1 | MODULE traadv_eiv |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE traadv_eiv *** |
---|
4 | !! Ocean tracers: advection trend - eddy induced velocity |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2005-11 (G. Madec) Original code, from traldf and zdf _iso |
---|
7 | !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | #if defined key_traldf_eiv || defined key_esopa |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !! 'key_traldf_eiv' rotation of the lateral mixing tensor |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! tra_ldf_iso : update the tracer trend with the horizontal component |
---|
14 | !! of iso neutral laplacian operator or horizontal |
---|
15 | !! laplacian operator in s-coordinate |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE oce ! ocean dynamics and tracers variables |
---|
18 | USE dom_oce ! ocean space and time domain variables |
---|
19 | USE ldftra_oce ! ocean active tracers: lateral physics |
---|
20 | USE ldfslp ! iso-neutral slopes |
---|
21 | USE in_out_manager ! I/O manager |
---|
22 | USE iom |
---|
23 | USE trc_oce ! share passive tracers/Ocean variables |
---|
24 | # if defined key_diaeiv |
---|
25 | USE phycst ! physical constants |
---|
26 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
27 | # endif |
---|
28 | USE wrk_nemo ! Memory Allocation |
---|
29 | USE timing ! Timing |
---|
30 | USE diaptr ! Heat/Salt transport diagnostics |
---|
31 | USE trddyn |
---|
32 | USE trd_oce |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | PRIVATE |
---|
36 | |
---|
37 | PUBLIC tra_adv_eiv ! routine called by step.F90 |
---|
38 | |
---|
39 | !! * Substitutions |
---|
40 | # include "domzgr_substitute.h90" |
---|
41 | # include "ldftra_substitute.h90" |
---|
42 | # include "ldfeiv_substitute.h90" |
---|
43 | # include "vectopt_loop_substitute.h90" |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
46 | !! $Id$ |
---|
47 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
48 | !!---------------------------------------------------------------------- |
---|
49 | CONTAINS |
---|
50 | |
---|
51 | SUBROUTINE tra_adv_eiv( kt, kit000, pun, pvn, pwn, cdtype ) |
---|
52 | !!---------------------------------------------------------------------- |
---|
53 | !! *** ROUTINE tra_adv_eiv *** |
---|
54 | !! |
---|
55 | !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive |
---|
56 | !! trend and add it to the general trend of tracer equation. |
---|
57 | !! |
---|
58 | !! ** Method : The eddy induced advection is computed from the slope |
---|
59 | !! of iso-neutral surfaces computed in routine ldf_slp as follows: |
---|
60 | !! zu_eiv = 1/(e2u e3u) dk[ aeiu e2u mi(wslpi) ] |
---|
61 | !! zv_eiv = 1/(e1v e3v) dk[ aeiv e1v mj(wslpj) |
---|
62 | !! zw_eiv = -1/(e1t e2t) { di[ aeiu e2u mi(wslpi) ] |
---|
63 | !! + dj[ aeiv e1v mj(wslpj) ] } |
---|
64 | !! add the eiv component to the model velocity: |
---|
65 | !! p.n = p.n + z._eiv |
---|
66 | !! |
---|
67 | !! ** Action : - add to p.n the eiv component |
---|
68 | !!---------------------------------------------------------------------- |
---|
69 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
70 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
71 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
72 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pun ! in : 3 ocean velocity components |
---|
73 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pvn ! out: 3 ocean velocity components |
---|
74 | REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pwn ! increased by the eiv |
---|
75 | !! |
---|
76 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
77 | REAL(wp) :: zuwk, zuwk1, zuwi, zuwi1 ! local scalars |
---|
78 | REAL(wp) :: zvwk, zvwk1, zvwj, zvwj1 ! - - |
---|
79 | # if defined key_diaeiv |
---|
80 | REAL(wp) :: zztmp ! local scalar |
---|
81 | # endif |
---|
82 | REAL(wp), POINTER, DIMENSION(:,:) :: zu_eiv, zv_eiv, zw_eiv, z2d |
---|
83 | REAL(wp), POINTER, DIMENSION(:,:,:) :: z3d, z3d_T |
---|
84 | !!---------------------------------------------------------------------- |
---|
85 | ! |
---|
86 | IF( nn_timing == 1 ) CALL timing_start( 'tra_adv_eiv') |
---|
87 | ! |
---|
88 | # if defined key_diaeiv |
---|
89 | CALL wrk_alloc( jpi, jpj, zu_eiv, zv_eiv, zw_eiv, z2d ) |
---|
90 | CALL wrk_alloc( jpi, jpj, jpk, z3d, z3d_T ) |
---|
91 | # else |
---|
92 | CALL wrk_alloc( jpi, jpj, zu_eiv, zv_eiv, zw_eiv ) |
---|
93 | # endif |
---|
94 | |
---|
95 | IF( kt == kit000 ) THEN |
---|
96 | IF(lwp) WRITE(numout,*) |
---|
97 | IF(lwp) WRITE(numout,*) 'tra_adv_eiv : eddy induced advection on ', cdtype,' :' |
---|
98 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ add to velocity fields the eiv component' |
---|
99 | # if defined key_diaeiv |
---|
100 | IF( cdtype == 'TRA') THEN |
---|
101 | u_eiv(:,:,:) = 0.e0 |
---|
102 | v_eiv(:,:,:) = 0.e0 |
---|
103 | w_eiv(:,:,:) = 0.e0 |
---|
104 | END IF |
---|
105 | # endif |
---|
106 | ENDIF |
---|
107 | |
---|
108 | zu_eiv(:,:) = 0.e0 ; zv_eiv(:,:) = 0.e0 ; zw_eiv(:,:) = 0.e0 |
---|
109 | |
---|
110 | ! ================= |
---|
111 | DO jk = 1, jpkm1 ! Horizontal slab |
---|
112 | ! ! ================= |
---|
113 | DO jj = 1, jpjm1 |
---|
114 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
115 | zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj,jk ) ) * fsaeiu(ji,jj,jk ) * umask(ji,jj,jk ) |
---|
116 | zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj,jk+1) ) * fsaeiu(ji,jj,jk+1) * umask(ji,jj,jk+1) |
---|
117 | zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji,jj+1,jk ) ) * fsaeiv(ji,jj,jk ) * vmask(ji,jj,jk ) |
---|
118 | zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji,jj+1,jk+1) ) * fsaeiv(ji,jj,jk+1) * vmask(ji,jj,jk+1) |
---|
119 | |
---|
120 | zu_eiv(ji,jj) = 0.5 * umask(ji,jj,jk) * ( zuwk - zuwk1 ) |
---|
121 | zv_eiv(ji,jj) = 0.5 * vmask(ji,jj,jk) * ( zvwk - zvwk1 ) |
---|
122 | |
---|
123 | pun(ji,jj,jk) = pun(ji,jj,jk) + e2u(ji,jj) * zu_eiv(ji,jj) |
---|
124 | pvn(ji,jj,jk) = pvn(ji,jj,jk) + e1v(ji,jj) * zv_eiv(ji,jj) |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | # if defined key_diaeiv |
---|
128 | IF( cdtype == 'TRA') THEN |
---|
129 | u_eiv(:,:,jk) = zu_eiv(:,:) / fse3u(:,:,jk) |
---|
130 | v_eiv(:,:,jk) = zv_eiv(:,:) / fse3v(:,:,jk) |
---|
131 | END IF |
---|
132 | # endif |
---|
133 | IF( jk >=2 ) THEN ! jk=1 zw_eiv=0, not computed |
---|
134 | DO jj = 2, jpjm1 |
---|
135 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
136 | # if defined key_traldf_c2d || defined key_traldf_c3d |
---|
137 | zuwi = ( wslpi(ji,jj,jk)+wslpi(ji-1,jj,jk) ) * fsaeiu(ji-1,jj,jk) * e2u(ji-1,jj) * umask(ji-1,jj,jk) |
---|
138 | zuwi1 = ( wslpi(ji,jj,jk)+wslpi(ji+1,jj,jk) ) * fsaeiu(ji ,jj,jk) * e2u(ji ,jj) * umask(ji ,jj,jk) |
---|
139 | zvwj = ( wslpj(ji,jj,jk)+wslpj(ji,jj-1,jk) ) * fsaeiv(ji,jj-1,jk) * e1v(ji,jj-1) * vmask(ji,jj-1,jk) |
---|
140 | zvwj1 = ( wslpj(ji,jj,jk)+wslpj(ji,jj+1,jk) ) * fsaeiv(ji,jj ,jk) * e1v(ji ,jj) * vmask(ji ,jj,jk) |
---|
141 | |
---|
142 | zw_eiv(ji,jj) = - 0.5 * tmask(ji,jj,jk) * ( zuwi1 - zuwi + zvwj1 - zvwj ) |
---|
143 | # else |
---|
144 | zuwi = ( wslpi(ji,jj,jk) + wslpi(ji-1,jj,jk) ) * e2u(ji-1,jj) * umask(ji-1,jj,jk) |
---|
145 | zuwi1 = ( wslpi(ji,jj,jk) + wslpi(ji+1,jj,jk) ) * e2u(ji ,jj) * umask(ji ,jj,jk) |
---|
146 | zvwj = ( wslpj(ji,jj,jk) + wslpj(ji,jj-1,jk) ) * e1v(ji,jj-1) * vmask(ji,jj-1,jk) |
---|
147 | zvwj1 = ( wslpj(ji,jj,jk) + wslpj(ji,jj+1,jk) ) * e1v(ji ,jj) * vmask(ji ,jj,jk) |
---|
148 | |
---|
149 | zw_eiv(ji,jj) = - 0.5 * tmask(ji,jj,jk) * fsaeiw(ji,jj,jk) * ( zuwi1 - zuwi + zvwj1 - zvwj ) |
---|
150 | # endif |
---|
151 | pwn(ji,jj,jk) = pwn(ji,jj,jk) + zw_eiv(ji,jj) |
---|
152 | END DO |
---|
153 | END DO |
---|
154 | # if defined key_diaeiv |
---|
155 | IF( cdtype == 'TRA') w_eiv(:,:,jk) = zw_eiv(:,:) / ( e1t(:,:) * e2t(:,:) ) |
---|
156 | # endif |
---|
157 | ENDIF |
---|
158 | ! ! ================= |
---|
159 | END DO ! End of slab |
---|
160 | ! ! ================= |
---|
161 | |
---|
162 | # if defined key_diaeiv |
---|
163 | IF( cdtype == 'TRA') THEN |
---|
164 | CALL iom_put( "uoce_eiv", u_eiv ) ! i-eiv current |
---|
165 | CALL iom_put( "voce_eiv", v_eiv ) ! j-eiv current |
---|
166 | CALL iom_put( "woce_eiv", w_eiv ) ! vert. eiv current |
---|
167 | IF( iom_use('weiv_masstr') ) THEN ! vertical mass transport & its square value |
---|
168 | z2d(:,:) = rau0 * e12t(:,:) |
---|
169 | DO jk = 1, jpk |
---|
170 | z3d(:,:,jk) = w_eiv(:,:,jk) * z2d(:,:) |
---|
171 | END DO |
---|
172 | CALL iom_put( "weiv_masstr" , z3d ) |
---|
173 | ENDIF |
---|
174 | IF( iom_use("ueiv_masstr") .OR. iom_use("ueiv_heattr") .OR. iom_use('ueiv_heattr3d') & |
---|
175 | .OR. iom_use("ueiv_salttr") .OR. iom_use('ueiv_salttr3d') ) THEN |
---|
176 | z3d(:,:,jpk) = 0.e0 |
---|
177 | z2d(:,:) = 0.e0 |
---|
178 | DO jk = 1, jpkm1 |
---|
179 | z3d(:,:,jk) = rau0 * u_eiv(:,:,jk) * e2u(:,:) * fse3u(:,:,jk) * umask(:,:,jk) |
---|
180 | z2d(:,:) = z2d(:,:) + z3d(:,:,jk) |
---|
181 | END DO |
---|
182 | CALL iom_put( "ueiv_masstr", z3d ) ! mass transport in i-direction |
---|
183 | ENDIF |
---|
184 | |
---|
185 | IF( iom_use('ueiv_heattr') .OR. iom_use('ueiv_heattr3d') ) THEN |
---|
186 | zztmp = 0.5 * rcp |
---|
187 | z2d(:,:) = 0.e0 |
---|
188 | z3d_T(:,:,:) = 0.e0 |
---|
189 | DO jk = 1, jpkm1 |
---|
190 | DO jj = 2, jpjm1 |
---|
191 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
192 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji+1,jj,jk,jp_tem) ) |
---|
193 | z2d(ji,jj) = z2d(ji,jj) + z3d_T(ji,jj,jk) |
---|
194 | END DO |
---|
195 | END DO |
---|
196 | END DO |
---|
197 | IF (iom_use('ueiv_heattr') ) THEN |
---|
198 | CALL lbc_lnk( z2d, 'U', -1. ) |
---|
199 | CALL iom_put( "ueiv_heattr", zztmp * z2d ) ! 2D heat transport in i-direction |
---|
200 | ENDIF |
---|
201 | IF (iom_use('ueiv_heattr3d') ) THEN |
---|
202 | CALL lbc_lnk( z3d_T, 'U', -1. ) |
---|
203 | CALL iom_put( "ueiv_heattr3d", zztmp * z3d_T ) ! 3D heat transport in i-direction |
---|
204 | ENDIF |
---|
205 | ENDIF |
---|
206 | |
---|
207 | IF( iom_use('ueiv_salttr') .OR. iom_use('ueiv_salttr3d') ) THEN |
---|
208 | zztmp = 0.5 * 0.001 |
---|
209 | z2d(:,:) = 0.e0 |
---|
210 | z3d_T(:,:,:) = 0.e0 |
---|
211 | DO jk = 1, jpkm1 |
---|
212 | DO jj = 2, jpjm1 |
---|
213 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
214 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji+1,jj,jk,jp_sal) ) |
---|
215 | z2d(ji,jj) = z2d(ji,jj) + z3d_T(ji,jj,jk) |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | IF (iom_use('ueiv_salttr') ) THEN |
---|
220 | CALL lbc_lnk( z2d, 'U', -1. ) |
---|
221 | CALL iom_put( "ueiv_salttr", zztmp * z2d ) ! 2D salt transport in i-direction |
---|
222 | ENDIF |
---|
223 | IF (iom_use('ueiv_salttr3d') ) THEN |
---|
224 | CALL lbc_lnk( z3d_T, 'U', -1. ) |
---|
225 | CALL iom_put( "ueiv_salttr3d", zztmp * z3d_T ) ! 3D salt transport in i-direction |
---|
226 | ENDIF |
---|
227 | ENDIF |
---|
228 | |
---|
229 | IF( iom_use("veiv_masstr") .OR. iom_use("veiv_heattr") .OR. iom_use('veiv_heattr3d') & |
---|
230 | .OR. iom_use("veiv_salttr") .OR. iom_use('veiv_salttr3d') ) THEN |
---|
231 | z3d(:,:,jpk) = 0.e0 |
---|
232 | DO jk = 1, jpkm1 |
---|
233 | z3d(:,:,jk) = rau0 * v_eiv(:,:,jk) * e1v(:,:) * fse3v(:,:,jk) * vmask(:,:,jk) |
---|
234 | END DO |
---|
235 | CALL iom_put( "veiv_masstr", z3d ) ! mass transport in j-direction |
---|
236 | ENDIF |
---|
237 | |
---|
238 | IF( iom_use('veiv_heattr') .OR. iom_use('veiv_heattr3d') ) THEN |
---|
239 | zztmp = 0.5 * rcp |
---|
240 | z2d(:,:) = 0.e0 |
---|
241 | z3d_T(:,:,:) = 0.e0 |
---|
242 | DO jk = 1, jpkm1 |
---|
243 | DO jj = 2, jpjm1 |
---|
244 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
245 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji,jj+1,jk,jp_tem) ) |
---|
246 | z2d(ji,jj) = z2d(ji,jj) + z3d_T(ji,jj,jk) |
---|
247 | END DO |
---|
248 | END DO |
---|
249 | END DO |
---|
250 | IF (iom_use('veiv_heattr') ) THEN |
---|
251 | CALL lbc_lnk( z2d, 'V', -1. ) |
---|
252 | CALL iom_put( "veiv_heattr", zztmp * z2d ) ! 2D heat transport in j-direction |
---|
253 | ENDIF |
---|
254 | IF (iom_use('veiv_heattr3d') ) THEN |
---|
255 | CALL lbc_lnk( z3d_T, 'V', -1. ) |
---|
256 | CALL iom_put( "veiv_heattr3d", zztmp * z3d_T ) ! 3D heat transport in j-direction |
---|
257 | ENDIF |
---|
258 | ENDIF |
---|
259 | |
---|
260 | IF( iom_use('veiv_salttr') .OR. iom_use('veiv_salttr3d') ) THEN |
---|
261 | zztmp = 0.5 * 0.001 |
---|
262 | z2d(:,:) = 0.e0 |
---|
263 | z3d_T(:,:,:) = 0.e0 |
---|
264 | DO jk = 1, jpkm1 |
---|
265 | DO jj = 2, jpjm1 |
---|
266 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
267 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji,jj+1,jk,jp_sal) ) |
---|
268 | z2d(ji,jj) = z2d(ji,jj) + z3d_T(ji,jj,jk) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | END DO |
---|
272 | IF (iom_use('veiv_salttr') ) THEN |
---|
273 | CALL lbc_lnk( z2d, 'V', -1. ) |
---|
274 | CALL iom_put( "veiv_salttr", zztmp * z2d ) ! 2D salt transport in i-direction |
---|
275 | ENDIF |
---|
276 | IF (iom_use('veiv_salttr3d') ) THEN |
---|
277 | CALL lbc_lnk( z3d_T, 'V', -1. ) |
---|
278 | CALL iom_put( "veiv_salttr3d", zztmp * z3d_T ) ! 3D salt transport in i-direction |
---|
279 | ENDIF |
---|
280 | ENDIF |
---|
281 | |
---|
282 | IF( iom_use('weiv_masstr') .OR. iom_use('weiv_heattr3d') .OR. iom_use('weiv_salttr3d')) THEN ! vertical mass transport & its square value |
---|
283 | z2d(:,:) = rau0 * e12t(:,:) |
---|
284 | DO jk = 1, jpk |
---|
285 | z3d(:,:,jk) = w_eiv(:,:,jk) * z2d(:,:) |
---|
286 | END DO |
---|
287 | CALL iom_put( "weiv_masstr" , z3d ) ! mass transport in k-direction |
---|
288 | ENDIF |
---|
289 | |
---|
290 | IF( iom_use('weiv_heattr3d') ) THEN |
---|
291 | zztmp = 0.5 * rcp |
---|
292 | DO jk = 1, jpkm1 |
---|
293 | DO jj = 2, jpjm1 |
---|
294 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
295 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_tem) + tsn(ji,jj,jk+1,jp_tem) ) |
---|
296 | END DO |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | CALL lbc_lnk( z3d_T, 'T', 1. ) |
---|
300 | CALL iom_put( "weiv_heattr3d", zztmp * z3d_T ) ! 3D heat transport in k-direction |
---|
301 | ENDIF |
---|
302 | |
---|
303 | IF( iom_use('weiv_salttr3d') ) THEN |
---|
304 | zztmp = 0.5 * 0.001 |
---|
305 | DO jk = 1, jpkm1 |
---|
306 | DO jj = 2, jpjm1 |
---|
307 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
308 | z3d_T(ji,jj,jk) = z3d(ji,jj,jk) * ( tsn(ji,jj,jk,jp_sal) + tsn(ji,jj,jk+1,jp_sal) ) |
---|
309 | END DO |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | CALL lbc_lnk( z3d_T, 'T', 1. ) |
---|
313 | CALL iom_put( "weiv_salttr3d", zztmp * z3d_T ) ! 3D salt transport in k-direction |
---|
314 | ENDIF |
---|
315 | |
---|
316 | END IF |
---|
317 | ! |
---|
318 | IF( ln_diaptr .AND. cdtype == 'TRA' ) THEN |
---|
319 | z3d(:,:,:) = 0._wp |
---|
320 | DO jk = 1, jpkm1 |
---|
321 | DO jj = 2, jpjm1 |
---|
322 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
323 | z3d(ji,jj,jk) = v_eiv(ji,jj,jk) * 0.5 * (tsn(ji,jj,jk,jp_tem)+tsn(ji,jj+1,jk,jp_tem)) & |
---|
324 | & * e1v(ji,jj) * fse3v(ji,jj,jk) |
---|
325 | END DO |
---|
326 | END DO |
---|
327 | END DO |
---|
328 | CALL dia_ptr_ohst_components( jp_tem, 'eiv', z3d ) |
---|
329 | z3d(:,:,:) = 0._wp |
---|
330 | DO jk = 1, jpkm1 |
---|
331 | DO jj = 2, jpjm1 |
---|
332 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
333 | z3d(ji,jj,jk) = v_eiv(ji,jj,jk) * 0.5 * (tsn(ji,jj,jk,jp_sal)+tsn(ji,jj+1,jk,jp_sal)) & |
---|
334 | & * e1v(ji,jj) * fse3v(ji,jj,jk) |
---|
335 | END DO |
---|
336 | END DO |
---|
337 | END DO |
---|
338 | CALL dia_ptr_ohst_components( jp_sal, 'eiv', z3d ) |
---|
339 | ENDIF |
---|
340 | |
---|
341 | IF( ln_KE_trd ) CALL trd_dyn(u_eiv, v_eiv, jpdyn_eivke, kt ) |
---|
342 | # endif |
---|
343 | |
---|
344 | # if defined key_diaeiv |
---|
345 | CALL wrk_dealloc( jpi, jpj, zu_eiv, zv_eiv, zw_eiv, z2d ) |
---|
346 | CALL wrk_dealloc( jpi, jpj, jpk, z3d, z3d_T ) |
---|
347 | # else |
---|
348 | CALL wrk_dealloc( jpi, jpj, zu_eiv, zv_eiv, zw_eiv ) |
---|
349 | # endif |
---|
350 | ! |
---|
351 | IF( nn_timing == 1 ) CALL timing_stop( 'tra_adv_eiv') |
---|
352 | ! |
---|
353 | END SUBROUTINE tra_adv_eiv |
---|
354 | |
---|
355 | #else |
---|
356 | !!---------------------------------------------------------------------- |
---|
357 | !! Dummy module : No rotation of the lateral mixing tensor |
---|
358 | !!---------------------------------------------------------------------- |
---|
359 | CONTAINS |
---|
360 | SUBROUTINE tra_adv_eiv( kt, kit000, pun, pvn, pwn, cdtype ) ! Empty routine |
---|
361 | INTEGER :: kt |
---|
362 | INTEGER :: kit000 |
---|
363 | CHARACTER(len=3) :: cdtype |
---|
364 | REAL, DIMENSION(:,:,:) :: pun, pvn, pwn |
---|
365 | WRITE(*,*) 'tra_adv_eiv: You should not have seen this print! error?', & |
---|
366 | & kt, cdtype, pun(1,1,1), pvn(1,1,1), pwn(1,1,1) |
---|
367 | END SUBROUTINE tra_adv_eiv |
---|
368 | #endif |
---|
369 | |
---|
370 | !!============================================================================== |
---|
371 | END MODULE traadv_eiv |
---|