1 | MODULE eosbn2_tam |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE eosbn2_tam *** |
---|
4 | !! Ocean diagnostic variable : equation of state - in situ and potential density |
---|
5 | !! - Brunt-Vaisala frequency |
---|
6 | !! Tangent and Adjoint Module |
---|
7 | !!=========================================================================== !! History of the direct Module : |
---|
8 | !! ! 89-03 (O. Marti) Original code |
---|
9 | !! 6.0 ! 94-07 (G. Madec, M. Imbard) add bn2 |
---|
10 | !! 6.0 ! 94-08 (G. Madec) Add Jackett & McDougall eos |
---|
11 | !! 7.0 ! 96-01 (G. Madec) statement function for e3 |
---|
12 | !! 8.1 ! 97-07 (G. Madec) introduction of neos, OPA8.1 |
---|
13 | !! 8.1 ! 97-07 (G. Madec) density instead of volumic mass |
---|
14 | !! ! 99-02 (G. Madec, N. Grima) semi-implicit pressure gradient |
---|
15 | !! ! 01-09 (M. Ben Jelloul) bugfix onlinear eos |
---|
16 | !! 8.5 ! 02-10 (G. Madec) add eos_init |
---|
17 | !! 8.5 ! 02-11 (G. Madec, A. Bozec) partial step, eos_insitu_2d |
---|
18 | !! 9.0 ! 03-08 (G. Madec) F90, free form |
---|
19 | !! 9.0 ! 06-08 (G. Madec) add tfreez function |
---|
20 | !! History of the TAM Module : |
---|
21 | !! 8.2 ! 05-03 (F. Van den Berghe, A. Weaver, N. Daget) |
---|
22 | !! - eostan.F |
---|
23 | !! 9.0 ! 07-07 (K. Mogensen) Initial version based on eostan.F |
---|
24 | !! ! 08-07 (A. Vidard) bug fix in computation of prd_tl if neos=1 |
---|
25 | !! ! 08-11 (A. Vidard) TAM of the 06-08 version |
---|
26 | !!---------------------------------------------------------------------- |
---|
27 | |
---|
28 | !!---------------------------------------------------------------------- |
---|
29 | !! Direct subroutines |
---|
30 | !! eos : generic interface of the equation of state |
---|
31 | !! eos_insitu : Compute the in situ density |
---|
32 | !! eos_insitu_pot : Compute the insitu and surface referenced potential |
---|
33 | !! volumic mass |
---|
34 | !! eos_insitu_2d : Compute the in situ density for 2d fields |
---|
35 | !! eos_insitu_pot_1pt : Compute the in situ density for a single point |
---|
36 | !! eos_bn2 : Compute the Brunt-Vaisala frequency |
---|
37 | !! tfreez : Compute the surface freezing temperature (NOT IN TAM) |
---|
38 | !! eos_init : set eos parameters (namelist) |
---|
39 | !!---------------------------------------------------------------------- |
---|
40 | !! * Modules used |
---|
41 | #if defined key_zdfddm |
---|
42 | USE oce_tam , ONLY: & |
---|
43 | & rrau_tl, & |
---|
44 | & rrau_ad |
---|
45 | #endif |
---|
46 | USE dom_oce , ONLY: & ! ocean space and time domain |
---|
47 | & tmask, & |
---|
48 | & e1t, & |
---|
49 | & e2t, & |
---|
50 | #if defined key_zco |
---|
51 | & e3t_0, & |
---|
52 | & e3w_0, & |
---|
53 | & gdept_0, & |
---|
54 | & gdepw_0, & |
---|
55 | #else |
---|
56 | & e3t, & |
---|
57 | & e3w, & |
---|
58 | & gdept, & |
---|
59 | & gdepw, & |
---|
60 | #endif |
---|
61 | & mig, & |
---|
62 | & mjg, & |
---|
63 | & nperio, & |
---|
64 | & nldi, & |
---|
65 | & nldj, & |
---|
66 | & nlei, & |
---|
67 | & nlej |
---|
68 | USE par_kind , ONLY: & |
---|
69 | & wp |
---|
70 | USE par_oce , ONLY: & |
---|
71 | & jpi, & |
---|
72 | & jpj, & |
---|
73 | & jpk, & |
---|
74 | & jpim1, & |
---|
75 | & jpjm1, & |
---|
76 | & jpkm1, & |
---|
77 | & jpiglo |
---|
78 | USE oce , ONLY: & |
---|
79 | & tn, & |
---|
80 | & sn |
---|
81 | USE phycst , ONLY: & ! physical constants |
---|
82 | & rau0, & |
---|
83 | & grav |
---|
84 | USE in_out_manager, ONLY: & ! I/O manager |
---|
85 | & lwp, & |
---|
86 | & ctmp1, & |
---|
87 | & numout, & |
---|
88 | & ctl_stop |
---|
89 | #if defined key_zdfddm |
---|
90 | USE zdfddm ! vertical physics: double diffusion |
---|
91 | #endif |
---|
92 | USE eosbn2 , ONLY: & |
---|
93 | & eos_init, & |
---|
94 | & neos_init, & |
---|
95 | & neos, & |
---|
96 | & ralpha, & |
---|
97 | & rbeta |
---|
98 | USE gridrandom , ONLY: & ! Random Gaussian noise on grids |
---|
99 | & grid_random |
---|
100 | USE dotprodfld , ONLY: & ! Computes dot product for 3D and 2D fields |
---|
101 | & dot_product |
---|
102 | USE tstool_tam , ONLY: & |
---|
103 | & prntst_adj, & |
---|
104 | & prntst_tlm, & ! |
---|
105 | & stds, & |
---|
106 | & stdt |
---|
107 | IMPLICIT NONE |
---|
108 | PRIVATE |
---|
109 | |
---|
110 | !! * Interface |
---|
111 | INTERFACE eos_tan |
---|
112 | MODULE PROCEDURE eos_insitu_tan, eos_insitu_pot_tan, eos_insitu_2d_tan |
---|
113 | END INTERFACE |
---|
114 | INTERFACE eos_adj |
---|
115 | MODULE PROCEDURE eos_insitu_adj, eos_insitu_pot_adj, eos_insitu_2d_adj |
---|
116 | END INTERFACE |
---|
117 | INTERFACE bn2_tan |
---|
118 | MODULE PROCEDURE eos_bn2_tan |
---|
119 | END INTERFACE |
---|
120 | INTERFACE bn2_adj |
---|
121 | MODULE PROCEDURE eos_bn2_adj |
---|
122 | END INTERFACE |
---|
123 | |
---|
124 | !! * Routine accessibility |
---|
125 | PUBLIC eos_tan ! called by step.F90, inidtr.F90, tranpc.F90 and intgrd.F90 |
---|
126 | PUBLIC bn2_tan ! called by step.F90 |
---|
127 | PUBLIC eos_adj ! called by step.F90, inidtr.F90, tranpc.F90 and intgrd.F90 |
---|
128 | PUBLIC bn2_adj ! called by step.F90 |
---|
129 | #if defined key_tam |
---|
130 | PUBLIC eos_adj_tst |
---|
131 | PUBLIC bn2_adj_tst |
---|
132 | #if defined key_tst_tlm |
---|
133 | PUBLIC eos_tlm_tst |
---|
134 | PUBLIC bn2_tlm_tst |
---|
135 | #endif |
---|
136 | #endif |
---|
137 | |
---|
138 | |
---|
139 | !! * Substitutions |
---|
140 | # include "domzgr_substitute.h90" |
---|
141 | # include "vectopt_loop_substitute.h90" |
---|
142 | |
---|
143 | CONTAINS |
---|
144 | |
---|
145 | SUBROUTINE eos_insitu_tan( ptem, psal, ptem_tl, psal_tl, prd_tl ) |
---|
146 | !!----------------------------------------------------------------------- |
---|
147 | !! |
---|
148 | !! *** ROUTINE eos_insitu_tan : TL OF ROUTINE eos_insitu *** |
---|
149 | !! |
---|
150 | !! ** Purpose of direct routine : Compute the in situ density |
---|
151 | !! (ratio rho/rau0) from potential temperature and salinity |
---|
152 | !! using an equation of state defined through the namelist |
---|
153 | !! parameter neos. |
---|
154 | !! |
---|
155 | !! ** Method of direct routine : 3 cases: |
---|
156 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
157 | !! the in situ density is computed directly as a function of |
---|
158 | !! potential temperature relative to the surface (the opa t |
---|
159 | !! variable), salt and pressure (assuming no pressure variation |
---|
160 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
161 | !! is approximated by the depth in meters. |
---|
162 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
163 | !! with pressure p decibars |
---|
164 | !! potential temperature t deg celsius |
---|
165 | !! salinity s psu |
---|
166 | !! reference volumic mass rau0 kg/m**3 |
---|
167 | !! in situ volumic mass rho kg/m**3 |
---|
168 | !! in situ density anomalie prd no units |
---|
169 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
170 | !! t = 40 deg celcius, s=40 psu |
---|
171 | !! neos = 1 : linear equation of state function of temperature only |
---|
172 | !! prd(t) = 0.0285 - ralpha * t |
---|
173 | !! neos = 2 : linear equation of state function of temperature and |
---|
174 | !! salinity |
---|
175 | !! prd(t,s) = rbeta * s - ralpha * tn - 1. |
---|
176 | !! Note that no boundary condition problem occurs in this routine |
---|
177 | !! as (ptem,psal) are defined over the whole domain. |
---|
178 | !! |
---|
179 | !! ** Comments on Adjoint Routine : |
---|
180 | !! Care has been taken to avoid division by zero when computing |
---|
181 | !! the inverse of the square root of salinity at masked salinity |
---|
182 | !! points. |
---|
183 | !! |
---|
184 | !! * Arguments |
---|
185 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
186 | & ptem, & ! potential temperature |
---|
187 | & psal, & ! salinity |
---|
188 | & ptem_tl, & ! TL of potential temperature |
---|
189 | & psal_tl ! TL of salinity |
---|
190 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( out ) :: & |
---|
191 | & prd_tl ! TL of potential density (surface referenced) |
---|
192 | !! * Local declarations |
---|
193 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
194 | REAL(wp) :: & ! temporary scalars |
---|
195 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
196 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
197 | zttl, zstl, zhtl, zsrtl, zr1tl, zr2tl, zr3tl, & |
---|
198 | zr4tl, zrhoptl, zetl, zbwtl, & |
---|
199 | zbtl, zdtl, zctl, zawtl, zatl, zb1tl, za1tl, & |
---|
200 | zkwtl, zk0tl, zpes, zrdc1, zrdc2, zeps, & |
---|
201 | zmask |
---|
202 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zws |
---|
203 | !!---------------------------------------------------------------------- |
---|
204 | |
---|
205 | |
---|
206 | ! initialization (in not already done) |
---|
207 | IF( neos_init == 0 ) CALL eos_init |
---|
208 | |
---|
209 | SELECT CASE ( neos ) |
---|
210 | |
---|
211 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
212 | |
---|
213 | #ifdef key_sp |
---|
214 | zeps = 1.e-7 |
---|
215 | #else |
---|
216 | zeps = 1.e-14 |
---|
217 | #endif |
---|
218 | |
---|
219 | !CDIR NOVERRCHK |
---|
220 | zws(:,:,:) = SQRT( ABS( psal(:,:,:) ) ) |
---|
221 | |
---|
222 | ! ! =============== |
---|
223 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
224 | ! ! =============== |
---|
225 | DO jj = 1, jpj |
---|
226 | DO ji = 1, jpi |
---|
227 | zt = ptem(ji,jj,jk) |
---|
228 | zs = psal(ji,jj,jk) |
---|
229 | ! depth |
---|
230 | zh = fsdept(ji,jj,jk) |
---|
231 | ! square root salinity |
---|
232 | zsr= zws(ji,jj,jk) |
---|
233 | ! compute volumic mass pure water at atm pressure |
---|
234 | zr1= ( ( ( ( 6.536332e-9*zt-1.120083e-6 )*zt+1.001685e-4)*zt & |
---|
235 | -9.095290e-3 )*zt+6.793952e-2 )*zt+999.842594 |
---|
236 | ! seawater volumic mass atm pressure |
---|
237 | zr2= ( ( ( 5.3875e-9*zt-8.2467e-7 ) *zt+7.6438e-5 ) *zt & |
---|
238 | -4.0899e-3 ) *zt+0.824493 |
---|
239 | zr3= ( -1.6546e-6*zt+1.0227e-4 ) *zt-5.72466e-3 |
---|
240 | zr4= 4.8314e-4 |
---|
241 | |
---|
242 | ! potential volumic mass (reference to the surface) |
---|
243 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
244 | |
---|
245 | ! add the compression terms |
---|
246 | ze = ( -3.508914e-8*zt-1.248266e-8 ) *zt-2.595994e-6 |
---|
247 | zbw= ( 1.296821e-6*zt-5.782165e-9 ) *zt+1.045941e-4 |
---|
248 | zb = zbw + ze * zs |
---|
249 | |
---|
250 | zd = -2.042967e-2 |
---|
251 | zc = (-7.267926e-5*zt+2.598241e-3 ) *zt+0.1571896 |
---|
252 | zaw= ( ( 5.939910e-6*zt+2.512549e-3 ) *zt-0.1028859 ) *zt - 4.721788 |
---|
253 | za = ( zd*zsr + zc ) *zs + zaw |
---|
254 | |
---|
255 | zb1= (-0.1909078*zt+7.390729 ) *zt-55.87545 |
---|
256 | za1= ( ( 2.326469e-3*zt+1.553190)*zt-65.00517 ) *zt+1044.077 |
---|
257 | zkw= ( ( (-1.361629e-4*zt-1.852732e-2 ) *zt-30.41638 ) *zt + 2098.925 ) *zt+190925.6 |
---|
258 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
259 | |
---|
260 | ! Tangent linear part |
---|
261 | |
---|
262 | zttl = ptem_tl(ji,jj,jk) |
---|
263 | zstl = psal_tl(ji,jj,jk) |
---|
264 | |
---|
265 | zsrtl= ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
266 | & * tmask(ji,jj,jk) * zstl |
---|
267 | |
---|
268 | zr1tl= ( ( ( ( 5.*6.536332e-9 * zt & |
---|
269 | & -4.*1.120083e-6 ) * zt & |
---|
270 | & +3.*1.001685e-4 ) * zt & |
---|
271 | & -2.*9.095290e-3 ) * zt & |
---|
272 | & + 6.793952e-2 ) * zttl |
---|
273 | |
---|
274 | zr2tl= ( ( ( 4.*5.3875e-9 * zt & |
---|
275 | & -3.*8.2467e-7 ) * zt & |
---|
276 | & +2.*7.6438e-5 ) * zt & |
---|
277 | & - 4.0899e-3 ) * zttl |
---|
278 | |
---|
279 | zr3tl= ( -2.*1.6546e-6 * zt & |
---|
280 | & + 1.0227e-4 ) * zttl |
---|
281 | |
---|
282 | zrhoptl= zr1tl & |
---|
283 | & + zs * zr2tl & |
---|
284 | & + zsr * zs * zr3tl & |
---|
285 | & + zr3 * zs * zsrtl & |
---|
286 | & + ( 2. * zr4 * zs + zr2 & |
---|
287 | & + zr3 * zsr ) * zstl |
---|
288 | |
---|
289 | zetl = ( -2.*3.508914e-8 * zt & |
---|
290 | & - 1.248266e-8 ) * zttl |
---|
291 | |
---|
292 | zbwtl= ( 2.*1.296821e-6 * zt & |
---|
293 | & - 5.782165e-9 ) * zttl |
---|
294 | |
---|
295 | zbtl = zbwtl & |
---|
296 | & + zs * zetl & |
---|
297 | & + ze * zstl |
---|
298 | |
---|
299 | zctl = ( -2.*7.267926e-5 * zt & |
---|
300 | & + 2.598241e-3 ) * zttl |
---|
301 | |
---|
302 | zawtl= ( ( 3.*5.939910e-6 * zt & |
---|
303 | & +2.*2.512549e-3 ) * zt & |
---|
304 | & - 0.1028859 ) * zttl |
---|
305 | |
---|
306 | zatl = zawtl & |
---|
307 | & + zd * zs * zsrtl & |
---|
308 | & + zs * zctl & |
---|
309 | & + ( zd * zsr + zc ) * zstl |
---|
310 | |
---|
311 | zb1tl= ( -2.*0.1909078 * zt & |
---|
312 | & + 7.390729 ) * zttl |
---|
313 | |
---|
314 | za1tl= ( ( 3.*2.326469e-3 * zt & |
---|
315 | & +2.*1.553190 ) * zt & |
---|
316 | & - 65.00517 ) * zttl |
---|
317 | |
---|
318 | zkwtl= ( ( ( -4.*1.361629e-4 * zt & |
---|
319 | & -3.*1.852732e-2 ) * zt & |
---|
320 | & -2.*30.41638 ) * zt & |
---|
321 | & + 2098.925 ) * zttl |
---|
322 | |
---|
323 | zk0tl= zkwtl & |
---|
324 | & + zb1 * zs * zsrtl & |
---|
325 | & + zs * zsr * zb1tl & |
---|
326 | & + zs * za1tl & |
---|
327 | & + ( zb1 * zsr + za1 ) * zstl |
---|
328 | |
---|
329 | ! Masked in situ density anomaly |
---|
330 | |
---|
331 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
332 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
333 | |
---|
334 | prd_tl(ji,jj,jk) = tmask(ji,jj,jk) * zrdc2 * & |
---|
335 | & ( zrhoptl & |
---|
336 | & - zrdc2 * zh * zrdc1**2 * zrhop & |
---|
337 | & * ( zk0tl & |
---|
338 | & - zh * ( zatl & |
---|
339 | & - zh * zbtl ) ) )& |
---|
340 | & / rau0 |
---|
341 | |
---|
342 | END DO |
---|
343 | |
---|
344 | END DO |
---|
345 | ! ! =============== |
---|
346 | END DO ! End of slab |
---|
347 | ! ! =============== |
---|
348 | |
---|
349 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
350 | |
---|
351 | ! ! =============== |
---|
352 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
353 | ! ! =============== |
---|
354 | DO jj = 1, jpj |
---|
355 | DO ji = 1, jpi |
---|
356 | zttl = ptem_tl(ji,jj,jk) |
---|
357 | ! ... density and potential volumic mass |
---|
358 | prd_tl(ji,jj,jk) = ( - ralpha * zttl ) * tmask(ji,jj,jk) |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | ! ! =============== |
---|
362 | END DO ! End of slab |
---|
363 | ! ! =============== |
---|
364 | |
---|
365 | |
---|
366 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
367 | |
---|
368 | ! ! =============== |
---|
369 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
370 | ! ! =============== |
---|
371 | DO jj = 1, jpj |
---|
372 | DO ji = 1, jpi |
---|
373 | zttl = ptem_tl(ji,jj,jk) |
---|
374 | zstl = psal_tl(ji,jj,jk) |
---|
375 | ! ... density and potential volumic mass |
---|
376 | prd_tl(ji,jj,jk) = ( rbeta * zstl - ralpha * zttl ) * tmask(ji,jj,jk) |
---|
377 | END DO |
---|
378 | END DO |
---|
379 | ! ! =============== |
---|
380 | END DO ! End of slab |
---|
381 | ! ! =============== |
---|
382 | |
---|
383 | CASE DEFAULT |
---|
384 | |
---|
385 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
386 | CALL ctl_stop( ctmp1 ) |
---|
387 | |
---|
388 | END SELECT |
---|
389 | |
---|
390 | END SUBROUTINE eos_insitu_tan |
---|
391 | |
---|
392 | SUBROUTINE eos_insitu_pot_tan( ptem, psal, ptem_tl, psal_tl, prd_tl, prhop_tl) |
---|
393 | !!---------------------------------------------------------------------- |
---|
394 | !! *** ROUTINE eos_insitu_pot_tan *** |
---|
395 | !! |
---|
396 | !! ** Purpose or the direct routine: |
---|
397 | !! Compute the in situ density (ratio rho/rau0) and the |
---|
398 | !! potential volumic mass (Kg/m3) from potential temperature and |
---|
399 | !! salinity fields using an equation of state defined through the |
---|
400 | !! namelist parameter neos. |
---|
401 | !! |
---|
402 | !! ** Method : |
---|
403 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
404 | !! the in situ density is computed directly as a function of |
---|
405 | !! potential temperature relative to the surface (the opa t |
---|
406 | !! variable), salt and pressure (assuming no pressure variation |
---|
407 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
408 | !! is approximated by the depth in meters. |
---|
409 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
410 | !! rhop(t,s) = rho(t,s,0) |
---|
411 | !! with pressure p decibars |
---|
412 | !! potential temperature t deg celsius |
---|
413 | !! salinity s psu |
---|
414 | !! reference volumic mass rau0 kg/m**3 |
---|
415 | !! in situ volumic mass rho kg/m**3 |
---|
416 | !! in situ density anomalie prd no units |
---|
417 | !! |
---|
418 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
419 | !! t = 40 deg celcius, s=40 psu |
---|
420 | !! |
---|
421 | !! neos = 1 : linear equation of state function of temperature only |
---|
422 | !! prd(t) = ( rho(t) - rau0 ) / rau0 = 0.028 - ralpha * t |
---|
423 | !! rhop(t,s) = rho(t,s) |
---|
424 | !! |
---|
425 | !! neos = 2 : linear equation of state function of temperature and |
---|
426 | !! salinity |
---|
427 | !! prd(t,s) = ( rho(t,s) - rau0 ) / rau0 |
---|
428 | !! = rbeta * s - ralpha * tn - 1. |
---|
429 | !! rhop(t,s) = rho(t,s) |
---|
430 | !! Note that no boundary condition problem occurs in this routine |
---|
431 | !! as (tn,sn) or (ta,sa) are defined over the whole domain. |
---|
432 | !! |
---|
433 | !! ** Action : - prd , the in situ density (no units) |
---|
434 | !! - prhop, the potential volumic mass (Kg/m3) |
---|
435 | !! |
---|
436 | !! References : |
---|
437 | !! Jackett, D.R., and T.J. McDougall. J. Atmos. Ocean. Tech., 1994 |
---|
438 | !! Brown, J. A. and K. A. Campana. Mon. Weather Rev., 1978 |
---|
439 | !! |
---|
440 | !!---------------------------------------------------------------------- |
---|
441 | !! * Arguments |
---|
442 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
443 | ptem, & ! potential temperature |
---|
444 | psal ! salinity |
---|
445 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
446 | ptem_tl,& ! potential temperature |
---|
447 | psal_tl ! salinity |
---|
448 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( out ) :: & |
---|
449 | prd_tl, & ! potential density (surface referenced) |
---|
450 | prhop_tl ! potential density (surface referenced) |
---|
451 | !! * Local declarations |
---|
452 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
453 | REAL(wp) :: & ! temporary scalars |
---|
454 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
455 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
456 | zttl, zstl, zhtl, zsrtl, zr1tl, zr2tl, zr3tl, & |
---|
457 | zr4tl, zrhoptl, zetl, zbwtl, & |
---|
458 | zbtl, zdtl, zctl, zawtl, zatl, zb1tl, za1tl, & |
---|
459 | zkwtl, zk0tl, zpes, zrdc1, zrdc2, zeps, & |
---|
460 | zmask |
---|
461 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zws |
---|
462 | !!---------------------------------------------------------------------- |
---|
463 | |
---|
464 | ! initialization (in not already done) |
---|
465 | IF( neos_init == 0 ) CALL eos_init |
---|
466 | |
---|
467 | |
---|
468 | SELECT CASE ( neos ) |
---|
469 | |
---|
470 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
471 | |
---|
472 | #ifdef key_sp |
---|
473 | zeps = 1.e-7 |
---|
474 | #else |
---|
475 | zeps = 1.e-14 |
---|
476 | #endif |
---|
477 | |
---|
478 | !CDIR NOVERRCHK |
---|
479 | zws(:,:,:) = SQRT( ABS( psal(:,:,:) ) ) |
---|
480 | |
---|
481 | ! ! =============== |
---|
482 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
483 | ! ! =============== |
---|
484 | DO jj = 1, jpj |
---|
485 | DO ji = 1, jpi |
---|
486 | zt = ptem(ji,jj,jk) |
---|
487 | zs = psal(ji,jj,jk) |
---|
488 | ! depth |
---|
489 | zh = fsdept(ji,jj,jk) |
---|
490 | ! square root salinity |
---|
491 | zsr = zws(ji,jj,jk) |
---|
492 | ! compute volumic mass pure water at atm pressure |
---|
493 | zr1 = ( ( ( ( 6.536332e-9 * zt - 1.120083e-6 ) * zt & |
---|
494 | & + 1.001685e-4 ) * zt - 9.095290e-3 ) * zt & |
---|
495 | & + 6.793952e-2 ) * zt + 999.842594 |
---|
496 | ! seawater volumic mass atm pressure |
---|
497 | zr2 = ( ( ( 5.3875e-9 * zt - 8.2467e-7 ) * zt & |
---|
498 | & + 7.6438e-5 ) * zt - 4.0899e-3 ) * zt & |
---|
499 | & + 0.824493 |
---|
500 | zr3 = ( -1.6546e-6 * zt + 1.0227e-4 ) * zt - 5.72466e-3 |
---|
501 | zr4 = 4.8314e-4 |
---|
502 | |
---|
503 | ! potential volumic mass (reference to the surface) |
---|
504 | zrhop= ( zr4 * zs + zr3 * zsr + zr2 ) * zs + zr1 |
---|
505 | |
---|
506 | ! add the compression terms |
---|
507 | ze = ( -3.508914e-8 * zt - 1.248266e-8 ) * zt - 2.595994e-6 |
---|
508 | zbw = ( 1.296821e-6 * zt - 5.782165e-9 ) * zt + 1.045941e-4 |
---|
509 | zb = zbw + ze * zs |
---|
510 | |
---|
511 | zd = -2.042967e-2 |
---|
512 | zc = (-7.267926e-5 * zt + 2.598241e-3 ) * zt + 0.1571896 |
---|
513 | zaw= ( ( 5.939910e-6 * zt + 2.512549e-3 ) * zt - 0.1028859 ) * zt - 4.721788 |
---|
514 | za = ( zd * zsr + zc ) * zs + zaw |
---|
515 | |
---|
516 | zb1 = (-0.1909078 * zt + 7.390729 ) * zt - 55.87545 |
---|
517 | za1 = ( ( 2.326469e-3 * zt + 1.553190 ) * zt - 65.00517 & |
---|
518 | & ) * zt + 1044.077 |
---|
519 | zkw = ( ( (-1.361629e-4 * zt - 1.852732e-2 ) * zt - 30.41638 & |
---|
520 | & ) * zt + 2098.925 ) * zt + 190925.6 |
---|
521 | zk0 = ( zb1 * zsr + za1 ) * zs + zkw |
---|
522 | |
---|
523 | |
---|
524 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
525 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
526 | |
---|
527 | ! Tangent linear part |
---|
528 | |
---|
529 | zttl = ptem_tl(ji,jj,jk) |
---|
530 | zstl = psal_tl(ji,jj,jk) |
---|
531 | |
---|
532 | zsrtl= ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
533 | & * tmask(ji,jj,jk) * zstl |
---|
534 | |
---|
535 | zr1tl= ( ( ( ( 5.*6.536332e-9 * zt & |
---|
536 | & -4.*1.120083e-6 ) * zt & |
---|
537 | & +3.*1.001685e-4 ) * zt & |
---|
538 | & -2.*9.095290e-3 ) * zt & |
---|
539 | & + 6.793952e-2 ) * zttl |
---|
540 | |
---|
541 | zr2tl= ( ( ( 4.*5.3875e-9 * zt & |
---|
542 | & -3.*8.2467e-7 ) * zt & |
---|
543 | & +2.*7.6438e-5 ) * zt & |
---|
544 | & - 4.0899e-3 ) * zttl |
---|
545 | |
---|
546 | zr3tl= ( -2.*1.6546e-6 * zt & |
---|
547 | & + 1.0227e-4 ) * zttl |
---|
548 | |
---|
549 | zrhoptl= zr1tl & |
---|
550 | & + zs * zr2tl & |
---|
551 | & + zsr * zs * zr3tl & |
---|
552 | & + zr3 * zs * zsrtl & |
---|
553 | & + ( 2. * zr4 * zs + zr2 & |
---|
554 | & + zr3 * zsr ) * zstl |
---|
555 | |
---|
556 | prhop_tl(ji,jj,jk) = zrhoptl * tmask(ji,jj,jk) |
---|
557 | |
---|
558 | zetl = ( -2.*3.508914e-8 * zt & |
---|
559 | & - 1.248266e-8 ) * zttl |
---|
560 | |
---|
561 | zbwtl= ( 2.*1.296821e-6 * zt & |
---|
562 | & - 5.782165e-9 ) * zttl |
---|
563 | |
---|
564 | zbtl = zbwtl & |
---|
565 | & + zs * zetl & |
---|
566 | & + ze * zstl |
---|
567 | |
---|
568 | zctl = ( -2.*7.267926e-5 * zt & |
---|
569 | & + 2.598241e-3 ) * zttl |
---|
570 | |
---|
571 | zawtl= ( ( 3.*5.939910e-6 * zt & |
---|
572 | & +2.*2.512549e-3 ) * zt & |
---|
573 | & - 0.1028859 ) * zttl |
---|
574 | |
---|
575 | zatl = zawtl & |
---|
576 | & + zd * zs * zsrtl & |
---|
577 | & + zs * zctl & |
---|
578 | & + ( zd * zsr + zc ) * zstl |
---|
579 | |
---|
580 | zb1tl= ( -2.*0.1909078 * zt & |
---|
581 | & + 7.390729 ) * zttl |
---|
582 | |
---|
583 | za1tl= ( ( 3.*2.326469e-3 * zt & |
---|
584 | & +2.*1.553190 ) * zt & |
---|
585 | & - 65.00517 ) * zttl |
---|
586 | |
---|
587 | zkwtl= ( ( ( -4.*1.361629e-4 * zt & |
---|
588 | & -3.*1.852732e-2 ) * zt & |
---|
589 | & -2.*30.41638 ) * zt & |
---|
590 | & + 2098.925 ) * zttl |
---|
591 | |
---|
592 | zk0tl= zkwtl & |
---|
593 | & + zb1 * zs * zsrtl & |
---|
594 | & + zs * zsr * zb1tl & |
---|
595 | & + zs * za1tl & |
---|
596 | & + ( zb1 * zsr + za1 ) * zstl |
---|
597 | |
---|
598 | ! Masked in situ density anomaly |
---|
599 | |
---|
600 | prd_tl(ji,jj,jk) = tmask(ji,jj,jk) * zrdc2 * & |
---|
601 | & ( zrhoptl & |
---|
602 | & - zrdc2 * zh * zrdc1**2 * zrhop & |
---|
603 | & * ( zk0tl & |
---|
604 | & - zh * ( zatl & |
---|
605 | & - zh * zbtl ) ) )& |
---|
606 | & / rau0 |
---|
607 | END DO |
---|
608 | |
---|
609 | END DO |
---|
610 | ! ! =============== |
---|
611 | END DO ! End of slab |
---|
612 | ! ! =============== |
---|
613 | |
---|
614 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
615 | |
---|
616 | ! ! =============== |
---|
617 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
618 | ! ! =============== |
---|
619 | DO jj = 1, jpj |
---|
620 | DO ji = 1, jpi |
---|
621 | zttl = ptem_tl(ji,jj,jk) |
---|
622 | ! ... density and potential volumic mass |
---|
623 | prd_tl (ji,jj,jk) = ( - ralpha * zttl ) * tmask(ji,jj,jk) |
---|
624 | prhop_tl(ji,jj,jk) = ( rau0 * prd_tl(ji,jj,jk) ) * tmask(ji,jj,jk) |
---|
625 | END DO |
---|
626 | END DO |
---|
627 | ! ! =============== |
---|
628 | END DO ! End of slab |
---|
629 | ! ! =============== |
---|
630 | |
---|
631 | |
---|
632 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
633 | |
---|
634 | ! ! =============== |
---|
635 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
636 | ! ! =============== |
---|
637 | DO jj = 1, jpj |
---|
638 | DO ji = 1, jpi |
---|
639 | zttl = ptem_tl(ji,jj,jk) |
---|
640 | zstl = psal_tl(ji,jj,jk) |
---|
641 | ! ... density and potential volumic mass |
---|
642 | prd_tl(ji,jj,jk) = ( rbeta * zstl - ralpha * zttl ) * tmask(ji,jj,jk) |
---|
643 | prhop_tl(ji,jj,jk) = ( rau0 * prd_tl(ji,jj,jk) ) * tmask(ji,jj,jk) |
---|
644 | END DO |
---|
645 | END DO |
---|
646 | ! ! =============== |
---|
647 | END DO ! End of slab |
---|
648 | ! ! =============== |
---|
649 | |
---|
650 | CASE DEFAULT |
---|
651 | |
---|
652 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
653 | CALL ctl_stop( ctmp1 ) |
---|
654 | |
---|
655 | END SELECT |
---|
656 | |
---|
657 | END SUBROUTINE eos_insitu_pot_tan |
---|
658 | SUBROUTINE eos_insitu_2d_tan( ptem, psal, pdep, ptem_tl, psal_tl, prd_tl ) |
---|
659 | !!----------------------------------------------------------------------- |
---|
660 | !! |
---|
661 | !! *** ROUTINE eos_insitu_2d_tan : TL OF ROUTINE eos_insitu_2d *** |
---|
662 | !! |
---|
663 | !! ** Purpose of direct routine : Compute the in situ density |
---|
664 | !! (ratio rho/rau0) from potential temperature and salinity |
---|
665 | !! using an equation of state defined through the namelist |
---|
666 | !! parameter neos. * 2D field case |
---|
667 | !! |
---|
668 | !! ** Method of direct routine : 3 cases: |
---|
669 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
670 | !! the in situ density is computed directly as a function of |
---|
671 | !! potential temperature relative to the surface (the opa t |
---|
672 | !! variable), salt and pressure (assuming no pressure variation |
---|
673 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
674 | !! is approximated by the depth in meters. |
---|
675 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
676 | !! with pressure p decibars |
---|
677 | !! potential temperature t deg celsius |
---|
678 | !! salinity s psu |
---|
679 | !! reference volumic mass rau0 kg/m**3 |
---|
680 | !! in situ volumic mass rho kg/m**3 |
---|
681 | !! in situ density anomalie prd no units |
---|
682 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
683 | !! t = 40 deg celcius, s=40 psu |
---|
684 | !! neos = 1 : linear equation of state function of temperature only |
---|
685 | !! prd(t) = 0.0285 - ralpha * t |
---|
686 | !! neos = 2 : linear equation of state function of temperature and |
---|
687 | !! salinity |
---|
688 | !! prd(t,s) = rbeta * s - ralpha * tn - 1. |
---|
689 | !! Note that no boundary condition problem occurs in this routine |
---|
690 | !! as (ptem,psal) are defined over the whole domain. |
---|
691 | !! |
---|
692 | !! ** Comments on Adjoint Routine : |
---|
693 | !! Care has been taken to avoid division by zero when computing |
---|
694 | !! the inverse of the square root of salinity at masked salinity |
---|
695 | !! points. |
---|
696 | !! |
---|
697 | !! ** Action : |
---|
698 | !! |
---|
699 | !! References : |
---|
700 | !! |
---|
701 | !! History : |
---|
702 | !! 8.2 ! 05-03 ((F. Van den Berghe, A. Weaver, N. Daget) - eostan.F |
---|
703 | !! 9.0 ! 07-07 (K. Mogensen) Initial version based on eostan.F |
---|
704 | !! ! 08-07 (A. Vidard) bug fix in computation of prd_tl if neos=1 |
---|
705 | !!----------------------------------------------------------------------- |
---|
706 | !! * Modules used |
---|
707 | !! * Arguments |
---|
708 | REAL(wp), DIMENSION(jpi,jpj), INTENT( in ) :: & |
---|
709 | & ptem, & ! potential temperature |
---|
710 | & psal, & ! salinity |
---|
711 | & pdep, & ! depth |
---|
712 | & ptem_tl, & ! TL of potential temperature |
---|
713 | & psal_tl ! TL of salinity |
---|
714 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out ) :: & |
---|
715 | & prd_tl ! TL of potential density (surface referenced) |
---|
716 | |
---|
717 | !! * Local declarations |
---|
718 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
719 | REAL(wp) :: & ! temporary scalars |
---|
720 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
721 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
722 | zttl, zstl, zhtl, zsrtl, zr1tl, zr2tl, zr3tl, & |
---|
723 | zr4tl, zrhoptl, zetl, zbwtl, & |
---|
724 | zbtl, zdtl, zctl, zawtl, zatl, zb1tl, za1tl, & |
---|
725 | zkwtl, zk0tl, zpes, zrdc1, zrdc2, zeps, & |
---|
726 | zmask |
---|
727 | REAL(wp), DIMENSION(jpi,jpj) :: zws |
---|
728 | !!---------------------------------------------------------------------- |
---|
729 | |
---|
730 | |
---|
731 | ! initialization (in not already done) |
---|
732 | IF( neos_init == 0 ) CALL eos_init |
---|
733 | |
---|
734 | SELECT CASE ( neos ) |
---|
735 | |
---|
736 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
737 | |
---|
738 | #ifdef key_sp |
---|
739 | zeps = 1.e-7 |
---|
740 | #else |
---|
741 | zeps = 1.e-14 |
---|
742 | #endif |
---|
743 | |
---|
744 | !CDIR NOVERRCHK |
---|
745 | DO jj = 1, jpjm1 |
---|
746 | !CDIR NOVERRCHK |
---|
747 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
748 | zws(ji,jj) = SQRT( ABS( psal(ji,jj) ) ) |
---|
749 | END DO |
---|
750 | END DO |
---|
751 | |
---|
752 | ! ! =============== |
---|
753 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
754 | ! ! =============== |
---|
755 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
756 | |
---|
757 | zmask = tmask(ji,jj,1) ! land/sea bottom mask = surf. mask |
---|
758 | |
---|
759 | zt = ptem (ji,jj) ! interpolated T |
---|
760 | zs = psal (ji,jj) ! interpolated S |
---|
761 | zsr= zws(ji,jj) ! square root of interpolated S |
---|
762 | zh = pdep(ji,jj) ! depth at the partial step level |
---|
763 | ! compute volumic mass pure water at atm pressure |
---|
764 | zr1= ( ( ( ( 6.536332e-9*zt-1.120083e-6 )*zt+1.001685e-4)*zt & |
---|
765 | -9.095290e-3 )*zt+6.793952e-2 )*zt+999.842594 |
---|
766 | ! seawater volumic mass atm pressure |
---|
767 | zr2= ( ( ( 5.3875e-9*zt-8.2467e-7 ) *zt+7.6438e-5 ) *zt & |
---|
768 | -4.0899e-3 ) *zt+0.824493 |
---|
769 | zr3= ( -1.6546e-6*zt+1.0227e-4 ) *zt-5.72466e-3 |
---|
770 | zr4= 4.8314e-4 |
---|
771 | |
---|
772 | ! potential volumic mass (reference to the surface) |
---|
773 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
774 | |
---|
775 | ! add the compression terms |
---|
776 | ze = ( -3.508914e-8*zt-1.248266e-8 ) *zt-2.595994e-6 |
---|
777 | zbw= ( 1.296821e-6*zt-5.782165e-9 ) *zt+1.045941e-4 |
---|
778 | zb = zbw + ze * zs |
---|
779 | |
---|
780 | zd = -2.042967e-2 |
---|
781 | zc = (-7.267926e-5*zt+2.598241e-3 ) *zt+0.1571896 |
---|
782 | zaw= ( ( 5.939910e-6*zt+2.512549e-3 ) *zt-0.1028859 ) *zt - 4.721788 |
---|
783 | za = ( zd*zsr + zc ) *zs + zaw |
---|
784 | |
---|
785 | zb1= (-0.1909078*zt+7.390729 ) *zt-55.87545 |
---|
786 | za1= ( ( 2.326469e-3*zt+1.553190)*zt-65.00517 ) *zt+1044.077 |
---|
787 | zkw= ( ( (-1.361629e-4*zt-1.852732e-2 ) *zt-30.41638 ) *zt + 2098.925 ) *zt+190925.6 |
---|
788 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
789 | |
---|
790 | ! Tangent linear part |
---|
791 | |
---|
792 | zttl = ptem_tl(ji,jj) |
---|
793 | zstl = psal_tl(ji,jj) |
---|
794 | |
---|
795 | zsrtl= ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
796 | & * tmask(ji,jj,1) * zstl |
---|
797 | |
---|
798 | zr1tl= ( ( ( ( 5.*6.536332e-9 * zt & |
---|
799 | & -4.*1.120083e-6 ) * zt & |
---|
800 | & +3.*1.001685e-4 ) * zt & |
---|
801 | & -2.*9.095290e-3 ) * zt & |
---|
802 | & + 6.793952e-2 ) * zttl |
---|
803 | |
---|
804 | zr2tl= ( ( ( 4.*5.3875e-9 * zt & |
---|
805 | & -3.*8.2467e-7 ) * zt & |
---|
806 | & +2.*7.6438e-5 ) * zt & |
---|
807 | & - 4.0899e-3 ) * zttl |
---|
808 | |
---|
809 | zr3tl= ( -2.*1.6546e-6 * zt & |
---|
810 | & + 1.0227e-4 ) * zttl |
---|
811 | |
---|
812 | zrhoptl= zr1tl & |
---|
813 | & + zs * zr2tl & |
---|
814 | & + zsr * zs * zr3tl & |
---|
815 | & + zr3 * zs * zsrtl & |
---|
816 | & + ( 2. * zr4 * zs + zr2 & |
---|
817 | & + zr3 * zsr ) * zstl |
---|
818 | |
---|
819 | zetl = ( -2.*3.508914e-8 * zt & |
---|
820 | & - 1.248266e-8 ) * zttl |
---|
821 | |
---|
822 | zbwtl= ( 2.*1.296821e-6 * zt & |
---|
823 | & - 5.782165e-9 ) * zttl |
---|
824 | |
---|
825 | zbtl = zbwtl & |
---|
826 | & + zs * zetl & |
---|
827 | & + ze * zstl |
---|
828 | |
---|
829 | zctl = ( -2.*7.267926e-5 * zt & |
---|
830 | & + 2.598241e-3 ) * zttl |
---|
831 | |
---|
832 | zawtl= ( ( 3.*5.939910e-6 * zt & |
---|
833 | & +2.*2.512549e-3 ) * zt & |
---|
834 | & - 0.1028859 ) * zttl |
---|
835 | |
---|
836 | zatl = zawtl & |
---|
837 | & + zd * zs * zsrtl & |
---|
838 | & + zs * zctl & |
---|
839 | & + ( zd * zsr + zc ) * zstl |
---|
840 | |
---|
841 | zb1tl= ( -2.*0.1909078 * zt & |
---|
842 | & + 7.390729 ) * zttl |
---|
843 | |
---|
844 | za1tl= ( ( 3.*2.326469e-3 * zt & |
---|
845 | & +2.*1.553190 ) * zt & |
---|
846 | & - 65.00517 ) * zttl |
---|
847 | |
---|
848 | zkwtl= ( ( ( -4.*1.361629e-4 * zt & |
---|
849 | & -3.*1.852732e-2 ) * zt & |
---|
850 | & -2.*30.41638 ) * zt & |
---|
851 | & + 2098.925 ) * zttl |
---|
852 | |
---|
853 | zk0tl= zkwtl & |
---|
854 | & + zb1 * zs * zsrtl & |
---|
855 | & + zs * zsr * zb1tl & |
---|
856 | & + zs * za1tl & |
---|
857 | & + ( zb1 * zsr + za1 ) * zstl |
---|
858 | |
---|
859 | ! Masked in situ density anomaly |
---|
860 | |
---|
861 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
862 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
863 | |
---|
864 | prd_tl(ji,jj) = tmask(ji,jj,1) * zrdc2 * & |
---|
865 | & ( zrhoptl & |
---|
866 | & - zrdc2 * zh * zrdc1**2 * zrhop & |
---|
867 | & * ( zk0tl & |
---|
868 | & - zh * ( zatl & |
---|
869 | & - zh * zbtl ) ) )& |
---|
870 | & / rau0 |
---|
871 | |
---|
872 | |
---|
873 | END DO |
---|
874 | ! ! =============== |
---|
875 | END DO ! End of slab |
---|
876 | ! ! =============== |
---|
877 | |
---|
878 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
879 | |
---|
880 | ! ! =============== |
---|
881 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
882 | ! ! =============== |
---|
883 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
884 | zttl = ptem_tl(ji,jj) |
---|
885 | ! ... density and potential volumic mass |
---|
886 | prd_tl(ji,jj) = ( - ralpha * zttl ) * tmask(ji,jj,1) |
---|
887 | |
---|
888 | END DO |
---|
889 | ! ! =============== |
---|
890 | END DO ! End of slab |
---|
891 | ! ! =============== |
---|
892 | |
---|
893 | |
---|
894 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
895 | |
---|
896 | ! ! =============== |
---|
897 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
898 | ! ! =============== |
---|
899 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
900 | zttl = ptem_tl(ji,jj) |
---|
901 | zstl = psal_tl(ji,jj) |
---|
902 | prd_tl (ji,jj) = ( rbeta * zstl - ralpha * zttl ) * tmask(ji,jj,1) |
---|
903 | END DO |
---|
904 | ! ! =============== |
---|
905 | END DO ! End of slab |
---|
906 | ! ! =============== |
---|
907 | |
---|
908 | CASE DEFAULT |
---|
909 | |
---|
910 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
911 | CALL ctl_stop( ctmp1 ) |
---|
912 | |
---|
913 | END SELECT |
---|
914 | |
---|
915 | |
---|
916 | END SUBROUTINE eos_insitu_2d_tan |
---|
917 | |
---|
918 | SUBROUTINE eos_insitu_adj(ptem, psal, ptem_ad, psal_ad, prd_ad) |
---|
919 | !!----------------------------------------------------------------------- |
---|
920 | !! |
---|
921 | !! *** ROUTINE eos_insitu_tan : Adjoint OF ROUTINE eos_insitu *** |
---|
922 | !! |
---|
923 | !! ** Purpose of direct routine : Compute the in situ density |
---|
924 | !! (ratio rho/rau0) from potential temperature and salinity |
---|
925 | !! using an equation of state defined through the namelist |
---|
926 | !! parameter neos. |
---|
927 | !! |
---|
928 | !! ** Method of direct routine : 3 cases: |
---|
929 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
930 | !! the in situ density is computed directly as a function of |
---|
931 | !! potential temperature relative to the surface (the opa t |
---|
932 | !! variable), salt and pressure (assuming no pressure variation |
---|
933 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
934 | !! is approximated by the depth in meters. |
---|
935 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
936 | !! with pressure p decibars |
---|
937 | !! potential temperature t deg celsius |
---|
938 | !! salinity s psu |
---|
939 | !! reference volumic mass rau0 kg/m**3 |
---|
940 | !! in situ volumic mass rho kg/m**3 |
---|
941 | !! in situ density anomalie prd no units |
---|
942 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
943 | !! t = 40 deg celcius, s=40 psu |
---|
944 | !! neos = 1 : linear equation of state function of temperature only |
---|
945 | !! prd(t) = 0.0285 - ralpha * t |
---|
946 | !! neos = 2 : linear equation of state function of temperature and |
---|
947 | !! salinity |
---|
948 | !! prd(t,s) = rbeta * s - ralpha * tn - 1. |
---|
949 | !! Note that no boundary condition problem occurs in this routine |
---|
950 | !! as (ptem,psal) are defined over the whole domain. |
---|
951 | !! |
---|
952 | !! ** Comments on Adjoint Routine : |
---|
953 | !! Care has been taken to avoid division by zero when computing |
---|
954 | !! the inverse of the square root of salinity at masked salinity |
---|
955 | !! points. |
---|
956 | !! |
---|
957 | !! ** Action : |
---|
958 | !! |
---|
959 | !! References : |
---|
960 | !! |
---|
961 | !! History : |
---|
962 | !! 8.2 ! 05-03 ((F. Van den Berghe, A. Weaver, N. Daget) - eostan.F |
---|
963 | !! 9.0 ! 08-08 (A. Vidard) 9.0 version |
---|
964 | !!----------------------------------------------------------------------- |
---|
965 | !! * Modules used |
---|
966 | !! * Arguments |
---|
967 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
968 | ptem, & ! potential temperature |
---|
969 | psal ! salinity |
---|
970 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
971 | ptem_ad, & ! potential temperature |
---|
972 | psal_ad ! salinity |
---|
973 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
974 | prd_ad ! potential density (surface referenced) |
---|
975 | !! * Local declarations |
---|
976 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
977 | REAL(wp) :: & ! temporary scalars |
---|
978 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
979 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
980 | ztad, zsad, zhad, zsrad, zr1ad, zr2ad, zr3ad, & |
---|
981 | zr4ad, zrhopad, zead, zbwad, & |
---|
982 | zbad, zdad, zcad, zawad, zaad, zb1ad, za1ad, & |
---|
983 | zkwad, zk0ad, zpes, zrdc1, zrdc2, zeps, & |
---|
984 | zmask |
---|
985 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zws |
---|
986 | !!---------------------------------------------------------------------- |
---|
987 | |
---|
988 | |
---|
989 | ! initialization (in not already done) |
---|
990 | IF( neos_init == 0 ) CALL eos_init |
---|
991 | ! initialization of adjoint variables |
---|
992 | ztad = 0.0_wp |
---|
993 | zsad = 0.0_wp |
---|
994 | zhad = 0.0_wp |
---|
995 | zsrad = 0.0_wp |
---|
996 | zr1ad = 0.0_wp |
---|
997 | zr2ad = 0.0_wp |
---|
998 | zr3ad = 0.0_wp |
---|
999 | zr4ad = 0.0_wp |
---|
1000 | zrhopad = 0.0_wp |
---|
1001 | zead = 0.0_wp |
---|
1002 | zbwad = 0.0_wp |
---|
1003 | zbad = 0.0_wp |
---|
1004 | zdad = 0.0_wp |
---|
1005 | zcad = 0.0_wp |
---|
1006 | zawad = 0.0_wp |
---|
1007 | zaad = 0.0_wp |
---|
1008 | zb1ad = 0.0_wp |
---|
1009 | za1ad = 0.0_wp |
---|
1010 | zkwad = 0.0_wp |
---|
1011 | zk0ad = 0.0_wp |
---|
1012 | |
---|
1013 | SELECT CASE ( neos ) |
---|
1014 | |
---|
1015 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
1016 | |
---|
1017 | #ifdef key_sp |
---|
1018 | zeps = 1.e-7 |
---|
1019 | #else |
---|
1020 | zeps = 1.e-14 |
---|
1021 | #endif |
---|
1022 | |
---|
1023 | !CDIR NOVERRCHK |
---|
1024 | zws(:,:,:) = SQRT( ABS( psal(:,:,:) ) ) |
---|
1025 | |
---|
1026 | ! ! =============== |
---|
1027 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
1028 | ! ! =============== |
---|
1029 | DO jj = 1, jpj |
---|
1030 | DO ji = 1, jpi |
---|
1031 | zt = ptem(ji,jj,jk) |
---|
1032 | zs = psal(ji,jj,jk) |
---|
1033 | ! depth |
---|
1034 | zh = fsdept(ji,jj,jk) |
---|
1035 | ! square root salinity |
---|
1036 | zsr= zws(ji,jj,jk) |
---|
1037 | ! compute volumic mass pure water at atm pressure |
---|
1038 | zr1= ( ( ( ( 6.536332e-9*zt-1.120083e-6 )*zt+1.001685e-4)*zt & |
---|
1039 | -9.095290e-3 )*zt+6.793952e-2 )*zt+999.842594 |
---|
1040 | ! seawater volumic mass atm pressure |
---|
1041 | zr2= ( ( ( 5.3875e-9*zt-8.2467e-7 ) *zt+7.6438e-5 ) *zt & |
---|
1042 | -4.0899e-3 ) *zt+0.824493 |
---|
1043 | zr3= ( -1.6546e-6*zt+1.0227e-4 ) *zt-5.72466e-3 |
---|
1044 | zr4= 4.8314e-4 |
---|
1045 | |
---|
1046 | ! potential volumic mass (reference to the surface) |
---|
1047 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
1048 | |
---|
1049 | ! add the compression terms |
---|
1050 | ze = ( -3.508914e-8*zt-1.248266e-8 ) *zt-2.595994e-6 |
---|
1051 | zbw= ( 1.296821e-6*zt-5.782165e-9 ) *zt+1.045941e-4 |
---|
1052 | zb = zbw + ze * zs |
---|
1053 | |
---|
1054 | zd = -2.042967e-2 |
---|
1055 | zc = (-7.267926e-5*zt+2.598241e-3 ) *zt+0.1571896 |
---|
1056 | zaw= ( ( 5.939910e-6*zt+2.512549e-3 ) *zt-0.1028859 ) *zt - 4.721788 |
---|
1057 | za = ( zd*zsr + zc ) *zs + zaw |
---|
1058 | |
---|
1059 | zb1= (-0.1909078*zt+7.390729 ) *zt-55.87545 |
---|
1060 | za1= ( ( 2.326469e-3*zt+1.553190)*zt-65.00517 ) *zt+1044.077 |
---|
1061 | zkw= ( ( (-1.361629e-4*zt-1.852732e-2 ) *zt-30.41638 ) *zt + 2098.925 ) *zt+190925.6 |
---|
1062 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
1063 | |
---|
1064 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
1065 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
1066 | ! ============ |
---|
1067 | ! Adjoint part |
---|
1068 | ! ============ |
---|
1069 | |
---|
1070 | ! Masked in situ density anomaly |
---|
1071 | |
---|
1072 | zrhopad = zrhopad + prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1073 | & * zrdc2 / rau0 |
---|
1074 | zk0ad = zk0ad - prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1075 | & * zrdc2 * zrdc2 * zh & |
---|
1076 | & * zrdc1**2 * zrhop & |
---|
1077 | & / rau0 |
---|
1078 | zaad = zaad + prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1079 | & * zrdc2 * zrdc2 * zh & |
---|
1080 | & * zrdc1**2 * zrhop & |
---|
1081 | & * zh / rau0 |
---|
1082 | zbad = zbad - prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1083 | & * zrdc2 * zrdc2 * zh & |
---|
1084 | & * zrdc1**2 * zrhop & |
---|
1085 | & * zh * zh / rau0 |
---|
1086 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1087 | |
---|
1088 | zkwad = zkwad + zk0ad |
---|
1089 | zsrad = zsrad + zk0ad * zb1 * zs |
---|
1090 | zb1ad = zb1ad + zk0ad * zs * zsr |
---|
1091 | za1ad = za1ad + zk0ad * zs |
---|
1092 | zsad = zsad + zk0ad * ( zb1 * zsr + za1 ) |
---|
1093 | zk0ad = 0.0_wp |
---|
1094 | |
---|
1095 | ztad = ztad + zkwad * ( ( (-4.*1.361629e-4 * zt & |
---|
1096 | & -3.*1.852732e-2 ) * zt & |
---|
1097 | & -2.*30.41638 ) * zt & |
---|
1098 | & + 2098.925 ) |
---|
1099 | zkwad = 0.0_wp |
---|
1100 | |
---|
1101 | ztad = ztad + za1ad * ( ( 3.*2.326469e-3 * zt & |
---|
1102 | & +2.*1.553190 ) * zt & |
---|
1103 | & - 65.00517 ) |
---|
1104 | za1ad = 0.0_wp |
---|
1105 | |
---|
1106 | ztad = ztad + zb1ad * (-2.*0.1909078 * zt & |
---|
1107 | & + 7.390729 ) |
---|
1108 | zb1ad = 0.0_wp |
---|
1109 | |
---|
1110 | zawad = zawad + zaad |
---|
1111 | zsrad = zsrad + zaad * zd * zs |
---|
1112 | zcad = zcad + zaad * zs |
---|
1113 | zsad = zsad + zaad * ( zd * zsr + zc ) |
---|
1114 | zaad = 0.0_wp |
---|
1115 | |
---|
1116 | ztad = ztad + zawad * ( ( 3.*5.939910e-6 * zt & |
---|
1117 | & +2.*2.512549e-3 ) * zt & |
---|
1118 | & - 0.1028859 ) |
---|
1119 | zawad = 0.0_wp |
---|
1120 | |
---|
1121 | ztad = ztad + zcad * (-2.*7.267926e-5 * zt & |
---|
1122 | & + 2.598241e-3 ) |
---|
1123 | zcad = 0.0_wp |
---|
1124 | |
---|
1125 | zbwad = zbwad + zbad |
---|
1126 | zead = zead + zbad * zs |
---|
1127 | zsad = zsad + zbad * ze |
---|
1128 | zbad = 0.0_wp |
---|
1129 | |
---|
1130 | ztad = ztad + zbwad * ( 2.*1.296821e-6 * zt & |
---|
1131 | & - 5.782165e-9 ) |
---|
1132 | zbwad = 0.0_wp |
---|
1133 | |
---|
1134 | ztad = ztad + zead * (-2.*3.508914e-8 * zt & |
---|
1135 | & - 1.248266e-8 ) |
---|
1136 | zead = 0.0_wp |
---|
1137 | |
---|
1138 | zr1ad = zr1ad + zrhopad |
---|
1139 | zr2ad = zr2ad + zrhopad * zs |
---|
1140 | zr3ad = zr3ad + zrhopad * zsr * zs |
---|
1141 | zsrad = zsrad + zrhopad * zr3 * zs |
---|
1142 | zsad = zsad + zrhopad * ( 2. * zr4 * zs + zr2 & |
---|
1143 | & + zr3 * zsr ) |
---|
1144 | zrhopad = 0.0_wp |
---|
1145 | |
---|
1146 | ztad = ztad + zr3ad * (-2.*1.6546e-6 * zt & |
---|
1147 | & + 1.0227e-4 ) |
---|
1148 | zr3ad = 0.0_wp |
---|
1149 | |
---|
1150 | ztad = ztad + zr2ad * ( ( ( 4.*5.3875e-9 * zt & |
---|
1151 | & -3.*8.2467e-7 ) * zt & |
---|
1152 | & +2.*7.6438e-5 ) * zt & |
---|
1153 | & - 4.0899e-3 ) |
---|
1154 | zr2ad = 0.0_wp |
---|
1155 | |
---|
1156 | ztad = ztad + zr1ad * ( ( ( ( 5.*6.536332e-9 * zt & |
---|
1157 | & -4.*1.120083e-6 ) * zt & |
---|
1158 | & +3.*1.001685e-4 ) * zt & |
---|
1159 | & -2.*9.095290e-3 ) * zt & |
---|
1160 | & + 6.793952e-2 ) |
---|
1161 | zr1ad = 0.0_wp |
---|
1162 | |
---|
1163 | zsad = zsad + zsrad * ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
1164 | & * tmask(ji,jj,jk) |
---|
1165 | zsrad = 0.0_wp |
---|
1166 | |
---|
1167 | psal_ad(ji,jj,jk) = psal_ad(ji,jj,jk) + zsad |
---|
1168 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) + ztad |
---|
1169 | ztad = 0.0_wp |
---|
1170 | zsad = 0.0_wp |
---|
1171 | END DO |
---|
1172 | |
---|
1173 | END DO |
---|
1174 | ! ! =============== |
---|
1175 | END DO ! End of slab |
---|
1176 | ! ! =============== |
---|
1177 | |
---|
1178 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
1179 | |
---|
1180 | ! ! =============== |
---|
1181 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
1182 | ! ! =============== |
---|
1183 | DO jj = 1, jpj |
---|
1184 | DO ji = 1, jpi |
---|
1185 | ! ... density and potential volumic mass |
---|
1186 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) - ralpha * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1187 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1188 | END DO |
---|
1189 | END DO |
---|
1190 | ! ! =============== |
---|
1191 | END DO ! End of slab |
---|
1192 | ! ! =============== |
---|
1193 | |
---|
1194 | |
---|
1195 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
1196 | |
---|
1197 | ! ! =============== |
---|
1198 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
1199 | ! ! =============== |
---|
1200 | DO jj = 1, jpj |
---|
1201 | DO ji = 1, jpi |
---|
1202 | ! ... density and potential volumic mass |
---|
1203 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) - ralpha * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1204 | psal_ad(ji,jj,jk) = psal_ad(ji,jj,jk) + rbeta * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1205 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1206 | END DO |
---|
1207 | END DO |
---|
1208 | ! ! =============== |
---|
1209 | END DO ! End of slab |
---|
1210 | ! ! =============== |
---|
1211 | |
---|
1212 | CASE DEFAULT |
---|
1213 | |
---|
1214 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1215 | CALL ctl_stop( ctmp1 ) |
---|
1216 | |
---|
1217 | END SELECT |
---|
1218 | END SUBROUTINE eos_insitu_adj |
---|
1219 | SUBROUTINE eos_insitu_pot_adj ( ptem, psal, ptem_ad, psal_ad, prd_ad, prhop_ad ) |
---|
1220 | !!---------------------------------------------------------------------- |
---|
1221 | !! *** ROUTINE eos_insitu_pot_adj *** |
---|
1222 | !! |
---|
1223 | !! ** Purpose or the direct routine: |
---|
1224 | !! Compute the in situ density (ratio rho/rau0) and the |
---|
1225 | !! potential volumic mass (Kg/m3) from potential temperature and |
---|
1226 | !! salinity fields using an equation of state defined through the |
---|
1227 | !! namelist parameter neos. |
---|
1228 | !! |
---|
1229 | !! ** Method : |
---|
1230 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
1231 | !! the in situ density is computed directly as a function of |
---|
1232 | !! potential temperature relative to the surface (the opa t |
---|
1233 | !! variable), salt and pressure (assuming no pressure variation |
---|
1234 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
1235 | !! is approximated by the depth in meters. |
---|
1236 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
1237 | !! rhop(t,s) = rho(t,s,0) |
---|
1238 | !! with pressure p decibars |
---|
1239 | !! potential temperature t deg celsius |
---|
1240 | !! salinity s psu |
---|
1241 | !! reference volumic mass rau0 kg/m**3 |
---|
1242 | !! in situ volumic mass rho kg/m**3 |
---|
1243 | !! in situ density anomalie prd no units |
---|
1244 | !! |
---|
1245 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
1246 | !! t = 40 deg celcius, s=40 psu |
---|
1247 | !! |
---|
1248 | !! neos = 1 : linear equation of state function of temperature only |
---|
1249 | !! prd(t) = ( rho(t) - rau0 ) / rau0 = 0.028 - ralpha * t |
---|
1250 | !! rhop(t,s) = rho(t,s) |
---|
1251 | !! |
---|
1252 | !! neos = 2 : linear equation of state function of temperature and |
---|
1253 | !! salinity |
---|
1254 | !! prd(t,s) = ( rho(t,s) - rau0 ) / rau0 |
---|
1255 | !! = rbeta * s - ralpha * tn - 1. |
---|
1256 | !! rhop(t,s) = rho(t,s) |
---|
1257 | !! Note that no boundary condition problem occurs in this routine |
---|
1258 | !! as (tn,sn) or (ta,sa) are defined over the whole domain. |
---|
1259 | !! |
---|
1260 | !! ** Action : - prd , the in situ density (no units) |
---|
1261 | !! - prhop, the potential volumic mass (Kg/m3) |
---|
1262 | !! |
---|
1263 | !! References : |
---|
1264 | !! Jackett, D.R., and T.J. McDougall. J. Atmos. Ocean. Tech., 1994 |
---|
1265 | !! Brown, J. A. and K. A. Campana. Mon. Weather Rev., 1978 |
---|
1266 | !! |
---|
1267 | !! History of the adjoint routine: |
---|
1268 | !! 9.0 ! 08-06 (A. Vidard) Initial version |
---|
1269 | !!---------------------------------------------------------------------- |
---|
1270 | !! * Arguments |
---|
1271 | |
---|
1272 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
1273 | ptem, & ! potential temperature |
---|
1274 | psal ! salinity |
---|
1275 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
1276 | ptem_ad, & ! potential temperature |
---|
1277 | psal_ad ! salinity |
---|
1278 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
1279 | prd_ad, & ! potential density (surface referenced) |
---|
1280 | prhop_ad |
---|
1281 | !! * Local declarations |
---|
1282 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
1283 | REAL(wp) :: & ! temporary scalars |
---|
1284 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
1285 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
1286 | ztad, zsad, zhad, zsrad, zr1ad, zr2ad, zr3ad, & |
---|
1287 | zr4ad, zrhopad, zead, zbwad, & |
---|
1288 | zbad, zdad, zcad, zawad, zaad, zb1ad, za1ad, & |
---|
1289 | zkwad, zk0ad, zpes, zrdc1, zrdc2, zeps, & |
---|
1290 | zmask |
---|
1291 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zws |
---|
1292 | !!---------------------------------------------------------------------- |
---|
1293 | ! initialization (in not already done) |
---|
1294 | IF( neos_init == 0 ) CALL eos_init |
---|
1295 | ! initialization of adjoint variables |
---|
1296 | ztad = 0.0_wp |
---|
1297 | zsad = 0.0_wp |
---|
1298 | zhad = 0.0_wp |
---|
1299 | zsrad = 0.0_wp |
---|
1300 | zr1ad = 0.0_wp |
---|
1301 | zr2ad = 0.0_wp |
---|
1302 | zr3ad = 0.0_wp |
---|
1303 | zr4ad = 0.0_wp |
---|
1304 | zrhopad = 0.0_wp |
---|
1305 | zead = 0.0_wp |
---|
1306 | zbwad = 0.0_wp |
---|
1307 | zbad = 0.0_wp |
---|
1308 | zdad = 0.0_wp |
---|
1309 | zcad = 0.0_wp |
---|
1310 | zawad = 0.0_wp |
---|
1311 | zaad = 0.0_wp |
---|
1312 | zb1ad = 0.0_wp |
---|
1313 | za1ad = 0.0_wp |
---|
1314 | zkwad = 0.0_wp |
---|
1315 | zk0ad = 0.0_wp |
---|
1316 | |
---|
1317 | SELECT CASE ( neos ) |
---|
1318 | |
---|
1319 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
1320 | |
---|
1321 | #ifdef key_sp |
---|
1322 | zeps = 1.e-7 |
---|
1323 | #else |
---|
1324 | zeps = 1.e-14 |
---|
1325 | #endif |
---|
1326 | |
---|
1327 | !CDIR NOVERRCHK |
---|
1328 | zws(:,:,:) = SQRT( ABS( psal(:,:,:) ) ) |
---|
1329 | ! ! =============== |
---|
1330 | DO jk = jpkm1, 1, -1 ! Horizontal slab |
---|
1331 | ! ! =============== |
---|
1332 | DO jj = jpj, 1, -1 |
---|
1333 | DO ji = jpi, 1, -1 |
---|
1334 | ! direct recomputing |
---|
1335 | zt = ptem(ji,jj,jk) |
---|
1336 | zs = psal(ji,jj,jk) |
---|
1337 | ! depth |
---|
1338 | zh = fsdept(ji,jj,jk) |
---|
1339 | ! square root salinity |
---|
1340 | zsr = zws(ji,jj,jk) |
---|
1341 | ! compute volumic mass pure water at atm pressure |
---|
1342 | zr1 = ( ( ( ( 6.536332e-9 * zt - 1.120083e-6 ) * zt & |
---|
1343 | & + 1.001685e-4 ) * zt - 9.095290e-3 ) * zt & |
---|
1344 | & + 6.793952e-2 ) * zt + 999.842594 |
---|
1345 | ! seawater volumic mass atm pressure |
---|
1346 | zr2 = ( ( ( 5.3875e-9 * zt - 8.2467e-7 ) * zt & |
---|
1347 | & + 7.6438e-5 ) * zt - 4.0899e-3 ) * zt + 0.824493 |
---|
1348 | zr3 = ( -1.6546e-6 * zt + 1.0227e-4 ) * zt - 5.72466e-3 |
---|
1349 | zr4 = 4.8314e-4 |
---|
1350 | ! potential volumic mass (reference to the surface) |
---|
1351 | zrhop = ( zr4 * zs + zr3*zsr + zr2 ) * zs + zr1 |
---|
1352 | ! add the compression terms |
---|
1353 | ze = ( -3.508914e-8 * zt - 1.248266e-8 ) * zt - 2.595994e-6 |
---|
1354 | zbw = ( 1.296821e-6 * zt - 5.782165e-9 ) * zt + 1.045941e-4 |
---|
1355 | zb = zbw + ze * zs |
---|
1356 | |
---|
1357 | zd = -2.042967e-2 |
---|
1358 | zc = (-7.267926e-5 * zt + 2.598241e-3 ) * zt + 0.1571896 |
---|
1359 | zaw= ( ( 5.939910e-6 * zt + 2.512549e-3 ) * zt - 0.1028859 & |
---|
1360 | & ) * zt - 4.721788 |
---|
1361 | za = ( zd * zsr + zc ) * zs + zaw |
---|
1362 | |
---|
1363 | zb1= (-0.1909078 * zt + 7.390729 ) * zt - 55.87545 |
---|
1364 | za1= ( ( 2.326469e-3 * zt + 1.553190 ) * zt - 65.00517 & |
---|
1365 | & ) * zt + 1044.077 |
---|
1366 | zkw= ( ( (-1.361629e-4 * zt - 1.852732e-2 ) * zt - 30.41638 & |
---|
1367 | & ) * zt + 2098.925 ) * zt + 190925.6 |
---|
1368 | zk0= ( zb1 * zsr + za1 ) * zs + zkw |
---|
1369 | |
---|
1370 | |
---|
1371 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
1372 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
1373 | |
---|
1374 | ! ============ |
---|
1375 | ! Adjoint part |
---|
1376 | ! ============ |
---|
1377 | |
---|
1378 | ! Masked in situ density anomaly |
---|
1379 | |
---|
1380 | zrhopad = zrhopad + prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1381 | & * zrdc2 / rau0 |
---|
1382 | zk0ad = zk0ad - prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1383 | & * zrdc2 * zrdc2 * zh & |
---|
1384 | & * zrdc1**2 * zrhop & |
---|
1385 | & / rau0 |
---|
1386 | zaad = zaad + prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1387 | & * zrdc2 * zrdc2 * zh & |
---|
1388 | & * zrdc1**2 * zrhop & |
---|
1389 | & * zh / rau0 |
---|
1390 | zbad = zbad - prd_ad(ji,jj,jk) * tmask(ji,jj,jk) & |
---|
1391 | & * zrdc2 * zrdc2 * zh & |
---|
1392 | & * zrdc1**2 * zrhop & |
---|
1393 | & * zh * zh / rau0 |
---|
1394 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1395 | |
---|
1396 | zkwad = zkwad + zk0ad |
---|
1397 | zsrad = zsrad + zk0ad * zb1 * zs |
---|
1398 | zb1ad = zb1ad + zk0ad * zs * zsr |
---|
1399 | za1ad = za1ad + zk0ad * zs |
---|
1400 | zsad = zsad + zk0ad * ( zb1 * zsr + za1 ) |
---|
1401 | zk0ad = 0.0_wp |
---|
1402 | |
---|
1403 | ztad = ztad + zkwad * ( ( (-4.*1.361629e-4 * zt & |
---|
1404 | & -3.*1.852732e-2 ) * zt & |
---|
1405 | & -2.*30.41638 ) * zt & |
---|
1406 | & + 2098.925 ) |
---|
1407 | zkwad = 0.0_wp |
---|
1408 | |
---|
1409 | ztad = ztad + za1ad * ( ( 3.*2.326469e-3 * zt & |
---|
1410 | & +2.*1.553190 ) * zt & |
---|
1411 | & - 65.00517 ) |
---|
1412 | za1ad = 0.0_wp |
---|
1413 | |
---|
1414 | ztad = ztad + zb1ad * (-2.*0.1909078 * zt & |
---|
1415 | & + 7.390729 ) |
---|
1416 | zb1ad = 0.0_wp |
---|
1417 | |
---|
1418 | zawad = zawad + zaad |
---|
1419 | zsrad = zsrad + zaad * zd * zs |
---|
1420 | zcad = zcad + zaad * zs |
---|
1421 | zsad = zsad + zaad * ( zd * zsr + zc ) |
---|
1422 | zaad = 0.0_wp |
---|
1423 | |
---|
1424 | ztad = ztad + zawad * ( ( 3.*5.939910e-6 * zt & |
---|
1425 | & +2.*2.512549e-3 ) * zt & |
---|
1426 | & - 0.1028859 ) |
---|
1427 | zawad = 0.0_wp |
---|
1428 | |
---|
1429 | ztad = ztad + zcad * (-2.*7.267926e-5 * zt & |
---|
1430 | & + 2.598241e-3 ) |
---|
1431 | zcad = 0.0_wp |
---|
1432 | |
---|
1433 | |
---|
1434 | zsad = zsad + zbad * ze |
---|
1435 | zead = zead + zbad * zs |
---|
1436 | zbwad = zbwad + zbad |
---|
1437 | zbad = 0.0_wp |
---|
1438 | |
---|
1439 | ztad = ztad + zbwad * ( 2.*1.296821e-6 * zt & |
---|
1440 | & - 5.782165e-9 ) |
---|
1441 | zbwad = 0.0_wp |
---|
1442 | |
---|
1443 | ztad = ztad + zead * (-2.*3.508914e-8 * zt & |
---|
1444 | & - 1.248266e-8 ) |
---|
1445 | zead = 0.0_wp |
---|
1446 | |
---|
1447 | zrhopad = zrhopad + prhop_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1448 | prhop_ad(ji,jj,jk) = 0.0_wp |
---|
1449 | |
---|
1450 | zr1ad = zr1ad + zrhopad |
---|
1451 | zr2ad = zr2ad + zrhopad * zs |
---|
1452 | zr3ad = zr3ad + zrhopad * zsr * zs |
---|
1453 | zsrad = zsrad + zrhopad * zr3 * zs |
---|
1454 | zsad = zsad + zrhopad * ( 2. * zr4 * zs + zr2 & |
---|
1455 | & + zr3 * zsr ) |
---|
1456 | zrhopad = 0.0_wp |
---|
1457 | |
---|
1458 | ztad = ztad + zr3ad * (-2.*1.6546e-6 * zt & |
---|
1459 | & + 1.0227e-4 ) |
---|
1460 | zr3ad = 0.0_wp |
---|
1461 | |
---|
1462 | ztad = ztad + zr2ad * ( ( ( 4.*5.3875e-9 * zt & |
---|
1463 | & -3.*8.2467e-7 ) * zt & |
---|
1464 | & +2.*7.6438e-5 ) * zt & |
---|
1465 | & - 4.0899e-3 ) |
---|
1466 | zr2ad = 0.0_wp |
---|
1467 | |
---|
1468 | ztad = ztad + zr1ad * ( ( ( ( 5.*6.536332e-9 * zt & |
---|
1469 | & -4.*1.120083e-6 ) * zt & |
---|
1470 | & +3.*1.001685e-4 ) * zt & |
---|
1471 | & -2.*9.095290e-3 ) * zt & |
---|
1472 | & + 6.793952e-2 ) |
---|
1473 | zr1ad = 0.0_wp |
---|
1474 | |
---|
1475 | zsad = zsad + zsrad * ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
1476 | & * tmask(ji,jj,jk) |
---|
1477 | zsrad = 0.0_wp |
---|
1478 | |
---|
1479 | psal_ad(ji,jj,jk) = psal_ad(ji,jj,jk) + zsad |
---|
1480 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) + ztad |
---|
1481 | ztad = 0.0_wp |
---|
1482 | zsad = 0.0_wp |
---|
1483 | |
---|
1484 | END DO |
---|
1485 | |
---|
1486 | END DO |
---|
1487 | ! ! =============== |
---|
1488 | END DO ! End of slab |
---|
1489 | ! ! =============== |
---|
1490 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
1491 | ! ! =============== |
---|
1492 | DO jk = jpkm1, 1, -1 ! Horizontal slab |
---|
1493 | ! ! =============== |
---|
1494 | DO jj = jpj, 1, -1 |
---|
1495 | DO ji = jpi, 1, -1 |
---|
1496 | prd_ad(ji,jj,jk) = prd_ad(ji,jj,jk) & |
---|
1497 | & + rau0 * prhop_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1498 | prhop_ad(ji,jj,jk) = 0.0_wp |
---|
1499 | |
---|
1500 | ztad = ztad - ralpha * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1501 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1502 | |
---|
1503 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) + ztad |
---|
1504 | ztad = 0.0_wp |
---|
1505 | END DO |
---|
1506 | END DO |
---|
1507 | ! ! =============== |
---|
1508 | END DO ! End of slab |
---|
1509 | ! ! =============== |
---|
1510 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
1511 | ! ! =============== |
---|
1512 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
1513 | ! ! =============== |
---|
1514 | DO jj = 1, jpj |
---|
1515 | DO ji = 1, jpi |
---|
1516 | prd_ad(ji,jj,jk) = prd_ad(ji,jj,jk) & |
---|
1517 | & + rau0 * prhop_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1518 | prhop_ad(ji,jj,jk) = 0.0_wp |
---|
1519 | |
---|
1520 | |
---|
1521 | ztad = ztad - ralpha * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1522 | zsad = zsad + rbeta * prd_ad(ji,jj,jk) * tmask(ji,jj,jk) |
---|
1523 | prd_ad(ji,jj,jk) = 0.0_wp |
---|
1524 | |
---|
1525 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) + ztad |
---|
1526 | ztad = 0.0_wp |
---|
1527 | psal_ad(ji,jj,jk) = psal_ad(ji,jj,jk) + zsad |
---|
1528 | zsad = 0.0_wp |
---|
1529 | END DO |
---|
1530 | END DO |
---|
1531 | ! ! =============== |
---|
1532 | END DO ! End of slab |
---|
1533 | ! ! =============== |
---|
1534 | |
---|
1535 | CASE DEFAULT |
---|
1536 | |
---|
1537 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1538 | CALL ctl_stop( ctmp1 ) |
---|
1539 | |
---|
1540 | END SELECT |
---|
1541 | |
---|
1542 | END SUBROUTINE eos_insitu_pot_adj |
---|
1543 | |
---|
1544 | SUBROUTINE eos_insitu_2d_adj( ptem, psal, pdep, ptem_ad, psal_ad, prd_ad ) |
---|
1545 | !!----------------------------------------------------------------------- |
---|
1546 | !! |
---|
1547 | !! *** ROUTINE eos_insitu_2d_adj : adj OF ROUTINE eos_insitu_2d *** |
---|
1548 | !! |
---|
1549 | !! ** Purpose of direct routine : Compute the in situ density |
---|
1550 | !! (ratio rho/rau0) from potential temperature and salinity |
---|
1551 | !! using an equation of state defined through the namelist |
---|
1552 | !! parameter neos. * 2D field case |
---|
1553 | !! |
---|
1554 | !! ** Method of direct routine : 3 cases: |
---|
1555 | !! neos = 0 : Jackett and McDougall (1994) equation of state. |
---|
1556 | !! the in situ density is computed directly as a function of |
---|
1557 | !! potential temperature relative to the surface (the opa t |
---|
1558 | !! variable), salt and pressure (assuming no pressure variation |
---|
1559 | !! along geopotential surfaces, i.e. the pressure p in decibars |
---|
1560 | !! is approximated by the depth in meters. |
---|
1561 | !! prd(t,s,p) = ( rho(t,s,p) - rau0 ) / rau0 |
---|
1562 | !! with pressure p decibars |
---|
1563 | !! potential temperature t deg celsius |
---|
1564 | !! salinity s psu |
---|
1565 | !! reference volumic mass rau0 kg/m**3 |
---|
1566 | !! in situ volumic mass rho kg/m**3 |
---|
1567 | !! in situ density anomalie prd no units |
---|
1568 | !! Check value: rho = 1060.93298 kg/m**3 for p=10000 dbar, |
---|
1569 | !! t = 40 deg celcius, s=40 psu |
---|
1570 | !! neos = 1 : linear equation of state function of temperature only |
---|
1571 | !! prd(t) = 0.0285 - ralpha * t |
---|
1572 | !! neos = 2 : linear equation of state function of temperature and |
---|
1573 | !! salinity |
---|
1574 | !! prd(t,s) = rbeta * s - ralpha * tn - 1. |
---|
1575 | !! Note that no boundary condition problem occurs in this routine |
---|
1576 | !! as (ptem,psal) are defined over the whole domain. |
---|
1577 | !! |
---|
1578 | !! ** Comments on Adjoint Routine : |
---|
1579 | !! Care has been taken to avoid division by zero when computing |
---|
1580 | !! the inverse of the square root of salinity at masked salinity |
---|
1581 | !! points. |
---|
1582 | !! |
---|
1583 | !! ** Action : |
---|
1584 | !! |
---|
1585 | !! References : |
---|
1586 | !! |
---|
1587 | !! History : |
---|
1588 | !! 8.2 ! 05-03 ((F. Van den Berghe, A. Weaver, N. Daget) - eosadj.F |
---|
1589 | !! 9.0 ! 08-07 (A. Vidard) first version based on eosadj |
---|
1590 | !!----------------------------------------------------------------------- |
---|
1591 | !! * Modules used |
---|
1592 | !! * Arguments |
---|
1593 | REAL(wp), DIMENSION(jpi,jpj), INTENT( in ) :: & |
---|
1594 | & ptem, & ! potential temperature |
---|
1595 | & psal, & ! salinity |
---|
1596 | & pdep ! depth |
---|
1597 | REAL(wp), DIMENSION(jpi,jpj), INTENT( inout ) :: & |
---|
1598 | & ptem_ad, & ! TL of potential temperature |
---|
1599 | & psal_ad ! TL of salinity |
---|
1600 | REAL(wp), DIMENSION(jpi,jpj), INTENT( inout ) :: & |
---|
1601 | & prd_ad ! TL of potential density (surface referenced) |
---|
1602 | INTEGER :: ji, jj ! dummy loop indices |
---|
1603 | REAL(wp) :: & ! temporary scalars |
---|
1604 | zt, zs, zh, zsr, zr1, zr2, zr3, zr4, zrhop, ze, zbw, & |
---|
1605 | zb, zd, zc, zaw, za, zb1, za1, zkw, zk0, & |
---|
1606 | ztad, zsad, zhad, zsrad, zr1ad, zr2ad, zr3ad, & |
---|
1607 | zr4ad, zrhopad, zead, zbwad, & |
---|
1608 | zbad, zdad, zcad, zawad, zaad, zb1ad, za1ad, & |
---|
1609 | zkwad, zk0ad, zpes, zrdc1, zrdc2, zeps, & |
---|
1610 | zmask |
---|
1611 | REAL(wp), DIMENSION(jpi,jpj) :: zws |
---|
1612 | !!---------------------------------------------------------------------- |
---|
1613 | |
---|
1614 | |
---|
1615 | ! initialization (in not already done) |
---|
1616 | IF( neos_init == 0 ) CALL eos_init |
---|
1617 | ! initialization of adjoint variables |
---|
1618 | ztad = 0.0_wp |
---|
1619 | zsad = 0.0_wp |
---|
1620 | zhad = 0.0_wp |
---|
1621 | zsrad = 0.0_wp |
---|
1622 | zr1ad = 0.0_wp |
---|
1623 | zr2ad = 0.0_wp |
---|
1624 | zr3ad = 0.0_wp |
---|
1625 | zr4ad = 0.0_wp |
---|
1626 | zrhopad = 0.0_wp |
---|
1627 | zead = 0.0_wp |
---|
1628 | zbwad = 0.0_wp |
---|
1629 | zbad = 0.0_wp |
---|
1630 | zdad = 0.0_wp |
---|
1631 | zcad = 0.0_wp |
---|
1632 | zawad = 0.0_wp |
---|
1633 | zaad = 0.0_wp |
---|
1634 | zb1ad = 0.0_wp |
---|
1635 | za1ad = 0.0_wp |
---|
1636 | zkwad = 0.0_wp |
---|
1637 | zk0ad = 0.0_wp |
---|
1638 | |
---|
1639 | |
---|
1640 | SELECT CASE ( neos ) |
---|
1641 | |
---|
1642 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
1643 | |
---|
1644 | #ifdef key_sp |
---|
1645 | zeps = 1.e-7 |
---|
1646 | #else |
---|
1647 | zeps = 1.e-14 |
---|
1648 | #endif |
---|
1649 | |
---|
1650 | !CDIR NOVERRCHK |
---|
1651 | DO jj = 1, jpjm1 |
---|
1652 | !CDIR NOVERRCHK |
---|
1653 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
1654 | zws(ji,jj) = SQRT( ABS( psal(ji,jj) ) ) |
---|
1655 | END DO |
---|
1656 | END DO |
---|
1657 | |
---|
1658 | ! ! =============== |
---|
1659 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
1660 | ! ! =============== |
---|
1661 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
1662 | |
---|
1663 | zmask = tmask(ji,jj,1) ! land/sea bottom mask = surf. mask |
---|
1664 | |
---|
1665 | zt = ptem (ji,jj) ! interpolated T |
---|
1666 | zs = psal (ji,jj) ! interpolated S |
---|
1667 | zsr= zws(ji,jj) ! square root of interpolated S |
---|
1668 | zh = pdep(ji,jj) ! depth at the partial step level |
---|
1669 | ! compute volumic mass pure water at atm pressure |
---|
1670 | zr1= ( ( ( ( 6.536332e-9*zt-1.120083e-6 )*zt+1.001685e-4)*zt & |
---|
1671 | -9.095290e-3 )*zt+6.793952e-2 )*zt+999.842594 |
---|
1672 | ! seawater volumic mass atm pressure |
---|
1673 | zr2= ( ( ( 5.3875e-9*zt-8.2467e-7 ) *zt+7.6438e-5 ) *zt & |
---|
1674 | -4.0899e-3 ) *zt+0.824493 |
---|
1675 | zr3= ( -1.6546e-6*zt+1.0227e-4 ) *zt-5.72466e-3 |
---|
1676 | zr4= 4.8314e-4 |
---|
1677 | |
---|
1678 | ! potential volumic mass (reference to the surface) |
---|
1679 | zrhop= ( zr4*zs + zr3*zsr + zr2 ) *zs + zr1 |
---|
1680 | |
---|
1681 | ! add the compression terms |
---|
1682 | ze = ( -3.508914e-8*zt-1.248266e-8 ) *zt-2.595994e-6 |
---|
1683 | zbw= ( 1.296821e-6*zt-5.782165e-9 ) *zt+1.045941e-4 |
---|
1684 | zb = zbw + ze * zs |
---|
1685 | |
---|
1686 | zd = -2.042967e-2 |
---|
1687 | zc = (-7.267926e-5*zt+2.598241e-3 ) *zt+0.1571896 |
---|
1688 | zaw= ( ( 5.939910e-6*zt+2.512549e-3 ) *zt-0.1028859 ) *zt - 4.721788 |
---|
1689 | za = ( zd*zsr + zc ) *zs + zaw |
---|
1690 | |
---|
1691 | zb1= (-0.1909078*zt+7.390729 ) *zt-55.87545 |
---|
1692 | za1= ( ( 2.326469e-3*zt+1.553190)*zt-65.00517 ) *zt+1044.077 |
---|
1693 | zkw= ( ( (-1.361629e-4*zt-1.852732e-2 ) *zt-30.41638 ) *zt + 2098.925 ) *zt+190925.6 |
---|
1694 | zk0= ( zb1*zsr + za1 )*zs + zkw |
---|
1695 | |
---|
1696 | zrdc1 = 1.0 / ( zk0 - zh * ( za - zh * zb ) ) |
---|
1697 | zrdc2 = 1.0 / ( 1.0 - zh * zrdc1 ) |
---|
1698 | ! ============ |
---|
1699 | ! Adjoint part |
---|
1700 | ! ============ |
---|
1701 | |
---|
1702 | ! Masked in situ density anomaly |
---|
1703 | |
---|
1704 | zrhopad = zrhopad + prd_ad(ji,jj) * tmask(ji,jj,1) & |
---|
1705 | & * zrdc2 / rau0 |
---|
1706 | zk0ad = zk0ad - prd_ad(ji,jj) * tmask(ji,jj,1) & |
---|
1707 | & * zrdc2 * zrdc2 * zh & |
---|
1708 | & * zrdc1**2 * zrhop & |
---|
1709 | & / rau0 |
---|
1710 | zaad = zaad + prd_ad(ji,jj) * tmask(ji,jj,1) & |
---|
1711 | & * zrdc2 * zrdc2 * zh & |
---|
1712 | & * zrdc1**2 * zrhop & |
---|
1713 | & * zh / rau0 |
---|
1714 | zbad = zbad - prd_ad(ji,jj) * tmask(ji,jj,1) & |
---|
1715 | & * zrdc2 * zrdc2 * zh & |
---|
1716 | & * zrdc1**2 * zrhop & |
---|
1717 | & * zh * zh / rau0 |
---|
1718 | prd_ad(ji,jj) = 0.0_wp |
---|
1719 | |
---|
1720 | zkwad = zkwad + zk0ad |
---|
1721 | zsrad = zsrad + zk0ad * zb1 * zs |
---|
1722 | zb1ad = zb1ad + zk0ad * zs * zsr |
---|
1723 | za1ad = za1ad + zk0ad * zs |
---|
1724 | zsad = zsad + zk0ad * ( zb1 * zsr + za1 ) |
---|
1725 | zk0ad = 0.0_wp |
---|
1726 | |
---|
1727 | ztad = ztad + zkwad * ( ( (-4.*1.361629e-4 * zt & |
---|
1728 | & -3.*1.852732e-2 ) * zt & |
---|
1729 | & -2.*30.41638 ) * zt & |
---|
1730 | & + 2098.925 ) |
---|
1731 | zkwad = 0.0_wp |
---|
1732 | |
---|
1733 | ztad = ztad + za1ad * ( ( 3.*2.326469e-3 * zt & |
---|
1734 | & +2.*1.553190 ) * zt & |
---|
1735 | & - 65.00517 ) |
---|
1736 | za1ad = 0.0_wp |
---|
1737 | |
---|
1738 | ztad = ztad + zb1ad * (-2.*0.1909078 * zt & |
---|
1739 | & + 7.390729 ) |
---|
1740 | zb1ad = 0.0_wp |
---|
1741 | |
---|
1742 | zawad = zawad + zaad |
---|
1743 | zsrad = zsrad + zaad * zd * zs |
---|
1744 | zcad = zcad + zaad * zs |
---|
1745 | zsad = zsad + zaad * ( zd * zsr + zc ) |
---|
1746 | zaad = 0.0_wp |
---|
1747 | |
---|
1748 | ztad = ztad + zawad * ( ( 3.*5.939910e-6 * zt & |
---|
1749 | & +2.*2.512549e-3 ) * zt & |
---|
1750 | & - 0.1028859 ) |
---|
1751 | zawad = 0.0_wp |
---|
1752 | |
---|
1753 | ztad = ztad + zcad * (-2.*7.267926e-5 * zt & |
---|
1754 | & + 2.598241e-3 ) |
---|
1755 | zcad = 0.0_wp |
---|
1756 | |
---|
1757 | zbwad = zbwad + zbad |
---|
1758 | zead = zead + zbad * zs |
---|
1759 | zsad = zsad + zbad * ze |
---|
1760 | zbad = 0.0_wp |
---|
1761 | |
---|
1762 | ztad = ztad + zbwad * ( 2.*1.296821e-6 * zt & |
---|
1763 | & - 5.782165e-9 ) |
---|
1764 | zbwad = 0.0_wp |
---|
1765 | |
---|
1766 | ztad = ztad + zead * (-2.*3.508914e-8 * zt & |
---|
1767 | & - 1.248266e-8 ) |
---|
1768 | zead = 0.0_wp |
---|
1769 | |
---|
1770 | zr1ad = zr1ad + zrhopad |
---|
1771 | zr2ad = zr2ad + zrhopad * zs |
---|
1772 | zr3ad = zr3ad + zrhopad * zsr * zs |
---|
1773 | zsrad = zsrad + zrhopad * zr3 * zs |
---|
1774 | zsad = zsad + zrhopad * ( 2. * zr4 * zs + zr2 & |
---|
1775 | & + zr3 * zsr ) |
---|
1776 | zrhopad = 0.0_wp |
---|
1777 | |
---|
1778 | ztad = ztad + zr3ad * (-2.*1.6546e-6 * zt & |
---|
1779 | & + 1.0227e-4 ) |
---|
1780 | zr3ad = 0.0_wp |
---|
1781 | |
---|
1782 | ztad = ztad + zr2ad * ( ( ( 4.*5.3875e-9 * zt & |
---|
1783 | & -3.*8.2467e-7 ) * zt & |
---|
1784 | & +2.*7.6438e-5 ) * zt & |
---|
1785 | & - 4.0899e-3 ) |
---|
1786 | zr2ad = 0.0_wp |
---|
1787 | |
---|
1788 | ztad = ztad + zr1ad * ( ( ( ( 5.*6.536332e-9 * zt & |
---|
1789 | & -4.*1.120083e-6 ) * zt & |
---|
1790 | & +3.*1.001685e-4 ) * zt & |
---|
1791 | & -2.*9.095290e-3 ) * zt & |
---|
1792 | & + 6.793952e-2 ) |
---|
1793 | zr1ad = 0.0_wp |
---|
1794 | |
---|
1795 | zsad = zsad + zsrad * ( 1.0 / MAX( 2.*zsr, zeps ) ) & |
---|
1796 | & * tmask(ji,jj, 1) |
---|
1797 | zsrad = 0.0_wp |
---|
1798 | |
---|
1799 | psal_ad(ji,jj) = psal_ad(ji,jj) + zsad |
---|
1800 | ptem_ad(ji,jj) = ptem_ad(ji,jj) + ztad |
---|
1801 | ztad = 0.0_wp |
---|
1802 | zsad = 0.0_wp |
---|
1803 | END DO |
---|
1804 | ! ! =============== |
---|
1805 | END DO ! End of slab |
---|
1806 | ! ! =============== |
---|
1807 | |
---|
1808 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
1809 | |
---|
1810 | ! ! =============== |
---|
1811 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
1812 | ! ! =============== |
---|
1813 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
1814 | ! ... density and potential volumic mass |
---|
1815 | ptem_ad(ji,jj) = ptem_ad(ji,jj) - prd_ad(ji,jj) * ralpha * tmask(ji,jj,1) |
---|
1816 | prd_ad(ji,jj) = 0.0_wp |
---|
1817 | |
---|
1818 | END DO |
---|
1819 | ! ! =============== |
---|
1820 | END DO ! End of slab |
---|
1821 | ! ! =============== |
---|
1822 | |
---|
1823 | |
---|
1824 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
1825 | |
---|
1826 | ! ! =============== |
---|
1827 | DO jj = 1, jpjm1 ! Horizontal slab |
---|
1828 | ! ! =============== |
---|
1829 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
1830 | ptem_ad(ji,jj) = ptem_ad(ji,jj) - prd_ad(ji,jj) * ralpha * tmask(ji,jj,1) |
---|
1831 | psal_ad(ji,jj) = psal_ad(ji,jj) + prd_ad(ji,jj) * rbeta * tmask(ji,jj,1) |
---|
1832 | prd_ad (ji,jj) = 0.0_wp |
---|
1833 | END DO |
---|
1834 | ! ! =============== |
---|
1835 | END DO ! End of slab |
---|
1836 | ! ! =============== |
---|
1837 | |
---|
1838 | CASE DEFAULT |
---|
1839 | |
---|
1840 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
1841 | CALL ctl_stop( ctmp1 ) |
---|
1842 | |
---|
1843 | END SELECT |
---|
1844 | END SUBROUTINE eos_insitu_2d_adj |
---|
1845 | |
---|
1846 | |
---|
1847 | |
---|
1848 | SUBROUTINE eos_bn2_tan ( ptem, psal, ptem_tl, psal_tl, pn2_tl ) |
---|
1849 | !!---------------------------------------------------------------------- |
---|
1850 | !! *** ROUTINE eos_bn2_tan *** |
---|
1851 | !! |
---|
1852 | !! ** Purpose of the direct routine: Compute the local |
---|
1853 | !! Brunt-Vaisala frequency at the time-step of the input arguments |
---|
1854 | !! |
---|
1855 | !! ** Method of the direct routine: |
---|
1856 | !! * neos = 0 : UNESCO sea water properties |
---|
1857 | !! The brunt-vaisala frequency is computed using the polynomial |
---|
1858 | !! polynomial expression of McDougall (1987): |
---|
1859 | !! N^2 = grav * beta * ( alpha/beta*dk[ t ] - dk[ s ] )/e3w |
---|
1860 | !! If lk_zdfddm=T, the heat/salt buoyancy flux ratio Rrau is |
---|
1861 | !! computed and used in zdfddm module : |
---|
1862 | !! Rrau = alpha/beta * ( dk[ t ] / dk[ s ] ) |
---|
1863 | !! * neos = 1 : linear equation of state (temperature only) |
---|
1864 | !! N^2 = grav * ralpha * dk[ t ]/e3w |
---|
1865 | !! * neos = 2 : linear equation of state (temperature & salinity) |
---|
1866 | !! N^2 = grav * (ralpha * dk[ t ] - rbeta * dk[ s ] ) / e3w |
---|
1867 | !! The use of potential density to compute N^2 introduces e r r o r |
---|
1868 | !! in the sign of N^2 at great depths. We recommand the use of |
---|
1869 | !! neos = 0, except for academical studies. |
---|
1870 | !! Macro-tasked on horizontal slab (jk-loop) |
---|
1871 | !! N.B. N^2 is set to zero at the first level (JK=1) in inidtr |
---|
1872 | !! and is never used at this level. |
---|
1873 | !! |
---|
1874 | !! ** Action : - pn2 : the brunt-vaisala frequency |
---|
1875 | !! |
---|
1876 | !! References : |
---|
1877 | !! McDougall, T. J., J. Phys. Oceanogr., 17, 1950-1964, 1987. |
---|
1878 | !! |
---|
1879 | !! History: |
---|
1880 | !! ! 08-07 (A. Vidard) First version |
---|
1881 | !!---------------------------------------------------------------------- |
---|
1882 | !! * Arguments |
---|
1883 | |
---|
1884 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
1885 | ptem, & ! potential temperature |
---|
1886 | psal ! salinity |
---|
1887 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
1888 | ptem_tl, & ! potential temperature |
---|
1889 | psal_tl ! salinity |
---|
1890 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( out ) :: & |
---|
1891 | pn2_tl ! Brunt-Vaisala frequency |
---|
1892 | |
---|
1893 | !! * Local declarations |
---|
1894 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
1895 | REAL(wp) :: & |
---|
1896 | zgde3w, zt, zs, zh, & ! temporary scalars |
---|
1897 | zalbet, zbeta ! " " |
---|
1898 | REAL(wp) :: & |
---|
1899 | zttl, zstl, & ! temporary scalars |
---|
1900 | zalbettl, zbetatl ! " " |
---|
1901 | #if defined key_zdfddm |
---|
1902 | REAL(wp) :: zds, zdstl ! temporary scalars |
---|
1903 | #endif |
---|
1904 | ! pn2_tl : first and last levels |
---|
1905 | ! --------------------------- |
---|
1906 | ! bn^2=0. at jk=1 and jpk set in inidtr.F : no computation |
---|
1907 | |
---|
1908 | |
---|
1909 | ! pn2_tl : interior points only (2=< jk =< jpkm1 ) |
---|
1910 | ! -------------------------- |
---|
1911 | |
---|
1912 | SELECT CASE ( neos ) |
---|
1913 | |
---|
1914 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
1915 | ! ! =============== |
---|
1916 | DO jk = 2, jpkm1 ! Horizontal slab |
---|
1917 | ! ! =============== |
---|
1918 | DO jj = 1, jpj |
---|
1919 | DO ji = 1, jpi |
---|
1920 | zgde3w = grav / fse3w(ji,jj,jk) |
---|
1921 | zt = 0.5 * ( ptem(ji,jj,jk) + ptem(ji,jj,jk-1) ) ! potential temperature at w-point |
---|
1922 | zs = 0.5 * ( psal(ji,jj,jk) + psal(ji,jj,jk-1) ) - 35.0 ! salinity anomaly (s-35) at w-point |
---|
1923 | zh = fsdepw(ji,jj,jk) ! depth in meters at w-point |
---|
1924 | |
---|
1925 | zalbet = ( ( ( - 0.255019e-07 * zt + 0.298357e-05 ) * zt & ! ratio alpha/beta |
---|
1926 | & - 0.203814e-03 ) * zt & |
---|
1927 | & + 0.170907e-01 ) * zt & |
---|
1928 | & + 0.665157e-01 & |
---|
1929 | & + ( - 0.678662e-05 * zs & |
---|
1930 | & - 0.846960e-04 * zt + 0.378110e-02 ) * zs & |
---|
1931 | & + ( ( - 0.302285e-13 * zh & |
---|
1932 | & - 0.251520e-11 * zs & |
---|
1933 | & + 0.512857e-12 * zt * zt ) * zh & |
---|
1934 | & - 0.164759e-06 * zs & |
---|
1935 | & +( 0.791325e-08 * zt - 0.933746e-06 ) * zt & |
---|
1936 | & + 0.380374e-04 ) * zh |
---|
1937 | |
---|
1938 | zbeta = ( ( -0.415613e-09 * zt + 0.555579e-07 ) * zt & ! beta |
---|
1939 | & - 0.301985e-05 ) * zt & |
---|
1940 | & + 0.785567e-03 & |
---|
1941 | & + ( 0.515032e-08 * zs & |
---|
1942 | & + 0.788212e-08 * zt - 0.356603e-06 ) * zs & |
---|
1943 | & +( ( 0.121551e-17 * zh & |
---|
1944 | & - 0.602281e-15 * zs & |
---|
1945 | & - 0.175379e-14 * zt + 0.176621e-12 ) * zh & |
---|
1946 | & + 0.408195e-10 * zs & |
---|
1947 | & + ( - 0.213127e-11 * zt + 0.192867e-09 ) * zt & |
---|
1948 | & - 0.121555e-07 ) * zh |
---|
1949 | |
---|
1950 | |
---|
1951 | !! tangent part |
---|
1952 | zttl = 0.5 * ( ptem_tl(ji,jj,jk) + ptem_tl(ji,jj,jk-1) ) ! potential temperature at w-point |
---|
1953 | zstl = 0.5 * ( psal_tl(ji,jj,jk) + psal_tl(ji,jj,jk-1) ) ! salinity anomaly at w-point |
---|
1954 | zalbettl = ( ( ( -4.*0.255019e-07 * zt &! ratio alpha/beta |
---|
1955 | & +3.*0.298357e-05 ) * zt & |
---|
1956 | & -2.*0.203814e-03 ) * zt & |
---|
1957 | & + 0.170907e-01 & |
---|
1958 | & - 0.846960e-04 * zs & |
---|
1959 | & - ( 0.933746e-06 & |
---|
1960 | & - ( 2.*0.791325e-08 & |
---|
1961 | & +2.*0.512857e-12 * zh ) * zt ) * zh ) * zttl & |
---|
1962 | & + ( - 2.*0.678662e-05 * zs & |
---|
1963 | & - 0.846960e-04 * zt & |
---|
1964 | & + 0.378110e-02 & |
---|
1965 | & + ( - 0.164759e-06 & |
---|
1966 | & - 0.251520e-11 * zh ) * zh ) * zstl |
---|
1967 | |
---|
1968 | zbetatl = ( ( -3.*0.415613e-09 * zt & |
---|
1969 | & +2.*0.555579e-07 ) * zt & |
---|
1970 | & - 0.301985e-05 & |
---|
1971 | & + 0.788212e-08 * zs & |
---|
1972 | & + ( -2.*0.213127e-11 * zt & |
---|
1973 | & - 0.175379e-14 * zh & |
---|
1974 | & + 0.192867e-09 ) * zh ) * zttl & |
---|
1975 | & + ( 2.*0.515032e-08 * zs & |
---|
1976 | & + 0.788212e-08 * zt & |
---|
1977 | & - 0.356603e-06 & |
---|
1978 | & + ( - 0.602281e-15 * zh & |
---|
1979 | & + 0.408195e-10 ) * zh ) * zstl |
---|
1980 | |
---|
1981 | pn2_tl(ji,jj,jk) = zgde3w * tmask(ji,jj,jk) * ( & |
---|
1982 | & zbeta * ( zalbet & |
---|
1983 | & * ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) & |
---|
1984 | & + zalbettl & |
---|
1985 | & * ( ptem (ji,jj,jk-1) - ptem (ji,jj,jk) ) & |
---|
1986 | & - ( psal_tl(ji,jj,jk-1) - psal_tl(ji,jj,jk) ) ) & |
---|
1987 | & + zbetatl * ( zalbet & |
---|
1988 | & * ( ptem (ji,jj,jk-1) - ptem (ji,jj,jk) ) & |
---|
1989 | & - ( psal (ji,jj,jk-1) - psal (ji,jj,jk) ) ) ) |
---|
1990 | #if defined key_zdfddm |
---|
1991 | zds = ( psal(ji,jj,jk-1) - psal(ji,jj,jk) ) |
---|
1992 | zdstl = ( psal_tl(ji,jj,jk-1) - psal_tl(ji,jj,jk) ) |
---|
1993 | IF ( ABS( zds) <= 1.e-20 ) THEN |
---|
1994 | zds = 1.e-20 |
---|
1995 | rrau_tl(ji,jj,jk) = zalbettl * & |
---|
1996 | & ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds & |
---|
1997 | & + zalbet * & |
---|
1998 | & ( ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) / zds ) |
---|
1999 | ELSE |
---|
2000 | rrau_tl(ji,jj,jk) = zalbettl * & |
---|
2001 | & ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds & |
---|
2002 | & + zalbet * & |
---|
2003 | & ( ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) / zds & |
---|
2004 | & - ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) * zdstl/ zds**2 ) |
---|
2005 | ENDIF |
---|
2006 | #endif |
---|
2007 | END DO |
---|
2008 | END DO |
---|
2009 | ! ! =============== |
---|
2010 | END DO ! End of slab |
---|
2011 | ! ! =============== |
---|
2012 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
2013 | |
---|
2014 | ! ! =============== |
---|
2015 | DO jk = 2, jpkm1 ! Horizontal slab |
---|
2016 | ! ! =============== |
---|
2017 | DO jj = 1, jpj |
---|
2018 | DO ji = 1, jpi |
---|
2019 | zgde3w = grav / fse3w(ji,jj,jk) * tmask(ji,jj,jk) |
---|
2020 | pn2_tl(ji,jj,jk) = zgde3w * ralpha * & |
---|
2021 | & ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) |
---|
2022 | END DO |
---|
2023 | END DO |
---|
2024 | ! ! =============== |
---|
2025 | END DO ! End of slab |
---|
2026 | ! ! =============== |
---|
2027 | |
---|
2028 | |
---|
2029 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
2030 | |
---|
2031 | ! ! =============== |
---|
2032 | DO jk = 2, jpkm1 ! Horizontal slab |
---|
2033 | ! ! =============== |
---|
2034 | DO jj = 1, jpj |
---|
2035 | DO ji = 1, jpi |
---|
2036 | zgde3w = grav / fse3w(ji,jj,jk) * tmask(ji,jj,jk) |
---|
2037 | pn2_tl(ji,jj,jk) = zgde3w * ( & |
---|
2038 | & ralpha * ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) & |
---|
2039 | & - rbeta * ( psal_tl(ji,jj,jk-1) - psal_tl(ji,jj,jk) ) ) |
---|
2040 | END DO |
---|
2041 | END DO |
---|
2042 | #if defined key_zdfddm |
---|
2043 | zalbet = ralpha / rbeta |
---|
2044 | DO jj = 1, jpj |
---|
2045 | DO ji = 1, jpi |
---|
2046 | zds = ( psal(ji,jj,jk-1) - psal(ji,jj,jk) ) |
---|
2047 | zdstl = psal_tl(ji,jj,jk-1) - psal_tl(ji,jj,jk) |
---|
2048 | IF ( ABS( zds) <= 1.e-20 ) THEN |
---|
2049 | zds = 1.e-20 |
---|
2050 | rrau_tl(ji,jj,jk) = zalbet * & |
---|
2051 | & ( ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) / zds ) |
---|
2052 | ELSE |
---|
2053 | rrau_tl(ji,jj,jk) = zalbet * & |
---|
2054 | & ( ( ptem_tl(ji,jj,jk-1) - ptem_tl(ji,jj,jk) ) / zds & |
---|
2055 | & - ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) * zdstl / zds**2 ) |
---|
2056 | ENDIF |
---|
2057 | rrau(ji,jj,jk) = zalbet * ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds |
---|
2058 | END DO |
---|
2059 | END DO |
---|
2060 | #endif |
---|
2061 | ! =============== |
---|
2062 | END DO ! End of slab |
---|
2063 | ! =============== |
---|
2064 | |
---|
2065 | CASE DEFAULT |
---|
2066 | |
---|
2067 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
2068 | CALL ctl_stop( ctmp1 ) |
---|
2069 | |
---|
2070 | END SELECT |
---|
2071 | |
---|
2072 | |
---|
2073 | |
---|
2074 | |
---|
2075 | END SUBROUTINE eos_bn2_tan |
---|
2076 | SUBROUTINE eos_bn2_adj ( ptem, psal, ptem_ad, psal_ad, pn2_ad ) |
---|
2077 | !!---------------------------------------------------------------------- |
---|
2078 | !! *** ROUTINE eos_bn2_adj *** |
---|
2079 | !! |
---|
2080 | !! ** Purpose of the direct routine: Compute the local |
---|
2081 | !! Brunt-Vaisala frequency at the time-step of the input arguments |
---|
2082 | !! |
---|
2083 | !! ** Method of the direct routine: |
---|
2084 | !! * neos = 0 : UNESCO sea water properties |
---|
2085 | !! The brunt-vaisala frequency is computed using the polynomial |
---|
2086 | !! polynomial expression of McDougall (1987): |
---|
2087 | !! N^2 = grav * beta * ( alpha/beta*dk[ t ] - dk[ s ] )/e3w |
---|
2088 | !! If lk_zdfddm=T, the heat/salt buoyancy flux ratio Rrau is |
---|
2089 | !! computed and used in zdfddm module : |
---|
2090 | !! Rrau = alpha/beta * ( dk[ t ] / dk[ s ] ) |
---|
2091 | !! * neos = 1 : linear equation of state (temperature only) |
---|
2092 | !! N^2 = grav * ralpha * dk[ t ]/e3w |
---|
2093 | !! * neos = 2 : linear equation of state (temperature & salinity) |
---|
2094 | !! N^2 = grav * (ralpha * dk[ t ] - rbeta * dk[ s ] ) / e3w |
---|
2095 | !! The use of potential density to compute N^2 introduces e r r o r |
---|
2096 | !! in the sign of N^2 at great depths. We recommand the use of |
---|
2097 | !! neos = 0, except for academical studies. |
---|
2098 | !! Macro-tasked on horizontal slab (jk-loop) |
---|
2099 | !! N.B. N^2 is set to zero at the first level (JK=1) in inidtr |
---|
2100 | !! and is never used at this level. |
---|
2101 | !! |
---|
2102 | !! ** Action : - pn2 : the brunt-vaisala frequency |
---|
2103 | !! |
---|
2104 | !! References : |
---|
2105 | !! McDougall, T. J., J. Phys. Oceanogr., 17, 1950-1964, 1987. |
---|
2106 | !! |
---|
2107 | !! History: |
---|
2108 | !! ! 08-07 (A. Vidard) First version |
---|
2109 | !!---------------------------------------------------------------------- |
---|
2110 | !! * Arguments |
---|
2111 | |
---|
2112 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( in ) :: & |
---|
2113 | ptem, & ! potential temperature |
---|
2114 | psal ! salinity |
---|
2115 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
2116 | ptem_ad, & ! adjoint potential temperature |
---|
2117 | psal_ad ! adjoint salinity |
---|
2118 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT( inout ) :: & |
---|
2119 | pn2_ad ! adjoint Brunt-Vaisala frequency |
---|
2120 | |
---|
2121 | !! * Local declarations |
---|
2122 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
2123 | REAL(wp) :: & |
---|
2124 | zgde3w, zt, zs, zh, & ! temporary scalars |
---|
2125 | zalbet, zbeta ! " " |
---|
2126 | REAL(wp) :: & |
---|
2127 | ztad, zsad, & ! temporary scalars |
---|
2128 | zalbetad, zbetaad ! " " |
---|
2129 | #if defined key_zdfddm |
---|
2130 | REAL(wp) :: zds, zdsad ! temporary scalars |
---|
2131 | #endif |
---|
2132 | ! pn2_tl : first and last levels |
---|
2133 | ! --------------------------- |
---|
2134 | ! bn^2=0. at jk=1 and jpk set in inidtr.F : no computation |
---|
2135 | |
---|
2136 | |
---|
2137 | ! pn2_tl : interior points only (2=< jk =< jpkm1 ) |
---|
2138 | ! -------------------------- |
---|
2139 | zalbetad = 0.0_wp |
---|
2140 | zbetaad = 0.0_wp |
---|
2141 | ztad = 0.0_wp |
---|
2142 | zsad = 0.0_wp |
---|
2143 | #if defined key_zdfddm |
---|
2144 | zdsad = 0.0_wp |
---|
2145 | #endif |
---|
2146 | |
---|
2147 | SELECT CASE ( neos ) |
---|
2148 | |
---|
2149 | CASE ( 0 ) ! Jackett and McDougall (1994) formulation |
---|
2150 | ! ! =============== |
---|
2151 | DO jk = jpkm1, 2, -1 ! Horizontal slab |
---|
2152 | ! ! =============== |
---|
2153 | DO jj = jpj, 1, -1 |
---|
2154 | DO ji = jpi, 1, -1 |
---|
2155 | zgde3w = grav / fse3w(ji,jj,jk) |
---|
2156 | zt = 0.5 * ( ptem(ji,jj,jk) + ptem(ji,jj,jk-1) ) ! potential temperature at w-point |
---|
2157 | zs = 0.5 * ( psal(ji,jj,jk) + psal(ji,jj,jk-1) ) - 35.0 ! salinity anomaly (s-35) at w-point |
---|
2158 | zh = fsdepw(ji,jj,jk) ! depth in meters at w-point |
---|
2159 | |
---|
2160 | zalbet = ( ( ( - 0.255019e-07 * zt + 0.298357e-05 ) * zt & ! ratio alpha/beta |
---|
2161 | & - 0.203814e-03 ) * zt & |
---|
2162 | & + 0.170907e-01 ) * zt & |
---|
2163 | & + 0.665157e-01 & |
---|
2164 | & + ( - 0.678662e-05 * zs & |
---|
2165 | & - 0.846960e-04 * zt + 0.378110e-02 ) * zs & |
---|
2166 | & + ( ( - 0.302285e-13 * zh & |
---|
2167 | & - 0.251520e-11 * zs & |
---|
2168 | & + 0.512857e-12 * zt * zt ) * zh & |
---|
2169 | & - 0.164759e-06 * zs & |
---|
2170 | & +( 0.791325e-08 * zt - 0.933746e-06 ) * zt & |
---|
2171 | & + 0.380374e-04 ) * zh |
---|
2172 | |
---|
2173 | zbeta = ( ( -0.415613e-09 * zt + 0.555579e-07 ) * zt & ! beta |
---|
2174 | & - 0.301985e-05 ) * zt & |
---|
2175 | & + 0.785567e-03 & |
---|
2176 | & + ( 0.515032e-08 * zs & |
---|
2177 | & + 0.788212e-08 * zt - 0.356603e-06 ) * zs & |
---|
2178 | & +( ( 0.121551e-17 * zh & |
---|
2179 | & - 0.602281e-15 * zs & |
---|
2180 | & - 0.175379e-14 * zt + 0.176621e-12 ) * zh & |
---|
2181 | & + 0.408195e-10 * zs & |
---|
2182 | & + ( - 0.213127e-11 * zt + 0.192867e-09 ) * zt & |
---|
2183 | & - 0.121555e-07 ) * zh |
---|
2184 | |
---|
2185 | |
---|
2186 | #if defined key_zdfddm |
---|
2187 | |
---|
2188 | zds = ( psal(ji,jj,jk-1) - psal(ji,jj,jk) ) |
---|
2189 | IF ( ABS( zds) <= 1.e-20 ) THEN |
---|
2190 | zds = 1.e-20 |
---|
2191 | zdsad = 0.0_wp |
---|
2192 | ELSE |
---|
2193 | zdsad = rrau_ad(ji,jj,jk) * zalbet *( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds**2 |
---|
2194 | ENDIF |
---|
2195 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) + rrau_ad(ji,jj,jk) * zalbet / zds |
---|
2196 | ptem_ad(ji,jj,jk ) = ptem_ad(ji,jj,jk ) - rrau_ad(ji,jj,jk) * zalbet / zds |
---|
2197 | zalbetad = zalbetad + rrau_ad(ji,jj,jk) * ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds |
---|
2198 | rrau_ad(ji,jj,jk) = 0._wp |
---|
2199 | |
---|
2200 | psal_ad(ji,jj,jk-1) = psal_ad(ji,jj,jk-1) + zdsad |
---|
2201 | psal_ad(ji,jj,jk ) = psal_ad(ji,jj,jk ) - zdsad |
---|
2202 | zdsad = 0._wp |
---|
2203 | #endif |
---|
2204 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) + zalbet*zbeta*zgde3w*tmask(ji,jj,jk)*pn2_ad(ji,jj,jk) |
---|
2205 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk ) - zalbet*zbeta*zgde3w*tmask(ji,jj,jk)*pn2_ad(ji,jj,jk) |
---|
2206 | zalbetad = zalbetad + zbeta*zgde3w*tmask(ji,jj,jk)*( ptem (ji,jj,jk-1) - ptem (ji,jj,jk) ) *pn2_ad(ji,jj,jk) |
---|
2207 | psal_ad(ji,jj,jk-1) = psal_ad(ji,jj,jk-1) - zbeta*tmask(ji,jj,jk)*zgde3w*pn2_ad(ji,jj,jk) |
---|
2208 | psal_ad(ji,jj,jk ) = psal_ad(ji,jj,jk ) + zbeta*tmask(ji,jj,jk)*zgde3w*pn2_ad(ji,jj,jk) |
---|
2209 | zbetaad = zbetaad & |
---|
2210 | & + zgde3w *tmask(ji,jj,jk)* ( zalbet * ( ptem (ji,jj,jk-1) - ptem (ji,jj,jk) ) & |
---|
2211 | & - ( psal (ji,jj,jk-1) - psal (ji,jj,jk) ) )*pn2_ad(ji,jj,jk) |
---|
2212 | |
---|
2213 | pn2_ad(ji,jj,jk) = 0.0_wp |
---|
2214 | |
---|
2215 | ztad = ztad + ( ( -3.*0.415613e-09 * zt & |
---|
2216 | & +2.*0.555579e-07 ) * zt & |
---|
2217 | & - 0.301985e-05 & |
---|
2218 | & + 0.788212e-08 * zs & |
---|
2219 | & + ( -2.*0.213127e-11 * zt & |
---|
2220 | & - 0.175379e-14 * zh & |
---|
2221 | & + 0.192867e-09 ) * zh ) *zbetaad |
---|
2222 | |
---|
2223 | zsad = zsad + ( 2.*0.515032e-08 * zs & |
---|
2224 | & + 0.788212e-08 * zt & |
---|
2225 | & - 0.356603e-06 & |
---|
2226 | & + ( - 0.602281e-15 * zh & |
---|
2227 | & + 0.408195e-10 ) * zh ) * zbetaad |
---|
2228 | |
---|
2229 | zbetaad = 0.0_wp |
---|
2230 | |
---|
2231 | ztad = ztad + ( ( ( -4.*0.255019e-07 * zt &! ratio alpha/beta |
---|
2232 | & +3.*0.298357e-05 ) * zt & |
---|
2233 | & -2.*0.203814e-03 ) * zt & |
---|
2234 | & + 0.170907e-01 & |
---|
2235 | & - 0.846960e-04 * zs & |
---|
2236 | & - ( 0.933746e-06 & |
---|
2237 | & - ( 2.*0.791325e-08 & |
---|
2238 | & +2.*0.512857e-12 * zh ) * zt ) * zh & |
---|
2239 | & ) *zalbetad |
---|
2240 | |
---|
2241 | zsad = zsad + ( - 2.*0.678662e-05 * zs & |
---|
2242 | & - 0.846960e-04 * zt & |
---|
2243 | & + 0.378110e-02 & |
---|
2244 | & + ( - 0.164759e-06 & |
---|
2245 | & - 0.251520e-11 * zh ) * zh & |
---|
2246 | & ) *zalbetad |
---|
2247 | |
---|
2248 | zalbetad = 0.0_wp |
---|
2249 | |
---|
2250 | |
---|
2251 | psal_ad(ji,jj,jk) = psal_ad(ji,jj,jk) + 0.5 * zsad |
---|
2252 | psal_ad(ji,jj,jk-1) = psal_ad(ji,jj,jk-1) + 0.5 * zsad |
---|
2253 | zsad = 0.0_wp |
---|
2254 | |
---|
2255 | ptem_ad(ji,jj,jk) = ptem_ad(ji,jj,jk) + 0.5 * ztad |
---|
2256 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) + 0.5 * ztad |
---|
2257 | ztad = 0.0_wp |
---|
2258 | |
---|
2259 | END DO |
---|
2260 | END DO |
---|
2261 | ! ! =============== |
---|
2262 | END DO ! End of slab |
---|
2263 | ! ! =============== |
---|
2264 | CASE ( 1 ) ! Linear formulation function of temperature only |
---|
2265 | |
---|
2266 | ! ! =============== |
---|
2267 | DO jk = jpkm1, 2, -1 ! Horizontal slab |
---|
2268 | ! ! =============== |
---|
2269 | DO jj = jpj, 1, -1 |
---|
2270 | DO ji = jpi, 1, -1 |
---|
2271 | zgde3w = grav / fse3w(ji,jj,jk) * tmask(ji,jj,jk) |
---|
2272 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) + zgde3w * ralpha * pn2_ad(ji,jj,jk) |
---|
2273 | ptem_ad(ji,jj,jk ) = ptem_ad(ji,jj,jk ) - zgde3w * ralpha * pn2_ad(ji,jj,jk) |
---|
2274 | |
---|
2275 | pn2_ad(ji,jj,jk) = 0.0_wp |
---|
2276 | END DO |
---|
2277 | END DO |
---|
2278 | ! ! =============== |
---|
2279 | END DO ! End of slab |
---|
2280 | ! ! =============== |
---|
2281 | |
---|
2282 | |
---|
2283 | CASE ( 2 ) ! Linear formulation function of temperature and salinity |
---|
2284 | |
---|
2285 | ! ! =============== |
---|
2286 | DO jk = jpkm1, 2, -1 ! Horizontal slab |
---|
2287 | ! ! =============== |
---|
2288 | #if defined key_zdfddm |
---|
2289 | zalbet = ralpha / rbeta |
---|
2290 | DO jj = jpj, 1, -1 |
---|
2291 | DO ji = jpi, 1, -1 |
---|
2292 | zds = ( psal(ji,jj,jk-1) - psal(ji,jj,jk) ) |
---|
2293 | IF ( ABS( zds) <= 1.e-20 ) THEN |
---|
2294 | zds = 1.e-20 |
---|
2295 | zdsad = 0.0_wp |
---|
2296 | ELSE |
---|
2297 | zdsad = zdsad - rrau_ad(ji,jj,jk) * zalbet & |
---|
2298 | & * ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds**2 |
---|
2299 | ENDIF |
---|
2300 | rrau(ji,jj,jk) = zalbet * ( ptem(ji,jj,jk-1) - ptem(ji,jj,jk) ) / zds |
---|
2301 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) & |
---|
2302 | & + rrau_ad(ji,jj,jk) * zalbet / zds |
---|
2303 | ptem_ad(ji,jj,jk ) = ptem_ad(ji,jj,jk ) & |
---|
2304 | & - rrau_ad(ji,jj,jk) * zalbet / zds |
---|
2305 | rrau_ad(ji,jj,jk) = 0._wp |
---|
2306 | |
---|
2307 | psal_ad(ji,jj,jk-1) = psal_ad(ji,jj,jk-1) + zdsad |
---|
2308 | psal_ad(ji,jj,jk ) = psal_ad(ji,jj,jk ) - zdsad |
---|
2309 | zdsad = 0._wp |
---|
2310 | END DO |
---|
2311 | END DO |
---|
2312 | #endif |
---|
2313 | DO jj = jpj, 1, -1 |
---|
2314 | DO ji = jpi, 1, -1 |
---|
2315 | zgde3w = grav / fse3w(ji,jj,jk) * tmask(ji,jj,jk) |
---|
2316 | ptem_ad(ji,jj,jk-1) = ptem_ad(ji,jj,jk-1) + zgde3w * ralpha * pn2_ad(ji,jj,jk) |
---|
2317 | ptem_ad(ji,jj,jk ) = ptem_ad(ji,jj,jk ) - zgde3w * ralpha * pn2_ad(ji,jj,jk) |
---|
2318 | psal_ad(ji,jj,jk-1) = psal_ad(ji,jj,jk-1) - zgde3w * rbeta * pn2_ad(ji,jj,jk) |
---|
2319 | psal_ad(ji,jj,jk ) = psal_ad(ji,jj,jk ) + zgde3w * rbeta * pn2_ad(ji,jj,jk) |
---|
2320 | pn2_ad(ji,jj,jk) = 0.0_wp |
---|
2321 | END DO |
---|
2322 | END DO |
---|
2323 | ! =============== |
---|
2324 | END DO ! End of slab |
---|
2325 | ! =============== |
---|
2326 | |
---|
2327 | CASE DEFAULT |
---|
2328 | |
---|
2329 | WRITE(ctmp1,*) ' bad flag value for neos = ', neos |
---|
2330 | CALL ctl_stop( ctmp1 ) |
---|
2331 | |
---|
2332 | END SELECT |
---|
2333 | |
---|
2334 | END SUBROUTINE eos_bn2_adj |
---|
2335 | |
---|
2336 | #if defined key_tam |
---|
2337 | SUBROUTINE eos_insitu_adj_tst( kumadt ) |
---|
2338 | !!----------------------------------------------------------------------- |
---|
2339 | !! |
---|
2340 | !! *** ROUTINE eos_adj_tst *** |
---|
2341 | !! |
---|
2342 | !! ** Purpose : Test the adjoint routine. |
---|
2343 | !! |
---|
2344 | !! ** Method : Verify the scalar product |
---|
2345 | !! |
---|
2346 | !! ( L dx )^T W dy = dx^T L^T W dy |
---|
2347 | !! |
---|
2348 | !! where L = tangent routine |
---|
2349 | !! L^T = adjoint routine |
---|
2350 | !! W = diagonal matrix of scale factors |
---|
2351 | !! dx = input perturbation (random field) |
---|
2352 | !! dy = L dx |
---|
2353 | !! |
---|
2354 | !! |
---|
2355 | !! History : |
---|
2356 | !! ! 08-07 (A. Vidard) |
---|
2357 | !!----------------------------------------------------------------------- |
---|
2358 | !! * Modules used |
---|
2359 | |
---|
2360 | !! * Arguments |
---|
2361 | INTEGER, INTENT(IN) :: & |
---|
2362 | & kumadt ! Output unit |
---|
2363 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2364 | ztem, & ! potential temperature |
---|
2365 | zsal ! salinity |
---|
2366 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2367 | & zt_adout, & ! potential temperature |
---|
2368 | & zs_adout ! salinity |
---|
2369 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2370 | & zrd_adin ! anomaly density |
---|
2371 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2372 | & zt_tlin, & ! potential temperature |
---|
2373 | & zs_tlin ! salinity |
---|
2374 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2375 | & znt, & ! potential temperature |
---|
2376 | & zns ! salinity |
---|
2377 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2378 | & zrd_tlout ! anomaly density |
---|
2379 | REAL(KIND=wp) :: & |
---|
2380 | & zsp1, & ! scalar product involving the tangent routine |
---|
2381 | & zsp2, & ! scalar product involving the adjoint routine |
---|
2382 | & zsp2_1, & ! scalar product involving the adjoint routine |
---|
2383 | & zsp2_2 ! scalar product involving the adjoint routine |
---|
2384 | INTEGER, DIMENSION(jpi,jpj) :: & |
---|
2385 | & iseed_2d ! 2D seed for the random number generator |
---|
2386 | INTEGER :: & |
---|
2387 | & ji, & |
---|
2388 | & jj, & |
---|
2389 | & jk |
---|
2390 | CHARACTER(LEN=14) :: cl_name |
---|
2391 | |
---|
2392 | ALLOCATE( & |
---|
2393 | & ztem( jpi, jpj, jpk ), & |
---|
2394 | & zsal( jpi, jpj, jpk ), & |
---|
2395 | & znt( jpi, jpj, jpk ), & |
---|
2396 | & zns( jpi, jpj, jpk ), & |
---|
2397 | & zt_adout( jpi, jpj, jpk ), & |
---|
2398 | & zs_adout( jpi, jpj, jpk ), & |
---|
2399 | & zrd_adin( jpi, jpj, jpk ), & |
---|
2400 | & zs_tlin( jpi, jpj, jpk ), & |
---|
2401 | & zt_tlin( jpi, jpj, jpk ), & |
---|
2402 | & zrd_tlout(jpi, jpj, jpk ) ) |
---|
2403 | ! Initialize the reference state |
---|
2404 | ztem(:,:,:) = tn(:,:,:) |
---|
2405 | zsal(:,:,:) = sn(:,:,:) |
---|
2406 | |
---|
2407 | |
---|
2408 | !============================================================= |
---|
2409 | ! 1) dx = ( T ) and dy = ( T ) |
---|
2410 | !============================================================= |
---|
2411 | |
---|
2412 | !-------------------------------------------------------------------- |
---|
2413 | ! Reset the tangent and adjoint variables |
---|
2414 | !-------------------------------------------------------------------- |
---|
2415 | zt_tlin(:,:,:) = 0.0_wp |
---|
2416 | zs_tlin(:,:,:) = 0.0_wp |
---|
2417 | zrd_tlout(:,:,:) = 0.0_wp |
---|
2418 | zt_adout(:,:,:) = 0.0_wp |
---|
2419 | zs_adout(:,:,:) = 0.0_wp |
---|
2420 | zrd_adin(:,:,:) = 0.0_wp |
---|
2421 | |
---|
2422 | !-------------------------------------------------------------------- |
---|
2423 | ! Initialize the tangent input with random noise: dx |
---|
2424 | !-------------------------------------------------------------------- |
---|
2425 | DO jj = 1, jpj |
---|
2426 | DO ji = 1, jpi |
---|
2427 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2428 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2429 | END DO |
---|
2430 | END DO |
---|
2431 | CALL grid_random( iseed_2d, znt, 'T', 0.0_wp, stdt ) |
---|
2432 | DO jj = 1, jpj |
---|
2433 | DO ji = 1, jpi |
---|
2434 | iseed_2d(ji,jj) = - ( 395703 + & |
---|
2435 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2436 | END DO |
---|
2437 | END DO |
---|
2438 | CALL grid_random( iseed_2d, zns, 'T', 0.0_wp, stds ) |
---|
2439 | |
---|
2440 | DO jk = 1, jpk |
---|
2441 | DO jj = nldj, nlej |
---|
2442 | DO ji = nldi, nlei |
---|
2443 | zt_tlin(ji,jj,jk) = znt(ji,jj,jk) |
---|
2444 | zs_tlin(ji,jj,jk) = zns(ji,jj,jk) |
---|
2445 | END DO |
---|
2446 | END DO |
---|
2447 | END DO |
---|
2448 | |
---|
2449 | CALL eos_insitu_tan(ztem, zsal, zt_tlin, zs_tlin, zrd_tlout) |
---|
2450 | |
---|
2451 | DO jk = 1, jpk |
---|
2452 | DO jj = nldj, nlej |
---|
2453 | DO ji = nldi, nlei |
---|
2454 | zrd_adin(ji,jj,jk) = zrd_tlout(ji,jj,jk) & |
---|
2455 | & * e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk)& |
---|
2456 | & * tmask(ji,jj,jk) |
---|
2457 | END DO |
---|
2458 | END DO |
---|
2459 | END DO |
---|
2460 | |
---|
2461 | !-------------------------------------------------------------------- |
---|
2462 | ! Compute the scalar product: ( L dx )^T W dy |
---|
2463 | !-------------------------------------------------------------------- |
---|
2464 | |
---|
2465 | zsp1 = DOT_PRODUCT( zrd_tlout, zrd_adin ) |
---|
2466 | |
---|
2467 | !-------------------------------------------------------------------- |
---|
2468 | ! Call the adjoint routine: dx^* = L^T dy^* |
---|
2469 | !-------------------------------------------------------------------- |
---|
2470 | |
---|
2471 | CALL eos_insitu_adj(ztem, zsal, zt_adout, zs_adout, zrd_adin) |
---|
2472 | |
---|
2473 | zsp2_1 = DOT_PRODUCT( zt_tlin, zt_adout ) |
---|
2474 | zsp2_2 = DOT_PRODUCT( zs_tlin, zs_adout ) |
---|
2475 | zsp2 = zsp2_1 + zsp2_2 |
---|
2476 | |
---|
2477 | ! Compare the scalar products |
---|
2478 | |
---|
2479 | ! Compare the scalar products |
---|
2480 | ! 14 char:'12345678901234' |
---|
2481 | cl_name = 'eos_adj insitu' |
---|
2482 | CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
2483 | ! Deallocate memory |
---|
2484 | |
---|
2485 | DEALLOCATE( & |
---|
2486 | & ztem, & |
---|
2487 | & zsal, & |
---|
2488 | & zt_adout, & |
---|
2489 | & zs_adout, & |
---|
2490 | & zrd_adin, & |
---|
2491 | & zt_tlin, & |
---|
2492 | & zs_tlin, & |
---|
2493 | & zrd_tlout, & |
---|
2494 | & znt, & |
---|
2495 | & zns & |
---|
2496 | & ) |
---|
2497 | |
---|
2498 | |
---|
2499 | END SUBROUTINE eos_insitu_adj_tst |
---|
2500 | SUBROUTINE eos_insitu_pot_adj_tst( kumadt ) |
---|
2501 | !!----------------------------------------------------------------------- |
---|
2502 | !! |
---|
2503 | !! *** ROUTINE eos_adj_tst *** |
---|
2504 | !! |
---|
2505 | !! ** Purpose : Test the adjoint routine. |
---|
2506 | !! |
---|
2507 | !! ** Method : Verify the scalar product |
---|
2508 | !! |
---|
2509 | !! ( L dx )^T W dy = dx^T L^T W dy |
---|
2510 | !! |
---|
2511 | !! where L = tangent routine |
---|
2512 | !! L^T = adjoint routine |
---|
2513 | !! W = diagonal matrix of scale factors |
---|
2514 | !! dx = input perturbation (random field) |
---|
2515 | !! dy = L dx |
---|
2516 | !! |
---|
2517 | !! ** Action : Separate tests are applied for the following dx and dy: |
---|
2518 | !! |
---|
2519 | !! 1) dx = ( SSH ) and dy = ( SSH ) |
---|
2520 | !! |
---|
2521 | !! History : |
---|
2522 | !! ! 08-07 (A. Vidard) |
---|
2523 | !!----------------------------------------------------------------------- |
---|
2524 | !! * Modules used |
---|
2525 | |
---|
2526 | !! * Arguments |
---|
2527 | INTEGER, INTENT(IN) :: & |
---|
2528 | & kumadt ! Output unit |
---|
2529 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2530 | ztem, & ! potential temperature |
---|
2531 | zsal ! salinity |
---|
2532 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2533 | & zt_adout, & ! potential temperature |
---|
2534 | & zs_adout ! salinity |
---|
2535 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2536 | & zrd_adin ! anomaly density |
---|
2537 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2538 | & zrhop_adin ! volume mass |
---|
2539 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2540 | & zt_tlin, & ! potential temperature |
---|
2541 | & zs_tlin ! salinity |
---|
2542 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2543 | & znt, & ! potential temperature |
---|
2544 | & zns ! salinity |
---|
2545 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2546 | & zrd_tlout ! anomaly density |
---|
2547 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2548 | & zrhop_tlout ! volume mass |
---|
2549 | REAL(KIND=wp) :: & |
---|
2550 | & zsp1, & ! scalar product involving the tangent routine |
---|
2551 | & zsp2, & ! scalar product involving the adjoint routine |
---|
2552 | & zsp2_1, & ! scalar product involving the adjoint routine |
---|
2553 | & zsp2_2 ! scalar product involving the adjoint routine |
---|
2554 | INTEGER, DIMENSION(jpi,jpj) :: & |
---|
2555 | & iseed_2d ! 2D seed for the random number generator |
---|
2556 | INTEGER :: & |
---|
2557 | & ji, & |
---|
2558 | & jj, & |
---|
2559 | & jk |
---|
2560 | CHARACTER(LEN=14) :: cl_name |
---|
2561 | |
---|
2562 | ! Allocate memory |
---|
2563 | ALLOCATE( & |
---|
2564 | & ztem( jpi, jpj, jpk ), & |
---|
2565 | & zsal( jpi, jpj, jpk ), & |
---|
2566 | & zt_adout( jpi, jpj, jpk ), & |
---|
2567 | & zs_adout( jpi, jpj, jpk ), & |
---|
2568 | & zrhop_adin( jpi, jpj, jpk ), & |
---|
2569 | & zrd_adin( jpi, jpj, jpk ), & |
---|
2570 | & zs_tlin( jpi, jpj, jpk ), & |
---|
2571 | & zt_tlin( jpi, jpj, jpk ), & |
---|
2572 | & zns( jpi, jpj, jpk ), & |
---|
2573 | & znt( jpi, jpj, jpk ), & |
---|
2574 | & zrd_tlout(jpi, jpj, jpk ), & |
---|
2575 | & zrhop_tlout(jpi, jpj, jpk ) ) |
---|
2576 | ! Initialize random field standard deviationsthe reference state |
---|
2577 | ztem = tn |
---|
2578 | zsal = sn |
---|
2579 | |
---|
2580 | !============================================= |
---|
2581 | ! testing of eos_insitu_pot |
---|
2582 | !============================================= |
---|
2583 | |
---|
2584 | !============================================================= |
---|
2585 | ! 1) dx = ( T ) and dy = ( T ) |
---|
2586 | !============================================================= |
---|
2587 | |
---|
2588 | !-------------------------------------------------------------------- |
---|
2589 | ! Reset the tangent and adjoint variables |
---|
2590 | !-------------------------------------------------------------------- |
---|
2591 | zt_tlin(:,:,:) = 0.0_wp |
---|
2592 | zs_tlin(:,:,:) = 0.0_wp |
---|
2593 | zrd_tlout(:,:,:) = 0.0_wp |
---|
2594 | zrhop_tlout(:,:,:) = 0.0_wp |
---|
2595 | zt_adout(:,:,:) = 0.0_wp |
---|
2596 | zs_adout(:,:,:) = 0.0_wp |
---|
2597 | zrhop_adin(:,:,:) = 0.0_wp |
---|
2598 | zrd_adin(:,:,:) = 0.0_wp |
---|
2599 | |
---|
2600 | !-------------------------------------------------------------------- |
---|
2601 | ! Initialize the tangent input with random noise: dx |
---|
2602 | !-------------------------------------------------------------------- |
---|
2603 | DO jj = 1, jpj |
---|
2604 | DO ji = 1, jpi |
---|
2605 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2606 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2607 | END DO |
---|
2608 | END DO |
---|
2609 | CALL grid_random( iseed_2d, znt, 'T', 0.0_wp, stdt ) |
---|
2610 | DO jj = 1, jpj |
---|
2611 | DO ji = 1, jpi |
---|
2612 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2613 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2614 | END DO |
---|
2615 | END DO |
---|
2616 | CALL grid_random( iseed_2d, zns, 'T', 0.0_wp, stds ) |
---|
2617 | DO jk = 1, jpk |
---|
2618 | DO jj = nldj, nlej |
---|
2619 | DO ji = nldi, nlei |
---|
2620 | zt_tlin(ji,jj,jk) = znt(ji,jj,jk) |
---|
2621 | zs_tlin(ji,jj,jk) = zns(ji,jj,jk) |
---|
2622 | END DO |
---|
2623 | END DO |
---|
2624 | END DO |
---|
2625 | !-------------------------------------------------------------------- |
---|
2626 | ! Call the tangent routine: dy = L dx |
---|
2627 | !-------------------------------------------------------------------- |
---|
2628 | |
---|
2629 | call eos_insitu_pot_tan ( ztem, zsal, zt_tlin, zs_tlin, zrd_tlout, zrhop_tlout ) |
---|
2630 | |
---|
2631 | !-------------------------------------------------------------------- |
---|
2632 | ! Initialize the adjoint variables: dy^* = W dy |
---|
2633 | !-------------------------------------------------------------------- |
---|
2634 | DO jk = 1, jpk |
---|
2635 | DO jj = nldj, nlej |
---|
2636 | DO ji = nldi, nlei |
---|
2637 | zrd_adin(ji,jj,jk) = zrd_tlout(ji,jj,jk) & |
---|
2638 | & * e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk)& |
---|
2639 | & * tmask(ji,jj,jk) |
---|
2640 | zrhop_adin(ji,jj,jk) = zrhop_tlout(ji,jj,jk) & |
---|
2641 | & * e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk)& |
---|
2642 | & * tmask(ji,jj,jk) |
---|
2643 | END DO |
---|
2644 | END DO |
---|
2645 | END DO |
---|
2646 | |
---|
2647 | !-------------------------------------------------------------------- |
---|
2648 | ! Compute the scalar product: ( L dx )^T W dy |
---|
2649 | !-------------------------------------------------------------------- |
---|
2650 | |
---|
2651 | zsp1 = DOT_PRODUCT( zrd_tlout , zrd_adin ) & |
---|
2652 | & + DOT_PRODUCT( zrhop_tlout, zrhop_adin ) |
---|
2653 | !-------------------------------------------------------------------- |
---|
2654 | ! Call the adjoint routine: dx^* = L^T dy^* |
---|
2655 | !-------------------------------------------------------------------- |
---|
2656 | |
---|
2657 | CALL eos_insitu_pot_adj( ztem, zsal, zt_adout, zs_adout, zrd_adin, zrhop_adin ) |
---|
2658 | !-------------------------------------------------------------------- |
---|
2659 | ! Compute the scalar product: dx^T L^T W dy |
---|
2660 | !-------------------------------------------------------------------- |
---|
2661 | |
---|
2662 | zsp2_1 = DOT_PRODUCT( zt_tlin, zt_adout ) |
---|
2663 | zsp2_2 = DOT_PRODUCT( zs_tlin, zs_adout ) |
---|
2664 | zsp2 = zsp2_1 + zsp2_2 |
---|
2665 | ! Compare the scalar products |
---|
2666 | |
---|
2667 | ! 14 char:'12345678901234' |
---|
2668 | cl_name = 'eos_adj pot ' |
---|
2669 | CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
2670 | ! Deallocate memory |
---|
2671 | DEALLOCATE( & |
---|
2672 | & ztem, & |
---|
2673 | & zsal, & |
---|
2674 | & zt_adout, & |
---|
2675 | & zs_adout, & |
---|
2676 | & zrd_adin, & |
---|
2677 | & zrhop_adin, & |
---|
2678 | & zt_tlin, & |
---|
2679 | & zs_tlin, & |
---|
2680 | & zrd_tlout, & |
---|
2681 | & zrhop_tlout,& |
---|
2682 | & zns, znt ) |
---|
2683 | |
---|
2684 | END SUBROUTINE eos_insitu_pot_adj_tst |
---|
2685 | SUBROUTINE eos_insitu_2d_adj_tst( kumadt ) |
---|
2686 | !!----------------------------------------------------------------------- |
---|
2687 | !! |
---|
2688 | !! *** ROUTINE eos_adj_tst *** |
---|
2689 | !! |
---|
2690 | !! ** Purpose : Test the adjoint routine. |
---|
2691 | !! |
---|
2692 | !! ** Method : Verify the scalar product |
---|
2693 | !! |
---|
2694 | !! ( L dx )^T W dy = dx^T L^T W dy |
---|
2695 | !! |
---|
2696 | !! where L = tangent routine |
---|
2697 | !! L^T = adjoint routine |
---|
2698 | !! W = diagonal matrix of scale factors |
---|
2699 | !! dx = input perturbation (random field) |
---|
2700 | !! dy = L dx |
---|
2701 | !! |
---|
2702 | !! ** Action : Separate tests are applied for the following dx and dy: |
---|
2703 | !! |
---|
2704 | !! 1) dx = ( SSH ) and dy = ( SSH ) |
---|
2705 | !! |
---|
2706 | !! History : |
---|
2707 | !! ! 08-07 (A. Vidard) |
---|
2708 | !!----------------------------------------------------------------------- |
---|
2709 | !! * Modules used |
---|
2710 | |
---|
2711 | !! * Arguments |
---|
2712 | INTEGER, INTENT(IN) :: & |
---|
2713 | & kumadt ! Output unit |
---|
2714 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2715 | zdep ! depth |
---|
2716 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2717 | ztem, & ! potential temperature |
---|
2718 | zsal ! salinity |
---|
2719 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2720 | & zt_adout, & ! potential temperature |
---|
2721 | & zs_adout ! salinity |
---|
2722 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2723 | & zrd_adin ! anomaly density |
---|
2724 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2725 | & zt_tlin, & ! potential temperature |
---|
2726 | & zs_tlin ! salinity |
---|
2727 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2728 | & znt, & ! potential temperature |
---|
2729 | & zns ! salinity |
---|
2730 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
2731 | & zrd_tlout ! anomaly density |
---|
2732 | REAL(KIND=wp) :: & |
---|
2733 | & zsp1, & ! scalar product involving the tangent routine |
---|
2734 | & zsp2, & ! scalar product involving the adjoint routine |
---|
2735 | & zsp2_1, & ! scalar product involving the adjoint routine |
---|
2736 | & zsp2_2 ! scalar product involving the adjoint routine |
---|
2737 | INTEGER, DIMENSION(jpi,jpj) :: & |
---|
2738 | & iseed_2d ! 2D seed for the random number generator |
---|
2739 | INTEGER :: & |
---|
2740 | & ji, & |
---|
2741 | & jj |
---|
2742 | CHARACTER(LEN=14) :: cl_name |
---|
2743 | |
---|
2744 | ! Allocate memory |
---|
2745 | |
---|
2746 | ALLOCATE( & |
---|
2747 | & zdep( jpi, jpj ), & |
---|
2748 | & ztem( jpi, jpj ), & |
---|
2749 | & zsal( jpi, jpj ), & |
---|
2750 | & znt( jpi, jpj ), & |
---|
2751 | & zns( jpi, jpj ), & |
---|
2752 | & zt_adout( jpi, jpj ), & |
---|
2753 | & zs_adout( jpi, jpj ), & |
---|
2754 | & zrd_adin( jpi, jpj ), & |
---|
2755 | & zs_tlin( jpi, jpj ), & |
---|
2756 | & zt_tlin( jpi, jpj ), & |
---|
2757 | & zrd_tlout(jpi, jpj ) ) |
---|
2758 | ! Initialize the reference state |
---|
2759 | ztem(:,:) = tn(:,:,2) |
---|
2760 | zsal(:,:) = sn(:,:,2) |
---|
2761 | zdep(:,:) = fsdept(:,:,2) |
---|
2762 | |
---|
2763 | |
---|
2764 | !============================================================= |
---|
2765 | ! 1) dx = ( T ) and dy = ( T ) |
---|
2766 | !============================================================= |
---|
2767 | |
---|
2768 | !-------------------------------------------------------------------- |
---|
2769 | ! Reset the tangent and adjoint variables |
---|
2770 | !-------------------------------------------------------------------- |
---|
2771 | zt_tlin(:,:) = 0.0_wp |
---|
2772 | zs_tlin(:,:) = 0.0_wp |
---|
2773 | zrd_tlout(:,:) = 0.0_wp |
---|
2774 | zt_adout(:,:) = 0.0_wp |
---|
2775 | zs_adout(:,:) = 0.0_wp |
---|
2776 | zrd_adin(:,:) = 0.0_wp |
---|
2777 | |
---|
2778 | !-------------------------------------------------------------------- |
---|
2779 | ! Initialize the tangent input with random noise: dx |
---|
2780 | !-------------------------------------------------------------------- |
---|
2781 | DO jj = 1, jpj |
---|
2782 | DO ji = 1, jpi |
---|
2783 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2784 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2785 | END DO |
---|
2786 | END DO |
---|
2787 | CALL grid_random( iseed_2d, znt, 'T', 0.0_wp, stdt ) |
---|
2788 | DO jj = 1, jpj |
---|
2789 | DO ji = 1, jpi |
---|
2790 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2791 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2792 | END DO |
---|
2793 | END DO |
---|
2794 | CALL grid_random( iseed_2d, zns, 'T', 0.0_wp, stds ) |
---|
2795 | DO jj = nldj, nlej |
---|
2796 | DO ji = nldi, nlei |
---|
2797 | zt_tlin(ji,jj) = znt(ji,jj) |
---|
2798 | zs_tlin(ji,jj) = zns(ji,jj) |
---|
2799 | END DO |
---|
2800 | END DO |
---|
2801 | |
---|
2802 | CALL eos_insitu_2d_tan(ztem, zsal, zdep, zt_tlin, zs_tlin, zrd_tlout) |
---|
2803 | |
---|
2804 | DO jj = nldj, nlej |
---|
2805 | DO ji = nldi, nlei |
---|
2806 | zrd_adin(ji,jj) = zrd_tlout(ji,jj) & |
---|
2807 | & * e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,2)& |
---|
2808 | & * tmask(ji,jj,2) |
---|
2809 | END DO |
---|
2810 | END DO |
---|
2811 | |
---|
2812 | !-------------------------------------------------------------------- |
---|
2813 | ! Compute the scalar product: ( L dx )^T W dy |
---|
2814 | !-------------------------------------------------------------------- |
---|
2815 | |
---|
2816 | zsp1 = DOT_PRODUCT( zrd_tlout, zrd_adin ) |
---|
2817 | |
---|
2818 | !-------------------------------------------------------------------- |
---|
2819 | ! Call the adjoint routine: dx^* = L^T dy^* |
---|
2820 | !-------------------------------------------------------------------- |
---|
2821 | |
---|
2822 | CALL eos_insitu_2d_adj(ztem, zsal, zdep, zt_adout, zs_adout, zrd_adin) |
---|
2823 | |
---|
2824 | zsp2_1 = DOT_PRODUCT( zt_tlin, zt_adout ) |
---|
2825 | zsp2_2 = DOT_PRODUCT( zs_tlin, zs_adout ) |
---|
2826 | zsp2 = zsp2_1 + zsp2_2 |
---|
2827 | |
---|
2828 | ! Compare the scalar products |
---|
2829 | |
---|
2830 | ! 14 char:'12345678901234' |
---|
2831 | cl_name = 'eos_adj 2d ' |
---|
2832 | CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
2833 | |
---|
2834 | ! Deallocate memory |
---|
2835 | |
---|
2836 | DEALLOCATE( & |
---|
2837 | & zdep, & |
---|
2838 | & ztem, & |
---|
2839 | & zsal, & |
---|
2840 | & zt_adout, & |
---|
2841 | & zs_adout, & |
---|
2842 | & zrd_adin, & |
---|
2843 | & zt_tlin, & |
---|
2844 | & zs_tlin, & |
---|
2845 | & zrd_tlout, & |
---|
2846 | & zns, znt ) |
---|
2847 | |
---|
2848 | |
---|
2849 | END SUBROUTINE eos_insitu_2d_adj_tst |
---|
2850 | |
---|
2851 | SUBROUTINE eos_adj_tst( kumadt ) |
---|
2852 | !!----------------------------------------------------------------------- |
---|
2853 | !! |
---|
2854 | !! *** ROUTINE eos_adj_tst *** |
---|
2855 | !! |
---|
2856 | !! ** Purpose : Test the adjoint routine. |
---|
2857 | !! |
---|
2858 | !! History : |
---|
2859 | !! ! 08-07 (A. Vidard) |
---|
2860 | !!----------------------------------------------------------------------- |
---|
2861 | !! * Arguments |
---|
2862 | INTEGER, INTENT(IN) :: & |
---|
2863 | & kumadt ! Output unit |
---|
2864 | |
---|
2865 | CALL eos_insitu_adj_tst( kumadt ) |
---|
2866 | |
---|
2867 | CALL eos_insitu_pot_adj_tst( kumadt ) |
---|
2868 | |
---|
2869 | CALL eos_insitu_2d_adj_tst( kumadt ) |
---|
2870 | |
---|
2871 | END SUBROUTINE eos_adj_tst |
---|
2872 | SUBROUTINE bn2_adj_tst( kumadt ) |
---|
2873 | !!----------------------------------------------------------------------- |
---|
2874 | !! |
---|
2875 | !! *** ROUTINE bn2_adj_tst *** |
---|
2876 | !! |
---|
2877 | !! ** Purpose : Test the adjoint routine. |
---|
2878 | !! |
---|
2879 | !! ** Method : Verify the scalar product |
---|
2880 | !! |
---|
2881 | !! ( L dx )^T W dy = dx^T L^T W dy |
---|
2882 | !! |
---|
2883 | !! where L = tangent routine |
---|
2884 | !! L^T = adjoint routine |
---|
2885 | !! W = diagonal matrix of scale factors |
---|
2886 | !! dx = input perturbation (random field) |
---|
2887 | !! dy = L dx |
---|
2888 | !! |
---|
2889 | !! ** Action : Separate tests are applied for the following dx and dy: |
---|
2890 | !! |
---|
2891 | !! 1) dx = ( SSH ) and dy = ( SSH ) |
---|
2892 | !! |
---|
2893 | !! History : |
---|
2894 | !! ! 08-07 (A. Vidard) |
---|
2895 | !!----------------------------------------------------------------------- |
---|
2896 | !! * Modules used |
---|
2897 | |
---|
2898 | !! * Arguments |
---|
2899 | INTEGER, INTENT(IN) :: & |
---|
2900 | & kumadt ! Output unit |
---|
2901 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2902 | ztem, & ! potential temperature |
---|
2903 | zsal ! salinity |
---|
2904 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2905 | & zt_adout, & ! potential temperature |
---|
2906 | & zs_adout ! salinity |
---|
2907 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2908 | & zrd_adin, & ! potential density (surface referenced) |
---|
2909 | & zrd_adout ! potential density (surface referenced) |
---|
2910 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2911 | & zt_tlin, & ! potential temperature |
---|
2912 | & zs_tlin, & ! salinity |
---|
2913 | & zt_tlout, & ! potential temperature |
---|
2914 | & zs_tlout ! salinity |
---|
2915 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2916 | & zrd_tlout ! potential density (surface referenced) |
---|
2917 | REAL(KIND=wp) :: & |
---|
2918 | & zsp1, & ! scalar product involving the tangent routine |
---|
2919 | & zsp2, & ! scalar product involving the adjoint routine |
---|
2920 | & zsp2_1, & ! scalar product involving the adjoint routine |
---|
2921 | & zsp2_2 ! scalar product involving the adjoint routine |
---|
2922 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
2923 | & znt, & ! potential temperature |
---|
2924 | & zns ! salinity |
---|
2925 | INTEGER, DIMENSION(jpi,jpj) :: & |
---|
2926 | & iseed_2d ! 2D seed for the random number generator |
---|
2927 | INTEGER :: & |
---|
2928 | & iseed, & |
---|
2929 | & ji, & |
---|
2930 | & jj, & |
---|
2931 | & jk |
---|
2932 | CHARACTER(LEN=14) :: cl_name |
---|
2933 | |
---|
2934 | ! Allocate memory |
---|
2935 | ALLOCATE( & |
---|
2936 | & ztem( jpi, jpj, jpk ), & |
---|
2937 | & zsal( jpi, jpj, jpk ), & |
---|
2938 | & zt_adout( jpi, jpj, jpk ), & |
---|
2939 | & zs_adout( jpi, jpj, jpk ), & |
---|
2940 | & zrd_adin( jpi, jpj, jpk ), & |
---|
2941 | & zrd_adout(jpi, jpj, jpk ), & |
---|
2942 | & zs_tlin( jpi, jpj, jpk ), & |
---|
2943 | & zt_tlin( jpi, jpj, jpk ), & |
---|
2944 | & zns( jpi, jpj, jpk ), & |
---|
2945 | & znt( jpi, jpj, jpk ), & |
---|
2946 | & zt_tlout( jpi, jpj, jpk ), & |
---|
2947 | & zs_tlout( jpi, jpj, jpk ), & |
---|
2948 | & zrd_tlout(jpi, jpj, jpk ) ) |
---|
2949 | ! Initialize random field standard deviationsthe reference state |
---|
2950 | ztem = tn |
---|
2951 | zsal = sn |
---|
2952 | |
---|
2953 | !============================================================= |
---|
2954 | ! 1) dx = ( T ) and dy = ( T ) |
---|
2955 | !============================================================= |
---|
2956 | |
---|
2957 | !-------------------------------------------------------------------- |
---|
2958 | ! Reset the tangent and adjoint variables |
---|
2959 | !-------------------------------------------------------------------- |
---|
2960 | zt_tlin(:,:,:) = 0.0_wp |
---|
2961 | zs_tlin(:,:,:) = 0.0_wp |
---|
2962 | zt_tlout(:,:,:) = 0.0_wp |
---|
2963 | zs_tlout(:,:,:) = 0.0_wp |
---|
2964 | zrd_tlout(:,:,:) = 0.0_wp |
---|
2965 | zt_adout(:,:,:) = 0.0_wp |
---|
2966 | zs_adout(:,:,:) = 0.0_wp |
---|
2967 | zrd_adin(:,:,:) = 0.0_wp |
---|
2968 | zrd_adout(:,:,:) = 0.0_wp |
---|
2969 | |
---|
2970 | !-------------------------------------------------------------------- |
---|
2971 | ! Initialize the tangent input with random noise: dx |
---|
2972 | !-------------------------------------------------------------------- |
---|
2973 | DO jj = 1, jpj |
---|
2974 | DO ji = 1, jpi |
---|
2975 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2976 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2977 | END DO |
---|
2978 | END DO |
---|
2979 | CALL grid_random( iseed_2d, znt, 'T', 0.0_wp, stdt ) |
---|
2980 | DO jj = 1, jpj |
---|
2981 | DO ji = 1, jpi |
---|
2982 | iseed_2d(ji,jj) = - ( 456953 + & |
---|
2983 | & mig(ji) + ( mjg(jj) - 1 ) * jpiglo ) |
---|
2984 | END DO |
---|
2985 | END DO |
---|
2986 | CALL grid_random( iseed_2d, zns, 'T', 0.0_wp, stds ) |
---|
2987 | DO jk = 1, jpk |
---|
2988 | DO jj = nldj, nlej |
---|
2989 | DO ji = nldi, nlei |
---|
2990 | zt_tlin(ji,jj,jk) = znt(ji,jj,jk) |
---|
2991 | zs_tlin(ji,jj,jk) = zns(ji,jj,jk) |
---|
2992 | END DO |
---|
2993 | END DO |
---|
2994 | END DO |
---|
2995 | !-------------------------------------------------------------------- |
---|
2996 | ! Call the tangent routine: dy = L dx |
---|
2997 | !-------------------------------------------------------------------- |
---|
2998 | zt_tlout(:,:,:) = zt_tlin |
---|
2999 | zs_tlout(:,:,:) = zs_tlin |
---|
3000 | |
---|
3001 | CALL eos_bn2_tan( ztem, zsal, zt_tlout, zs_tlout, zrd_tlout ) |
---|
3002 | !-------------------------------------------------------------------- |
---|
3003 | ! Initialize the adjoint variables: dy^* = W dy |
---|
3004 | !-------------------------------------------------------------------- |
---|
3005 | DO jk = 1, jpk |
---|
3006 | DO jj = nldj, nlej |
---|
3007 | DO ji = nldi, nlei |
---|
3008 | zrd_adin(ji,jj,jk) = zrd_tlout(ji,jj,jk) & |
---|
3009 | & * e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) & |
---|
3010 | & * tmask(ji,jj,jk) |
---|
3011 | END DO |
---|
3012 | END DO |
---|
3013 | END DO |
---|
3014 | |
---|
3015 | !-------------------------------------------------------------------- |
---|
3016 | ! Compute the scalar product: ( L dx )^T W dy |
---|
3017 | !-------------------------------------------------------------------- |
---|
3018 | |
---|
3019 | zsp1 = DOT_PRODUCT( zrd_tlout, zrd_adin ) |
---|
3020 | |
---|
3021 | !-------------------------------------------------------------------- |
---|
3022 | ! Call the adjoint routine: dx^* = L^T dy^* |
---|
3023 | !-------------------------------------------------------------------- |
---|
3024 | |
---|
3025 | zrd_adout(:,:,:) = zrd_adin(:,:,:) |
---|
3026 | |
---|
3027 | CALL eos_bn2_adj( ztem, zsal, zt_adout, zs_adout, zrd_adout ) |
---|
3028 | |
---|
3029 | !-------------------------------------------------------------------- |
---|
3030 | ! Compute the scalar product: dx^T L^T W dy |
---|
3031 | !-------------------------------------------------------------------- |
---|
3032 | |
---|
3033 | zsp2_1 = DOT_PRODUCT( zt_tlin, zt_adout ) |
---|
3034 | zsp2_2 = DOT_PRODUCT( zs_tlin, zs_adout ) |
---|
3035 | zsp2 = zsp2_1 + zsp2_2 |
---|
3036 | |
---|
3037 | ! Compare the scalar products |
---|
3038 | |
---|
3039 | ! 14 char:'12345678901234' |
---|
3040 | cl_name = 'bn2_adj ' |
---|
3041 | CALL prntst_adj( cl_name, kumadt, zsp1, zsp2 ) |
---|
3042 | |
---|
3043 | ! Deallocate memory |
---|
3044 | |
---|
3045 | DEALLOCATE( & |
---|
3046 | & ztem, & |
---|
3047 | & zsal, & |
---|
3048 | & zt_adout, & |
---|
3049 | & zs_adout, & |
---|
3050 | & zrd_adin, & |
---|
3051 | & zrd_adout, & |
---|
3052 | & zt_tlin, & |
---|
3053 | & zs_tlin, & |
---|
3054 | & zt_tlout, & |
---|
3055 | & zs_tlout, & |
---|
3056 | & zrd_tlout, & |
---|
3057 | & zns, znt ) |
---|
3058 | |
---|
3059 | |
---|
3060 | END SUBROUTINE bn2_adj_tst |
---|
3061 | #if defined key_tst_tlm |
---|
3062 | SUBROUTINE eos_insitu_tlm_tst( kumadt ) |
---|
3063 | !!----------------------------------------------------------------------- |
---|
3064 | !! |
---|
3065 | !! *** ROUTINE eos_insitu_tlm_tst *** |
---|
3066 | !! |
---|
3067 | !! ** Purpose : Test the tangent routine. |
---|
3068 | !! |
---|
3069 | !! ** Method : Verify the tangent with Taylor expansion |
---|
3070 | !! |
---|
3071 | !! M(x+hdx) = M(x) + L(hdx) + O(h^2) |
---|
3072 | !! |
---|
3073 | !! where L = tangent routine |
---|
3074 | !! M = direct routine |
---|
3075 | !! dx = input perturbation (random field) |
---|
3076 | !! h = ration on perturbation |
---|
3077 | !! |
---|
3078 | !! In the tangent test we verify that: |
---|
3079 | !! M(x+h*dx) - M(x) |
---|
3080 | !! g(h) = ------------------ ---> 1 as h ---> 0 |
---|
3081 | !! L(h*dx) |
---|
3082 | !! and |
---|
3083 | !! g(h) - 1 |
---|
3084 | !! f(h) = ---------- ---> k (costant) as h ---> 0 |
---|
3085 | !! p |
---|
3086 | !! |
---|
3087 | !! History : |
---|
3088 | !! ! 09-08 (A. Vigilant) |
---|
3089 | !!----------------------------------------------------------------------- |
---|
3090 | !! * Modules used |
---|
3091 | USE eosbn2, ONLY: & ! horizontal & vertical advective trend |
---|
3092 | & eos |
---|
3093 | USE tamtrj ! writing out state trajectory |
---|
3094 | USE par_tlm, ONLY: & |
---|
3095 | & tlm_bch, & |
---|
3096 | & cur_loop, & |
---|
3097 | & h_ratio |
---|
3098 | USE istate_mod |
---|
3099 | USE gridrandom, ONLY: & |
---|
3100 | & grid_rd_sd |
---|
3101 | USE trj_tam |
---|
3102 | USE oce , ONLY: & ! ocean dynamics and tracers variables |
---|
3103 | & tn, sn, rhd, rhop |
---|
3104 | USE opatam_tst_ini, ONLY: & |
---|
3105 | & tlm_namrd |
---|
3106 | USE in_out_manager, ONLY: & ! I/O manager |
---|
3107 | & nitend, & |
---|
3108 | & nit000 |
---|
3109 | USE tamctl, ONLY: & ! Control parameters |
---|
3110 | & numtan, numtan_sc |
---|
3111 | !! * Arguments |
---|
3112 | INTEGER, INTENT(IN) :: & |
---|
3113 | & kumadt ! Output unit |
---|
3114 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
3115 | & zrd_out, & ! |
---|
3116 | & zt_tlin , & ! |
---|
3117 | & zs_tlin , & |
---|
3118 | & zrd_tl , & |
---|
3119 | & zrd_wop, & |
---|
3120 | & z3r |
---|
3121 | REAL(KIND=wp) :: & |
---|
3122 | & zsp1, & |
---|
3123 | & zsp2, & |
---|
3124 | & zsp3, & |
---|
3125 | & zzsp, & |
---|
3126 | & gamma, & |
---|
3127 | & zgsp1, & |
---|
3128 | & zgsp2, & |
---|
3129 | & zgsp3, & |
---|
3130 | & zgsp4, & |
---|
3131 | & zgsp5, & |
---|
3132 | & zgsp6, & |
---|
3133 | & zgsp7 |
---|
3134 | INTEGER :: & |
---|
3135 | & ji, & |
---|
3136 | & jj, & |
---|
3137 | & jk |
---|
3138 | CHARACTER(LEN=14) :: cl_name |
---|
3139 | CHARACTER (LEN=128) :: file_out_sc, file_wop, file_out, file_xdx |
---|
3140 | CHARACTER (LEN=90) :: FMT |
---|
3141 | REAL(KIND=wp), DIMENSION(100):: & |
---|
3142 | & zscrd, zscerrrd |
---|
3143 | INTEGER, DIMENSION(100):: & |
---|
3144 | & iiposrd, ijposrd, ikposrd |
---|
3145 | INTEGER:: & |
---|
3146 | & ii, numsctlm, & |
---|
3147 | & numtlm, & |
---|
3148 | & isamp=40,jsamp=40, ksamp=10 |
---|
3149 | REAL(KIND=wp), DIMENSION(jpi,jpj,jpk) :: & |
---|
3150 | & zerrrd |
---|
3151 | ALLOCATE( & |
---|
3152 | & zrd_out( jpi, jpj, jpk ), & |
---|
3153 | & zrd_tl( jpi, jpj, jpk ), & |
---|
3154 | & zs_tlin( jpi, jpj, jpk ), & |
---|
3155 | & zt_tlin( jpi, jpj, jpk ), & |
---|
3156 | & zrd_wop( jpi, jpj, jpk ), & |
---|
3157 | & z3r ( jpi, jpj, jpk ) ) |
---|
3158 | |
---|
3159 | !-------------------------------------------------------------------- |
---|
3160 | ! Reset the tangent and adjoint variables |
---|
3161 | !-------------------------------------------------------------------- |
---|
3162 | zt_tlin( :,:,:) = 0.0_wp |
---|
3163 | zs_tlin( :,:,:) = 0.0_wp |
---|
3164 | zrd_out( :,:,:) = 0.0_wp |
---|
3165 | zrd_wop( :,:,:) = 0.0_wp |
---|
3166 | zscerrrd(:) = 0.0_wp |
---|
3167 | zscrd(:) = 0.0_wp |
---|
3168 | IF ( tlm_bch == 2 ) zrd_tl ( :,:,:) = 0.0_wp |
---|
3169 | !-------------------------------------------------------------------- |
---|
3170 | ! Output filename Xn=F(X0) |
---|
3171 | !-------------------------------------------------------------------- |
---|
3172 | CALL tlm_namrd |
---|
3173 | gamma = h_ratio |
---|
3174 | file_wop='trj_wop_eos_insitu' |
---|
3175 | file_xdx='trj_xdx_eos_insitu' |
---|
3176 | !-------------------------------------------------------------------- |
---|
3177 | ! Initialize the tangent input with random noise: dx |
---|
3178 | !-------------------------------------------------------------------- |
---|
3179 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3180 | CALL grid_rd_sd( 596035, z3r, 'T', 0.0_wp, stdt) |
---|
3181 | DO jk = 1, jpk |
---|
3182 | DO jj = nldj, nlej |
---|
3183 | DO ji = nldi, nlei |
---|
3184 | zt_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
3185 | END DO |
---|
3186 | END DO |
---|
3187 | END DO |
---|
3188 | CALL grid_rd_sd( 371836, z3r, 'S', 0.0_wp, stds) |
---|
3189 | DO jk = 1, jpk |
---|
3190 | DO jj = nldj, nlej |
---|
3191 | DO ji = nldi, nlei |
---|
3192 | zs_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
3193 | END DO |
---|
3194 | END DO |
---|
3195 | END DO |
---|
3196 | ENDIF |
---|
3197 | |
---|
3198 | !-------------------------------------------------------------------- |
---|
3199 | ! Complete Init for Direct |
---|
3200 | !------------------------------------------------------------------- |
---|
3201 | IF ( tlm_bch /= 2 ) CALL istate_p |
---|
3202 | |
---|
3203 | ! *** initialize the reference trajectory |
---|
3204 | ! ------------ |
---|
3205 | CALL trj_rea( nit000-1, 1 ) |
---|
3206 | CALL trj_rea( nit000, 1 ) |
---|
3207 | |
---|
3208 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3209 | zt_tlin(:,:,:) = gamma * zt_tlin(:,:,:) |
---|
3210 | tn(:,:,:) = tn(:,:,:) + zt_tlin(:,:,:) |
---|
3211 | |
---|
3212 | zs_tlin(:,:,:) = gamma * zs_tlin(:,:,:) |
---|
3213 | sn(:,:,:) = sn(:,:,:) + zs_tlin(:,:,:) |
---|
3214 | ENDIF |
---|
3215 | !-------------------------------------------------------------------- |
---|
3216 | ! Compute the direct model F(X0,t=n) = Xn |
---|
3217 | !-------------------------------------------------------------------- |
---|
3218 | IF ( tlm_bch /= 2 ) CALL eos(tn, sn, zrd_out) |
---|
3219 | rhd(:,:,:)= zrd_out(:,:,:) |
---|
3220 | IF ( tlm_bch == 0 ) CALL trj_wri_spl(file_wop) |
---|
3221 | IF ( tlm_bch == 1 ) CALL trj_wri_spl(file_xdx) |
---|
3222 | !-------------------------------------------------------------------- |
---|
3223 | ! Compute the Tangent |
---|
3224 | !-------------------------------------------------------------------- |
---|
3225 | IF ( tlm_bch == 2 ) THEN |
---|
3226 | !-------------------------------------------------------------------- |
---|
3227 | ! Initialize the tangent variables: dy^* = W dy |
---|
3228 | !-------------------------------------------------------------------- |
---|
3229 | CALL trj_rea( nit000-1, 1 ) |
---|
3230 | CALL trj_rea( nit000, 1 ) |
---|
3231 | !----------------------------------------------------------------------- |
---|
3232 | ! Initialization of the dynamics and tracer fields for the tangent |
---|
3233 | !----------------------------------------------------------------------- |
---|
3234 | CALL eos_insitu_tan(tn, sn, zt_tlin, zs_tlin, zrd_tl) |
---|
3235 | !-------------------------------------------------------------------- |
---|
3236 | ! Compute the scalar product: ( L(t0,tn) gamma dx0 ) ) |
---|
3237 | !-------------------------------------------------------------------- |
---|
3238 | zsp2 = DOT_PRODUCT( zrd_tl, zrd_tl ) |
---|
3239 | !-------------------------------------------------------------------- |
---|
3240 | ! Storing data |
---|
3241 | !-------------------------------------------------------------------- |
---|
3242 | CALL trj_rd_spl(file_wop) |
---|
3243 | zrd_wop (:,:,:) = rhd (:,:,:) |
---|
3244 | CALL trj_rd_spl(file_xdx) |
---|
3245 | zrd_out (:,:,:) = rhd (:,:,:) |
---|
3246 | !-------------------------------------------------------------------- |
---|
3247 | ! Compute the Linearization Error |
---|
3248 | ! Nn = M( X0+gamma.dX0, t0,tn) - M(X0, t0,tn) |
---|
3249 | ! and |
---|
3250 | ! Compute the Linearization Error |
---|
3251 | ! En = Nn -TL(gamma.dX0, t0,tn) |
---|
3252 | !-------------------------------------------------------------------- |
---|
3253 | ! Warning: Here we re-use local variables z()_out and z()_wop |
---|
3254 | ii=0 |
---|
3255 | DO jk = 1, jpk |
---|
3256 | DO jj = 1, jpj |
---|
3257 | DO ji = 1, jpi |
---|
3258 | zrd_out (ji,jj,jk) = zrd_out (ji,jj,jk) - zrd_wop (ji,jj,jk) |
---|
3259 | zrd_wop (ji,jj,jk) = zrd_out (ji,jj,jk) - zrd_tl (ji,jj,jk) |
---|
3260 | IF ( zrd_tl(ji,jj,jk) .NE. 0.0_wp ) & |
---|
3261 | & zerrrd(ji,jj,jk) = zrd_out(ji,jj,jk)/zrd_tl(ji,jj,jk) |
---|
3262 | IF( (MOD(ji, isamp) .EQ. 0) .AND. & |
---|
3263 | & (MOD(jj, jsamp) .EQ. 0) .AND. & |
---|
3264 | & (MOD(jk, ksamp) .EQ. 0) ) THEN |
---|
3265 | ii = ii+1 |
---|
3266 | iiposrd(ii) = ji |
---|
3267 | ijposrd(ii) = jj |
---|
3268 | ikposrd(ii) = jk |
---|
3269 | IF ( INT(tmask(ji,jj,jk)) .NE. 0) THEN |
---|
3270 | zscrd (ii) = zrd_wop(ji,jj,jk) |
---|
3271 | zscerrrd (ii) = ( zerrrd(ji,jj,jk) - 1.0_wp ) / gamma |
---|
3272 | ENDIF |
---|
3273 | ENDIF |
---|
3274 | END DO |
---|
3275 | END DO |
---|
3276 | END DO |
---|
3277 | |
---|
3278 | zsp1 = DOT_PRODUCT( zrd_out, zrd_out ) |
---|
3279 | zsp3 = DOT_PRODUCT( zrd_wop, zrd_wop ) |
---|
3280 | |
---|
3281 | !-------------------------------------------------------------------- |
---|
3282 | ! Print the linearization error En - norme 2 |
---|
3283 | !-------------------------------------------------------------------- |
---|
3284 | ! 14 char:'12345678901234' |
---|
3285 | cl_name = 'eos_insitu:En ' |
---|
3286 | zzsp = SQRT(zsp3) |
---|
3287 | zgsp5 = zzsp |
---|
3288 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3289 | !-------------------------------------------------------------------- |
---|
3290 | ! Compute TLM norm2 |
---|
3291 | !-------------------------------------------------------------------- |
---|
3292 | zzsp = SQRT(zsp2) |
---|
3293 | zgsp4 = zzsp |
---|
3294 | cl_name = 'eos_insitu:Ln2' |
---|
3295 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3296 | !-------------------------------------------------------------------- |
---|
3297 | ! Print the linearization error Nn - norme 2 |
---|
3298 | !-------------------------------------------------------------------- |
---|
3299 | zzsp = SQRT(zsp1) |
---|
3300 | cl_name = 'eosins:Mhdx-Mx' |
---|
3301 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3302 | |
---|
3303 | zgsp3 = SQRT( zsp3/zsp2 ) |
---|
3304 | zgsp7 = zgsp3/gamma |
---|
3305 | zgsp1 = zzsp |
---|
3306 | zgsp2 = zgsp1 / zgsp4 |
---|
3307 | zgsp6 = (zgsp2 - 1.0_wp)/gamma |
---|
3308 | |
---|
3309 | FMT = "(A8,2X,I4.4,2X,E6.1,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13)" |
---|
3310 | WRITE(numtan,FMT) 'eosinsit', cur_loop, h_ratio, zgsp1, zgsp2, zgsp3, zgsp4, zgsp5, zgsp6, zgsp7 |
---|
3311 | |
---|
3312 | !-------------------------------------------------------------------- |
---|
3313 | ! Unitary calculus |
---|
3314 | !-------------------------------------------------------------------- |
---|
3315 | FMT = "(A8,2X,A8,2X,I4.4,2X,E6.1,2X,I4.4,2X,I4.4,2X,I4.4,2X,E20.13,1X)" |
---|
3316 | cl_name = 'eosinsit' |
---|
3317 | IF(lwp) THEN |
---|
3318 | DO ii=1, 100, 1 |
---|
3319 | IF ( zscrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscrd ', & |
---|
3320 | & cur_loop, h_ratio, iiposrd(ii), ijposrd(ii), ikposrd(ii), zscrd(ii) |
---|
3321 | ENDDO |
---|
3322 | DO ii=1, 100, 1 |
---|
3323 | IF ( zscerrrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscerrrd', & |
---|
3324 | & cur_loop, h_ratio, iiposrd(ii), ijposrd(ii), ikposrd(ii), zscerrrd(ii) |
---|
3325 | ENDDO |
---|
3326 | ! write separator |
---|
3327 | WRITE(numtan_sc,"(A4)") '====' |
---|
3328 | ENDIF |
---|
3329 | |
---|
3330 | ENDIF |
---|
3331 | |
---|
3332 | DEALLOCATE( & |
---|
3333 | & zrd_out, zrd_tl, zrd_wop, & |
---|
3334 | & zt_tlin, zs_tlin, z3r & |
---|
3335 | & ) |
---|
3336 | END SUBROUTINE eos_insitu_tlm_tst |
---|
3337 | |
---|
3338 | SUBROUTINE eos_insitu_pot_tlm_tst( kumadt ) |
---|
3339 | !!----------------------------------------------------------------------- |
---|
3340 | !! |
---|
3341 | !! *** ROUTINE eos_insitu_pot_tlm_tst *** |
---|
3342 | !! |
---|
3343 | !! ** Purpose : Test the tangent routine. |
---|
3344 | !! |
---|
3345 | !! ** Method : Verify the tangent with Taylor expansion |
---|
3346 | !! |
---|
3347 | !! M(x+hdx) = M(x) + L(hdx) + O(h^2) |
---|
3348 | !! |
---|
3349 | !! where L = tangent routine |
---|
3350 | !! M = direct routine |
---|
3351 | !! dx = input perturbation (random field) |
---|
3352 | !! h = ration on perturbation |
---|
3353 | !! |
---|
3354 | !! In the tangent test we verify that: |
---|
3355 | !! M(x+h*dx) - M(x) |
---|
3356 | !! g(h) = ------------------ ---> 1 as h ---> 0 |
---|
3357 | !! L(h*dx) |
---|
3358 | !! and |
---|
3359 | !! g(h) - 1 |
---|
3360 | !! f(h) = ---------- ---> k (costant) as h ---> 0 |
---|
3361 | !! p |
---|
3362 | !! |
---|
3363 | !! History : |
---|
3364 | !! ! 09-08 (A. Vigilant) |
---|
3365 | !!----------------------------------------------------------------------- |
---|
3366 | !! * Modules used |
---|
3367 | USE eosbn2, ONLY: & ! horizontal & vertical advective trend |
---|
3368 | & eos |
---|
3369 | USE tamtrj ! writing out state trajectory |
---|
3370 | USE par_tlm, ONLY: & |
---|
3371 | & tlm_bch, & |
---|
3372 | & cur_loop, & |
---|
3373 | & h_ratio |
---|
3374 | USE istate_mod |
---|
3375 | USE gridrandom, ONLY: & |
---|
3376 | & grid_rd_sd |
---|
3377 | USE trj_tam |
---|
3378 | USE oce , ONLY: & ! ocean dynamics and tracers variables |
---|
3379 | & tn, sn, rhd, rhop |
---|
3380 | USE opatam_tst_ini, ONLY: & |
---|
3381 | & tlm_namrd |
---|
3382 | USE in_out_manager, ONLY: & ! I/O manager |
---|
3383 | & nitend, & |
---|
3384 | & nit000 |
---|
3385 | USE tamctl, ONLY: & ! Control parameters |
---|
3386 | & numtan, numtan_sc |
---|
3387 | !! * Arguments |
---|
3388 | INTEGER, INTENT(IN) :: & |
---|
3389 | & kumadt ! Output unit |
---|
3390 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
3391 | & zrd_out, & ! |
---|
3392 | & zrh_out, & |
---|
3393 | & zt_tlin , & ! |
---|
3394 | & zs_tlin , & |
---|
3395 | & zrh_tl , & |
---|
3396 | & zrd_tl , & |
---|
3397 | & zrd_wop , & |
---|
3398 | & zrh_wop , & |
---|
3399 | & z3r |
---|
3400 | REAL(KIND=wp) :: & |
---|
3401 | & zsp1, & |
---|
3402 | & zsp2, & |
---|
3403 | & zsp3, & |
---|
3404 | & zsp1_Rd, Zsp1_Rh, & |
---|
3405 | & zsp2_Rd, zsp2_Rh, & |
---|
3406 | & zsp3_Rd, zsp3_Rh, & |
---|
3407 | & zzsp, & |
---|
3408 | & gamma, & |
---|
3409 | & zgsp1, & |
---|
3410 | & zgsp2, & |
---|
3411 | & zgsp3, & |
---|
3412 | & zgsp4, & |
---|
3413 | & zgsp5, & |
---|
3414 | & zgsp6, & |
---|
3415 | & zgsp7 |
---|
3416 | INTEGER :: & |
---|
3417 | & ji, & |
---|
3418 | & jj, & |
---|
3419 | & jk |
---|
3420 | CHARACTER(LEN=14) :: cl_name |
---|
3421 | CHARACTER (LEN=128) :: file_out, file_wop,file_xdx |
---|
3422 | CHARACTER (LEN=90) :: FMT |
---|
3423 | REAL(KIND=wp), DIMENSION(100):: & |
---|
3424 | & zscrd, zscerrrd, & |
---|
3425 | & zscrh, zscerrrh |
---|
3426 | INTEGER, DIMENSION(100):: & |
---|
3427 | & iiposrd, ijposrd, ikposrd, & |
---|
3428 | & iiposrh, ijposrh, ikposrh |
---|
3429 | INTEGER:: & |
---|
3430 | & ii, numsctlm, & |
---|
3431 | & isamp=40,jsamp=40, ksamp=10 |
---|
3432 | REAL(KIND=wp), DIMENSION(jpi,jpj,jpk) :: & |
---|
3433 | & zerrrd, zerrrh |
---|
3434 | ALLOCATE( & |
---|
3435 | & zrd_out( jpi, jpj, jpk ), & |
---|
3436 | & zrh_out( jpi, jpj, jpk ), & |
---|
3437 | & zrd_tl( jpi, jpj, jpk ), & |
---|
3438 | & zrh_tl( jpi, jpj, jpk ), & |
---|
3439 | & zs_tlin( jpi, jpj, jpk ), & |
---|
3440 | & zt_tlin( jpi, jpj, jpk ), & |
---|
3441 | & zrd_wop( jpi, jpj, jpk ), & |
---|
3442 | & zrh_wop( jpi, jpj, jpk ), & |
---|
3443 | & z3r ( jpi, jpj, jpk ) ) |
---|
3444 | |
---|
3445 | !-------------------------------------------------------------------- |
---|
3446 | ! Reset the tangent and adjoint variables |
---|
3447 | !-------------------------------------------------------------------- |
---|
3448 | zt_tlin( :,:,:) = 0.0_wp |
---|
3449 | zs_tlin( :,:,:) = 0.0_wp |
---|
3450 | zrd_out( :,:,:) = 0.0_wp |
---|
3451 | zrh_out( :,:,:) = 0.0_wp |
---|
3452 | zrd_wop( :,:,:) = 0.0_wp |
---|
3453 | zrh_wop( :,:,:) = 0.0_wp |
---|
3454 | zscerrrd( :) = 0.0_wp |
---|
3455 | zscerrrh( :) = 0.0_wp |
---|
3456 | zscrd(:) = 0.0_wp |
---|
3457 | zscrh(:) = 0.0_wp |
---|
3458 | IF ( tlm_bch == 2 ) THEN |
---|
3459 | zrd_tl ( :,:,:) = 0.0_wp |
---|
3460 | zrh_tl ( :,:,:) = 0.0_wp |
---|
3461 | ENDIF |
---|
3462 | !-------------------------------------------------------------------- |
---|
3463 | ! Output filename Xn=F(X0) |
---|
3464 | !-------------------------------------------------------------------- |
---|
3465 | CALL tlm_namrd |
---|
3466 | gamma = h_ratio |
---|
3467 | file_wop='trj_wop_eos_pot' |
---|
3468 | file_xdx='trj_xdx_eos_pot' |
---|
3469 | !-------------------------------------------------------------------- |
---|
3470 | ! Initialize the tangent input with random noise: dx |
---|
3471 | !-------------------------------------------------------------------- |
---|
3472 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3473 | CALL grid_rd_sd( 596035, z3r, 'T', 0.0_wp, stdt) |
---|
3474 | DO jk = 1, jpk |
---|
3475 | DO jj = nldj, nlej |
---|
3476 | DO ji = nldi, nlei |
---|
3477 | zt_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
3478 | END DO |
---|
3479 | END DO |
---|
3480 | END DO |
---|
3481 | CALL grid_rd_sd( 371836, z3r, 'S', 0.0_wp, stds) |
---|
3482 | DO jk = 1, jpk |
---|
3483 | DO jj = nldj, nlej |
---|
3484 | DO ji = nldi, nlei |
---|
3485 | zs_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
3486 | END DO |
---|
3487 | END DO |
---|
3488 | END DO |
---|
3489 | ENDIF |
---|
3490 | !-------------------------------------------------------------------- |
---|
3491 | ! Complete Init for Direct |
---|
3492 | !------------------------------------------------------------------- |
---|
3493 | IF ( tlm_bch /= 2 ) CALL istate_p |
---|
3494 | |
---|
3495 | ! *** initialize the reference trajectory |
---|
3496 | ! ------------ |
---|
3497 | CALL trj_rea( nit000-1, 1 ) |
---|
3498 | CALL trj_rea( nit000, 1 ) |
---|
3499 | |
---|
3500 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3501 | zt_tlin(:,:,:) = gamma * zt_tlin(:,:,:) |
---|
3502 | tn(:,:,:) = tn(:,:,:) + zt_tlin(:,:,:) |
---|
3503 | |
---|
3504 | zs_tlin(:,:,:) = gamma * zs_tlin(:,:,:) |
---|
3505 | sn(:,:,:) = sn(:,:,:) + zs_tlin(:,:,:) |
---|
3506 | ENDIF |
---|
3507 | !-------------------------------------------------------------------- |
---|
3508 | ! Compute the direct model F(X0,t=n) = Xn |
---|
3509 | !-------------------------------------------------------------------- |
---|
3510 | IF ( tlm_bch /= 2 ) CALL eos(tn, sn, zrd_out, zrh_out) |
---|
3511 | rhd (:,:,:) = zrd_out(:,:,:) |
---|
3512 | rhop(:,:,:) = zrh_out(:,:,:) |
---|
3513 | IF ( tlm_bch == 0 ) CALL trj_wri_spl(file_wop) |
---|
3514 | IF ( tlm_bch == 1 ) CALL trj_wri_spl(file_xdx) |
---|
3515 | !-------------------------------------------------------------------- |
---|
3516 | ! Compute the Tangent |
---|
3517 | !-------------------------------------------------------------------- |
---|
3518 | IF ( tlm_bch == 2 ) THEN |
---|
3519 | !-------------------------------------------------------------------- |
---|
3520 | ! Initialize the tangent variables: dy^* = W dy |
---|
3521 | !-------------------------------------------------------------------- |
---|
3522 | CALL trj_rea( nit000-1, 1 ) |
---|
3523 | CALL trj_rea( nit000, 1 ) |
---|
3524 | !----------------------------------------------------------------------- |
---|
3525 | ! Initialization of the dynamics and tracer fields for the tangent |
---|
3526 | !----------------------------------------------------------------------- |
---|
3527 | CALL eos_insitu_pot_tan(tn, sn, zt_tlin, zs_tlin, zrd_tl, zrh_tl) |
---|
3528 | !-------------------------------------------------------------------- |
---|
3529 | ! Compute the scalar product: ( L(t0,tn) gamma dx0 ) ) |
---|
3530 | !-------------------------------------------------------------------- |
---|
3531 | |
---|
3532 | zsp2_Rd = DOT_PRODUCT( zrd_tl, zrd_tl ) |
---|
3533 | zsp2_Rh = DOT_PRODUCT( zrh_tl, zrh_tl ) |
---|
3534 | zsp2 = zsp2_Rd + zsp2_Rh |
---|
3535 | !-------------------------------------------------------------------- |
---|
3536 | ! Storing data |
---|
3537 | !-------------------------------------------------------------------- |
---|
3538 | CALL trj_rd_spl(file_wop) |
---|
3539 | zrd_wop (:,:,:) = rhd (:,:,:) |
---|
3540 | zrh_wop (:,:,:) = rhop (:,:,:) |
---|
3541 | CALL trj_rd_spl(file_xdx) |
---|
3542 | zrd_out (:,:,:) = rhd (:,:,:) |
---|
3543 | zrh_out (:,:,:) = rhop (:,:,:) |
---|
3544 | !-------------------------------------------------------------------- |
---|
3545 | ! Compute the Linearization Error |
---|
3546 | ! Nn = M( X0+gamma.dX0, t0,tn) - M(X0, t0,tn) |
---|
3547 | ! and |
---|
3548 | ! Compute the Linearization Error |
---|
3549 | ! En = Nn -TL(gamma.dX0, t0,tn) |
---|
3550 | !-------------------------------------------------------------------- |
---|
3551 | ! Warning: Here we re-use local variables z()_out and z()_wop |
---|
3552 | ii=0 |
---|
3553 | DO jk = 1, jpk |
---|
3554 | DO jj = 1, jpj |
---|
3555 | DO ji = 1, jpi |
---|
3556 | zrd_out (ji,jj,jk) = zrd_out (ji,jj,jk) - zrd_wop (ji,jj,jk) |
---|
3557 | zrd_wop (ji,jj,jk) = zrd_out (ji,jj,jk) - zrd_tl (ji,jj,jk) |
---|
3558 | IF ( zrd_tl(ji,jj,jk) .NE. 0.0_wp ) & |
---|
3559 | & zerrrd(ji,jj,jk) = zrd_out(ji,jj,jk)/zrd_tl(ji,jj,jk) |
---|
3560 | IF( (MOD(ji, isamp) .EQ. 0) .AND. & |
---|
3561 | & (MOD(jj, jsamp) .EQ. 0) .AND. & |
---|
3562 | & (MOD(jk, ksamp) .EQ. 0) ) THEN |
---|
3563 | ii = ii+1 |
---|
3564 | iiposrd(ii) = ji |
---|
3565 | ijposrd(ii) = jj |
---|
3566 | ikposrd(ii) = jk |
---|
3567 | IF ( INT(tmask(ji,jj,jk)) .NE. 0) THEN |
---|
3568 | zscrd (ii) = zrd_wop(ji,jj,jk) |
---|
3569 | zscerrrd (ii) = ( zerrrd( ji,jj,jk) - 1.0_wp ) / gamma |
---|
3570 | ENDIF |
---|
3571 | ENDIF |
---|
3572 | END DO |
---|
3573 | END DO |
---|
3574 | END DO |
---|
3575 | ii=0 |
---|
3576 | DO jk = 1, jpk |
---|
3577 | DO jj = 1, jpj |
---|
3578 | DO ji = 1, jpi |
---|
3579 | zrh_out (ji,jj,jk) = zrh_out (ji,jj,jk) - zrh_wop (ji,jj,jk) |
---|
3580 | zrh_wop (ji,jj,jk) = zrh_out (ji,jj,jk) - zrh_tl (ji,jj,jk) |
---|
3581 | IF ( zrh_tl(ji,jj,jk) .NE. 0.0_wp ) & |
---|
3582 | & zerrrh(ji,jj,jk) = zrh_out(ji,jj,jk)/zrh_tl(ji,jj,jk) |
---|
3583 | IF( (MOD(ji, isamp) .EQ. 0) .AND. & |
---|
3584 | & (MOD(jj, jsamp) .EQ. 0) .AND. & |
---|
3585 | & (MOD(jk, ksamp) .EQ. 0) ) THEN |
---|
3586 | ii = ii+1 |
---|
3587 | iiposrh(ii) = ji |
---|
3588 | ijposrh(ii) = jj |
---|
3589 | ikposrh(ii) = jk |
---|
3590 | IF ( INT(tmask(ji,jj,jk)) .NE. 0) THEN |
---|
3591 | zscrh (ii) = zrh_wop(ji,jj,jk) |
---|
3592 | zscerrrh (ii) = ( zerrrh( ji,jj,jk) - 1.0_wp ) /gamma |
---|
3593 | ENDIF |
---|
3594 | ENDIF |
---|
3595 | END DO |
---|
3596 | END DO |
---|
3597 | END DO |
---|
3598 | zsp1_Rd = DOT_PRODUCT( zrd_out, zrd_out ) |
---|
3599 | zsp1_Rh = DOT_PRODUCT( zrh_out, zrh_out ) |
---|
3600 | zsp1 = zsp1_Rd + zsp1_Rh |
---|
3601 | |
---|
3602 | zsp3_Rd = DOT_PRODUCT( zrd_wop, zrd_wop ) |
---|
3603 | zsp3_Rh = DOT_PRODUCT( zrh_wop, zrh_wop ) |
---|
3604 | zsp3 = zsp3_Rd + zsp3_Rh |
---|
3605 | !-------------------------------------------------------------------- |
---|
3606 | ! Print the linearization error En - norme 2 |
---|
3607 | !-------------------------------------------------------------------- |
---|
3608 | ! 14 char:'12345678901234' |
---|
3609 | cl_name = 'eos_pot:En ' |
---|
3610 | zzsp = SQRT(zsp3) |
---|
3611 | zgsp5 = zzsp |
---|
3612 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3613 | !-------------------------------------------------------------------- |
---|
3614 | ! Compute TLM norm2 |
---|
3615 | !-------------------------------------------------------------------- |
---|
3616 | zzsp = SQRT(zsp2) |
---|
3617 | zgsp4 = zzsp |
---|
3618 | cl_name = 'eos_pot:Ln2' |
---|
3619 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3620 | !-------------------------------------------------------------------- |
---|
3621 | ! Print the linearization error Nn - norme 2 |
---|
3622 | !-------------------------------------------------------------------- |
---|
3623 | zzsp = SQRT(zsp1) |
---|
3624 | cl_name = 'eospot:Mhdx-Mx' |
---|
3625 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3626 | |
---|
3627 | zgsp3 = SQRT( zsp3/zsp2 ) |
---|
3628 | zgsp7 = zgsp3/gamma |
---|
3629 | zgsp1 = zzsp |
---|
3630 | zgsp2 = zgsp1 / zgsp4 |
---|
3631 | zgsp6 = (zgsp2 - 1.0_wp)/gamma |
---|
3632 | |
---|
3633 | FMT = "(A8,2X,I4.4,2X,E6.1,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13)" |
---|
3634 | WRITE(numtan,FMT) 'eosinsp ', cur_loop, h_ratio, zgsp1, zgsp2, zgsp3, zgsp4, zgsp5, zgsp6, zgsp7 |
---|
3635 | !-------------------------------------------------------------------- |
---|
3636 | ! Unitary calculus |
---|
3637 | !-------------------------------------------------------------------- |
---|
3638 | FMT = "(A8,2X,A8,2X,I4.4,2X,E6.1,2X,I4.4,2X,I4.4,2X,I4.4,2X,E20.13,1X)" |
---|
3639 | cl_name = 'eosinsp ' |
---|
3640 | IF(lwp) THEN |
---|
3641 | DO ii=1, 100, 1 |
---|
3642 | IF ( zscrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscrd ', & |
---|
3643 | & cur_loop, h_ratio, iiposrd(ii), ijposrd(ii), ikposrd(ii), zscrd(ii) |
---|
3644 | ENDDO |
---|
3645 | DO ii=1, 100, 1 |
---|
3646 | IF ( zscrh(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscrh ', & |
---|
3647 | & cur_loop, h_ratio, iiposrh(ii), ijposrh(ii), ikposrh(ii), zscrh(ii) |
---|
3648 | ENDDO |
---|
3649 | DO ii=1, 100, 1 |
---|
3650 | IF ( zscerrrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscerrrd', & |
---|
3651 | & cur_loop, h_ratio, iiposrd(ii), ijposrd(ii), ikposrd(ii), zscerrrd(ii) |
---|
3652 | ENDDO |
---|
3653 | DO ii=1, 100, 1 |
---|
3654 | IF ( zscerrrh(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscerrrh', & |
---|
3655 | & cur_loop, h_ratio, iiposrh(ii), ijposrh(ii), ikposrh(ii), zscerrrh(ii) |
---|
3656 | ENDDO |
---|
3657 | ! write separator |
---|
3658 | WRITE(numtan_sc,"(A4)") '====' |
---|
3659 | ENDIF |
---|
3660 | ENDIF |
---|
3661 | |
---|
3662 | DEALLOCATE( & |
---|
3663 | & zrd_out, zrd_tl, zrd_wop, & |
---|
3664 | & zrh_out, zrh_tl, zrh_wop, & |
---|
3665 | & zt_tlin, zs_tlin, z3r & |
---|
3666 | & ) |
---|
3667 | END SUBROUTINE eos_insitu_pot_tlm_tst |
---|
3668 | |
---|
3669 | SUBROUTINE eos_insitu_2d_tlm_tst( kumadt ) |
---|
3670 | !!----------------------------------------------------------------------- |
---|
3671 | !! |
---|
3672 | !! *** ROUTINE eos_insitu_2d_tlm_tst *** |
---|
3673 | !! |
---|
3674 | !! ** Purpose : Test the tangent routine. |
---|
3675 | !! |
---|
3676 | !! ** Method : Verify the tangent with Taylor expansion |
---|
3677 | !! |
---|
3678 | !! M(x+hdx) = M(x) + L(hdx) + O(h^2) |
---|
3679 | !! |
---|
3680 | !! where L = tangent routine |
---|
3681 | !! M = direct routine |
---|
3682 | !! dx = input perturbation (random field) |
---|
3683 | !! h = ration on perturbation |
---|
3684 | !! |
---|
3685 | !! In the tangent test we verify that: |
---|
3686 | !! M(x+h*dx) - M(x) |
---|
3687 | !! g(h) = ------------------ ---> 1 as h ---> 0 |
---|
3688 | !! L(h*dx) |
---|
3689 | !! and |
---|
3690 | !! g(h) - 1 |
---|
3691 | !! f(h) = ---------- ---> k (costant) as h ---> 0 |
---|
3692 | !! p |
---|
3693 | !! |
---|
3694 | !! History : |
---|
3695 | !! ! 09-08 (A. Vigilant) |
---|
3696 | !!----------------------------------------------------------------------- |
---|
3697 | !! * Modules used |
---|
3698 | USE eosbn2, ONLY: & ! horizontal & vertical advective trend |
---|
3699 | & eos |
---|
3700 | USE tamtrj ! writing out state trajectory |
---|
3701 | USE par_tlm, ONLY: & |
---|
3702 | & tlm_bch, & |
---|
3703 | & cur_loop, & |
---|
3704 | & h_ratio |
---|
3705 | USE istate_mod |
---|
3706 | USE gridrandom, ONLY: & |
---|
3707 | & grid_rd_sd |
---|
3708 | USE trj_tam |
---|
3709 | USE oce , ONLY: & ! ocean dynamics and tracers variables |
---|
3710 | & tn, sn, rhd, rhop |
---|
3711 | USE opatam_tst_ini, ONLY: & |
---|
3712 | & tlm_namrd |
---|
3713 | USE in_out_manager, ONLY: & ! I/O manager |
---|
3714 | & nitend, & |
---|
3715 | & nit000 |
---|
3716 | USE tamctl, ONLY: & ! Control parameters |
---|
3717 | & numtan, numtan_sc |
---|
3718 | !! * Arguments |
---|
3719 | INTEGER, INTENT(IN) :: & |
---|
3720 | & kumadt ! Output unit |
---|
3721 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
3722 | & zdep, & ! depth |
---|
3723 | & ztem, & ! potential temperature |
---|
3724 | & zsal ! salinity |
---|
3725 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
3726 | & zrd_out, & ! |
---|
3727 | & zt_tlin , & ! |
---|
3728 | & zs_tlin , & |
---|
3729 | & zrd_tl , & |
---|
3730 | & zrd_wop , & |
---|
3731 | & z2r |
---|
3732 | REAL(KIND=wp) :: & |
---|
3733 | & zsp1, & |
---|
3734 | & zsp2, & |
---|
3735 | & zsp3, & |
---|
3736 | & zzsp, & |
---|
3737 | & gamma, & |
---|
3738 | & zgsp1, & |
---|
3739 | & zgsp2, & |
---|
3740 | & zgsp3, & |
---|
3741 | & zgsp4, & |
---|
3742 | & zgsp5, & |
---|
3743 | & zgsp6, & |
---|
3744 | & zgsp7 |
---|
3745 | INTEGER :: & |
---|
3746 | & ji, & |
---|
3747 | & jj |
---|
3748 | CHARACTER(LEN=14) :: cl_name |
---|
3749 | CHARACTER (LEN=128) :: file_out, file_wop, file_xdx |
---|
3750 | CHARACTER (LEN=90) :: FMT |
---|
3751 | REAL(KIND=wp), DIMENSION(100):: & |
---|
3752 | & zscrd, zscerrrd |
---|
3753 | INTEGER, DIMENSION(100):: & |
---|
3754 | & iiposrd, ijposrd |
---|
3755 | INTEGER:: & |
---|
3756 | & ii, numsctlm, & |
---|
3757 | & isamp=40,jsamp=40 |
---|
3758 | REAL(KIND=wp), DIMENSION(jpi,jpj) :: & |
---|
3759 | & zerrrd |
---|
3760 | ALLOCATE( & |
---|
3761 | & ztem ( jpi, jpj ), & |
---|
3762 | & zsal ( jpi, jpj ), & |
---|
3763 | & zdep ( jpi, jpj ), & |
---|
3764 | & zrd_out( jpi, jpj ), & |
---|
3765 | & zrd_tl( jpi, jpj ), & |
---|
3766 | & zs_tlin( jpi, jpj ), & |
---|
3767 | & zt_tlin( jpi, jpj ), & |
---|
3768 | & zrd_wop( jpi, jpj ), & |
---|
3769 | & z2r ( jpi, jpj ) ) |
---|
3770 | |
---|
3771 | !-------------------------------------------------------------------- |
---|
3772 | ! Reset the tangent and adjoint variables |
---|
3773 | !-------------------------------------------------------------------- |
---|
3774 | ztem ( :,:) = 0.0_wp |
---|
3775 | zsal ( :,:) = 0.0_wp |
---|
3776 | zt_tlin( :,:) = 0.0_wp |
---|
3777 | zs_tlin( :,:) = 0.0_wp |
---|
3778 | zrd_out( :,:) = 0.0_wp |
---|
3779 | zrd_wop( :,:) = 0.0_wp |
---|
3780 | zscerrrd( :) = 0.0_wp |
---|
3781 | zscrd(:) = 0.0_wp |
---|
3782 | IF ( tlm_bch == 2 ) zrd_tl ( :,:) = 0.0_wp |
---|
3783 | !-------------------------------------------------------------------- |
---|
3784 | ! Output filename Xn=F(X0) |
---|
3785 | !-------------------------------------------------------------------- |
---|
3786 | CALL tlm_namrd |
---|
3787 | gamma = h_ratio |
---|
3788 | file_wop='trj_wop_eos_2d' |
---|
3789 | file_xdx='trj_xdx_eos_2d' |
---|
3790 | !-------------------------------------------------------------------- |
---|
3791 | ! Initialize the tangent input with random noise: dx |
---|
3792 | !-------------------------------------------------------------------- |
---|
3793 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3794 | CALL grid_rd_sd( 596035, z2r, 'T', 0.0_wp, stdt) |
---|
3795 | DO jj = nldj, nlej |
---|
3796 | DO ji = nldi, nlei |
---|
3797 | zt_tlin(ji,jj) = z2r(ji,jj) |
---|
3798 | END DO |
---|
3799 | END DO |
---|
3800 | CALL grid_rd_sd( 371836, z2r, 'S', 0.0_wp, stds) |
---|
3801 | DO jj = nldj, nlej |
---|
3802 | DO ji = nldi, nlei |
---|
3803 | zs_tlin(ji,jj) = z2r(ji,jj) |
---|
3804 | END DO |
---|
3805 | END DO |
---|
3806 | ENDIF |
---|
3807 | |
---|
3808 | !-------------------------------------------------------------------- |
---|
3809 | ! Complete Init for Direct |
---|
3810 | !------------------------------------------------------------------- |
---|
3811 | IF ( tlm_bch /= 2 ) CALL istate_p |
---|
3812 | ! *** initialize the reference trajectory |
---|
3813 | ! ------------ |
---|
3814 | CALL trj_rea( nit000-1, 1 ) |
---|
3815 | CALL trj_rea( nit000, 1 ) |
---|
3816 | ! Initialize the reference state |
---|
3817 | ztem(:,:) = tn(:,:,2) |
---|
3818 | zsal(:,:) = sn(:,:,2) |
---|
3819 | zdep(:,:) = fsdept(:,:,2) |
---|
3820 | |
---|
3821 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
3822 | zt_tlin(:,:) = gamma * zt_tlin(:,:) |
---|
3823 | ztem(:,:) = ztem(:,:) + zt_tlin(:,:) |
---|
3824 | |
---|
3825 | zs_tlin(:,:) = gamma * zs_tlin(:,:) |
---|
3826 | zsal(:,:) = zsal(:,:) + zs_tlin(:,:) |
---|
3827 | ENDIF |
---|
3828 | !-------------------------------------------------------------------- |
---|
3829 | ! Compute the direct model F(X0,t=n) = Xn |
---|
3830 | !-------------------------------------------------------------------- |
---|
3831 | IF ( tlm_bch /= 2 ) CALL eos(ztem, zsal, zdep, zrd_out) |
---|
3832 | rhd (:,:,2) = zrd_out(:,:) |
---|
3833 | IF ( tlm_bch == 0 ) CALL trj_wri_spl(file_wop) |
---|
3834 | IF ( tlm_bch == 1 ) CALL trj_wri_spl(file_xdx) |
---|
3835 | !-------------------------------------------------------------------- |
---|
3836 | ! Compute the Tangent |
---|
3837 | !-------------------------------------------------------------------- |
---|
3838 | IF ( tlm_bch == 2 ) THEN |
---|
3839 | !-------------------------------------------------------------------- |
---|
3840 | ! Initialize the tangent variables: dy^* = W dy |
---|
3841 | !-------------------------------------------------------------------- |
---|
3842 | CALL trj_rea( nit000-1, 1 ) |
---|
3843 | CALL trj_rea( nit000, 1 ) |
---|
3844 | ztem(:,:) = tn(:,:,2) |
---|
3845 | zsal(:,:) = sn(:,:,2) |
---|
3846 | !----------------------------------------------------------------------- |
---|
3847 | ! Initialization of the dynamics and tracer fields for the tangent |
---|
3848 | !----------------------------------------------------------------------- |
---|
3849 | CALL eos_insitu_2d_tan(ztem, zsal, zdep, zt_tlin, zs_tlin, zrd_tl) |
---|
3850 | !-------------------------------------------------------------------- |
---|
3851 | ! Compute the scalar product: ( L(t0,tn) gamma dx0 ) ) |
---|
3852 | !-------------------------------------------------------------------- |
---|
3853 | zsp2 = DOT_PRODUCT( zrd_tl, zrd_tl ) |
---|
3854 | !-------------------------------------------------------------------- |
---|
3855 | ! Storing data |
---|
3856 | !-------------------------------------------------------------------- |
---|
3857 | CALL trj_rd_spl(file_wop) |
---|
3858 | zrd_wop (:,:) = rhd (:,:,2) |
---|
3859 | CALL trj_rd_spl(file_xdx) |
---|
3860 | zrd_out (:,:) = rhd (:,:,2) |
---|
3861 | !-------------------------------------------------------------------- |
---|
3862 | ! Compute the Linearization Error |
---|
3863 | ! Nn = M( X0+gamma.dX0, t0,tn) - M(X0, t0,tn) |
---|
3864 | ! and |
---|
3865 | ! Compute the Linearization Error |
---|
3866 | ! En = Nn -TL(gamma.dX0, t0,tn) |
---|
3867 | !-------------------------------------------------------------------- |
---|
3868 | ! Warning: Here we re-use local variables z()_out and z()_wop |
---|
3869 | ii=0 |
---|
3870 | DO jj = 1, jpj |
---|
3871 | DO ji = 1, jpi |
---|
3872 | zrd_out (ji,jj) = zrd_out (ji,jj) - zrd_wop (ji,jj) |
---|
3873 | zrd_wop (ji,jj) = zrd_out (ji,jj) - zrd_tl (ji,jj) |
---|
3874 | IF ( zrd_tl(ji,jj) .NE. 0.0_wp ) & |
---|
3875 | & zerrrd(ji,jj) = zrd_out(ji,jj)/zrd_tl(ji,jj) |
---|
3876 | IF( (MOD(ji, isamp) .EQ. 0) .AND. & |
---|
3877 | & (MOD(jj, jsamp) .EQ. 0) ) THEN |
---|
3878 | ii = ii+1 |
---|
3879 | iiposrd(ii) = ji |
---|
3880 | ijposrd(ii) = jj |
---|
3881 | IF ( INT(tmask(ji,jj,2)) .NE. 0) THEN |
---|
3882 | zscrd (ii) = zrd_wop(ji,jj) |
---|
3883 | zscerrrd (ii) = ( zerrrd( ji,jj) - 1.0_wp ) / gamma |
---|
3884 | ENDIF |
---|
3885 | ENDIF |
---|
3886 | END DO |
---|
3887 | END DO |
---|
3888 | |
---|
3889 | zsp1 = DOT_PRODUCT( zrd_out, zrd_out ) |
---|
3890 | |
---|
3891 | zsp3 = DOT_PRODUCT( zrd_wop, zrd_wop ) |
---|
3892 | !-------------------------------------------------------------------- |
---|
3893 | ! Print the linearization error En - norme 2 |
---|
3894 | !-------------------------------------------------------------------- |
---|
3895 | ! 14 char:'12345678901234' |
---|
3896 | cl_name = 'eos_2d:En ' |
---|
3897 | zzsp = SQRT(zsp3) |
---|
3898 | zgsp5 = zzsp |
---|
3899 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3900 | !-------------------------------------------------------------------- |
---|
3901 | ! Compute TLM norm2 |
---|
3902 | !-------------------------------------------------------------------- |
---|
3903 | zzsp = SQRT(zsp2) |
---|
3904 | zgsp4 = zzsp |
---|
3905 | cl_name = 'eos_2d:Ln2' |
---|
3906 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3907 | !-------------------------------------------------------------------- |
---|
3908 | ! Print the linearization error Nn - norme 2 |
---|
3909 | !-------------------------------------------------------------------- |
---|
3910 | zzsp = SQRT(zsp1) |
---|
3911 | cl_name = 'eos_2d:Mhdx-Mx' |
---|
3912 | CALL prntst_tlm( cl_name, kumadt, zzsp, h_ratio ) |
---|
3913 | |
---|
3914 | zgsp3 = SQRT( zsp3/zsp2 ) |
---|
3915 | zgsp7 = zgsp3/gamma |
---|
3916 | zgsp1 = zzsp |
---|
3917 | zgsp2 = zgsp1 / zgsp4 |
---|
3918 | zgsp6 = (zgsp2 - 1.0_wp)/gamma |
---|
3919 | |
---|
3920 | FMT = "(A8,2X,I4.4,2X,E6.1,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13,2X,E20.13)" |
---|
3921 | WRITE(numtan,FMT) 'eosins2d', cur_loop, h_ratio, zgsp1, zgsp2, zgsp3, zgsp4, zgsp5, zgsp6, zgsp7 |
---|
3922 | !-------------------------------------------------------------------- |
---|
3923 | ! Unitary calculus |
---|
3924 | !-------------------------------------------------------------------- |
---|
3925 | FMT = "(A8,2X,A8,2X,I4.4,2X,E6.1,2X,I4.4,2X,I4.4,2X,I4.4,2X,E20.13,1X)" |
---|
3926 | cl_name = 'eosins2d' |
---|
3927 | IF(lwp) THEN |
---|
3928 | DO ii=1, 100, 1 |
---|
3929 | IF ( zscrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscrd ', & |
---|
3930 | & cur_loop, h_ratio, ii, iiposrd(ii), ijposrd(ii), zscrd(ii) |
---|
3931 | ENDDO |
---|
3932 | DO ii=1, 100, 1 |
---|
3933 | IF ( zscerrrd(ii) .NE. 0.0_wp ) WRITE(numtan_sc,FMT) cl_name, 'zscerrrd', & |
---|
3934 | & cur_loop, h_ratio, ii, iiposrd(ii), ijposrd(ii), zscerrrd(ii) |
---|
3935 | ENDDO |
---|
3936 | ! write separator |
---|
3937 | WRITE(numtan_sc,"(A4)") '====' |
---|
3938 | ENDIF |
---|
3939 | |
---|
3940 | ENDIF |
---|
3941 | |
---|
3942 | DEALLOCATE( & |
---|
3943 | & zrd_out, zrd_tl, zrd_wop, & |
---|
3944 | & ztem, zsal, zdep, & |
---|
3945 | & zt_tlin, zs_tlin, z2r & |
---|
3946 | & ) |
---|
3947 | END SUBROUTINE eos_insitu_2d_tlm_tst |
---|
3948 | |
---|
3949 | |
---|
3950 | SUBROUTINE bn2_tlm_tst( kumadt ) |
---|
3951 | !!----------------------------------------------------------------------- |
---|
3952 | !! |
---|
3953 | !! *** ROUTINE bn2_tlm_tst *** |
---|
3954 | !! |
---|
3955 | !! ** Purpose : Test the tangent routine. |
---|
3956 | !! |
---|
3957 | !! ** Method : Verify the tangent with Taylor expansion |
---|
3958 | !! |
---|
3959 | !! M(x+hdx) = M(x) + L(hdx) + O(h^2) |
---|
3960 | !! |
---|
3961 | !! where L = tangent routine |
---|
3962 | !! M = direct routine |
---|
3963 | !! dx = input perturbation (random field) |
---|
3964 | !! h = ration on perturbation |
---|
3965 | !! |
---|
3966 | !! In the tangent test we verify that: |
---|
3967 | !! M(x+h*dx) - M(x) |
---|
3968 | !! g(h) = ------------------ ---> 1 as h ---> 0 |
---|
3969 | !! L(h*dx) |
---|
3970 | !! and |
---|
3971 | !! g(h) - 1 |
---|
3972 | !! f(h) = ---------- ---> k (costant) as h ---> 0 |
---|
3973 | !! p |
---|
3974 | !! |
---|
3975 | !! History : |
---|
3976 | !! ! 09-12 (A. Vigilant) |
---|
3977 | !!----------------------------------------------------------------------- |
---|
3978 | !! * Modules used |
---|
3979 | USE eosbn2, ONLY: & ! horizontal & vertical advective trend |
---|
3980 | & bn2 |
---|
3981 | USE tamtrj ! writing out state trajectory |
---|
3982 | USE par_tlm, ONLY: & |
---|
3983 | & tlm_bch, & |
---|
3984 | & cur_loop, & |
---|
3985 | & h_ratio |
---|
3986 | USE istate_mod |
---|
3987 | USE wzvmod ! vertical velocity |
---|
3988 | USE gridrandom, ONLY: & |
---|
3989 | & grid_rd_sd |
---|
3990 | USE trj_tam |
---|
3991 | USE oce , ONLY: & ! ocean dynamics and tracers variables |
---|
3992 | & tn, sn, rn2 |
---|
3993 | USE oce_tam , ONLY: & |
---|
3994 | & tn_tl, & |
---|
3995 | & sn_tl, & |
---|
3996 | & rn2_tl |
---|
3997 | USE in_out_manager, ONLY: & ! I/O manager & |
---|
3998 | & nit000 |
---|
3999 | USE opatam_tst_ini, ONLY: & |
---|
4000 | & tlm_namrd |
---|
4001 | USE tamctl, ONLY: & ! Control parameters |
---|
4002 | & numtan, numtan_sc |
---|
4003 | !! * Arguments |
---|
4004 | INTEGER, INTENT(IN) :: & |
---|
4005 | & kumadt ! Output unit |
---|
4006 | !! * Local declarations |
---|
4007 | INTEGER :: & |
---|
4008 | & ji, & ! dummy loop indices |
---|
4009 | & jj, & |
---|
4010 | & jk |
---|
4011 | REAL(KIND=wp) :: & |
---|
4012 | & zsp1, & ! scalar product involving the tangent routine |
---|
4013 | & zsp2, & ! scalar product involving the tangent routine |
---|
4014 | & zsp3, & ! scalar product involving the tangent routine |
---|
4015 | & zzsp, & ! scalar product involving the tangent routine |
---|
4016 | & gamma, & |
---|
4017 | & zgsp1, & |
---|
4018 | & zgsp2, & |
---|
4019 | & zgsp3, & |
---|
4020 | & zgsp4, & |
---|
4021 | & zgsp5, & |
---|
4022 | & zgsp6, & |
---|
4023 | & zgsp7 |
---|
4024 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
4025 | & ztn_tlin, & ! potential temperature |
---|
4026 | & zsn_tlin, & ! salinity |
---|
4027 | & zrn2_out, & ! Brunt-Vaisala frequency [s-1] Direct output |
---|
4028 | & zrn2_wop, & ! Brunt-Vaisala frequency [s-1] Direct output w/o perturbation |
---|
4029 | & z3r |
---|
4030 | CHARACTER(LEN=14) :: cl_name |
---|
4031 | CHARACTER (LEN=128) :: file_out, file_wop, file_xdx |
---|
4032 | CHARACTER (LEN=90) :: FMT |
---|
4033 | REAL(KIND=wp), DIMENSION(100):: & |
---|
4034 | & zscrn2, & |
---|
4035 | & zscerrrn2 |
---|
4036 | INTEGER, DIMENSION(100):: & |
---|
4037 | & iiposrn2,ijposrn2, ikposrn2 |
---|
4038 | INTEGER:: & |
---|
4039 | & ii, & |
---|
4040 | & isamp=40, & |
---|
4041 | & jsamp=40, & |
---|
4042 | & ksamp=10, & |
---|
4043 | & numsctlm |
---|
4044 | REAL(KIND=wp), DIMENSION(jpi,jpj,jpk) :: & |
---|
4045 | & zerrrn2 |
---|
4046 | |
---|
4047 | ! Allocate memory |
---|
4048 | ALLOCATE( & |
---|
4049 | & zsn_tlin( jpi, jpj, jpk ), & |
---|
4050 | & ztn_tlin( jpi, jpj, jpk ), & |
---|
4051 | & zrn2_out( jpi, jpj, jpk ), & |
---|
4052 | & zrn2_wop( jpi, jpj, jpk ), & |
---|
4053 | & z3r( jpi, jpj, jpk ) ) |
---|
4054 | |
---|
4055 | |
---|
4056 | !-------------------------------------------------------------------- |
---|
4057 | ! Output filename Xn=F(X0) |
---|
4058 | !-------------------------------------------------------------------- |
---|
4059 | CALL tlm_namrd |
---|
4060 | gamma = h_ratio |
---|
4061 | file_wop='trj_wop_bn2' |
---|
4062 | file_xdx='trj_xdx_bn2' |
---|
4063 | !-------------------------------------------------------------------- |
---|
4064 | ! Initialize the tangent input with random noise: dx |
---|
4065 | !-------------------------------------------------------------------- |
---|
4066 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
4067 | CALL grid_rd_sd( 264940, z3r, 'T', 0.0_wp, stdt) |
---|
4068 | DO jk = 1, jpk |
---|
4069 | DO jj = nldj, nlej |
---|
4070 | DO ji = nldi, nlei |
---|
4071 | ztn_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
4072 | END DO |
---|
4073 | END DO |
---|
4074 | END DO |
---|
4075 | CALL grid_rd_sd( 618304, z3r, 'T', 0.0_wp, stds) |
---|
4076 | DO jk = 1, jpk |
---|
4077 | DO jj = nldj, nlej |
---|
4078 | DO ji = nldi, nlei |
---|
4079 | zsn_tlin(ji,jj,jk) = z3r(ji,jj,jk) |
---|
4080 | END DO |
---|
4081 | END DO |
---|
4082 | END DO |
---|
4083 | ENDIF |
---|
4084 | !-------------------------------------------------------------------- |
---|
4085 | ! Complete Init for Direct |
---|
4086 | !------------------------------------------------------------------- |
---|
4087 | IF ( tlm_bch /= 2 ) CALL istate_p |
---|
4088 | |
---|
4089 | ! *** initialize the reference trajectory |
---|
4090 | ! ------------ |
---|
4091 | CALL trj_rea( nit000-1, 1 ) |
---|
4092 | |
---|
4093 | IF (( cur_loop .NE. 0) .OR. ( gamma .NE. 0.0_wp) )THEN |
---|
4094 | |
---|
4095 | ztn_tlin(:,:,:) = gamma * ztn_tlin(:,:,:) |
---|
4096 | tn(:,:,:) = tn(:,:,:) + ztn_tlin(:,:,:) |
---|
4097 | |
---|
4098 | zsn_tlin(:,:,:) = gamma * zsn_tlin(:,:,:) |
---|
4099 | sn(:,:,:) = sn(:,:,:) + zsn_tlin(:,:,:) |
---|
4100 | |
---|
4101 | ENDIF |
---|
4102 | |
---|
4103 | !-------------------------------------------------------------------- |
---|
4104 | ! Compute the direct model F(X0,t=n) = Xn |
---|
4105 | !-------------------------------------------------------------------- |
---|
4106 | IF ( tlm_bch /= 2 ) CALL bn2(tn, sn, rn2) |
---|
4107 | IF ( tlm_bch == 0 ) CALL trj_wri_spl(file_wop) |
---|
4108 | IF ( tlm_bch == 1 ) CALL trj_wri_spl(file_xdx) |
---|
4109 | !-------------------------------------------------------------------- |
---|
4110 | ! Compute the Tangent |
---|
4111 | !-------------------------------------------------------------------- |
---|
4112 | IF ( tlm_bch == 2 ) THEN |
---|
4113 | !-------------------------------------------------------------------- |
---|
4114 | ! Initialize the tangent variables: dy^* = W dy |
---|
4115 | !-------------------------------------------------------------------- |
---|
4116 | CALL trj_rea( nit000-1, 1 ) |
---|
4117 | tn_tl (:,:,:) = ztn_tlin (:,:,:) |
---|
4118 | sn_tl (:,:,:) = zsn_tlin (:,:,:) |
---|
4119 | |
---|
4120 | !----------------------------------------------------------------------- |
---|
4121 | ! Initialization of the dynamics and tracer fields for the tangent |
---|
4122 | !----------------------------------------------------------------------- |
---|
4123 | CALL bn2_tan(tn, sn, ztn_tlin, zsn_tlin, rn2_tl) |
---|
4124 | |
---|
4125 | !-------------------------------------------------------------------- |
---|
4126 | ! Compute the scalar product: ( L(t0,tn) gamma dx0 ) ) |
---|
4127 | !-------------------------------------------------------------------- |
---|
4128 | zsp2 = DOT_PRODUCT( rn2_tl, rn2_tl ) |
---|
4129 | |
---|
4130 | !-------------------------------------------------------------------- |
---|
4131 | ! Storing data |
---|
4132 | !-------------------------------------------------------------------- |
---|
4133 | CALL trj_rd_spl(file_wop) |
---|
4134 | zrn2_wop (:,:,:) = rn2 (:,:,:) |
---|
4135 | CALL trj_rd_spl(file_xdx) |
---|
4136 | zrn2_out (:,:,:) = rn2 (:,:,:) |
---|
4137 | !-------------------------------------------------------------------- |
---|
4138 | ! Compute the Linearization Error |
---|
4139 | ! Nn = M( X0+gamma.dX0, t0,tn) - M(X0, t0,tn) |
---|
4140 | ! and |
---|
4141 | ! Compute the Linearization Error |
---|
4142 | ! En = Nn -TL(gamma.dX0, t0,tn) |
---|
4143 | !-------------------------------------------------------------------- |
---|
4144 | ! Warning: Here we re-use local variables z()_out and z()_wop |
---|
4145 | ii=0 |
---|
4146 | DO jk = 1, jpk |
---|
4147 | DO jj = 1, jpj |
---|
4148 | DO ji = 1, jpi |
---|
4149 | zrn2_out (ji,jj,jk) = zrn2_out (ji,jj,jk) - zrn2_wop (ji,jj,jk) |
---|
4150 | zrn2_wop (ji,jj,jk) = zrn2_out (ji,jj,jk) - rn2_tl (ji,jj,jk) |
---|
4151 | IF ( rn2_tl(ji,jj,jk) .NE. 0.0_wp ) & |
---|
4152 | & zerrrn2(ji,jj,jk) = zrn2_out(ji,jj,jk)/rn2_tl(ji,jj,jk) |
---|
4153 | IF( (MOD(ji, isamp) .EQ. 0) .AND. & |
---|
4154 | & (MOD(jj, jsamp) .EQ. 0) .AND. & |
---|
4155 | & (MOD(jk, ksamp) .EQ. 0) ) THEN |
---|
4156 | ii = ii+1 |
---|
<