1 | MODULE bdylib |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE bdylib *** |
---|
4 | !! Unstructured Open Boundary Cond. : Library module of generic boundary algorithms. |
---|
5 | !!====================================================================== |
---|
6 | !! History : 3.6 ! 2013 (D. Storkey) new module |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | #if defined key_bdy |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! 'key_bdy' : Unstructured Open Boundary Condition |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! bdy_orlanski_2d |
---|
13 | !! bdy_orlanski_3d |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE timing ! Timing |
---|
16 | USE oce ! ocean dynamics and tracers |
---|
17 | USE dom_oce ! ocean space and time domain |
---|
18 | USE bdy_oce ! ocean open boundary conditions |
---|
19 | USE phycst ! physical constants |
---|
20 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
21 | USE in_out_manager ! |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC bdy_orlanski_2d ! routine called where? |
---|
27 | PUBLIC bdy_orlanski_3d ! routine called where? |
---|
28 | PUBLIC bdy_nmn ! routine called where? |
---|
29 | |
---|
30 | !!---------------------------------------------------------------------- |
---|
31 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
32 | !! $Id$ |
---|
33 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
34 | !!---------------------------------------------------------------------- |
---|
35 | CONTAINS |
---|
36 | |
---|
37 | SUBROUTINE bdy_orlanski_2d( idx, igrd, phib, phia, phi_ext, ll_npo ) |
---|
38 | !!---------------------------------------------------------------------- |
---|
39 | !! *** SUBROUTINE bdy_orlanski_2d *** |
---|
40 | !! |
---|
41 | !! - Apply Orlanski radiation condition adaptively to 2D fields: |
---|
42 | !! - radiation plus weak nudging at outflow points |
---|
43 | !! - no radiation and strong nudging at inflow points |
---|
44 | !! |
---|
45 | !! |
---|
46 | !! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001) |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | TYPE(OBC_INDEX), INTENT(in) :: idx ! BDY indices |
---|
49 | INTEGER, INTENT(in) :: igrd ! grid index |
---|
50 | REAL(wp), DIMENSION(:,:), INTENT(in) :: phib ! model before 2D field |
---|
51 | REAL(wp), DIMENSION(:,:), INTENT(inout) :: phia ! model after 2D field (to be updated) |
---|
52 | REAL(wp), DIMENSION(:), INTENT(in) :: phi_ext ! external forcing data |
---|
53 | LOGICAL, INTENT(in) :: ll_npo ! switch for NPO version |
---|
54 | |
---|
55 | INTEGER :: jb ! dummy loop indices |
---|
56 | INTEGER :: ii, ij, iibm1, iibm2, ijbm1, ijbm2 ! 2D addresses |
---|
57 | INTEGER :: iijm1, iijp1, ijjm1, ijjp1 ! 2D addresses |
---|
58 | INTEGER :: iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses |
---|
59 | INTEGER :: ii_offset, ij_offset ! offsets for mask indices |
---|
60 | INTEGER :: flagu, flagv ! short cuts |
---|
61 | REAL(wp) :: zmask_x, zmask_y1, zmask_y2 |
---|
62 | REAL(wp) :: zex1, zex2, zey, zey1, zey2 |
---|
63 | REAL(wp) :: zdt, zdx, zdy, znor2, zrx, zry ! intermediate calculations |
---|
64 | REAL(wp) :: zout, zwgt, zdy_centred |
---|
65 | REAL(wp) :: zdy_1, zdy_2, zsign_ups |
---|
66 | REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value |
---|
67 | REAL(wp), POINTER, DIMENSION(:,:) :: pmask ! land/sea mask for field |
---|
68 | REAL(wp), POINTER, DIMENSION(:,:) :: pmask_xdif ! land/sea mask for x-derivatives |
---|
69 | REAL(wp), POINTER, DIMENSION(:,:) :: pmask_ydif ! land/sea mask for y-derivatives |
---|
70 | REAL(wp), POINTER, DIMENSION(:,:) :: pe_xdif ! scale factors for x-derivatives |
---|
71 | REAL(wp), POINTER, DIMENSION(:,:) :: pe_ydif ! scale factors for y-derivatives |
---|
72 | !!---------------------------------------------------------------------- |
---|
73 | |
---|
74 | IF( nn_timing == 1 ) CALL timing_start('bdy_orlanski_2d') |
---|
75 | |
---|
76 | ! ----------------------------------! |
---|
77 | ! Orlanski boundary conditions :! |
---|
78 | ! ----------------------------------! |
---|
79 | |
---|
80 | SELECT CASE(igrd) |
---|
81 | CASE(1) |
---|
82 | pmask => tmask(:,:,1) |
---|
83 | pmask_xdif => umask(:,:,1) |
---|
84 | pmask_ydif => vmask(:,:,1) |
---|
85 | pe_xdif => e1u(:,:) |
---|
86 | pe_ydif => e2v(:,:) |
---|
87 | ii_offset = 0 |
---|
88 | ij_offset = 0 |
---|
89 | CASE(2) |
---|
90 | pmask => umask(:,:,1) |
---|
91 | pmask_xdif => tmask(:,:,1) |
---|
92 | pmask_ydif => fmask(:,:,1) |
---|
93 | pe_xdif => e1t(:,:) |
---|
94 | pe_ydif => e2f(:,:) |
---|
95 | ii_offset = 1 |
---|
96 | ij_offset = 0 |
---|
97 | CASE(3) |
---|
98 | pmask => vmask(:,:,1) |
---|
99 | pmask_xdif => fmask(:,:,1) |
---|
100 | pmask_ydif => tmask(:,:,1) |
---|
101 | pe_xdif => e1f(:,:) |
---|
102 | pe_ydif => e2t(:,:) |
---|
103 | ii_offset = 0 |
---|
104 | ij_offset = 1 |
---|
105 | CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' ) |
---|
106 | END SELECT |
---|
107 | ! |
---|
108 | DO jb = 1, idx%nblenrim(igrd) |
---|
109 | ii = idx%nbi(jb,igrd) |
---|
110 | ij = idx%nbj(jb,igrd) |
---|
111 | flagu = int( idx%flagu(jb,igrd) ) |
---|
112 | flagv = int( idx%flagv(jb,igrd) ) |
---|
113 | ! |
---|
114 | ! Calculate positions of b-1 and b-2 points for this rim point |
---|
115 | ! also (b-1,j-1) and (b-1,j+1) points |
---|
116 | iibm1 = ii + flagu ; iibm2 = ii + 2*flagu |
---|
117 | ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv |
---|
118 | ! |
---|
119 | iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv) |
---|
120 | ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu) |
---|
121 | ! |
---|
122 | iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv) |
---|
123 | ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu) |
---|
124 | ! |
---|
125 | ! Calculate scale factors for calculation of spatial derivatives. |
---|
126 | zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1+ii_offset,ijbm1 ) & |
---|
127 | & + abs(ijbm1-ijbm2) * pe_ydif(iibm1 ,ijbm1+ij_offset) ) |
---|
128 | zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2+ii_offset,ijbm2 ) & |
---|
129 | & + abs(ijbm1-ijbm2) * pe_ydif(iibm2 ,ijbm2+ij_offset) ) |
---|
130 | zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) & |
---|
131 | & + (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) ) |
---|
132 | zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1+ii_offset,ijbm1) & |
---|
133 | & + (ijbm1jp1-ijbm1) * pe_ydif(iibm1 ,ijbm1+ij_offset) ) |
---|
134 | ! make sure scale factors are nonzero |
---|
135 | if( zey1 .lt. rsmall ) zey1 = zey2 |
---|
136 | if( zey2 .lt. rsmall ) zey2 = zey1 |
---|
137 | zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall) |
---|
138 | zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall); |
---|
139 | ! |
---|
140 | ! Calculate masks for calculation of spatial derivatives. |
---|
141 | zmask_x = ( abs(iibm1-iibm2) * pmask_xdif(iibm2+ii_offset,ijbm2 ) & |
---|
142 | & + abs(ijbm1-ijbm2) * pmask_ydif(iibm2 ,ijbm2+ij_offset) ) |
---|
143 | zmask_y1 = ( (iibm1-iibm1jm1) * pmask_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) & |
---|
144 | & + (ijbm1-ijbm1jm1) * pmask_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) ) |
---|
145 | zmask_y2 = ( (iibm1jp1-iibm1) * pmask_xdif(iibm1+ii_offset,ijbm1) & |
---|
146 | & + (ijbm1jp1-ijbm1) * pmask_ydif(iibm1 ,ijbm1+ij_offset) ) |
---|
147 | |
---|
148 | ! Calculation of terms required for both versions of the scheme. |
---|
149 | ! Mask derivatives to ensure correct land boundary conditions for each variable. |
---|
150 | ! Centred derivative is calculated as average of "left" and "right" derivatives for |
---|
151 | ! this reason. |
---|
152 | ! Note no rdt factor in expression for zdt because it cancels in the expressions for |
---|
153 | ! zrx and zry. |
---|
154 | zdt = phia(iibm1,ijbm1) - phib(iibm1,ijbm1) |
---|
155 | zdx = ( ( phia(iibm1,ijbm1) - phia(iibm2,ijbm2) ) / zex2 ) * zmask_x |
---|
156 | zdy_1 = ( ( phib(iibm1 ,ijbm1 ) - phib(iibm1jm1,ijbm1jm1) ) / zey1 ) * zmask_y1 |
---|
157 | zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1) - phib(iibm1 ,ijbm1) ) / zey2 ) * zmask_y2 |
---|
158 | zdy_centred = 0.5 * ( zdy_1 + zdy_2 ) |
---|
159 | !!$ zdy_centred = phib(iibm1jp1,ijbm1jp1) - phib(iibm1jm1,ijbm1jm1) |
---|
160 | ! upstream differencing for tangential derivatives |
---|
161 | zsign_ups = sign( 1., zdt * zdy_centred ) |
---|
162 | zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) ) |
---|
163 | zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2 |
---|
164 | znor2 = zdx * zdx + zdy * zdy |
---|
165 | znor2 = max(znor2,zepsilon) |
---|
166 | ! |
---|
167 | zrx = zdt * zdx / ( zex1 * znor2 ) |
---|
168 | !!$ zrx = min(zrx,2.0_wp) |
---|
169 | zout = sign( 1., zrx ) |
---|
170 | zout = 0.5*( zout + abs(zout) ) |
---|
171 | zwgt = 2.*rdt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) ) |
---|
172 | ! only apply radiation on outflow points |
---|
173 | if( ll_npo ) then !! NPO version !! |
---|
174 | phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) & |
---|
175 | & + zout * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1) & |
---|
176 | & + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx ) |
---|
177 | else !! full oblique radiation !! |
---|
178 | zsign_ups = sign( 1., zdt * zdy ) |
---|
179 | zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) ) |
---|
180 | zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2 |
---|
181 | zry = zdt * zdy / ( zey * znor2 ) |
---|
182 | phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) & |
---|
183 | & + zout * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1) & |
---|
184 | & - zsign_ups * zry * ( phib(ii ,ij ) - phib(iijm1,ijjm1 ) ) & |
---|
185 | & - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1) - phib(ii ,ij ) ) & |
---|
186 | & + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx ) |
---|
187 | end if |
---|
188 | phia(ii,ij) = phia(ii,ij) * pmask(ii,ij) |
---|
189 | END DO |
---|
190 | ! |
---|
191 | IF( nn_timing == 1 ) CALL timing_stop('bdy_orlanski_2d') |
---|
192 | |
---|
193 | END SUBROUTINE bdy_orlanski_2d |
---|
194 | |
---|
195 | |
---|
196 | SUBROUTINE bdy_orlanski_3d( idx, igrd, phib, phia, phi_ext, ll_npo ) |
---|
197 | !!---------------------------------------------------------------------- |
---|
198 | !! *** SUBROUTINE bdy_orlanski_3d *** |
---|
199 | !! |
---|
200 | !! - Apply Orlanski radiation condition adaptively to 3D fields: |
---|
201 | !! - radiation plus weak nudging at outflow points |
---|
202 | !! - no radiation and strong nudging at inflow points |
---|
203 | !! |
---|
204 | !! |
---|
205 | !! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001) |
---|
206 | !!---------------------------------------------------------------------- |
---|
207 | TYPE(OBC_INDEX), INTENT(in) :: idx ! BDY indices |
---|
208 | INTEGER, INTENT(in) :: igrd ! grid index |
---|
209 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phib ! model before 3D field |
---|
210 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phia ! model after 3D field (to be updated) |
---|
211 | REAL(wp), DIMENSION(:,:), INTENT(in) :: phi_ext ! external forcing data |
---|
212 | LOGICAL, INTENT(in) :: ll_npo ! switch for NPO version |
---|
213 | |
---|
214 | INTEGER :: jb, jk ! dummy loop indices |
---|
215 | INTEGER :: ii, ij, iibm1, iibm2, ijbm1, ijbm2 ! 2D addresses |
---|
216 | INTEGER :: iijm1, iijp1, ijjm1, ijjp1 ! 2D addresses |
---|
217 | INTEGER :: iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses |
---|
218 | INTEGER :: ii_offset, ij_offset ! offsets for mask indices |
---|
219 | INTEGER :: flagu, flagv ! short cuts |
---|
220 | REAL(wp) :: zmask_x, zmask_y1, zmask_y2 |
---|
221 | REAL(wp) :: zex1, zex2, zey, zey1, zey2 |
---|
222 | REAL(wp) :: zdt, zdx, zdy, znor2, zrx, zry ! intermediate calculations |
---|
223 | REAL(wp) :: zout, zwgt, zdy_centred |
---|
224 | REAL(wp) :: zdy_1, zdy_2, zsign_ups |
---|
225 | REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value |
---|
226 | REAL(wp), POINTER, DIMENSION(:,:,:) :: pmask ! land/sea mask for field |
---|
227 | REAL(wp), POINTER, DIMENSION(:,:,:) :: pmask_xdif ! land/sea mask for x-derivatives |
---|
228 | REAL(wp), POINTER, DIMENSION(:,:,:) :: pmask_ydif ! land/sea mask for y-derivatives |
---|
229 | REAL(wp), POINTER, DIMENSION(:,:) :: pe_xdif ! scale factors for x-derivatives |
---|
230 | REAL(wp), POINTER, DIMENSION(:,:) :: pe_ydif ! scale factors for y-derivatives |
---|
231 | !!---------------------------------------------------------------------- |
---|
232 | |
---|
233 | IF( nn_timing == 1 ) CALL timing_start('bdy_orlanski_3d') |
---|
234 | |
---|
235 | ! ----------------------------------! |
---|
236 | ! Orlanski boundary conditions :! |
---|
237 | ! ----------------------------------! |
---|
238 | |
---|
239 | SELECT CASE(igrd) |
---|
240 | CASE(1) |
---|
241 | pmask => tmask(:,:,:) |
---|
242 | pmask_xdif => umask(:,:,:) |
---|
243 | pmask_ydif => vmask(:,:,:) |
---|
244 | pe_xdif => e1u(:,:) |
---|
245 | pe_ydif => e2v(:,:) |
---|
246 | ii_offset = 0 |
---|
247 | ij_offset = 0 |
---|
248 | CASE(2) |
---|
249 | pmask => umask(:,:,:) |
---|
250 | pmask_xdif => tmask(:,:,:) |
---|
251 | pmask_ydif => fmask(:,:,:) |
---|
252 | pe_xdif => e1t(:,:) |
---|
253 | pe_ydif => e2f(:,:) |
---|
254 | ii_offset = 1 |
---|
255 | ij_offset = 0 |
---|
256 | CASE(3) |
---|
257 | pmask => vmask(:,:,:) |
---|
258 | pmask_xdif => fmask(:,:,:) |
---|
259 | pmask_ydif => tmask(:,:,:) |
---|
260 | pe_xdif => e1f(:,:) |
---|
261 | pe_ydif => e2t(:,:) |
---|
262 | ii_offset = 0 |
---|
263 | ij_offset = 1 |
---|
264 | CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' ) |
---|
265 | END SELECT |
---|
266 | |
---|
267 | DO jk = 1, jpk |
---|
268 | ! |
---|
269 | DO jb = 1, idx%nblenrim(igrd) |
---|
270 | ii = idx%nbi(jb,igrd) |
---|
271 | ij = idx%nbj(jb,igrd) |
---|
272 | flagu = int( idx%flagu(jb,igrd) ) |
---|
273 | flagv = int( idx%flagv(jb,igrd) ) |
---|
274 | ! |
---|
275 | ! calculate positions of b-1 and b-2 points for this rim point |
---|
276 | ! also (b-1,j-1) and (b-1,j+1) points |
---|
277 | iibm1 = ii + flagu ; iibm2 = ii + 2*flagu |
---|
278 | ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv |
---|
279 | ! |
---|
280 | iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv) |
---|
281 | ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu) |
---|
282 | ! |
---|
283 | iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv) |
---|
284 | ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu) |
---|
285 | ! |
---|
286 | ! Calculate scale factors for calculation of spatial derivatives. |
---|
287 | zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1+ii_offset,ijbm1 ) & |
---|
288 | & + abs(ijbm1-ijbm2) * pe_ydif(iibm1 ,ijbm1+ij_offset) ) |
---|
289 | zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2+ii_offset,ijbm2 ) & |
---|
290 | & + abs(ijbm1-ijbm2) * pe_ydif(iibm2 ,ijbm2+ij_offset) ) |
---|
291 | zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) & |
---|
292 | & + (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) ) |
---|
293 | zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1+ii_offset,ijbm1) & |
---|
294 | & + (ijbm1jp1-ijbm1) * pe_ydif(iibm1 ,ijbm1+ij_offset) ) |
---|
295 | ! make sure scale factors are nonzero |
---|
296 | if( zey1 .lt. rsmall ) zey1 = zey2 |
---|
297 | if( zey2 .lt. rsmall ) zey2 = zey1 |
---|
298 | zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall); |
---|
299 | zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall); |
---|
300 | ! |
---|
301 | ! Calculate masks for calculation of spatial derivatives. |
---|
302 | zmask_x = ( abs(iibm1-iibm2) * pmask_xdif(iibm2+ii_offset,ijbm2 ,jk) & |
---|
303 | & + abs(ijbm1-ijbm2) * pmask_ydif(iibm2 ,ijbm2+ij_offset,jk) ) |
---|
304 | zmask_y1 = ( (iibm1-iibm1jm1) * pmask_xdif(iibm1jm1+ii_offset,ijbm1jm1 ,jk) & |
---|
305 | & + (ijbm1-ijbm1jm1) * pmask_ydif(iibm1jm1 ,ijbm1jm1+ij_offset,jk) ) |
---|
306 | zmask_y2 = ( (iibm1jp1-iibm1) * pmask_xdif(iibm1+ii_offset,ijbm1 ,jk) & |
---|
307 | & + (ijbm1jp1-ijbm1) * pmask_ydif(iibm1 ,ijbm1+ij_offset,jk) ) |
---|
308 | ! |
---|
309 | ! Calculate normal (zrx) and tangential (zry) components of radiation velocities. |
---|
310 | ! Mask derivatives to ensure correct land boundary conditions for each variable. |
---|
311 | ! Centred derivative is calculated as average of "left" and "right" derivatives for |
---|
312 | ! this reason. |
---|
313 | zdt = phia(iibm1,ijbm1,jk) - phib(iibm1,ijbm1,jk) |
---|
314 | zdx = ( ( phia(iibm1,ijbm1,jk) - phia(iibm2,ijbm2,jk) ) / zex2 ) * zmask_x |
---|
315 | zdy_1 = ( ( phib(iibm1 ,ijbm1 ,jk) - phib(iibm1jm1,ijbm1jm1,jk) ) / zey1 ) * zmask_y1 |
---|
316 | zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1 ,ijbm1 ,jk) ) / zey2 ) * zmask_y2 |
---|
317 | zdy_centred = 0.5 * ( zdy_1 + zdy_2 ) |
---|
318 | !!$ zdy_centred = phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1jm1,ijbm1jm1,jk) |
---|
319 | ! upstream differencing for tangential derivatives |
---|
320 | zsign_ups = sign( 1., zdt * zdy_centred ) |
---|
321 | zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) ) |
---|
322 | zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2 |
---|
323 | znor2 = zdx * zdx + zdy * zdy |
---|
324 | znor2 = max(znor2,zepsilon) |
---|
325 | ! |
---|
326 | ! update boundary value: |
---|
327 | zrx = zdt * zdx / ( zex1 * znor2 ) |
---|
328 | !!$ zrx = min(zrx,2.0_wp) |
---|
329 | zout = sign( 1., zrx ) |
---|
330 | zout = 0.5*( zout + abs(zout) ) |
---|
331 | zwgt = 2.*rdt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) ) |
---|
332 | ! only apply radiation on outflow points |
---|
333 | if( ll_npo ) then !! NPO version !! |
---|
334 | phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) & |
---|
335 | & + zout * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk) & |
---|
336 | & + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx ) |
---|
337 | else !! full oblique radiation !! |
---|
338 | zsign_ups = sign( 1., zdt * zdy ) |
---|
339 | zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) ) |
---|
340 | zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2 |
---|
341 | zry = zdt * zdy / ( zey * znor2 ) |
---|
342 | phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) & |
---|
343 | & + zout * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk) & |
---|
344 | & - zsign_ups * zry * ( phib(ii ,ij ,jk) - phib(iijm1,ijjm1,jk) ) & |
---|
345 | & - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1,jk) - phib(ii ,ij ,jk) ) & |
---|
346 | & + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx ) |
---|
347 | end if |
---|
348 | phia(ii,ij,jk) = phia(ii,ij,jk) * pmask(ii,ij,jk) |
---|
349 | END DO |
---|
350 | ! |
---|
351 | END DO |
---|
352 | |
---|
353 | IF( nn_timing == 1 ) CALL timing_stop('bdy_orlanski_3d') |
---|
354 | |
---|
355 | END SUBROUTINE bdy_orlanski_3d |
---|
356 | |
---|
357 | SUBROUTINE bdy_nmn( idx, igrd, phia ) |
---|
358 | !!---------------------------------------------------------------------- |
---|
359 | !! *** SUBROUTINE bdy_nmn *** |
---|
360 | !! |
---|
361 | !! ** Purpose : Duplicate the value at open boundaries, zero gradient. |
---|
362 | !! |
---|
363 | !!---------------------------------------------------------------------- |
---|
364 | INTEGER, INTENT(in) :: igrd ! grid index |
---|
365 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phia ! model after 3D field (to be updated) |
---|
366 | TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices |
---|
367 | !! |
---|
368 | REAL(wp) :: zcoef, zcoef1, zcoef2 |
---|
369 | REAL(wp), POINTER, DIMENSION(:,:,:) :: pmask ! land/sea mask for field |
---|
370 | REAL(wp), POINTER, DIMENSION(:,:) :: bdypmask ! land/sea mask for field |
---|
371 | INTEGER :: ib, ik ! dummy loop indices |
---|
372 | INTEGER :: ii, ij, ip, jp ! 2D addresses |
---|
373 | !!---------------------------------------------------------------------- |
---|
374 | ! |
---|
375 | IF( nn_timing == 1 ) CALL timing_start('bdy_nmn') |
---|
376 | ! |
---|
377 | SELECT CASE(igrd) |
---|
378 | CASE(1) |
---|
379 | pmask => tmask(:,:,:) |
---|
380 | bdypmask => bdytmask(:,:) |
---|
381 | CASE(2) |
---|
382 | pmask => umask(:,:,:) |
---|
383 | bdypmask => bdyumask(:,:) |
---|
384 | CASE(3) |
---|
385 | pmask => vmask(:,:,:) |
---|
386 | bdypmask => bdyvmask(:,:) |
---|
387 | CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_nmn' ) |
---|
388 | END SELECT |
---|
389 | DO ib = 1, idx%nblenrim(igrd) |
---|
390 | ii = idx%nbi(ib,igrd) |
---|
391 | ij = idx%nbj(ib,igrd) |
---|
392 | DO ik = 1, jpkm1 |
---|
393 | ! search the sense of the gradient |
---|
394 | zcoef1 = bdypmask(ii-1,ij )*pmask(ii-1,ij,ik) + bdypmask(ii+1,ij )*pmask(ii+1,ij,ik) |
---|
395 | zcoef2 = bdypmask(ii ,ij-1)*pmask(ii,ij-1,ik) + bdypmask(ii ,ij+1)*pmask(ii,ij+1,ik) |
---|
396 | IF ( nint(zcoef1+zcoef2) == 0) THEN |
---|
397 | ! corner **** we probably only want to set the tangentail component for the dynamics here |
---|
398 | zcoef = pmask(ii-1,ij,ik) + pmask(ii+1,ij,ik) + pmask(ii,ij-1,ik) + pmask(ii,ij+1,ik) |
---|
399 | IF (zcoef > .5_wp) THEN ! Only set none isolated points. |
---|
400 | phia(ii,ij,ik) = phia(ii-1,ij ,ik) * pmask(ii-1,ij ,ik) + & |
---|
401 | & phia(ii+1,ij ,ik) * pmask(ii+1,ij ,ik) + & |
---|
402 | & phia(ii ,ij-1,ik) * pmask(ii ,ij-1,ik) + & |
---|
403 | & phia(ii ,ij+1,ik) * pmask(ii ,ij+1,ik) |
---|
404 | phia(ii,ij,ik) = ( phia(ii,ij,ik) / zcoef ) * pmask(ii,ij,ik) |
---|
405 | ELSE |
---|
406 | phia(ii,ij,ik) = phia(ii,ij ,ik) * pmask(ii,ij ,ik) |
---|
407 | ENDIF |
---|
408 | ELSEIF ( nint(zcoef1+zcoef2) == 2) THEN |
---|
409 | ! oblique corner **** we probably only want to set the normal component for the dynamics here |
---|
410 | zcoef = pmask(ii-1,ij,ik)*bdypmask(ii-1,ij ) + pmask(ii+1,ij,ik)*bdypmask(ii+1,ij ) + & |
---|
411 | & pmask(ii,ij-1,ik)*bdypmask(ii,ij -1 ) + pmask(ii,ij+1,ik)*bdypmask(ii,ij+1 ) |
---|
412 | phia(ii,ij,ik) = phia(ii-1,ij ,ik) * pmask(ii-1,ij ,ik)*bdypmask(ii-1,ij ) + & |
---|
413 | & phia(ii+1,ij ,ik) * pmask(ii+1,ij ,ik)*bdypmask(ii+1,ij ) + & |
---|
414 | & phia(ii ,ij-1,ik) * pmask(ii ,ij-1,ik)*bdypmask(ii,ij -1 ) + & |
---|
415 | & phia(ii ,ij+1,ik) * pmask(ii ,ij+1,ik)*bdypmask(ii,ij+1 ) |
---|
416 | |
---|
417 | phia(ii,ij,ik) = ( phia(ii,ij,ik) / MAX(1._wp, zcoef) ) * pmask(ii,ij,ik) |
---|
418 | ELSE |
---|
419 | ip = nint(bdypmask(ii+1,ij )*pmask(ii+1,ij,ik) - bdypmask(ii-1,ij )*pmask(ii-1,ij,ik)) |
---|
420 | jp = nint(bdypmask(ii ,ij+1)*pmask(ii,ij+1,ik) - bdypmask(ii ,ij-1)*pmask(ii,ij-1,ik)) |
---|
421 | phia(ii,ij,ik) = phia(ii+ip,ij+jp,ik) * pmask(ii+ip,ij+jp,ik) |
---|
422 | ENDIF |
---|
423 | END DO |
---|
424 | END DO |
---|
425 | ! |
---|
426 | IF( nn_timing == 1 ) CALL timing_stop('bdy_nmn') |
---|
427 | ! |
---|
428 | END SUBROUTINE bdy_nmn |
---|
429 | |
---|
430 | #else |
---|
431 | !!---------------------------------------------------------------------- |
---|
432 | !! Dummy module NO Unstruct Open Boundary Conditions |
---|
433 | !!---------------------------------------------------------------------- |
---|
434 | CONTAINS |
---|
435 | SUBROUTINE bdy_orlanski_2d( idx, igrd, phib, phia, phi_ext ) ! Empty routine |
---|
436 | WRITE(*,*) 'bdy_orlanski_2d: You should not have seen this print! error?', kt |
---|
437 | END SUBROUTINE bdy_orlanski_2d |
---|
438 | SUBROUTINE bdy_orlanski_3d( idx, igrd, phib, phia, phi_ext ) ! Empty routine |
---|
439 | WRITE(*,*) 'bdy_orlanski_3d: You should not have seen this print! error?', kt |
---|
440 | END SUBROUTINE bdy_orlanski_3d |
---|
441 | SUBROUTINE bdy_nmn( idx, igrd, phia ) ! Empty routine |
---|
442 | WRITE(*,*) 'bdy_nmn: You should not have seen this print! error?', kt |
---|
443 | END SUBROUTINE bdy_nmn |
---|
444 | #endif |
---|
445 | |
---|
446 | !!====================================================================== |
---|
447 | END MODULE bdylib |
---|