1 | MODULE dynvor_tam |
---|
2 | #ifdef key_tam |
---|
3 | !!====================================================================== |
---|
4 | !! *** MODULE dynvor_tam *** |
---|
5 | !! Ocean dynamics: Update the momentum trend with the relative and |
---|
6 | !! planetary vorticity trends |
---|
7 | !! Tangent and Adjoint Module |
---|
8 | !!====================================================================== |
---|
9 | !! History of the drect module: |
---|
10 | !! 1.0 ! 89-12 (P. Andrich) vor_ens: Original code |
---|
11 | !! 5.0 ! 91-11 (G. Madec) vor_ene, vor_mix: Original code |
---|
12 | !! 6.0 ! 96-01 (G. Madec) s-coord, suppress work arrays |
---|
13 | !! 8.5 ! 02-08 (G. Madec) F90: Free form and module |
---|
14 | !! 8.5 ! 04-02 (G. Madec) vor_een: Original code |
---|
15 | !! 9.0 ! 03-08 (G. Madec) vor_ctl: Original code |
---|
16 | !! 9.0 ! 05-11 (G. Madec) dyn_vor: Original code (new step architecture) |
---|
17 | !! 9.0 ! 06-11 (G. Madec) flux form advection: add metric term |
---|
18 | !! History of the TAM module: |
---|
19 | !! 9.0 ! 08-06 (A. Vidard) Skeleton |
---|
20 | !! 9.0 ! 09-01 (A. Vidard) TAM of the 06-11 version |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | |
---|
23 | !!---------------------------------------------------------------------- |
---|
24 | !! dyn_vor : Update the momentum trend with the vorticity trend |
---|
25 | !! vor_ens : enstrophy conserving scheme (ln_dynvor_ens=T) |
---|
26 | !! vor_ene : energy conserving scheme (ln_dynvor_ene=T) |
---|
27 | !! vor_mix : mixed enstrophy/energy conserving (ln_dynvor_mix=T) |
---|
28 | !! vor_een : energy and enstrophy conserving (ln_dynvor_een=T) |
---|
29 | !! vor_ctl : set and control of the different vorticity option |
---|
30 | !!---------------------------------------------------------------------- |
---|
31 | USE par_kind, ONLY: & ! Precision variables |
---|
32 | & wp |
---|
33 | USE par_oce, ONLY: & ! Ocean space and time domain variables |
---|
34 | & jpi, & |
---|
35 | & jpj, & |
---|
36 | & jpk, & |
---|
37 | & jpim1, & |
---|
38 | & jpjm1, & |
---|
39 | & jpkm1, & |
---|
40 | & jpiglo |
---|
41 | USE oce , ONLY: & ! ocean dynamics and tracers |
---|
42 | & un, & |
---|
43 | & vn, & |
---|
44 | & rotn |
---|
45 | USE oce_tam , ONLY: & |
---|
46 | & un_tl, & |
---|
47 | & vn_tl, & |
---|
48 | & ua_tl, & |
---|
49 | & va_tl, & |
---|
50 | & rotn_tl, & |
---|
51 | & un_ad, & |
---|
52 | & vn_ad, & |
---|
53 | & ua_ad, & |
---|
54 | & va_ad, & |
---|
55 | & rotn_ad |
---|
56 | USE divcur , ONLY: & |
---|
57 | & div_cur |
---|
58 | USE divcur_tam , ONLY: & |
---|
59 | & div_cur_tan |
---|
60 | USE dom_oce , ONLY: & ! ocean space and time domain |
---|
61 | & ln_sco, & |
---|
62 | & ff, & |
---|
63 | & e1u, & |
---|
64 | & e2u, & |
---|
65 | & e1v, & |
---|
66 | & e2v, & |
---|
67 | #if defined key_zco |
---|
68 | & e3t_0, & |
---|
69 | #else |
---|
70 | & e3u, & |
---|
71 | & e3v, & |
---|
72 | & e3f, & |
---|
73 | #endif |
---|
74 | & e1f, & |
---|
75 | & e2f, & |
---|
76 | & mig, & |
---|
77 | & mjg, & |
---|
78 | & nldi, & |
---|
79 | & nldj, & |
---|
80 | & nlei, & |
---|
81 | & nlej, & |
---|
82 | & umask, & |
---|
83 | & vmask |
---|
84 | USE dynadv , ONLY: & |
---|
85 | & ln_dynadv_vec ! vector form flag |
---|
86 | USE in_out_manager, ONLY: & ! I/O manager |
---|
87 | & ctl_stop, & |
---|
88 | & lk_esopa, & |
---|
89 | & numnam, & |
---|
90 | & numout, & |
---|
91 | & nit000, & |
---|
92 | & nitend, & |
---|
93 | & lwp |
---|
94 | USE gridrandom , ONLY: & ! Random Gaussian noise on grids |
---|
95 | & grid_random |
---|
96 | USE dotprodfld, ONLY: & ! Computes dot product for 3D and 2D fields |
---|
97 | & dot_product |
---|
98 | USE tstool_tam , ONLY: & |
---|
99 | & prntst_adj, & ! |
---|
100 | ! random field standard deviation for: |
---|
101 | & stdu, & ! u-velocity |
---|
102 | & stdv ! v-velocity |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | PRIVATE |
---|
106 | |
---|
107 | PUBLIC dyn_vor_tan ! routine called by step_tam.F90 |
---|
108 | PUBLIC dyn_vor_adj ! routine called by step_tam.F90 |
---|
109 | PUBLIC dyn_vor_adj_tst ! routine called by the tst.F90 |
---|
110 | |
---|
111 | |
---|
112 | !!* Namelist nam_dynvor: vorticity term |
---|
113 | LOGICAL, PUBLIC :: ln_dynvor_ene = .FALSE. !: energy conserving scheme |
---|
114 | LOGICAL, PUBLIC :: ln_dynvor_ens = .TRUE. !: enstrophy conserving scheme |
---|
115 | LOGICAL, PUBLIC :: ln_dynvor_mix = .FALSE. !: mixed scheme |
---|
116 | LOGICAL, PUBLIC :: ln_dynvor_een = .FALSE. !: energy and enstrophy conserving scheme |
---|
117 | |
---|
118 | INTEGER :: nvor = 0 ! type of vorticity trend used |
---|
119 | INTEGER :: ncor = 1 ! coriolis |
---|
120 | INTEGER :: nrvm = 2 ! =2 relative vorticity ; =3 metric term |
---|
121 | INTEGER :: ntot = 4 ! =4 total vorticity (relative + planetary) ; =5 coriolis + metric term |
---|
122 | |
---|
123 | !! * Substitutions |
---|
124 | # include "domzgr_substitute.h90" |
---|
125 | # include "vectopt_loop_substitute.h90" |
---|
126 | |
---|
127 | CONTAINS |
---|
128 | |
---|
129 | SUBROUTINE dyn_vor_tan( kt ) |
---|
130 | !!---------------------------------------------------------------------- |
---|
131 | !! |
---|
132 | !! ** Purpose of the direct routine: |
---|
133 | !! compute the lateral ocean tracer physics. |
---|
134 | !! |
---|
135 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
136 | !! - save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
137 | !! and planetary vorticity trends) ('key_trddyn') |
---|
138 | !!---------------------------------------------------------------------- |
---|
139 | !! |
---|
140 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
141 | !!---------------------------------------------------------------------- |
---|
142 | IF( kt == nit000 ) CALL vor_ctl_tam ! initialisation & control of options |
---|
143 | |
---|
144 | ! ! vorticity term |
---|
145 | SELECT CASE ( nvor ) ! compute the vorticity trend and add it to the general trend |
---|
146 | ! |
---|
147 | CASE ( -1 ) ! esopa: test all possibility with control print |
---|
148 | ! CALL vor_ene_tan( kt, ntot, ua_tl, va_tl ) |
---|
149 | CALL vor_ens_tan( kt, ntot, ua_tl, va_tl ) |
---|
150 | ! CALL vor_mix_tan( kt ) |
---|
151 | ! CALL vor_een_tan( kt, ntot, ua_tl, va_tl ) |
---|
152 | ! |
---|
153 | CASE ( 0 ) ! energy conserving scheme |
---|
154 | CALL ctl_stop ('vor_ene_tan not available yet') |
---|
155 | ! CALL vor_ene_tan( kt, ntot, ua_tl, va_tl ) ! total vorticity |
---|
156 | ! |
---|
157 | CASE ( 1 ) ! enstrophy conserving scheme |
---|
158 | CALL vor_ens_tan( kt, ntot, ua_tl, va_tl ) ! total vorticity |
---|
159 | ! |
---|
160 | CASE ( 2 ) ! mixed ene-ens scheme |
---|
161 | CALL ctl_stop ('vor_mix_tan not available yet') |
---|
162 | ! CALL vor_mix_tan( kt ) ! total vorticity (mix=ens-ene) |
---|
163 | ! |
---|
164 | CASE ( 3 ) ! energy and enstrophy conserving scheme |
---|
165 | CALL ctl_stop ('vor_een_tan not available yet') |
---|
166 | ! CALL vor_een_tan( kt, ntot, ua_tl, va_tl ) ! total vorticity |
---|
167 | ! |
---|
168 | END SELECT |
---|
169 | |
---|
170 | END SUBROUTINE dyn_vor_tan |
---|
171 | SUBROUTINE vor_ens_tan( kt, kvor, pua_tl, pva_tl ) |
---|
172 | !!---------------------------------------------------------------------- |
---|
173 | !! *** ROUTINE vor_ens_tan *** |
---|
174 | !! |
---|
175 | !! ** Purpose of the direct routine: |
---|
176 | !! Compute the now total vorticity trend and add it to |
---|
177 | !! the general trend of the momentum equation. |
---|
178 | !! |
---|
179 | !! ** Method of the direct routine: |
---|
180 | !! Trend evaluated using now fields (centered in time) |
---|
181 | !! and the Sadourny (1975) flux FORM formulation : conserves the |
---|
182 | !! potential enstrophy of a horizontally non-divergent flow. the |
---|
183 | !! trend of the vorticity term is given by: |
---|
184 | !! * s-coordinate (ln_sco=T), the e3. are inside the derivative: |
---|
185 | !! voru = 1/e1u mj-1[ (rotn+f)/e3f ] mj-1[ mi(e1v*e3v vn) ] |
---|
186 | !! vorv = 1/e2v mi-1[ (rotn+f)/e3f ] mi-1[ mj(e2u*e3u un) ] |
---|
187 | !! * z-coordinate (default key), e3t=e3u=e3v, the trend becomes: |
---|
188 | !! voru = 1/e1u mj-1[ rotn+f ] mj-1[ mi(e1v vn) ] |
---|
189 | !! vorv = 1/e2v mi-1[ rotn+f ] mi-1[ mj(e2u un) ] |
---|
190 | !! Add this trend to the general momentum trend (ua,va): |
---|
191 | !! (ua,va) = (ua,va) + ( voru , vorv ) |
---|
192 | !! |
---|
193 | !! ** Action : - Update (ua,va) arrays with the now vorticity term trend |
---|
194 | !! - Save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
195 | !! and planetary vorticity trends) ('key_trddyn') |
---|
196 | !! |
---|
197 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
198 | !!---------------------------------------------------------------------- |
---|
199 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
200 | INTEGER , INTENT(in ) :: kvor ! =ncor (planetary) ; =ntot (total) ; |
---|
201 | ! ! =nrvm (relative vorticity or metric) |
---|
202 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pua_tl ! total u-trend |
---|
203 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pva_tl ! total v-trend |
---|
204 | !! |
---|
205 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
206 | REAL(wp) :: zfact1, zuav, zvau ! temporary scalars |
---|
207 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zwy, zwz ! temporary 3D workspace |
---|
208 | REAL(wp) :: zuavtl, zvautl ! temporary scalars |
---|
209 | REAL(wp), DIMENSION(jpi,jpj) :: zwxtl, zwytl, zwztl ! temporary 3D workspace |
---|
210 | !!---------------------------------------------------------------------- |
---|
211 | |
---|
212 | IF( kt == nit000 ) THEN |
---|
213 | IF(lwp) WRITE(numout,*) |
---|
214 | IF(lwp) WRITE(numout,*) 'dyn_vor_ens_tan : vorticity term: enstrophy conserving scheme' |
---|
215 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~' |
---|
216 | ENDIF |
---|
217 | |
---|
218 | ! Local constant initialization |
---|
219 | zfact1 = 0.5 * 0.25 |
---|
220 | |
---|
221 | !CDIR PARALLEL DO PRIVATE( zwx, zwy, zwz ) |
---|
222 | ! ! =============== |
---|
223 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
224 | ! ! =============== |
---|
225 | ! Potential vorticity and horizontal fluxes |
---|
226 | ! ----------------------------------------- |
---|
227 | SELECT CASE( kvor ) ! vorticity considered |
---|
228 | CASE ( 1 ) ; zwz(:,:) = ff(:,:) ! planetary vorticity (Coriolis) |
---|
229 | CASE ( 2 ) ; zwz(:,:) = rotn(:,:,jk) ! relative vorticity |
---|
230 | CASE ( 3 ) ! metric term |
---|
231 | DO jj = 1, jpjm1 |
---|
232 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
233 | zwz(ji,jj) = ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
234 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
235 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
236 | END DO |
---|
237 | END DO |
---|
238 | CASE ( 4 ) ; zwz(:,:) = ( rotn(:,:,jk) + ff(:,:) ) ! total (relative + planetary vorticity) |
---|
239 | CASE ( 5 ) ! total (coriolis + metric) |
---|
240 | DO jj = 1, jpjm1 |
---|
241 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
242 | zwz(ji,jj) = ( ff (ji,jj) & |
---|
243 | & + ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
244 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
245 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) & |
---|
246 | & ) |
---|
247 | END DO |
---|
248 | END DO |
---|
249 | END SELECT |
---|
250 | |
---|
251 | IF( ln_sco ) THEN |
---|
252 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
253 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
254 | zwz(ji,jj) = zwz(ji,jj) / fse3f(ji,jj,jk) |
---|
255 | zwx(ji,jj) = e2u(ji,jj) * fse3u(ji,jj,jk) * un(ji,jj,jk) |
---|
256 | zwy(ji,jj) = e1v(ji,jj) * fse3v(ji,jj,jk) * vn(ji,jj,jk) |
---|
257 | END DO |
---|
258 | END DO |
---|
259 | ELSE |
---|
260 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
261 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
262 | zwx(ji,jj) = e2u(ji,jj) * un(ji,jj,jk) |
---|
263 | zwy(ji,jj) = e1v(ji,jj) * vn(ji,jj,jk) |
---|
264 | END DO |
---|
265 | END DO |
---|
266 | ENDIF |
---|
267 | |
---|
268 | ! Compute and add the vorticity term trend |
---|
269 | ! ---------------------------------------- |
---|
270 | DO jj = 2, jpjm1 |
---|
271 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
272 | zuav = zfact1 / e1u(ji,jj) * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
273 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) |
---|
274 | zvau =-zfact1 / e2v(ji,jj) * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
275 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) |
---|
276 | END DO |
---|
277 | END DO |
---|
278 | ! ! =============== |
---|
279 | END DO ! End of slab |
---|
280 | ! ! =============== |
---|
281 | |
---|
282 | !CDIR PARALLEL DO PRIVATE( zwxtl, zwytl, zwztl ) |
---|
283 | ! =================== |
---|
284 | ! Tangent counterpart |
---|
285 | ! =================== |
---|
286 | ! ! =============== |
---|
287 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
288 | ! ! =============== |
---|
289 | ! Potential vorticity and horizontal fluxes |
---|
290 | ! ----------------------------------------- |
---|
291 | SELECT CASE( kvor ) ! vorticity considered |
---|
292 | CASE ( 1 ) ; zwztl(:,:) = 0.0_wp ! planetary vorticity (Coriolis) |
---|
293 | CASE ( 2 ,4) ; zwztl(:,:) = rotn_tl(:,:,jk) ! relative vorticity |
---|
294 | CASE ( 3 ,5 ) ! metric term |
---|
295 | DO jj = 1, jpjm1 |
---|
296 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
297 | zwztl(ji,jj) = ( ( vn_tl(ji+1,jj ,jk) + vn_tl (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
298 | & - ( un_tl(ji ,jj+1,jk) + un_tl (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
299 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
300 | END DO |
---|
301 | END DO |
---|
302 | END SELECT |
---|
303 | |
---|
304 | IF( ln_sco ) THEN |
---|
305 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
306 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
307 | zwztl(ji,jj) = zwztl(ji,jj) / fse3f(ji,jj,jk) |
---|
308 | zwxtl(ji,jj) = e2u(ji,jj) * fse3u(ji,jj,jk) * un_tl(ji,jj,jk) |
---|
309 | zwytl(ji,jj) = e1v(ji,jj) * fse3v(ji,jj,jk) * vn_tl(ji,jj,jk) |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | ELSE |
---|
313 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
314 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
315 | zwxtl(ji,jj) = e2u(ji,jj) * un_tl(ji,jj,jk) |
---|
316 | zwytl(ji,jj) = e1v(ji,jj) * vn_tl(ji,jj,jk) |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | ENDIF |
---|
320 | |
---|
321 | ! Compute and add the vorticity term trend |
---|
322 | ! ---------------------------------------- |
---|
323 | DO jj = 2, jpjm1 |
---|
324 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
325 | zuavtl = zfact1 / e1u(ji,jj) * ( zwytl(ji ,jj-1) + zwytl(ji+1,jj-1) & |
---|
326 | & + zwytl(ji ,jj ) + zwytl(ji+1,jj ) ) |
---|
327 | zvautl =-zfact1 / e2v(ji,jj) * ( zwxtl(ji-1,jj ) + zwxtl(ji-1,jj+1) & |
---|
328 | & + zwxtl(ji ,jj ) + zwxtl(ji ,jj+1) ) |
---|
329 | pua_tl(ji,jj,jk) = pua_tl(ji,jj,jk) & |
---|
330 | & + zuavtl * ( zwz( ji,jj-1) + zwz( ji,jj) ) & |
---|
331 | & + zuav * ( zwztl(ji,jj-1) + zwztl(ji,jj) ) |
---|
332 | pva_tl(ji,jj,jk) = pva_tl(ji,jj,jk) & |
---|
333 | & + zvautl * ( zwz( ji-1,jj) + zwz( ji,jj) ) & |
---|
334 | & + zvau * ( zwztl(ji-1,jj) + zwztl(ji,jj) ) |
---|
335 | END DO |
---|
336 | END DO |
---|
337 | ! ! =============== |
---|
338 | END DO ! End of slab |
---|
339 | ! ! =============== |
---|
340 | END SUBROUTINE vor_ens_tan |
---|
341 | |
---|
342 | SUBROUTINE dyn_vor_adj( kt ) |
---|
343 | !!---------------------------------------------------------------------- |
---|
344 | !! |
---|
345 | !! ** Purpose of the direct routine: |
---|
346 | !! compute the lateral ocean tracer physics. |
---|
347 | !! |
---|
348 | !! ** Action : - Update (ua,va) with the now vorticity term trend |
---|
349 | !! - save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
350 | !! and planetary vorticity trends) ('key_trddyn') |
---|
351 | !!---------------------------------------------------------------------- |
---|
352 | !! |
---|
353 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
354 | !!---------------------------------------------------------------------- |
---|
355 | |
---|
356 | IF( kt == nitend ) CALL vor_ctl_tam ! initialisation & control of options |
---|
357 | |
---|
358 | ! ! vorticity term |
---|
359 | SELECT CASE ( nvor ) ! compute the vorticity trend and add it to the general trend |
---|
360 | ! |
---|
361 | CASE ( -1 ) ! esopa: test all possibility with control print |
---|
362 | ! CALL vor_een_adj( kt, ntot, ua_ad, va_ad ) |
---|
363 | ! CALL vor_mix_adj( kt ) |
---|
364 | CALL vor_ens_adj( kt, ntot, ua_ad, va_ad ) |
---|
365 | ! CALL vor_ene_adj( kt, ntot, ua_ad, va_ad ) |
---|
366 | ! |
---|
367 | CASE ( 0 ) ! energy conserving scheme |
---|
368 | CALL ctl_stop ('vor_ene_adj not available yet') |
---|
369 | ! CALL vor_ene_adj( kt, ntot, ua_ad, va_ad ) ! total vorticity |
---|
370 | ! |
---|
371 | CASE ( 1 ) ! enstrophy conserving scheme |
---|
372 | CALL vor_ens_adj( kt, ntot, ua_ad, va_ad ) ! total vorticity |
---|
373 | ! |
---|
374 | CASE ( 2 ) ! mixed ene-ens scheme |
---|
375 | CALL ctl_stop ('vor_mix_adj not available yet') |
---|
376 | ! CALL vor_mix_adj( kt ) ! total vorticity (mix=ens-ene) |
---|
377 | ! |
---|
378 | CASE ( 3 ) ! energy and enstrophy conserving scheme |
---|
379 | CALL ctl_stop ('vor_een_adj not available yet') |
---|
380 | ! CALL vor_een_adj( kt, ntot, ua_ad, va_ad ) ! total vorticity |
---|
381 | ! |
---|
382 | END SELECT |
---|
383 | END SUBROUTINE dyn_vor_adj |
---|
384 | SUBROUTINE vor_ens_adj( kt, kvor, pua_ad, pva_ad ) |
---|
385 | !!---------------------------------------------------------------------- |
---|
386 | !! *** ROUTINE vor_ens_adj *** |
---|
387 | !! |
---|
388 | !! ** Purpose of the direct routine: |
---|
389 | !! Compute the now total vorticity trend and add it to |
---|
390 | !! the general trend of the momentum equation. |
---|
391 | !! |
---|
392 | !! ** Method of the direct routine: |
---|
393 | !! Trend evaluated using now fields (centered in time) |
---|
394 | !! and the Sadourny (1975) flux FORM formulation : conserves the |
---|
395 | !! potential enstrophy of a horizontally non-divergent flow. the |
---|
396 | !! trend of the vorticity term is given by: |
---|
397 | !! * s-coordinate (ln_sco=T), the e3. are inside the derivative: |
---|
398 | !! voru = 1/e1u mj-1[ (rotn+f)/e3f ] mj-1[ mi(e1v*e3v vn) ] |
---|
399 | !! vorv = 1/e2v mi-1[ (rotn+f)/e3f ] mi-1[ mj(e2u*e3u un) ] |
---|
400 | !! * z-coordinate (default key), e3t=e3u=e3v, the trend becomes: |
---|
401 | !! voru = 1/e1u mj-1[ rotn+f ] mj-1[ mi(e1v vn) ] |
---|
402 | !! vorv = 1/e2v mi-1[ rotn+f ] mi-1[ mj(e2u un) ] |
---|
403 | !! Add this trend to the general momentum trend (ua,va): |
---|
404 | !! (ua,va) = (ua,va) + ( voru , vorv ) |
---|
405 | !! |
---|
406 | !! ** Action : - Update (ua,va) arrays with the now vorticity term trend |
---|
407 | !! - Save the trends in (ztrdu,ztrdv) in 2 parts (relative |
---|
408 | !! and planetary vorticity trends) ('key_trddyn') |
---|
409 | !! |
---|
410 | !! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689. |
---|
411 | !!---------------------------------------------------------------------- |
---|
412 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
413 | INTEGER , INTENT(in ) :: kvor ! =ncor (planetary) ; =ntot (total) ; |
---|
414 | ! ! =nrvm (relative vorticity or metric) |
---|
415 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pua_ad ! total u-trend |
---|
416 | REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pva_ad ! total v-trend |
---|
417 | !! |
---|
418 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
419 | REAL(wp) :: zfact1, zuav, zvau ! temporary scalars |
---|
420 | REAL(wp), DIMENSION(jpi,jpj) :: zwx, zwy, zwz ! temporary 3D workspace |
---|
421 | REAL(wp) :: zuavad, zvauad ! temporary scalars |
---|
422 | REAL(wp), DIMENSION(jpi,jpj) :: zwxad, zwyad, zwzad ! temporary 3D workspace |
---|
423 | !!---------------------------------------------------------------------- |
---|
424 | |
---|
425 | IF( kt == nitend ) THEN |
---|
426 | IF(lwp) WRITE(numout,*) |
---|
427 | IF(lwp) WRITE(numout,*) 'dyn_vor_ens_adj : vorticity term: enstrophy conserving scheme' |
---|
428 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~' |
---|
429 | ENDIF |
---|
430 | |
---|
431 | ! Local constant initialization |
---|
432 | zfact1 = 0.5 * 0.25 |
---|
433 | |
---|
434 | !CDIR PARALLEL DO PRIVATE( zwx, zwy, zwz ) |
---|
435 | ! ! =============== |
---|
436 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
437 | ! ! =============== |
---|
438 | ! Potential vorticity and horizontal fluxes |
---|
439 | ! ----------------------------------------- |
---|
440 | SELECT CASE( kvor ) ! vorticity considered |
---|
441 | CASE ( 1 ) ; zwz(:,:) = ff(:,:) ! planetary vorticity (Coriolis) |
---|
442 | CASE ( 2 ) ; zwz(:,:) = rotn(:,:,jk) ! relative vorticity |
---|
443 | CASE ( 3 ) ! metric term |
---|
444 | DO jj = 1, jpjm1 |
---|
445 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
446 | zwz(ji,jj) = ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
447 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) )& |
---|
448 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
449 | END DO |
---|
450 | END DO |
---|
451 | CASE ( 4 ) ; zwz(:,:) = ( rotn(:,:,jk) + ff(:,:) ) ! total (relative + planetary vorticity) |
---|
452 | CASE ( 5 ) ! total (coriolis + metric) |
---|
453 | DO jj = 1, jpjm1 |
---|
454 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
455 | zwz(ji,jj) = ( ff (ji,jj) & |
---|
456 | & + ( ( vn(ji+1,jj ,jk) + vn (ji,jj,jk) ) * ( e2v(ji+1,jj ) - e2v(ji,jj) ) & |
---|
457 | & - ( un(ji ,jj+1,jk) + un (ji,jj,jk) ) * ( e1u(ji ,jj+1) - e1u(ji,jj) ) ) & |
---|
458 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) & |
---|
459 | & ) |
---|
460 | END DO |
---|
461 | END DO |
---|
462 | END SELECT |
---|
463 | |
---|
464 | IF( ln_sco ) THEN |
---|
465 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
466 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
467 | zwz(ji,jj) = zwz(ji,jj) / fse3f(ji,jj,jk) |
---|
468 | zwx(ji,jj) = e2u(ji,jj) * fse3u(ji,jj,jk) * un(ji,jj,jk) |
---|
469 | zwy(ji,jj) = e1v(ji,jj) * fse3v(ji,jj,jk) * vn(ji,jj,jk) |
---|
470 | END DO |
---|
471 | END DO |
---|
472 | ELSE |
---|
473 | DO jj = 1, jpj ! caution: don't use (:,:) for this loop |
---|
474 | DO ji = 1, jpi ! it causes optimization problems on NEC in auto-tasking |
---|
475 | zwx(ji,jj) = e2u(ji,jj) * un(ji,jj,jk) |
---|
476 | zwy(ji,jj) = e1v(ji,jj) * vn(ji,jj,jk) |
---|
477 | END DO |
---|
478 | END DO |
---|
479 | ENDIF |
---|
480 | |
---|
481 | ! Compute and add the vorticity term trend |
---|
482 | ! ---------------------------------------- |
---|
483 | DO jj = 2, jpjm1 |
---|
484 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
485 | zuav = zfact1 / e1u(ji,jj) * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) & |
---|
486 | & + zwy(ji ,jj ) + zwy(ji+1,jj ) ) |
---|
487 | zvau =-zfact1 / e2v(ji,jj) * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) & |
---|
488 | & + zwx(ji ,jj ) + zwx(ji ,jj+1) ) |
---|
489 | END DO |
---|
490 | END DO |
---|
491 | ! ! =============== |
---|
492 | END DO ! End of slab |
---|
493 | ! ! =============== |
---|
494 | !CDIR PARALLEL DO PRIVATE( zwxad, zwyad, zwzad ) |
---|
495 | ! =================== |
---|
496 | ! Adjoint counterpart |
---|
497 | ! =================== |
---|
498 | zuavad = 0.0_wp |
---|
499 | zvauad = 0.0_wp |
---|
500 | zwxad(:,:) = 0.0_wp |
---|
501 | zwyad(:,:) = 0.0_wp |
---|
502 | zwzad(:,:) = 0.0_wp |
---|
503 | ! ! =============== |
---|
504 | DO jk = jpkm1, 1, -1 ! Horizontal slab |
---|
505 | ! ! =============== |
---|
506 | ! Compute and add the vorticity term trend |
---|
507 | ! ---------------------------------------- |
---|
508 | DO jj = jpjm1, 2, -1 |
---|
509 | DO ji = fs_jpim1, fs_2, -1 ! vector opt. |
---|
510 | zuavad = zuavad + pua_ad(ji,jj,jk) * ( zwz(ji,jj-1) + zwz(ji,jj) ) |
---|
511 | zwzad(ji,jj-1) = zwzad(ji,jj-1) + pua_ad(ji,jj,jk) * zuav |
---|
512 | zwzad(ji,jj ) = zwzad(ji,jj ) + pua_ad(ji,jj,jk) * zuav |
---|
513 | |
---|
514 | zvauad = zvauad + pva_ad(ji,jj,jk) * ( zwz(ji-1,jj) + zwz(ji,jj) ) |
---|
515 | zwzad(ji-1,jj) = zwzad(ji-1,jj) + pva_ad(ji,jj,jk) * zvau |
---|
516 | zwzad(ji ,jj) = zwzad(ji ,jj) + pva_ad(ji,jj,jk) * zvau |
---|
517 | |
---|
518 | zwyad(ji ,jj-1) = zwyad(ji ,jj-1) + zuavad * zfact1 / e1u(ji,jj) |
---|
519 | zwyad(ji+1,jj-1) = zwyad(ji+1,jj-1) + zuavad * zfact1 / e1u(ji,jj) |
---|
520 | zwyad(ji ,jj ) = zwyad(ji ,jj ) + zuavad * zfact1 / e1u(ji,jj) |
---|
521 | zwyad(ji+1,jj ) = zwyad(ji+1,jj ) + zuavad * zfact1 / e1u(ji,jj) |
---|
522 | zuavad = 0.0_wp |
---|
523 | |
---|
524 | zwxad(ji-1,jj ) = zwxad(ji-1,jj ) - zvauad * zfact1 / e2v(ji,jj) |
---|
525 | zwxad(ji-1,jj+1) = zwxad(ji-1,jj+1) - zvauad * zfact1 / e2v(ji,jj) |
---|
526 | zwxad(ji ,jj ) = zwxad(ji ,jj ) - zvauad * zfact1 / e2v(ji,jj) |
---|
527 | zwxad(ji ,jj+1) = zwxad(ji ,jj+1) - zvauad * zfact1 / e2v(ji,jj) |
---|
528 | zvauad = 0.0_wp |
---|
529 | END DO |
---|
530 | END DO |
---|
531 | IF( ln_sco ) THEN |
---|
532 | DO jj = jpj, 1, -1 ! caution: don't use (:,:) for this loop |
---|
533 | DO ji = jpi, 1, -1 ! it causes optimization problems on NEC in auto-tasking |
---|
534 | zwzad(ji,jj) = zwzad(ji,jj) / fse3f(ji,jj,jk) |
---|
535 | un_ad(ji,jj,jk) = un_ad(ji,jj,jk) + zwxad(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) |
---|
536 | vn_ad(ji,jj,jk) = vn_ad(ji,jj,jk) + zwyad(ji,jj) * e1v(ji,jj) * fse3v(ji,jj,jk) |
---|
537 | zwxad(ji,jj) = 0.0_wp |
---|
538 | zwyad(ji,jj) = 0.0_wp |
---|
539 | END DO |
---|
540 | END DO |
---|
541 | ELSE |
---|
542 | DO jj = jpj, 1, -1 ! caution: don't use (:,:) for this loop |
---|
543 | DO ji = jpi, 1, -1 ! it causes optimization problems on NEC in auto-tasking |
---|
544 | un_ad(ji,jj,jk) = un_ad(ji,jj,jk) + e2u(ji,jj) * zwxad(ji,jj) |
---|
545 | vn_ad(ji,jj,jk) = vn_ad(ji,jj,jk) + e1v(ji,jj) * zwyad(ji,jj) |
---|
546 | zwxad(ji,jj) = 0.0_wp |
---|
547 | zwyad(ji,jj) = 0.0_wp |
---|
548 | END DO |
---|
549 | END DO |
---|
550 | ENDIF |
---|
551 | ! Potential vorticity and horizontal fluxes |
---|
552 | ! ----------------------------------------- |
---|
553 | SELECT CASE( kvor ) ! vorticity considered |
---|
554 | CASE ( 1 ) ! planetary vorticity (Coriolis) |
---|
555 | zwzad(:,:) = 0.0_wp |
---|
556 | CASE ( 2 ,4) ! relative vorticity |
---|
557 | rotn_ad(:,:,jk) = rotn_ad(:,:,jk) + zwzad(:,:) |
---|
558 | zwzad(:,:) = 0.0_wp |
---|
559 | CASE ( 3 ,5 ) ! metric term |
---|
560 | DO jj = jpjm1, 1, -1 |
---|
561 | DO ji = fs_jpim1, 1, -1 ! vector opt. |
---|
562 | vn_ad(ji+1,jj,jk) = vn_ad(ji+1,jj,jk) & |
---|
563 | & + zwzad(ji,jj) * ( e2v(ji+1,jj) - e2v(ji,jj) ) & |
---|
564 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
565 | vn_ad(ji ,jj,jk) = vn_ad(ji ,jj,jk) & |
---|
566 | & + zwzad(ji,jj) * ( e2v(ji+1,jj) - e2v(ji,jj) ) & |
---|
567 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
568 | un_ad(ji,jj+1,jk) = un_ad(ji,jj+1,jk) & |
---|
569 | & - zwzad(ji,jj) * ( e1u(ji,jj+1) - e1u(ji,jj) ) & |
---|
570 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
571 | un_ad(ji,jj ,jk) = un_ad(ji,jj ,jk) & |
---|
572 | & - zwzad(ji,jj) * ( e1u(ji,jj+1) - e1u(ji,jj) ) & |
---|
573 | & * 0.5 / ( e1f(ji,jj) * e2f(ji,jj) ) |
---|
574 | zwzad(ji,jj) = 0.0_wp |
---|
575 | END DO |
---|
576 | END DO |
---|
577 | END SELECT |
---|
578 | ! ! =============== |
---|
579 | END DO ! End of slab |
---|
580 | ! ! =============== |
---|
581 | END SUBROUTINE vor_ens_adj |
---|
582 | |
---|
583 | SUBROUTINE vor_ctl_tam |
---|
584 | !!--------------------------------------------------------------------- |
---|
585 | !! *** ROUTINE vor_ctl_tam *** |
---|
586 | !! |
---|
587 | !! ** Purpose : Control the consistency between cpp options for |
---|
588 | !! tracer advection schemes |
---|
589 | !!---------------------------------------------------------------------- |
---|
590 | INTEGER :: ioptio ! temporary integer |
---|
591 | NAMELIST/nam_dynvor/ ln_dynvor_ens, ln_dynvor_ene, ln_dynvor_mix, ln_dynvor_een |
---|
592 | !!---------------------------------------------------------------------- |
---|
593 | |
---|
594 | REWIND ( numnam ) ! Read Namelist nam_dynvor : Vorticity scheme options |
---|
595 | READ ( numnam, nam_dynvor ) |
---|
596 | |
---|
597 | IF(lwp) THEN ! Namelist print |
---|
598 | WRITE(numout,*) |
---|
599 | WRITE(numout,*) 'dyn:vor_ctl_tam : vorticity term : read namelist and control the consistency' |
---|
600 | WRITE(numout,*) '~~~~~~~~~~~~~~~' |
---|
601 | WRITE(numout,*) ' Namelist nam_dynvor : oice of the vorticity term scheme' |
---|
602 | WRITE(numout,*) ' energy conserving scheme ln_dynvor_ene = ', ln_dynvor_ene |
---|
603 | WRITE(numout,*) ' enstrophy conserving scheme ln_dynvor_ens = ', ln_dynvor_ens |
---|
604 | WRITE(numout,*) ' mixed enstrophy/energy conserving scheme ln_dynvor_mix = ', ln_dynvor_mix |
---|
605 | WRITE(numout,*) ' enstrophy and energy conserving scheme ln_dynvor_een = ', ln_dynvor_een |
---|
606 | ENDIF |
---|
607 | |
---|
608 | ioptio = 0 ! Control of vorticity scheme options |
---|
609 | IF( ln_dynvor_ene ) ioptio = ioptio + 1 |
---|
610 | IF( ln_dynvor_ens ) ioptio = ioptio + 1 |
---|
611 | IF( ln_dynvor_mix ) ioptio = ioptio + 1 |
---|
612 | IF( ln_dynvor_een ) ioptio = ioptio + 1 |
---|
613 | IF( lk_esopa ) ioptio = 1 |
---|
614 | |
---|
615 | IF( ioptio /= 1 ) CALL ctl_stop( ' use ONE and ONLY one vorticity scheme' ) |
---|
616 | |
---|
617 | ! ! Set nvor (type of scheme for vorticity) |
---|
618 | IF( ln_dynvor_ene ) nvor = 0 |
---|
619 | IF( ln_dynvor_ens ) nvor = 1 |
---|
620 | IF( ln_dynvor_mix ) nvor = 2 |
---|
621 | IF( ln_dynvor_een ) nvor = 3 |
---|
622 | IF( lk_esopa ) nvor = -1 |
---|
623 | |
---|
624 | ! ! Set ncor, nrvm, ntot (type of vorticity) |
---|
625 | IF(lwp) WRITE(numout,*) |
---|
626 | ncor = 1 |
---|
627 | IF( ln_dynadv_vec ) THEN |
---|
628 | IF(lwp) WRITE(numout,*) ' Vector form advection : vorticity = Coriolis + relative vorticity' |
---|
629 | nrvm = 2 |
---|
630 | ntot = 4 |
---|
631 | ELSE |
---|
632 | IF(lwp) WRITE(numout,*) ' Flux form advection : vorticity = Coriolis + metric term' |
---|
633 | nrvm = 3 |
---|
634 | ntot = 5 |
---|
635 | ENDIF |
---|
636 | |
---|
637 | IF(lwp) THEN ! Print the choice |
---|
638 | WRITE(numout,*) |
---|
639 | IF( nvor == 0 ) WRITE(numout,*) ' vorticity scheme : energy conserving scheme' |
---|
640 | IF( nvor == 1 ) WRITE(numout,*) ' vorticity scheme : enstrophy conserving scheme' |
---|
641 | IF( nvor == 2 ) WRITE(numout,*) ' vorticity scheme : mixed enstrophy/energy conserving scheme' |
---|
642 | IF( nvor == 3 ) WRITE(numout,*) ' vorticity scheme : energy and enstrophy conserving scheme' |
---|
643 | IF( nvor == -1 ) WRITE(numout,*) ' esopa test: use all lateral physics options' |
---|
644 | ENDIF |
---|
645 | ! |
---|
646 | END SUBROUTINE vor_ctl_tam |
---|
647 | |
---|
648 | SUBROUTINE dyn_vor_adj_tst( kumadt ) |
---|
649 | !!----------------------------------------------------------------------- |
---|
650 | !! |
---|
651 | !! *** ROUTINE dyn_adv_adj_tst *** |
---|
652 | !! |
---|
653 | !! ** Purpose : Test the adjoint routine. |
---|
654 | !! |
---|
655 | !! ** Method : Verify the scalar product |
---|
656 | !! |
---|
657 | !! ( L dx )^T W dy = dx^T L^T W dy |
---|
658 | !! |
---|
659 | !! where L = tangent routine |
---|
660 | !! L^T = adjoint routine |
---|
661 | !! W = diagonal matrix of scale factors |
---|
662 | !! dx = input perturbation (random field) |
---|
663 | !! dy = L dx |
---|
664 | !! |
---|
665 | !! ** Action : Separate tests are applied for the following dx and dy: |
---|
666 | !! |
---|
667 | !! 1) dx = ( SSH ) and dy = ( SSH ) |
---|
668 | !! |
---|
669 | !! History : |
---|
670 | !! ! 08-08 (A. Vidard) |
---|
671 | !!----------------------------------------------------------------------- |
---|
672 | !! * Modules used |
---|
673 | |
---|
674 | !! * Arguments |
---|
675 | INTEGER, INTENT(IN) :: & |
---|
676 | & kumadt ! Output unit |
---|
677 | |
---|
678 | INTEGER :: & |
---|
679 | & ji, & ! dummy loop indices |
---|
680 | & jj, & |
---|
681 | & jk |
---|
682 | INTEGER, DIMENSION(jpi,jpj) :: & |
---|
683 | & iseed_2d ! 2D seed for the random number generator |
---|
684 | |
---|
685 | !! * Local declarations |
---|
686 | REAL(KIND=wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
687 | & zun_tlin, & ! Tangent input: now u-velocity |
---|
688 | & zvn_tlin, & ! Tangent input: now v-velocity |
---|
689 | & zrotn_tlin, & ! Tangent input: now rot |
---|
690 | & zun_adout, & ! Adjoint output: now u-velocity |
---|
691 | & zvn_adout, & ! Adjoint output: now v-velocity |
---|
692 | & zrotn_adout, & ! Adjoint output: now rot |
---|
693 | & zua_adout, & ! Tangent output: after u-velocity |
---|
694 | & zva_adout, & ! Tangent output: after v-velocity |
---|
695 | & zua_tlin, & ! Tangent output: after u-velocity |
---|
696 | & zva_tlin, & ! Tangent output: after v-velocity |
---|
697 | & zua_tlout, & ! Tangent output: after u-velocity |
---|
698 | & zva_tlout, & ! Tangent output: after v-velocity |
---|
699 | & zua_adin, & ! Tangent output: after u-velocity |
---|
700 | & zva_adin, & ! Tangent output: after v-velocity |
---|
701 | & zau, & ! 3D random field for rotn |
---|
702 | & zav, & ! 3D random field for rotn |
---|
703 | & znu, & ! 3D random field for u |
---|
704 | & znv ! 3D random field for v |
---|
705 | REAL(KIND=wp) :: & |
---|
706 | & zsp1, & ! scalar product involving the tangent routine |
---|
707 | & zsp1_1, & ! scalar product components |
---|
708 | & zsp1_2, & |
---|
709 | & zsp2, & ! scalar product involving the adjoint routine |
---|
710 | & zsp2_1, & ! scalar product components |
---|
711 | & zsp2_2, & |
---|
712 | & zsp2_3, & |
---|
713 | & zsp2_4, & |
---|
714 | & zsp2_5 |
---|
715 | CHARACTER(LEN=14) :: cl_name |
---|
716 | |
---|
717 | ! Allocate memory |
---|
718 | |
---|
719 | ALLOCATE( & |
---|
720 | & zun_tlin(jpi,jpj,jpk), & |
---|
721 | & zvn_tlin(jpi,jpj,jpk), & |
---|
722 | & zrotn_tlin(jpi,jpj,jpk), & |
---|
723 | & zun_adout(jpi,jpj,jpk), & |
---|
724 | & zvn_adout(jpi,jpj,jpk), & |
---|
725 | & zrotn_adout(jpi,jpj,jpk), & |
---|
726 | & zua_adout(jpi,jpj,jpk), & |
---|
727 | & zva_adout(jpi,jpj,jpk), & |
---|
728 | & zua_tlin(jpi,jpj,jpk), & |
---|
729 | & zva_tlin(jpi,jpj,jpk), & |
---|
730 | & zua_tlout(jpi,jpj,jpk), & |
---|
731 | & zva_tlout(jpi,jpj,jpk), & |
---|
732 | & zua_adin(jpi,jpj,jpk), & |
---|
733 | & zva_adin(jpi,jpj,jpk), & |
---|
734 | & zau(jpi,jpj,jpk), & |
---|
735 | & zav(jpi,jpj,jpk), & |
---|
736 | & znu(jpi,jpj,jpk), & |
---|
737 | & znv(jpi,jpj,jpk) & |
---|
738 | & ) |
---|
739 | |
---|
740 | ! Initialize rotn |
---|
741 | CALL div_cur ( nit000 ) |
---|
742 | |
---|
743 | !================================================================== |
---|
744 | ! 1) dx = ( un_tl, vn_tl, hdivn_tl ) and |
---|
745 | ! dy = ( hdivb_tl, hdivn_tl ) |
---|
746 | !================================================================== |
---|
747 | |
---|
748 | !-------------------------------------------------------------------- |
---|
749 | ! Reset the tangent and adjoint variables |
---|
750 | !-------------------------------------------------------------------- |
---|
751 | |
---|
752 | zun_tlin(:,:,:) = 0.0_wp |
---|
753 | zvn_tlin(:,:,:) = 0.0_wp |
---|
754 | zrotn_tlin(:,:,:) = 0.0_wp |
---|
755 | zun_adout(:,:,:) = 0.0_wp |
---|
756 | zvn_adout(:,:,:) = 0.0_wp |
---|
757 | zrotn_adout(:,:,:) = 0.0_wp |
---|
758 | zua_tlout(:,:,:) = 0.0_wp |
---|
759 | zva_tlout(:,:,:) = 0.0_wp |
---|
760 | zua_adin(:,:,:) = 0.0_wp |
---|
761 | zva_adin(:,:,:) = 0.0_wp |
---|
762 | zua_adout(:,:,:) = 0.0_wp |
---|
763 | zva_adout(:,:,:) = 0.0_wp |
---|
764 | zua_tlin(:,:,:) = 0.0_wp |
---|
765 | zva_tlin(:,:,:) = 0.0_wp |
---|
766 | znu(:,:,:) = 0.0_wp |
---|
767 | znv(:,:,:) = 0.0_wp |
---|
768 | zau(:,:,:) = 0.0_wp |
---|
769 | zav(:,:,:) = 0.0_wp |
---|
770 | |
---|
771 | |
---|
772 | un_tl(:,:,:) = 0.0_wp |
---|
773 | vn_tl(:,:,:) = 0.0_wp |
---|
774 | ua_tl(:,:,:) = 0.0_wp |
---|
775 | va_tl(:,:,:) = 0.0_wp |
---|
776 | un_ad(:,:,:) = 0.0_wp |
---|
777 | vn_ad(:,:,:) = 0.0_wp |
---|
778 | ua_ad(:,:,:) = 0.0_wp |
---|
779 | va_ad(:,:,:) = 0.0_wp |
---|
780 | rotn_tl(:,:,:) = 0.0_wp |
---|
781 | rotn_ad(:,:,:) = 0.0_wp |
---|
782 | |
---|
783 | !-------------------------------------------------------------------- |
---|
784 | ! Initialize the tangent input with random noise: dx |
---|
785 | !-------------------------------------------------------------------- |
---|
786 | |
---|
787 | DO jj = 1, jpj |
---|
788 | DO ji = 1, jpi |
---|
789 | iseed_2d(ji,jj) = - ( 596035 + & |
---|
790 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
791 | END DO |
---|
792 | END DO |
---|
793 | CALL grid_random( iseed_2d, znu, 'U', 0.0_wp, stdu ) |
---|
794 | |
---|
795 | DO jj = 1, jpj |
---|
796 | DO ji = 1, jpi |
---|
797 | iseed_2d(ji,jj) = - ( 523432 + & |
---|
798 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
799 | END DO |
---|
800 | END DO |
---|
801 | CALL grid_random( iseed_2d, znv, 'V', 0.0_wp, stdv ) |
---|
802 | |
---|
803 | DO jj = 1, jpj |
---|
804 | DO ji = 1, jpi |
---|
805 | iseed_2d(ji,jj) = - ( 432545 + & |
---|
806 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
807 | END DO |
---|
808 | END DO |
---|
809 | CALL grid_random( iseed_2d, zau, 'U', 0.0_wp, stdu ) |
---|
810 | |
---|
811 | DO jj = 1, jpj |
---|
812 | DO ji = 1, jpi |
---|
813 | iseed_2d(ji,jj) = - ( 287503 + & |
---|
814 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
815 | END DO |
---|
816 | END DO |
---|
817 | CALL grid_random( iseed_2d, zav, 'V', 0.0_wp, stdv ) |
---|
818 | !zun_tlin(:,:,:) = znu(:,:,:) |
---|
819 | !zvn_tlin(:,:,:) = znv(:,:,:) |
---|
820 | !zua_tlin(:,:,:) = zau(:,:,:) |
---|
821 | !zva_tlin(:,:,:) = zav(:,:,:) |
---|
822 | DO jk = 1, jpk |
---|
823 | DO jj = nldj, nlej |
---|
824 | DO ji = nldi, nlei |
---|
825 | zun_tlin(ji,jj,jk) = znu(ji,jj,jk) |
---|
826 | zvn_tlin(ji,jj,jk) = znv(ji,jj,jk) |
---|
827 | zua_tlin(ji,jj,jk) = zau(ji,jj,jk) |
---|
828 | zva_tlin(ji,jj,jk) = zav(ji,jj,jk) |
---|
829 | END DO |
---|
830 | END DO |
---|
831 | END DO |
---|
832 | un_tl(:,:,:) = zun_tlin(:,:,:) |
---|
833 | vn_tl(:,:,:) = zvn_tlin(:,:,:) |
---|
834 | ua_tl(:,:,:) = zua_tlin(:,:,:) |
---|
835 | va_tl(:,:,:) = zva_tlin(:,:,:) |
---|
836 | |
---|
837 | ! initialize rotn_tl with noise |
---|
838 | CALL div_cur_tan ( nit000 ) |
---|
839 | !zrotn_tlin(:,:,:) = rotn_tl(:,:,:) |
---|
840 | DO jk = 1, jpk |
---|
841 | DO jj = nldj, nlej |
---|
842 | DO ji = nldi, nlei |
---|
843 | zrotn_tlin(ji,jj,jk) = rotn_tl(ji,jj,jk) |
---|
844 | END DO |
---|
845 | END DO |
---|
846 | END DO |
---|
847 | rotn_tl(:,:,:) = zrotn_tlin(:,:,:) |
---|
848 | |
---|
849 | CALL dyn_vor_tan( nit000 ) |
---|
850 | zua_tlout(:,:,:) = ua_tl(:,:,:) |
---|
851 | zva_tlout(:,:,:) = va_tl(:,:,:) |
---|
852 | |
---|
853 | !-------------------------------------------------------------------- |
---|
854 | ! Initialize the adjoint variables: dy^* = W dy |
---|
855 | !-------------------------------------------------------------------- |
---|
856 | |
---|
857 | DO jk = 1, jpk |
---|
858 | DO jj = nldj, nlej |
---|
859 | DO ji = nldi, nlei |
---|
860 | zua_adin(ji,jj,jk) = zua_tlout(ji,jj,jk) & |
---|
861 | & * e1u(ji,jj) * e2u(ji,jj) * fse3u(ji,jj,jk) & |
---|
862 | & * umask(ji,jj,jk) |
---|
863 | zva_adin(ji,jj,jk) = zva_tlout(ji,jj,jk) & |
---|
864 | & * e1v(ji,jj) * e2v(ji,jj) * fse3v(ji,jj,jk) & |
---|
865 | & * vmask(ji,jj,jk) |
---|
866 | END DO |
---|
867 | END DO |
---|
868 | END DO |
---|
869 | !-------------------------------------------------------------------- |
---|
870 | ! Compute the scalar product: ( L dx )^T W dy |
---|
871 | !-------------------------------------------------------------------- |
---|
872 | |
---|
873 | zsp1_1 = DOT_PRODUCT( zua_tlout, zua_adin ) |
---|
874 | zsp1_2 = DOT_PRODUCT( zva_tlout, zva_adin ) |
---|
875 | zsp1 = zsp1_1 + zsp1_2 |
---|
876 | |
---|
877 | !-------------------------------------------------------------------- |
---|
878 | ! Call the adjoint routine: dx^* = L^T dy^* |
---|
879 | !-------------------------------------------------------------------- |
---|
880 | |
---|
881 | ua_ad(:,:,:) = zua_adin(:,:,:) |
---|
882 | va_ad(:,:,:) = zva_adin(:,:,:) |
---|
883 | |
---|
884 | CALL dyn_vor_adj ( nitend ) |
---|
885 | |
---|
886 | zun_adout(:,:,:) = un_ad(:,:,:) |
---|
887 | zvn_adout(:,:,:) = vn_ad(:,:,:) |
---|
888 | zrotn_adout(:,:,:) = rotn_ad(:,:,:) |
---|
889 | zua_adout(:,:,:) = ua_ad(:,:,:) |
---|
890 | zva_adout(:,:,:) = va_ad(:,:,:) |
---|
891 | |
---|
892 | zsp2_1 = DOT_PRODUCT( zun_tlin, zun_adout ) |
---|
893 | zsp2_2 = DOT_PRODUCT( zvn_tlin, zvn_adout ) |
---|
894 | zsp2_3 = DOT_PRODUCT( zrotn_tlin, zrotn_adout ) |
---|
895 | zsp2_4 = DOT_PRODUCT( zua_tlin, zua_adout ) |
---|
896 | zsp2_5 = DOT_PRODUCT( zva_tlin, zva_adout ) |
---|
897 | zsp2 = zsp2_1 + zsp2_2 + zsp2_3 + zsp2_4 + zsp2_5 |
---|
898 | |
---|
899 | ! Compare the scalar products |
---|
900 | |
---|
901 | ! 14 char:'12345678901234' |
---|
902 | cl_name = 'dyn_vor_adj ' |
---|
903 | CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
904 | |
---|
905 | DEALLOCATE( & |
---|
906 | & zun_tlin, & |
---|
907 | & zvn_tlin, & |
---|
908 | & zrotn_tlin, & |
---|
909 | & zun_adout, & |
---|
910 | & zvn_adout, & |
---|
911 | & zrotn_adout, & |
---|
912 | & zua_adout, & |
---|
913 | & zva_adout, & |
---|
914 | & zua_tlin, & |
---|
915 | & zva_tlin, & |
---|
916 | & zua_tlout, & |
---|
917 | & zva_tlout, & |
---|
918 | & zua_adin, & |
---|
919 | & zva_adin, & |
---|
920 | & zau, & |
---|
921 | & zav, & |
---|
922 | & znu, & |
---|
923 | & znv & |
---|
924 | & ) |
---|
925 | END SUBROUTINE dyn_vor_adj_tst |
---|
926 | !!============================================================================= |
---|
927 | #endif |
---|
928 | END MODULE dynvor_tam |
---|