1 | MODULE bdytides |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE bdytides *** |
---|
4 | !! Ocean dynamics: Tidal forcing at open boundaries |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2007-01 (D.Storkey) Original code |
---|
7 | !! 2.3 ! 2008-01 (J.Holt) Add date correction. Origins POLCOMS v6.3 2007 |
---|
8 | !! 3.0 ! 2008-04 (NEMO team) add in the reference version |
---|
9 | !! 3.3 ! 2010-09 (D.Storkey and E.O'Dea) bug fixes |
---|
10 | !! 3.4 ! 2012-09 (G. Reffray and J. Chanut) New inputs + mods |
---|
11 | !! 3.5 ! 2013-07 (J. Chanut) Compliant with time splitting changes |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | #if defined key_bdy |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! 'key_bdy' Open Boundary Condition |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | !! PUBLIC |
---|
18 | !! bdytide_init : read of namelist and initialisation of tidal harmonics data |
---|
19 | !! tide_update : calculation of tidal forcing at each timestep |
---|
20 | !!---------------------------------------------------------------------- |
---|
21 | USE timing ! Timing |
---|
22 | USE oce ! ocean dynamics and tracers |
---|
23 | USE dom_oce ! ocean space and time domain |
---|
24 | USE iom |
---|
25 | USE in_out_manager ! I/O units |
---|
26 | USE phycst ! physical constants |
---|
27 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
28 | USE bdy_par ! Unstructured boundary parameters |
---|
29 | USE bdy_oce ! ocean open boundary conditions |
---|
30 | USE daymod ! calendar |
---|
31 | USE wrk_nemo ! Memory allocation |
---|
32 | USE tideini |
---|
33 | ! USE tide_mod ! Useless ?? |
---|
34 | USE fldread |
---|
35 | USE dynspg_oce, ONLY: lk_dynspg_ts |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | PRIVATE |
---|
39 | |
---|
40 | PUBLIC bdytide_init ! routine called in bdy_init |
---|
41 | PUBLIC bdytide_update ! routine called in bdy_dta |
---|
42 | PUBLIC bdy_dta_tides ! routine called in dyn_spg_ts |
---|
43 | |
---|
44 | TYPE, PUBLIC :: TIDES_DATA !: Storage for external tidal harmonics data |
---|
45 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ssh0 !: Tidal constituents : SSH0 (read in file) |
---|
46 | REAL(wp), POINTER, DIMENSION(:,:,:) :: u0 !: Tidal constituents : U0 (read in file) |
---|
47 | REAL(wp), POINTER, DIMENSION(:,:,:) :: v0 !: Tidal constituents : V0 (read in file) |
---|
48 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ssh !: Tidal constituents : SSH (after nodal cor.) |
---|
49 | REAL(wp), POINTER, DIMENSION(:,:,:) :: u !: Tidal constituents : U (after nodal cor.) |
---|
50 | REAL(wp), POINTER, DIMENSION(:,:,:) :: v !: Tidal constituents : V (after nodal cor.) |
---|
51 | END TYPE TIDES_DATA |
---|
52 | |
---|
53 | INTEGER, PUBLIC, PARAMETER :: jptides_max = 15 !: Max number of tidal contituents |
---|
54 | LOGICAL, PUBLIC :: ln_harm_ana_store !: =T Stores data for harmonic Analysis |
---|
55 | LOGICAL, PUBLIC :: ln_harm_ana_compute !: =T Compute harmonic Analysis |
---|
56 | LOGICAL, PUBLIC :: ln_harmana_read !: =T Decide to do the analysis |
---|
57 | |
---|
58 | !$AGRIF_DO_NOT_TREAT |
---|
59 | TYPE(TIDES_DATA), PUBLIC, DIMENSION(jp_bdy), TARGET :: tides !: External tidal harmonics data |
---|
60 | !$AGRIF_END_DO_NOT_TREAT |
---|
61 | TYPE(OBC_DATA) , PRIVATE, DIMENSION(jp_bdy) :: dta_bdy_s !: bdy external data (slow component) |
---|
62 | |
---|
63 | !!---------------------------------------------------------------------- |
---|
64 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
65 | !! $Id$ |
---|
66 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
67 | !!---------------------------------------------------------------------- |
---|
68 | CONTAINS |
---|
69 | |
---|
70 | SUBROUTINE bdytide_init |
---|
71 | !!---------------------------------------------------------------------- |
---|
72 | !! *** SUBROUTINE bdytide_init *** |
---|
73 | !! |
---|
74 | !! ** Purpose : - Read in namelist for tides and initialise external |
---|
75 | !! tidal harmonics data |
---|
76 | !! |
---|
77 | !!---------------------------------------------------------------------- |
---|
78 | !! namelist variables |
---|
79 | !!------------------- |
---|
80 | CHARACTER(len=80) :: filtide !: Filename root for tidal input files |
---|
81 | LOGICAL :: ln_bdytide_2ddta !: If true, read 2d harmonic data |
---|
82 | LOGICAL :: ln_bdytide_conj !: If true, assume complex conjugate tidal data |
---|
83 | !! |
---|
84 | INTEGER :: ib_bdy, itide, ib !: dummy loop indices |
---|
85 | INTEGER :: ii, ij !: dummy loop indices |
---|
86 | INTEGER :: inum, igrd |
---|
87 | INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays) |
---|
88 | INTEGER, POINTER, DIMENSION(:) :: nblen, nblenrim ! short cuts |
---|
89 | INTEGER :: ios ! Local integer output status for namelist read |
---|
90 | CHARACTER(len=80) :: clfile !: full file name for tidal input file |
---|
91 | REAL(wp),ALLOCATABLE, DIMENSION(:,:,:) :: dta_read !: work space to read in tidal harmonics data |
---|
92 | REAL(wp), POINTER, DIMENSION(:,:) :: ztr, zti !: " " " " " " " " |
---|
93 | !! |
---|
94 | TYPE(TIDES_DATA), POINTER :: td !: local short cut |
---|
95 | TYPE(MAP_POINTER), DIMENSION(jpbgrd) :: ibmap_ptr !: array of pointers to nbmap |
---|
96 | !! |
---|
97 | NAMELIST/nambdy_tide/filtide, ln_bdytide_2ddta, ln_bdytide_conj,ln_harm_ana_store, ln_harm_ana_compute, ln_harmana_read |
---|
98 | !!---------------------------------------------------------------------- |
---|
99 | |
---|
100 | IF( nn_timing == 1 ) CALL timing_start('bdytide_init') |
---|
101 | |
---|
102 | IF (nb_bdy>0) THEN |
---|
103 | IF(lwp) WRITE(numout,*) |
---|
104 | IF(lwp) WRITE(numout,*) 'bdytide_init : initialization of tidal harmonic forcing at open boundaries' |
---|
105 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' |
---|
106 | ENDIF |
---|
107 | |
---|
108 | REWIND(numnam_cfg) |
---|
109 | REWIND(numnam_ref) ! slwa |
---|
110 | |
---|
111 | DO ib_bdy = 1, nb_bdy |
---|
112 | IF( nn_dyn2d_dta(ib_bdy) .ge. 2 ) THEN |
---|
113 | |
---|
114 | td => tides(ib_bdy) |
---|
115 | nblen => idx_bdy(ib_bdy)%nblen |
---|
116 | nblenrim => idx_bdy(ib_bdy)%nblenrim |
---|
117 | |
---|
118 | ! Namelist nambdy_tide : tidal harmonic forcing at open boundaries |
---|
119 | filtide(:) = '' |
---|
120 | |
---|
121 | ! Don't REWIND here - may need to read more than one of these namelists. |
---|
122 | READ ( numnam_ref, nambdy_tide, IOSTAT = ios, ERR = 901) |
---|
123 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy_tide in reference namelist', lwp ) |
---|
124 | READ ( numnam_cfg, nambdy_tide, IOSTAT = ios, ERR = 902 ) |
---|
125 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy_tide in configuration namelist', lwp ) |
---|
126 | IF(lwm) WRITE ( numond, nambdy_tide ) |
---|
127 | ! ! Parameter control and print |
---|
128 | IF(lwp) WRITE(numout,*) ' ' |
---|
129 | IF(lwp) WRITE(numout,*) ' Namelist nambdy_tide : tidal harmonic forcing at open boundaries' |
---|
130 | IF(lwp) WRITE(numout,*) ' read tidal data in 2d files: ', ln_bdytide_2ddta |
---|
131 | IF(lwp) WRITE(numout,*) ' assume complex conjugate : ', ln_bdytide_conj |
---|
132 | IF(lwp) WRITE(numout,*) ' Number of tidal components to read: ', nb_harmo |
---|
133 | IF(lwp) WRITE(numout,*) ' Use PCOMS harmonic ananalysis or not: ', ln_harm_ana_store |
---|
134 | IF(lwp) WRITE(numout,*) ' Compute Final harmonic ananalysis or not: ', ln_harm_ana_compute |
---|
135 | IF(lwp) WRITE(numout,*) ' Read in previous days harmonic data or start afresh: ', ln_harmana_read |
---|
136 | IF(lwp) THEN |
---|
137 | WRITE(numout,*) ' Tidal components: ' |
---|
138 | DO itide = 1, nb_harmo |
---|
139 | WRITE(numout,*) ' ', Wave(ntide(itide))%cname_tide |
---|
140 | END DO |
---|
141 | ENDIF |
---|
142 | IF(lwp) WRITE(numout,*) ' ' |
---|
143 | |
---|
144 | ! Allocate space for tidal harmonics data - get size from OBC data arrays |
---|
145 | ! ----------------------------------------------------------------------- |
---|
146 | |
---|
147 | ! JC: If FRS scheme is used, we assume that tidal is needed over the whole |
---|
148 | ! relaxation area |
---|
149 | IF( cn_dyn2d(ib_bdy) == 'frs' ) THEN |
---|
150 | ilen0(:)=nblen(:) |
---|
151 | ELSE |
---|
152 | ilen0(:)=nblenrim(:) |
---|
153 | ENDIF |
---|
154 | |
---|
155 | ALLOCATE( td%ssh0( ilen0(1), nb_harmo, 2 ) ) |
---|
156 | ALLOCATE( td%ssh ( ilen0(1), nb_harmo, 2 ) ) |
---|
157 | |
---|
158 | ALLOCATE( td%u0( ilen0(2), nb_harmo, 2 ) ) |
---|
159 | ALLOCATE( td%u ( ilen0(2), nb_harmo, 2 ) ) |
---|
160 | |
---|
161 | ALLOCATE( td%v0( ilen0(3), nb_harmo, 2 ) ) |
---|
162 | ALLOCATE( td%v ( ilen0(3), nb_harmo, 2 ) ) |
---|
163 | |
---|
164 | td%ssh0(:,:,:) = 0._wp |
---|
165 | td%ssh (:,:,:) = 0._wp |
---|
166 | td%u0 (:,:,:) = 0._wp |
---|
167 | td%u (:,:,:) = 0._wp |
---|
168 | td%v0 (:,:,:) = 0._wp |
---|
169 | td%v (:,:,:) = 0._wp |
---|
170 | |
---|
171 | IF (ln_bdytide_2ddta) THEN |
---|
172 | ! It is assumed that each data file contains all complex harmonic amplitudes |
---|
173 | ! given on the data domain (ie global, jpidta x jpjdta) |
---|
174 | ! |
---|
175 | CALL wrk_alloc( jpi, jpj, zti, ztr ) |
---|
176 | ! |
---|
177 | ! SSH fields |
---|
178 | clfile = TRIM(filtide)//'_grid_T.nc' |
---|
179 | CALL iom_open (clfile , inum ) |
---|
180 | igrd = 1 ! Everything is at T-points here |
---|
181 | DO itide = 1, nb_harmo |
---|
182 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_z1', ztr(:,:) ) |
---|
183 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_z2', zti(:,:) ) |
---|
184 | DO ib = 1, ilen0(igrd) |
---|
185 | ii = idx_bdy(ib_bdy)%nbi(ib,igrd) |
---|
186 | ij = idx_bdy(ib_bdy)%nbj(ib,igrd) |
---|
187 | td%ssh0(ib,itide,1) = ztr(ii,ij) |
---|
188 | td%ssh0(ib,itide,2) = zti(ii,ij) |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | CALL iom_close( inum ) |
---|
192 | ! |
---|
193 | ! U fields |
---|
194 | clfile = TRIM(filtide)//'_grid_U.nc' |
---|
195 | CALL iom_open (clfile , inum ) |
---|
196 | igrd = 2 ! Everything is at U-points here |
---|
197 | DO itide = 1, nb_harmo |
---|
198 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_u1', ztr(:,:) ) |
---|
199 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_u2', zti(:,:) ) |
---|
200 | DO ib = 1, ilen0(igrd) |
---|
201 | ii = idx_bdy(ib_bdy)%nbi(ib,igrd) |
---|
202 | ij = idx_bdy(ib_bdy)%nbj(ib,igrd) |
---|
203 | td%u0(ib,itide,1) = ztr(ii,ij) |
---|
204 | td%u0(ib,itide,2) = zti(ii,ij) |
---|
205 | END DO |
---|
206 | END DO |
---|
207 | CALL iom_close( inum ) |
---|
208 | ! |
---|
209 | ! V fields |
---|
210 | clfile = TRIM(filtide)//'_grid_V.nc' |
---|
211 | CALL iom_open (clfile , inum ) |
---|
212 | igrd = 3 ! Everything is at V-points here |
---|
213 | DO itide = 1, nb_harmo |
---|
214 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_v1', ztr(:,:) ) |
---|
215 | CALL iom_get ( inum, jpdom_data, TRIM(Wave(ntide(itide))%cname_tide)//'_v2', zti(:,:) ) |
---|
216 | DO ib = 1, ilen0(igrd) |
---|
217 | ii = idx_bdy(ib_bdy)%nbi(ib,igrd) |
---|
218 | ij = idx_bdy(ib_bdy)%nbj(ib,igrd) |
---|
219 | td%v0(ib,itide,1) = ztr(ii,ij) |
---|
220 | td%v0(ib,itide,2) = zti(ii,ij) |
---|
221 | END DO |
---|
222 | END DO |
---|
223 | CALL iom_close( inum ) |
---|
224 | ! |
---|
225 | CALL wrk_dealloc( jpi, jpj, ztr, zti ) |
---|
226 | ! |
---|
227 | ELSE |
---|
228 | ! |
---|
229 | ! Read tidal data only on bdy segments |
---|
230 | ! |
---|
231 | ALLOCATE( dta_read( MAXVAL(ilen0(1:3)), 1, 1 ) ) |
---|
232 | ! |
---|
233 | ! Set map structure |
---|
234 | ibmap_ptr(1)%ptr => idx_bdy(ib_bdy)%nbmap(:,1) |
---|
235 | ibmap_ptr(1)%ll_unstruc = ln_coords_file(ib_bdy) |
---|
236 | ibmap_ptr(2)%ptr => idx_bdy(ib_bdy)%nbmap(:,2) |
---|
237 | ibmap_ptr(2)%ll_unstruc = ln_coords_file(ib_bdy) |
---|
238 | ibmap_ptr(3)%ptr => idx_bdy(ib_bdy)%nbmap(:,3) |
---|
239 | ibmap_ptr(3)%ll_unstruc = ln_coords_file(ib_bdy) |
---|
240 | |
---|
241 | ! Open files and read in tidal forcing data |
---|
242 | ! ----------------------------------------- |
---|
243 | |
---|
244 | DO itide = 1, nb_harmo |
---|
245 | ! ! SSH fields |
---|
246 | clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_T.nc' |
---|
247 | CALL iom_open( clfile, inum ) |
---|
248 | CALL fld_map( inum, 'z1' , dta_read(1:ilen0(1),1:1,1:1) , 1, ibmap_ptr(1) ) |
---|
249 | td%ssh0(:,itide,1) = dta_read(1:ilen0(1),1,1) |
---|
250 | CALL fld_map( inum, 'z2' , dta_read(1:ilen0(1),1:1,1:1) , 1, ibmap_ptr(1) ) |
---|
251 | td%ssh0(:,itide,2) = dta_read(1:ilen0(1),1,1) |
---|
252 | CALL iom_close( inum ) |
---|
253 | ! ! U fields |
---|
254 | clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_U.nc' |
---|
255 | CALL iom_open( clfile, inum ) |
---|
256 | CALL fld_map( inum, 'u1' , dta_read(1:ilen0(2),1:1,1:1) , 1, ibmap_ptr(2) ) |
---|
257 | td%u0(:,itide,1) = dta_read(1:ilen0(2),1,1) |
---|
258 | CALL fld_map( inum, 'u2' , dta_read(1:ilen0(2),1:1,1:1) , 1, ibmap_ptr(2) ) |
---|
259 | td%u0(:,itide,2) = dta_read(1:ilen0(2),1,1) |
---|
260 | CALL iom_close( inum ) |
---|
261 | ! ! V fields |
---|
262 | clfile = TRIM(filtide)//TRIM(Wave(ntide(itide))%cname_tide)//'_grid_V.nc' |
---|
263 | CALL iom_open( clfile, inum ) |
---|
264 | CALL fld_map( inum, 'v1' , dta_read(1:ilen0(3),1:1,1:1) , 1, ibmap_ptr(3) ) |
---|
265 | td%v0(:,itide,1) = dta_read(1:ilen0(3),1,1) |
---|
266 | CALL fld_map( inum, 'v2' , dta_read(1:ilen0(3),1:1,1:1) , 1, ibmap_ptr(3) ) |
---|
267 | td%v0(:,itide,2) = dta_read(1:ilen0(3),1,1) |
---|
268 | CALL iom_close( inum ) |
---|
269 | ! |
---|
270 | END DO ! end loop on tidal components |
---|
271 | ! |
---|
272 | DEALLOCATE( dta_read ) |
---|
273 | ENDIF ! ln_bdytide_2ddta=.true. |
---|
274 | ! |
---|
275 | IF ( ln_bdytide_conj ) THEN ! assume complex conjugate in data files |
---|
276 | td%ssh0(:,:,2) = - td%ssh0(:,:,2) |
---|
277 | td%u0 (:,:,2) = - td%u0 (:,:,2) |
---|
278 | td%v0 (:,:,2) = - td%v0 (:,:,2) |
---|
279 | ENDIF |
---|
280 | ! |
---|
281 | IF ( lk_dynspg_ts ) THEN ! Allocate arrays to save slowly varying boundary data during |
---|
282 | ! time splitting integration |
---|
283 | ALLOCATE( dta_bdy_s(ib_bdy)%ssh ( ilen0(1) ) ) |
---|
284 | ALLOCATE( dta_bdy_s(ib_bdy)%u2d ( ilen0(2) ) ) |
---|
285 | ALLOCATE( dta_bdy_s(ib_bdy)%v2d ( ilen0(3) ) ) |
---|
286 | dta_bdy_s(ib_bdy)%ssh(:) = 0.e0 |
---|
287 | dta_bdy_s(ib_bdy)%u2d(:) = 0.e0 |
---|
288 | dta_bdy_s(ib_bdy)%v2d(:) = 0.e0 |
---|
289 | ENDIF |
---|
290 | ! |
---|
291 | ENDIF ! nn_dyn2d_dta(ib_bdy) .ge. 2 |
---|
292 | ! |
---|
293 | END DO ! loop on ib_bdy |
---|
294 | |
---|
295 | IF( nn_timing == 1 ) CALL timing_stop('bdytide_init') |
---|
296 | |
---|
297 | END SUBROUTINE bdytide_init |
---|
298 | |
---|
299 | SUBROUTINE bdytide_update ( kt, idx, dta, td, jit, time_offset ) |
---|
300 | !!---------------------------------------------------------------------- |
---|
301 | !! *** SUBROUTINE bdytide_update *** |
---|
302 | !! |
---|
303 | !! ** Purpose : - Add tidal forcing to ssh, u2d and v2d OBC data arrays. |
---|
304 | !! |
---|
305 | !!---------------------------------------------------------------------- |
---|
306 | INTEGER, INTENT( in ) :: kt ! Main timestep counter |
---|
307 | TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices |
---|
308 | TYPE(OBC_DATA), INTENT(inout) :: dta ! OBC external data |
---|
309 | TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data |
---|
310 | INTEGER,INTENT(in),OPTIONAL :: jit ! Barotropic timestep counter (for timesplitting option) |
---|
311 | INTEGER,INTENT( in ), OPTIONAL :: time_offset ! time offset in units of timesteps. NB. if jit |
---|
312 | ! is present then units = subcycle timesteps. |
---|
313 | ! time_offset = 0 => get data at "now" time level |
---|
314 | ! time_offset = -1 => get data at "before" time level |
---|
315 | ! time_offset = +1 => get data at "after" time level |
---|
316 | ! etc. |
---|
317 | !! |
---|
318 | INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays) |
---|
319 | INTEGER :: itide, igrd, ib ! dummy loop indices |
---|
320 | INTEGER :: time_add ! time offset in units of timesteps |
---|
321 | REAL(wp) :: z_arg, z_sarg, zflag, zramp |
---|
322 | REAL(wp), DIMENSION(jpmax_harmo) :: z_sist, z_cost |
---|
323 | !!---------------------------------------------------------------------- |
---|
324 | |
---|
325 | IF( nn_timing == 1 ) CALL timing_start('bdytide_update') |
---|
326 | |
---|
327 | ilen0(1) = SIZE(td%ssh(:,1,1)) |
---|
328 | ilen0(2) = SIZE(td%u(:,1,1)) |
---|
329 | ilen0(3) = SIZE(td%v(:,1,1)) |
---|
330 | |
---|
331 | zflag=1 |
---|
332 | IF ( PRESENT(jit) ) THEN |
---|
333 | IF ( jit /= 1 ) zflag=0 |
---|
334 | ENDIF |
---|
335 | |
---|
336 | IF ( nsec_day == NINT(0.5_wp * rdttra(1)) .AND. zflag==1 ) THEN |
---|
337 | ! |
---|
338 | kt_tide = kt |
---|
339 | ! |
---|
340 | IF(lwp) THEN |
---|
341 | WRITE(numout,*) |
---|
342 | WRITE(numout,*) 'bdytide_update : (re)Initialization of the tidal bdy forcing at kt=',kt |
---|
343 | WRITE(numout,*) '~~~~~~~~~~~~~~ ' |
---|
344 | ENDIF |
---|
345 | ! |
---|
346 | CALL tide_init_elevation ( idx, td ) |
---|
347 | CALL tide_init_velocities( idx, td ) |
---|
348 | ! |
---|
349 | ENDIF |
---|
350 | |
---|
351 | time_add = 0 |
---|
352 | IF( PRESENT(time_offset) ) THEN |
---|
353 | time_add = time_offset |
---|
354 | ENDIF |
---|
355 | |
---|
356 | IF( PRESENT(jit) ) THEN |
---|
357 | z_arg = ((kt-kt_tide) * rdt + (jit+0.5_wp*(time_add-1)) * rdt / REAL(nn_baro,wp) ) |
---|
358 | ELSE |
---|
359 | z_arg = ((kt-kt_tide)+time_add) * rdt |
---|
360 | ENDIF |
---|
361 | |
---|
362 | ! Linear ramp on tidal component at open boundaries |
---|
363 | zramp = 1._wp |
---|
364 | IF (ln_tide_ramp) zramp = MIN(MAX( (z_arg + (kt_tide-nit000)*rdt)/(rdttideramp*rday),0._wp),1._wp) |
---|
365 | |
---|
366 | DO itide = 1, nb_harmo |
---|
367 | z_sarg = z_arg * omega_tide(itide) |
---|
368 | z_cost(itide) = COS( z_sarg ) |
---|
369 | z_sist(itide) = SIN( z_sarg ) |
---|
370 | END DO |
---|
371 | |
---|
372 | DO itide = 1, nb_harmo |
---|
373 | igrd=1 ! SSH on tracer grid |
---|
374 | DO ib = 1, ilen0(igrd) |
---|
375 | dta%ssh(ib) = dta%ssh(ib) + zramp*(td%ssh(ib,itide,1)*z_cost(itide) + td%ssh(ib,itide,2)*z_sist(itide)) |
---|
376 | END DO |
---|
377 | igrd=2 ! U grid |
---|
378 | DO ib = 1, ilen0(igrd) |
---|
379 | dta%u2d(ib) = dta%u2d(ib) + zramp*(td%u (ib,itide,1)*z_cost(itide) + td%u (ib,itide,2)*z_sist(itide)) |
---|
380 | END DO |
---|
381 | igrd=3 ! V grid |
---|
382 | DO ib = 1, ilen0(igrd) |
---|
383 | dta%v2d(ib) = dta%v2d(ib) + zramp*(td%v (ib,itide,1)*z_cost(itide) + td%v (ib,itide,2)*z_sist(itide)) |
---|
384 | END DO |
---|
385 | END DO |
---|
386 | ! |
---|
387 | IF( nn_timing == 1 ) CALL timing_stop('bdytide_update') |
---|
388 | ! |
---|
389 | END SUBROUTINE bdytide_update |
---|
390 | |
---|
391 | SUBROUTINE bdy_dta_tides( kt, kit, time_offset ) |
---|
392 | !!---------------------------------------------------------------------- |
---|
393 | !! *** SUBROUTINE bdy_dta_tides *** |
---|
394 | !! |
---|
395 | !! ** Purpose : - Add tidal forcing to ssh, u2d and v2d OBC data arrays. |
---|
396 | !! |
---|
397 | !!---------------------------------------------------------------------- |
---|
398 | INTEGER, INTENT( in ) :: kt ! Main timestep counter |
---|
399 | INTEGER, INTENT( in ),OPTIONAL :: kit ! Barotropic timestep counter (for timesplitting option) |
---|
400 | INTEGER, INTENT( in ),OPTIONAL :: time_offset ! time offset in units of timesteps. NB. if kit |
---|
401 | ! is present then units = subcycle timesteps. |
---|
402 | ! time_offset = 0 => get data at "now" time level |
---|
403 | ! time_offset = -1 => get data at "before" time level |
---|
404 | ! time_offset = +1 => get data at "after" time level |
---|
405 | ! etc. |
---|
406 | !! |
---|
407 | LOGICAL :: lk_first_btstp ! =.TRUE. if time splitting and first barotropic step |
---|
408 | INTEGER, DIMENSION(jpbgrd) :: ilen0 |
---|
409 | INTEGER, DIMENSION(1:jpbgrd) :: nblen, nblenrim ! short cuts |
---|
410 | INTEGER :: itide, ib_bdy, ib, igrd ! loop indices |
---|
411 | INTEGER :: time_add ! time offset in units of timesteps |
---|
412 | REAL(wp) :: z_arg, z_sarg, zramp, zoff, z_cost, z_sist |
---|
413 | !!---------------------------------------------------------------------- |
---|
414 | |
---|
415 | IF( nn_timing == 1 ) CALL timing_start('bdy_dta_tides') |
---|
416 | |
---|
417 | lk_first_btstp=.TRUE. |
---|
418 | IF ( PRESENT(kit).AND.( kit /= 1 ) ) THEN ; lk_first_btstp=.FALSE. ; ENDIF |
---|
419 | |
---|
420 | time_add = 0 |
---|
421 | IF( PRESENT(time_offset) ) THEN |
---|
422 | time_add = time_offset |
---|
423 | ENDIF |
---|
424 | |
---|
425 | ! Absolute time from model initialization: |
---|
426 | IF( PRESENT(kit) ) THEN |
---|
427 | z_arg = ( kt + (kit+time_add-1) / REAL(nn_baro,wp) ) * rdt |
---|
428 | ELSE |
---|
429 | z_arg = ( kt + time_add ) * rdt |
---|
430 | ENDIF |
---|
431 | |
---|
432 | ! Linear ramp on tidal component at open boundaries |
---|
433 | zramp = 1. |
---|
434 | IF (ln_tide_ramp) zramp = MIN(MAX( (z_arg - nit000*rdt)/(rdttideramp*rday),0.),1.) |
---|
435 | |
---|
436 | DO ib_bdy = 1,nb_bdy |
---|
437 | |
---|
438 | IF ( nn_dyn2d_dta(ib_bdy) .ge. 2 ) THEN |
---|
439 | |
---|
440 | nblen(1:jpbgrd) = idx_bdy(ib_bdy)%nblen(1:jpbgrd) |
---|
441 | nblenrim(1:jpbgrd) = idx_bdy(ib_bdy)%nblenrim(1:jpbgrd) |
---|
442 | |
---|
443 | IF( cn_dyn2d(ib_bdy) == 'frs' ) THEN |
---|
444 | ilen0(:)=nblen(:) |
---|
445 | ELSE |
---|
446 | ilen0(:)=nblenrim(:) |
---|
447 | ENDIF |
---|
448 | |
---|
449 | ! We refresh nodal factors every day below |
---|
450 | ! This should be done somewhere else |
---|
451 | IF ( nsec_day == NINT(0.5_wp * rdttra(1)) .AND. lk_first_btstp ) THEN |
---|
452 | ! |
---|
453 | kt_tide = kt |
---|
454 | ! |
---|
455 | IF(lwp) THEN |
---|
456 | WRITE(numout,*) |
---|
457 | WRITE(numout,*) 'bdy_tide_dta : Refresh nodal factors for tidal open bdy data at kt=',kt |
---|
458 | WRITE(numout,*) '~~~~~~~~~~~~~~ ' |
---|
459 | ENDIF |
---|
460 | ! |
---|
461 | CALL tide_init_elevation ( idx=idx_bdy(ib_bdy), td=tides(ib_bdy) ) |
---|
462 | CALL tide_init_velocities( idx=idx_bdy(ib_bdy), td=tides(ib_bdy) ) |
---|
463 | ! |
---|
464 | ENDIF |
---|
465 | zoff = -kt_tide * rdt ! time offset relative to nodal factor computation time |
---|
466 | ! |
---|
467 | ! If time splitting, save data at first barotropic iteration |
---|
468 | IF ( PRESENT(kit) ) THEN |
---|
469 | IF ( lk_first_btstp ) THEN ! Save slow varying open boundary data: |
---|
470 | IF ( dta_bdy(ib_bdy)%ll_ssh ) dta_bdy_s(ib_bdy)%ssh(1:ilen0(1)) = dta_bdy(ib_bdy)%ssh(1:ilen0(1)) |
---|
471 | IF ( dta_bdy(ib_bdy)%ll_u2d ) dta_bdy_s(ib_bdy)%u2d(1:ilen0(2)) = dta_bdy(ib_bdy)%u2d(1:ilen0(2)) |
---|
472 | IF ( dta_bdy(ib_bdy)%ll_v2d ) dta_bdy_s(ib_bdy)%v2d(1:ilen0(3)) = dta_bdy(ib_bdy)%v2d(1:ilen0(3)) |
---|
473 | |
---|
474 | ELSE ! Initialize arrays from slow varying open boundary data: |
---|
475 | IF ( dta_bdy(ib_bdy)%ll_ssh ) dta_bdy(ib_bdy)%ssh(1:ilen0(1)) = dta_bdy_s(ib_bdy)%ssh(1:ilen0(1)) |
---|
476 | IF ( dta_bdy(ib_bdy)%ll_u2d ) dta_bdy(ib_bdy)%u2d(1:ilen0(2)) = dta_bdy_s(ib_bdy)%u2d(1:ilen0(2)) |
---|
477 | IF ( dta_bdy(ib_bdy)%ll_v2d ) dta_bdy(ib_bdy)%v2d(1:ilen0(3)) = dta_bdy_s(ib_bdy)%v2d(1:ilen0(3)) |
---|
478 | ENDIF |
---|
479 | ENDIF |
---|
480 | ! |
---|
481 | ! Update open boundary data arrays: |
---|
482 | DO itide = 1, nb_harmo |
---|
483 | ! |
---|
484 | z_sarg = (z_arg + zoff) * omega_tide(itide) |
---|
485 | z_cost = zramp * COS( z_sarg ) |
---|
486 | z_sist = zramp * SIN( z_sarg ) |
---|
487 | ! |
---|
488 | IF ( dta_bdy(ib_bdy)%ll_ssh ) THEN |
---|
489 | igrd=1 ! SSH on tracer grid |
---|
490 | DO ib = 1, ilen0(igrd) |
---|
491 | dta_bdy(ib_bdy)%ssh(ib) = dta_bdy(ib_bdy)%ssh(ib) + & |
---|
492 | & ( tides(ib_bdy)%ssh(ib,itide,1)*z_cost + & |
---|
493 | & tides(ib_bdy)%ssh(ib,itide,2)*z_sist ) |
---|
494 | END DO |
---|
495 | ENDIF |
---|
496 | ! |
---|
497 | IF ( dta_bdy(ib_bdy)%ll_u2d ) THEN |
---|
498 | igrd=2 ! U grid |
---|
499 | DO ib = 1, ilen0(igrd) |
---|
500 | dta_bdy(ib_bdy)%u2d(ib) = dta_bdy(ib_bdy)%u2d(ib) + & |
---|
501 | & ( tides(ib_bdy)%u(ib,itide,1)*z_cost + & |
---|
502 | & tides(ib_bdy)%u(ib,itide,2)*z_sist ) |
---|
503 | END DO |
---|
504 | ENDIF |
---|
505 | ! |
---|
506 | IF ( dta_bdy(ib_bdy)%ll_v2d ) THEN |
---|
507 | igrd=3 ! V grid |
---|
508 | DO ib = 1, ilen0(igrd) |
---|
509 | dta_bdy(ib_bdy)%v2d(ib) = dta_bdy(ib_bdy)%v2d(ib) + & |
---|
510 | & ( tides(ib_bdy)%v(ib,itide,1)*z_cost + & |
---|
511 | & tides(ib_bdy)%v(ib,itide,2)*z_sist ) |
---|
512 | END DO |
---|
513 | ENDIF |
---|
514 | END DO |
---|
515 | END IF |
---|
516 | END DO |
---|
517 | ! |
---|
518 | IF( nn_timing == 1 ) CALL timing_stop('bdy_dta_tides') |
---|
519 | ! |
---|
520 | END SUBROUTINE bdy_dta_tides |
---|
521 | |
---|
522 | SUBROUTINE tide_init_elevation( idx, td ) |
---|
523 | !!---------------------------------------------------------------------- |
---|
524 | !! *** ROUTINE tide_init_elevation *** |
---|
525 | !!---------------------------------------------------------------------- |
---|
526 | TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices |
---|
527 | TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data |
---|
528 | !! * Local declarations |
---|
529 | INTEGER, DIMENSION(1) :: ilen0 !: length of boundary data (from OBC arrays) |
---|
530 | REAL(wp),ALLOCATABLE, DIMENSION(:) :: mod_tide, phi_tide |
---|
531 | INTEGER :: itide, igrd, ib ! dummy loop indices |
---|
532 | |
---|
533 | igrd=1 |
---|
534 | ! SSH on tracer grid. |
---|
535 | |
---|
536 | ilen0(1) = SIZE(td%ssh0(:,1,1)) |
---|
537 | |
---|
538 | ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd))) |
---|
539 | |
---|
540 | DO itide = 1, nb_harmo |
---|
541 | DO ib = 1, ilen0(igrd) |
---|
542 | mod_tide(ib)=SQRT(td%ssh0(ib,itide,1)**2.+td%ssh0(ib,itide,2)**2.) |
---|
543 | phi_tide(ib)=ATAN2(-td%ssh0(ib,itide,2),td%ssh0(ib,itide,1)) |
---|
544 | END DO |
---|
545 | DO ib = 1 , ilen0(igrd) |
---|
546 | mod_tide(ib)=mod_tide(ib)*ftide(itide) |
---|
547 | phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide) |
---|
548 | ENDDO |
---|
549 | DO ib = 1 , ilen0(igrd) |
---|
550 | td%ssh(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib)) |
---|
551 | td%ssh(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib)) |
---|
552 | ENDDO |
---|
553 | END DO |
---|
554 | |
---|
555 | DEALLOCATE(mod_tide,phi_tide) |
---|
556 | |
---|
557 | END SUBROUTINE tide_init_elevation |
---|
558 | |
---|
559 | SUBROUTINE tide_init_velocities( idx, td ) |
---|
560 | !!---------------------------------------------------------------------- |
---|
561 | !! *** ROUTINE tide_init_elevation *** |
---|
562 | !!---------------------------------------------------------------------- |
---|
563 | TYPE(OBC_INDEX), INTENT( in ) :: idx ! OBC indices |
---|
564 | TYPE(TIDES_DATA),INTENT( inout ) :: td ! tidal harmonics data |
---|
565 | !! * Local declarations |
---|
566 | INTEGER, DIMENSION(3) :: ilen0 !: length of boundary data (from OBC arrays) |
---|
567 | REAL(wp),ALLOCATABLE, DIMENSION(:) :: mod_tide, phi_tide |
---|
568 | INTEGER :: itide, igrd, ib ! dummy loop indices |
---|
569 | |
---|
570 | ilen0(2) = SIZE(td%u0(:,1,1)) |
---|
571 | ilen0(3) = SIZE(td%v0(:,1,1)) |
---|
572 | |
---|
573 | igrd=2 ! U grid. |
---|
574 | |
---|
575 | ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd))) |
---|
576 | |
---|
577 | DO itide = 1, nb_harmo |
---|
578 | DO ib = 1, ilen0(igrd) |
---|
579 | mod_tide(ib)=SQRT(td%u0(ib,itide,1)**2.+td%u0(ib,itide,2)**2.) |
---|
580 | phi_tide(ib)=ATAN2(-td%u0(ib,itide,2),td%u0(ib,itide,1)) |
---|
581 | END DO |
---|
582 | DO ib = 1, ilen0(igrd) |
---|
583 | mod_tide(ib)=mod_tide(ib)*ftide(itide) |
---|
584 | phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide) |
---|
585 | ENDDO |
---|
586 | DO ib = 1, ilen0(igrd) |
---|
587 | td%u(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib)) |
---|
588 | td%u(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib)) |
---|
589 | ENDDO |
---|
590 | END DO |
---|
591 | |
---|
592 | DEALLOCATE(mod_tide,phi_tide) |
---|
593 | |
---|
594 | igrd=3 ! V grid. |
---|
595 | |
---|
596 | ALLOCATE(mod_tide(ilen0(igrd)),phi_tide(ilen0(igrd))) |
---|
597 | |
---|
598 | DO itide = 1, nb_harmo |
---|
599 | DO ib = 1, ilen0(igrd) |
---|
600 | mod_tide(ib)=SQRT(td%v0(ib,itide,1)**2.+td%v0(ib,itide,2)**2.) |
---|
601 | phi_tide(ib)=ATAN2(-td%v0(ib,itide,2),td%v0(ib,itide,1)) |
---|
602 | END DO |
---|
603 | DO ib = 1, ilen0(igrd) |
---|
604 | mod_tide(ib)=mod_tide(ib)*ftide(itide) |
---|
605 | phi_tide(ib)=phi_tide(ib)+v0tide(itide)+utide(itide) |
---|
606 | ENDDO |
---|
607 | DO ib = 1, ilen0(igrd) |
---|
608 | td%v(ib,itide,1)= mod_tide(ib)*COS(phi_tide(ib)) |
---|
609 | td%v(ib,itide,2)=-mod_tide(ib)*SIN(phi_tide(ib)) |
---|
610 | ENDDO |
---|
611 | END DO |
---|
612 | |
---|
613 | DEALLOCATE(mod_tide,phi_tide) |
---|
614 | |
---|
615 | END SUBROUTINE tide_init_velocities |
---|
616 | #else |
---|
617 | !!---------------------------------------------------------------------- |
---|
618 | !! Dummy module NO Unstruct Open Boundary Conditions for tides |
---|
619 | !!---------------------------------------------------------------------- |
---|
620 | CONTAINS |
---|
621 | SUBROUTINE bdytide_init ! Empty routine |
---|
622 | WRITE(*,*) 'bdytide_init: You should not have seen this print! error?' |
---|
623 | END SUBROUTINE bdytide_init |
---|
624 | SUBROUTINE bdytide_update( kt, jit ) ! Empty routine |
---|
625 | WRITE(*,*) 'bdytide_update: You should not have seen this print! error?', kt, jit |
---|
626 | END SUBROUTINE bdytide_update |
---|
627 | SUBROUTINE bdy_dta_tides( kt, kit, time_offset ) ! Empty routine |
---|
628 | INTEGER, INTENT( in ) :: kt ! Dummy argument empty routine |
---|
629 | INTEGER, INTENT( in ),OPTIONAL :: kit ! Dummy argument empty routine |
---|
630 | INTEGER, INTENT( in ),OPTIONAL :: time_offset ! Dummy argument empty routine |
---|
631 | WRITE(*,*) 'bdy_dta_tides: You should not have seen this print! error?', kt, jit |
---|
632 | END SUBROUTINE bdy_dta_tides |
---|
633 | #endif |
---|
634 | |
---|
635 | !!====================================================================== |
---|
636 | END MODULE bdytides |
---|
637 | |
---|