! wn : now vertical velocity |
---|
65 | !! if lk_vvl=T: sshu_a, sshv_a, sshf_a : after sea surface height |
---|
66 | !! at u-, v-, f-point s |
---|
67 | !! hu, hv, hur, hvr : ocean depth and its inverse at u-,v-points |
---|
68 | !!---------------------------------------------------------------------- |
---|
69 | USE oce, ONLY : z3d => ta ! use ta as 3D workspace |
---|
70 | !! |
---|
71 | INTEGER, INTENT(in) :: kt ! time step |
---|
72 | !! |
---|
73 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
74 | REAL(wp) :: zcoefu, zcoefv, zcoeff ! temporary scalars |
---|
75 | REAL(wp) :: z2dt, zraur ! temporary scalars |
---|
76 | REAL(wp), DIMENSION(jpi,jpj) :: zhdiv ! 2D workspace |
---|
77 | REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace |
---|
78 | !!---------------------------------------------------------------------- |
---|
79 | |
---|
80 | IF( kt == nit000 ) THEN |
---|
81 | IF(lwp) WRITE(numout,*) |
---|
82 | IF(lwp) WRITE(numout,*) 'ssh_wzv : after sea surface height and now vertical velocity ' |
---|
83 | IF(lwp) WRITE(numout,*) '~~~~~~~ ' |
---|
84 | ! |
---|
85 | wn(:,:,jpk) = 0.e0 ! bottom boundary condition: w=0 (set once for all) |
---|
86 | ! |
---|
87 | IF( lk_vvl ) THEN ! before and now Sea SSH at u-, v-, f-points (vvl case only) |
---|
88 | DO jj = 1, jpjm1 |
---|
89 | DO ji = 1, jpim1 ! caution: use of Vector Opt. not possible |
---|
90 | zcoefu = 0.5 * umask(ji,jj,1) / ( e1u(ji,jj) * e2u(ji,jj) ) |
---|
91 | zcoefv = 0.5 * vmask(ji,jj,1) / ( e1v(ji,jj) * e2v(ji,jj) ) |
---|
92 | zcoeff = 0.25 * umask(ji,jj,1) * umask(ji,jj+1,1) |
---|
93 | sshu_b(ji,jj) = zcoefu * ( e1t(ji ,jj) * e2t(ji ,jj) * sshb(ji ,jj) & |
---|
94 | & + e1t(ji+1,jj) * e2t(ji+1,jj) * sshb(ji+1,jj) ) |
---|
95 | sshv_b(ji,jj) = zcoefv * ( e1t(ji,jj ) * e2t(ji,jj ) * sshb(ji,jj ) & |
---|
96 | & + e1t(ji,jj+1) * e2t(ji,jj+1) * sshb(ji,jj+1) ) |
---|
97 | sshf_b(ji,jj) = zcoeff * ( sshb(ji ,jj) + sshb(ji ,jj+1) & |
---|
98 | & + sshb(ji+1,jj) + sshb(ji+1,jj+1) ) |
---|
99 | sshu_n(ji,jj) = zcoefu * ( e1t(ji ,jj) * e2t(ji ,jj) * sshn(ji ,jj) & |
---|
100 | & + e1t(ji+1,jj) * e2t(ji+1,jj) * sshn(ji+1,jj) ) |
---|
101 | sshv_n(ji,jj) = zcoefv * ( e1t(ji,jj ) * e2t(ji,jj ) * sshn(ji,jj ) & |
---|
102 | & + e1t(ji,jj+1) * e2t(ji,jj+1) * sshn(ji,jj+1) ) |
---|
103 | sshf_n(ji,jj) = zcoeff * ( sshn(ji ,jj) + sshn(ji ,jj+1) & |
---|
104 | & + sshn(ji+1,jj) + sshn(ji+1,jj+1) ) |
---|
105 | END DO |
---|
106 | END DO |
---|
107 | CALL lbc_lnk( sshu_b, 'U', 1. ) ; CALL lbc_lnk( sshu_n, 'U', 1. ) |
---|
108 | CALL lbc_lnk( sshv_b, 'V', 1. ) ; CALL lbc_lnk( sshv_n, 'V', 1. ) |
---|
109 | CALL lbc_lnk( sshf_b, 'F', 1. ) ; CALL lbc_lnk( sshf_n, 'F', 1. ) |
---|
110 | ENDIF |
---|
111 | ! |
---|
112 | ENDIF |
---|
113 | |
---|
114 | ! !------------------------------! |
---|
115 | IF( lk_vvl ) THEN ! Update Now Vertical coord. ! (only in vvl case) |
---|
116 | ! !------------------------------! |
---|
117 | DO jk = 1, jpkm1 |
---|
118 | fsdept(:,:,jk) = fsdept_n(:,:,jk) ! now local depths stored in fsdep. arrays |
---|
119 | fsdepw(:,:,jk) = fsdepw_n(:,:,jk) |
---|
120 | fsde3w(:,:,jk) = fsde3w_n(:,:,jk) |
---|
121 | ! |
---|
122 | fse3t (:,:,jk) = fse3t_n (:,:,jk) ! vertical scale factors stored in fse3. arrays |
---|
123 | fse3u (:,:,jk) = fse3u_n (:,:,jk) |
---|
124 | fse3v (:,:,jk) = fse3v_n (:,:,jk) |
---|
125 | fse3f (:,:,jk) = fse3f_n (:,:,jk) |
---|
126 | fse3w (:,:,jk) = fse3w_n (:,:,jk) |
---|
127 | fse3uw(:,:,jk) = fse3uw_n(:,:,jk) |
---|
128 | fse3vw(:,:,jk) = fse3vw_n(:,:,jk) |
---|
129 | END DO |
---|
130 | ! ! now ocean depth (at u- and v-points) |
---|
131 | hu(:,:) = hu_0(:,:) + sshu_n(:,:) |
---|
132 | hv(:,:) = hv_0(:,:) + sshv_n(:,:) |
---|
133 | ! ! now masked inverse of the ocean depth (at u- and v-points) |
---|
134 | hur(:,:) = umask(:,:,1) / ( hu(:,:) + 1.e0 - umask(:,:,1) ) |
---|
135 | hvr(:,:) = vmask(:,:,1) / ( hv(:,:) + 1.e0 - vmask(:,:,1) ) |
---|
136 | ! |
---|
137 | ! |
---|
138 | DO jj = 1, jpj |
---|
139 | DO ji = 1, jpi |
---|
140 | rnf_dep(ji,jj) = 0. |
---|
141 | DO jk = 1, rnf_mod_dep(ji,jj) ! recalculates rnf_dep to be the depth |
---|
142 | rnf_dep(ji,jj) = rnf_dep(ji,jj) + fse3t(ji,jj,jk) ! in metres to the bottom of the relevant grid box |
---|
143 | ENDDO |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | ! |
---|
147 | ENDIF |
---|
148 | |
---|
149 | CALL div_cur( kt ) ! Horizontal divergence & Relative vorticity |
---|
150 | IF( n_cla == 1 ) CALL div_cla( kt ) ! Cross Land Advection (Update Hor. divergence) |
---|
151 | |
---|
152 | ! set time step size (Euler/Leapfrog) |
---|
153 | z2dt = 2. * rdt |
---|
154 | IF( neuler == 0 .AND. kt == nit000 ) z2dt =rdt |
---|
155 | |
---|
156 | zraur = 1. / rau0 |
---|
157 | |
---|
158 | ! !------------------------------! |
---|
159 | ! ! After Sea Surface Height ! |
---|
160 | ! !------------------------------! |
---|
161 | zhdiv(:,:) = 0.e0 |
---|
162 | DO jk = 1, jpkm1 ! Horizontal divergence of barotropic transports |
---|
163 | zhdiv(:,:) = zhdiv(:,:) + fse3t(:,:,jk) * hdivn(:,:,jk) |
---|
164 | END DO |
---|
165 | |
---|
166 | ! ! Sea surface elevation time stepping |
---|
167 | ssha(:,:) = ( sshb(:,:) - z2dt * ( zraur * ( emp(:,:)-rnf(:,:) ) + zhdiv(:,:) ) ) * tmask(:,:,1) |
---|
168 | |
---|
169 | #if defined key_obc |
---|
170 | IF ( Agrif_Root() ) THEN |
---|
171 | ssha(:,:) = ssha(:,:) * obctmsk(:,:) |
---|
172 | CALL lbc_lnk( ssha, 'T', 1. ) ! absolutly compulsory !! (jmm) |
---|
173 | ENDIF |
---|
174 | #endif |
---|
175 | |
---|
176 | ! ! Sea Surface Height at u-,v- and f-points (vvl case only) |
---|
177 | IF( lk_vvl ) THEN ! (required only in key_vvl case) |
---|
178 | DO jj = 1, jpjm1 |
---|
179 | DO ji = 1, jpim1 ! NO Vector Opt. |
---|
180 | sshu_a(ji,jj) = 0.5 * umask(ji,jj,1) / ( e1u(ji ,jj) * e2u(ji ,jj) ) & |
---|
181 | & * ( e1t(ji ,jj) * e2t(ji ,jj) * ssha(ji ,jj) & |
---|
182 | & + e1t(ji+1,jj) * e2t(ji+1,jj) * ssha(ji+1,jj) ) |
---|
183 | sshv_a(ji,jj) = 0.5 * vmask(ji,jj,1) / ( e1v(ji,jj ) * e2v(ji,jj ) ) & |
---|
184 | & * ( e1t(ji,jj ) * e2t(ji,jj ) * ssha(ji,jj ) & |
---|
185 | & + e1t(ji,jj+1) * e2t(ji,jj+1) * ssha(ji,jj+1) ) |
---|
186 | sshf_a(ji,jj) = 0.25 * umask(ji,jj,1) * umask (ji,jj+1,1) & |
---|
187 | & * ( ssha(ji ,jj) + ssha(ji ,jj+1) & |
---|
188 | & + ssha(ji+1,jj) + ssha(ji+1,jj+1) ) |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | CALL lbc_lnk( sshu_a, 'U', 1. ) ! Boundaries conditions |
---|
192 | CALL lbc_lnk( sshv_a, 'V', 1. ) |
---|
193 | CALL lbc_lnk( sshf_a, 'F', 1. ) |
---|
194 | ENDIF |
---|
195 | |
---|
196 | ! !------------------------------! |
---|
197 | ! ! Now Vertical Velocity ! |
---|
198 | ! !------------------------------! |
---|
199 | ! ! integrate from the bottom the hor. divergence |
---|
200 | DO jk = jpkm1, 1, -1 |
---|
201 | wn(:,:,jk) = wn(:,:,jk+1) - fse3t_n(:,:,jk) * hdivn(:,:,jk) & |
---|
202 | & - ( fse3t_a(:,:,jk) & |
---|
203 | & - fse3t_b(:,:,jk) ) * tmask(:,:,jk) / z2dt |
---|
204 | END DO |
---|
205 | ! |
---|
206 | CALL iom_put( "woce", wn ) ! vertical velocity |
---|
207 | CALL iom_put( "ssh" , sshn ) ! sea surface height |
---|
208 | CALL iom_put( "ssh2", sshn(:,:) * sshn(:,:) ) ! square of sea surface height |
---|
209 | IF( lk_diaar5 ) THEN |
---|
210 | z2d(:,:) = rau0 * e1t(:,:) * e2t(:,:) |
---|
211 | DO jk = 1, jpk |
---|
212 | z3d(:,:,jk) = wn(:,:,jk) * z2d(:,:) |
---|
213 | END DO |
---|
214 | CALL iom_put( "w_masstr" , z3d ) ! vertical mass transport |
---|
215 | CALL iom_put( "w_masstr2", z3d(:,:,:) * z3d(:,:,:) ) ! square of vertical mass transport |
---|
216 | ENDIF |
---|
217 | ! |
---|
218 | END SUBROUTINE ssh_wzv |
---|
219 | |
---|
220 | |
---|
221 | SUBROUTINE ssh_nxt( kt ) |
---|
222 | !!---------------------------------------------------------------------- |
---|
223 | !! *** ROUTINE ssh_nxt *** |
---|
224 | !! |
---|
225 | !! ** Purpose : achieve the sea surface height time stepping by |
---|
226 | !! applying Asselin time filter and swapping the arrays |
---|
227 | !! ssha already computed in ssh_wzv |
---|
228 | !! |
---|
229 | !! ** Method : - apply Asselin time fiter to now ssh and swap : |
---|
230 | !! sshn = ssha + atfp * ( sshb -2 sshn + ssha ) |
---|
231 | !! sshn = ssha |
---|
232 | !! |
---|
233 | !! ** action : - sshb, sshn : before & now sea surface height |
---|
234 | !! ready for the next time step |
---|
235 | !!---------------------------------------------------------------------- |
---|
236 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
237 | !! |
---|
238 | INTEGER :: ji, jj ! dummy loop indices |
---|
239 | !!---------------------------------------------------------------------- |
---|
240 | |
---|
241 | IF( kt == nit000 ) THEN |
---|
242 | IF(lwp) WRITE(numout,*) |
---|
243 | IF(lwp) WRITE(numout,*) 'ssh_nxt : next sea surface height (Asselin time filter + swap)' |
---|
244 | IF(lwp) WRITE(numout,*) '~~~~~~~ ' |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! Time filter and swap of the ssh |
---|
248 | ! ------------------------------- |
---|
249 | |
---|
250 | IF( lk_vvl ) THEN ! Variable volume levels : ssh at t-, u-, v, f-points |
---|
251 | ! ! ---------------------- ! |
---|
252 | IF( neuler == 0 .AND. kt == nit000 ) THEN ! Euler time-stepping at first time-step : no filter |
---|
253 | sshn (:,:) = ssha (:,:) ! now <-- after (before already = now) |
---|
254 | sshu_n(:,:) = sshu_a(:,:) |
---|
255 | sshv_n(:,:) = sshv_a(:,:) |
---|
256 | sshf_n(:,:) = sshf_a(:,:) |
---|
257 | ELSE ! Leap-Frog time-stepping: Asselin filter + swap |
---|
258 | DO jj = 1, jpj |
---|
259 | DO ji = 1, jpi ! before <-- now filtered |
---|
260 | sshb (ji,jj) = sshn(ji,jj) + atfp * ( sshb (ji,jj) - 2 * sshn (ji,jj) + ssha (ji,jj) ) |
---|
261 | sshu_b(ji,jj) = sshu_n(ji,jj) + atfp * ( sshu_b(ji,jj) - 2 * sshu_n(ji,jj) + sshu_a(ji,jj) ) |
---|
262 | sshv_b(ji,jj) = sshv_n(ji,jj) + atfp * ( sshv_b(ji,jj) - 2 * sshv_n(ji,jj) + sshv_a(ji,jj) ) |
---|
263 | sshf_b(ji,jj) = sshf_n(ji,jj) + atfp * ( sshf_b(ji,jj) - 2 * sshf_n(ji,jj) + sshf_a(ji,jj) ) |
---|
264 | sshn (ji,jj) = ssha (ji,jj) ! now <-- after |
---|
265 | sshu_n(ji,jj) = sshu_a(ji,jj) |
---|
266 | sshv_n(ji,jj) = sshv_a(ji,jj) |
---|
267 | sshf_n(ji,jj) = sshf_a(ji,jj) |
---|
268 | END DO |
---|
269 | END DO |
---|
270 | ENDIF |
---|
271 | ! |
---|
272 | ELSE ! fixed levels : ssh at t-point only |
---|
273 | ! ! ------------ ! |
---|
274 | IF( neuler == 0 .AND. kt == nit000 ) THEN ! Euler time-stepping at first time-step : no filter |
---|
275 | sshn(:,:) = ssha(:,:) ! now <-- after (before already = now) |
---|
276 | ! |
---|
277 | ELSE ! Leap-Frog time-stepping: Asselin filter + swap |
---|
278 | DO jj = 1, jpj |
---|
279 | DO ji = 1, jpi ! before <-- now filtered |
---|
280 | sshb(ji,jj) = sshn(ji,jj) + atfp * ( sshb(ji,jj) - 2 * sshn(ji,jj) + ssha(ji,jj) ) |
---|
281 | sshn(ji,jj) = ssha(ji,jj) ! now <-- after |
---|
282 | END DO |
---|
283 | END DO |
---|
284 | ENDIF |
---|
285 | ! |
---|
286 | ENDIF |
---|
287 | ! |
---|
288 | IF(ln_ctl) CALL prt_ctl(tab2d_1=sshb , clinfo1=' sshb - : ', mask1=tmask, ovlap=1 ) |
---|
289 | ! |
---|
290 | END SUBROUTINE ssh_nxt |
---|
291 | |
---|
292 | !!====================================================================== |
---|
293 | END MODULE sshwzv |
---|