1 | MODULE sbccpl |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbccpl *** |
---|
4 | !! Surface Boundary Condition : momentum, heat and freshwater fluxes in coupled mode |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2007-06 (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod |
---|
7 | !! 3.0 ! 2008-02 (G. Madec, C Talandier) surface module |
---|
8 | !! 3.1 ! 2009_02 (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface |
---|
9 | !! 3.4 ! 2011_11 (C. Harris) more flexibility + multi-category fields |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! namsbc_cpl : coupled formulation namlist |
---|
13 | !! sbc_cpl_init : initialisation of the coupled exchanges |
---|
14 | !! sbc_cpl_rcv : receive fields from the atmosphere over the ocean (ocean only) |
---|
15 | !! receive stress from the atmosphere over the ocean (ocean-ice case) |
---|
16 | !! sbc_cpl_ice_tau : receive stress from the atmosphere over ice |
---|
17 | !! sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice |
---|
18 | !! sbc_cpl_snd : send fields to the atmosphere |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | USE dom_oce ! ocean space and time domain |
---|
21 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
22 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
23 | USE sbcapr |
---|
24 | USE sbcdcy ! surface boundary condition: diurnal cycle |
---|
25 | USE phycst ! physical constants |
---|
26 | #if defined key_lim3 |
---|
27 | USE ice ! ice variables |
---|
28 | #endif |
---|
29 | #if defined key_lim2 |
---|
30 | USE par_ice_2 ! ice parameters |
---|
31 | USE ice_2 ! ice variables |
---|
32 | #endif |
---|
33 | USE cpl_oasis3 ! OASIS3 coupling |
---|
34 | USE geo2ocean ! |
---|
35 | USE oce , ONLY : tsn, un, vn, sshn, ub, vb, sshb, fraqsr_1lev, & |
---|
36 | CO2Flux_out_cpl, DMS_out_cpl, PCO2a_in_cpl, Dust_in_cpl, & |
---|
37 | ln_medusa |
---|
38 | USE albedo ! |
---|
39 | USE in_out_manager ! I/O manager |
---|
40 | USE iom ! NetCDF library |
---|
41 | USE lib_mpp ! distribued memory computing library |
---|
42 | USE wrk_nemo ! work arrays |
---|
43 | USE timing ! Timing |
---|
44 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
45 | USE eosbn2 |
---|
46 | USE sbcrnf , ONLY : l_rnfcpl |
---|
47 | #if defined key_cpl_carbon_cycle |
---|
48 | USE p4zflx, ONLY : oce_co2 |
---|
49 | #endif |
---|
50 | #if defined key_lim3 |
---|
51 | USE limthd_dh ! for CALL lim_thd_snwblow |
---|
52 | #endif |
---|
53 | USE lib_fortran, ONLY: glob_sum |
---|
54 | |
---|
55 | IMPLICIT NONE |
---|
56 | PRIVATE |
---|
57 | |
---|
58 | PUBLIC sbc_cpl_init ! routine called by sbcmod.F90 |
---|
59 | PUBLIC sbc_cpl_rcv ! routine called by sbc_ice_lim(_2).F90 |
---|
60 | PUBLIC sbc_cpl_snd ! routine called by step.F90 |
---|
61 | PUBLIC sbc_cpl_ice_tau ! routine called by sbc_ice_lim(_2).F90 |
---|
62 | PUBLIC sbc_cpl_ice_flx ! routine called by sbc_ice_lim(_2).F90 |
---|
63 | PUBLIC sbc_cpl_alloc ! routine called in sbcice_cice.F90 |
---|
64 | |
---|
65 | INTEGER, PARAMETER :: jpr_otx1 = 1 ! 3 atmosphere-ocean stress components on grid 1 |
---|
66 | INTEGER, PARAMETER :: jpr_oty1 = 2 ! |
---|
67 | INTEGER, PARAMETER :: jpr_otz1 = 3 ! |
---|
68 | INTEGER, PARAMETER :: jpr_otx2 = 4 ! 3 atmosphere-ocean stress components on grid 2 |
---|
69 | INTEGER, PARAMETER :: jpr_oty2 = 5 ! |
---|
70 | INTEGER, PARAMETER :: jpr_otz2 = 6 ! |
---|
71 | INTEGER, PARAMETER :: jpr_itx1 = 7 ! 3 atmosphere-ice stress components on grid 1 |
---|
72 | INTEGER, PARAMETER :: jpr_ity1 = 8 ! |
---|
73 | INTEGER, PARAMETER :: jpr_itz1 = 9 ! |
---|
74 | INTEGER, PARAMETER :: jpr_itx2 = 10 ! 3 atmosphere-ice stress components on grid 2 |
---|
75 | INTEGER, PARAMETER :: jpr_ity2 = 11 ! |
---|
76 | INTEGER, PARAMETER :: jpr_itz2 = 12 ! |
---|
77 | INTEGER, PARAMETER :: jpr_qsroce = 13 ! Qsr above the ocean |
---|
78 | INTEGER, PARAMETER :: jpr_qsrice = 14 ! Qsr above the ice |
---|
79 | INTEGER, PARAMETER :: jpr_qsrmix = 15 |
---|
80 | INTEGER, PARAMETER :: jpr_qnsoce = 16 ! Qns above the ocean |
---|
81 | INTEGER, PARAMETER :: jpr_qnsice = 17 ! Qns above the ice |
---|
82 | INTEGER, PARAMETER :: jpr_qnsmix = 18 |
---|
83 | INTEGER, PARAMETER :: jpr_rain = 19 ! total liquid precipitation (rain) |
---|
84 | INTEGER, PARAMETER :: jpr_snow = 20 ! solid precipitation over the ocean (snow) |
---|
85 | INTEGER, PARAMETER :: jpr_tevp = 21 ! total evaporation |
---|
86 | INTEGER, PARAMETER :: jpr_ievp = 22 ! solid evaporation (sublimation) |
---|
87 | INTEGER, PARAMETER :: jpr_sbpr = 23 ! sublimation - liquid precipitation - solid precipitation |
---|
88 | INTEGER, PARAMETER :: jpr_semp = 24 ! solid freshwater budget (sublimation - snow) |
---|
89 | INTEGER, PARAMETER :: jpr_oemp = 25 ! ocean freshwater budget (evap - precip) |
---|
90 | INTEGER, PARAMETER :: jpr_w10m = 26 ! 10m wind |
---|
91 | INTEGER, PARAMETER :: jpr_dqnsdt = 27 ! d(Q non solar)/d(temperature) |
---|
92 | INTEGER, PARAMETER :: jpr_rnf = 28 ! runoffs |
---|
93 | INTEGER, PARAMETER :: jpr_cal = 29 ! calving |
---|
94 | INTEGER, PARAMETER :: jpr_taum = 30 ! wind stress module |
---|
95 | INTEGER, PARAMETER :: jpr_co2 = 31 |
---|
96 | INTEGER, PARAMETER :: jpr_topm = 32 ! topmeltn |
---|
97 | INTEGER, PARAMETER :: jpr_botm = 33 ! botmeltn |
---|
98 | INTEGER, PARAMETER :: jpr_sflx = 34 ! salt flux |
---|
99 | INTEGER, PARAMETER :: jpr_toce = 35 ! ocean temperature |
---|
100 | INTEGER, PARAMETER :: jpr_soce = 36 ! ocean salinity |
---|
101 | INTEGER, PARAMETER :: jpr_ocx1 = 37 ! ocean current on grid 1 |
---|
102 | INTEGER, PARAMETER :: jpr_ocy1 = 38 ! |
---|
103 | INTEGER, PARAMETER :: jpr_ssh = 39 ! sea surface height |
---|
104 | INTEGER, PARAMETER :: jpr_fice = 40 ! ice fraction |
---|
105 | INTEGER, PARAMETER :: jpr_e3t1st = 41 ! first T level thickness |
---|
106 | INTEGER, PARAMETER :: jpr_fraqsr = 42 ! fraction of solar net radiation absorbed in the first ocean level |
---|
107 | INTEGER, PARAMETER :: jpr_ts_ice = 43 ! skin temperature of sea-ice (used for melt-ponds) |
---|
108 | INTEGER, PARAMETER :: jpr_grnm = 44 ! Greenland ice mass |
---|
109 | INTEGER, PARAMETER :: jpr_antm = 45 ! Antarctic ice mass |
---|
110 | INTEGER, PARAMETER :: jpr_atm_pco2 = 46 ! Incoming atm CO2 flux |
---|
111 | INTEGER, PARAMETER :: jpr_atm_dust = 47 ! Incoming atm aggregate dust |
---|
112 | INTEGER, PARAMETER :: jprcv = 47 ! total number of fields received |
---|
113 | |
---|
114 | INTEGER, PARAMETER :: jps_fice = 1 ! ice fraction sent to the atmosphere |
---|
115 | INTEGER, PARAMETER :: jps_toce = 2 ! ocean temperature |
---|
116 | INTEGER, PARAMETER :: jps_tice = 3 ! ice temperature |
---|
117 | INTEGER, PARAMETER :: jps_tmix = 4 ! mixed temperature (ocean+ice) |
---|
118 | INTEGER, PARAMETER :: jps_albice = 5 ! ice albedo |
---|
119 | INTEGER, PARAMETER :: jps_albmix = 6 ! mixed albedo |
---|
120 | INTEGER, PARAMETER :: jps_hice = 7 ! ice thickness |
---|
121 | INTEGER, PARAMETER :: jps_hsnw = 8 ! snow thickness |
---|
122 | INTEGER, PARAMETER :: jps_ocx1 = 9 ! ocean current on grid 1 |
---|
123 | INTEGER, PARAMETER :: jps_ocy1 = 10 ! |
---|
124 | INTEGER, PARAMETER :: jps_ocz1 = 11 ! |
---|
125 | INTEGER, PARAMETER :: jps_ivx1 = 12 ! ice current on grid 1 |
---|
126 | INTEGER, PARAMETER :: jps_ivy1 = 13 ! |
---|
127 | INTEGER, PARAMETER :: jps_ivz1 = 14 ! |
---|
128 | INTEGER, PARAMETER :: jps_co2 = 15 |
---|
129 | INTEGER, PARAMETER :: jps_soce = 16 ! ocean salinity |
---|
130 | INTEGER, PARAMETER :: jps_ssh = 17 ! sea surface height |
---|
131 | INTEGER, PARAMETER :: jps_qsroce = 18 ! Qsr above the ocean |
---|
132 | INTEGER, PARAMETER :: jps_qnsoce = 19 ! Qns above the ocean |
---|
133 | INTEGER, PARAMETER :: jps_oemp = 20 ! ocean freshwater budget (evap - precip) |
---|
134 | INTEGER, PARAMETER :: jps_sflx = 21 ! salt flux |
---|
135 | INTEGER, PARAMETER :: jps_otx1 = 22 ! 2 atmosphere-ocean stress components on grid 1 |
---|
136 | INTEGER, PARAMETER :: jps_oty1 = 23 ! |
---|
137 | INTEGER, PARAMETER :: jps_rnf = 24 ! runoffs |
---|
138 | INTEGER, PARAMETER :: jps_taum = 25 ! wind stress module |
---|
139 | INTEGER, PARAMETER :: jps_fice2 = 26 ! ice fraction sent to OPA (by SAS when doing SAS-OPA coupling) |
---|
140 | INTEGER, PARAMETER :: jps_e3t1st = 27 ! first level depth (vvl) |
---|
141 | INTEGER, PARAMETER :: jps_fraqsr = 28 ! fraction of solar net radiation absorbed in the first ocean level |
---|
142 | INTEGER, PARAMETER :: jps_a_p = 29 ! meltpond fraction |
---|
143 | INTEGER, PARAMETER :: jps_ht_p = 30 ! meltpond depth (m) |
---|
144 | INTEGER, PARAMETER :: jps_kice = 31 ! ice surface layer thermal conductivity |
---|
145 | INTEGER, PARAMETER :: jps_sstfrz = 32 ! sea-surface freezing temperature |
---|
146 | INTEGER, PARAMETER :: jps_fice1 = 33 ! first-order ice concentration (for time-travelling ice coupling) |
---|
147 | INTEGER, PARAMETER :: jps_bio_co2 = 34 ! MEDUSA air-sea CO2 flux in |
---|
148 | INTEGER, PARAMETER :: jps_bio_dms = 35 ! MEDUSA DMS surface concentration in |
---|
149 | INTEGER, PARAMETER :: jpsnd = 35 ! total number of fields sent |
---|
150 | |
---|
151 | REAL(wp), PARAMETER :: dms_unit_conv = 1.0e+6 ! Coversion factor to get outgong DMS in standard units for coupling |
---|
152 | ! i.e. specifically nmol/L (= umol/m3) |
---|
153 | |
---|
154 | ! !!** namelist namsbc_cpl ** |
---|
155 | TYPE :: FLD_C |
---|
156 | CHARACTER(len = 32) :: cldes ! desciption of the coupling strategy |
---|
157 | CHARACTER(len = 32) :: clcat ! multiple ice categories strategy |
---|
158 | CHARACTER(len = 32) :: clvref ! reference of vector ('spherical' or 'cartesian') |
---|
159 | CHARACTER(len = 32) :: clvor ! orientation of vector fields ('eastward-northward' or 'local grid') |
---|
160 | CHARACTER(len = 32) :: clvgrd ! grids on which is located the vector fields |
---|
161 | END TYPE FLD_C |
---|
162 | ! Send to the atmosphere ! |
---|
163 | TYPE(FLD_C) :: sn_snd_temp, sn_snd_alb, sn_snd_thick, sn_snd_crt, sn_snd_co2, sn_snd_cond, sn_snd_mpnd, sn_snd_sstfrz, sn_snd_thick1 |
---|
164 | TYPE(FLD_C) :: sn_snd_bio_co2, sn_snd_bio_dms |
---|
165 | |
---|
166 | ! Received from the atmosphere ! |
---|
167 | TYPE(FLD_C) :: sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_dqnsdt, sn_rcv_qsr, sn_rcv_qns, sn_rcv_emp, sn_rcv_rnf |
---|
168 | TYPE(FLD_C) :: sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2, sn_rcv_ts_ice, sn_rcv_grnm, sn_rcv_antm |
---|
169 | TYPE(FLD_C) :: sn_rcv_atm_pco2, sn_rcv_atm_dust |
---|
170 | |
---|
171 | ! Other namelist parameters ! |
---|
172 | INTEGER :: nn_cplmodel ! Maximum number of models to/from which NEMO is potentialy sending/receiving data |
---|
173 | LOGICAL :: ln_usecplmask ! use a coupling mask file to merge data received from several models |
---|
174 | ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel) |
---|
175 | TYPE :: DYNARR |
---|
176 | REAL(wp), POINTER, DIMENSION(:,:,:) :: z3 |
---|
177 | END TYPE DYNARR |
---|
178 | |
---|
179 | TYPE( DYNARR ), SAVE, DIMENSION(jprcv) :: frcv ! all fields recieved from the atmosphere |
---|
180 | |
---|
181 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: albedo_oce_mix ! ocean albedo sent to atmosphere (mix clear/overcast sky) |
---|
182 | |
---|
183 | INTEGER , ALLOCATABLE, SAVE, DIMENSION( :) :: nrcvinfo ! OASIS info argument |
---|
184 | |
---|
185 | !! Substitution |
---|
186 | # include "domzgr_substitute.h90" |
---|
187 | # include "vectopt_loop_substitute.h90" |
---|
188 | !!---------------------------------------------------------------------- |
---|
189 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
190 | !! $Id$ |
---|
191 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
192 | !!---------------------------------------------------------------------- |
---|
193 | |
---|
194 | CONTAINS |
---|
195 | |
---|
196 | INTEGER FUNCTION sbc_cpl_alloc() |
---|
197 | !!---------------------------------------------------------------------- |
---|
198 | !! *** FUNCTION sbc_cpl_alloc *** |
---|
199 | !!---------------------------------------------------------------------- |
---|
200 | INTEGER :: ierr(3) |
---|
201 | !!---------------------------------------------------------------------- |
---|
202 | ierr(:) = 0 |
---|
203 | ! |
---|
204 | ALLOCATE( albedo_oce_mix(jpi,jpj), nrcvinfo(jprcv), STAT=ierr(1) ) |
---|
205 | |
---|
206 | #if ! defined key_lim3 && ! defined key_lim2 && ! defined key_cice |
---|
207 | ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) ) ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init) |
---|
208 | #endif |
---|
209 | ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) ) |
---|
210 | ! |
---|
211 | sbc_cpl_alloc = MAXVAL( ierr ) |
---|
212 | IF( lk_mpp ) CALL mpp_sum ( sbc_cpl_alloc ) |
---|
213 | IF( sbc_cpl_alloc > 0 ) CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed') |
---|
214 | ! |
---|
215 | END FUNCTION sbc_cpl_alloc |
---|
216 | |
---|
217 | |
---|
218 | SUBROUTINE sbc_cpl_init( k_ice ) |
---|
219 | !!---------------------------------------------------------------------- |
---|
220 | !! *** ROUTINE sbc_cpl_init *** |
---|
221 | !! |
---|
222 | !! ** Purpose : Initialisation of send and received information from |
---|
223 | !! the atmospheric component |
---|
224 | !! |
---|
225 | !! ** Method : * Read namsbc_cpl namelist |
---|
226 | !! * define the receive interface |
---|
227 | !! * define the send interface |
---|
228 | !! * initialise the OASIS coupler |
---|
229 | !!---------------------------------------------------------------------- |
---|
230 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
231 | !! |
---|
232 | INTEGER :: jn ! dummy loop index |
---|
233 | INTEGER :: ios ! Local integer output status for namelist read |
---|
234 | INTEGER :: inum |
---|
235 | REAL(wp), POINTER, DIMENSION(:,:) :: zacs, zaos |
---|
236 | !! |
---|
237 | NAMELIST/namsbc_cpl/ sn_snd_temp, sn_snd_alb , sn_snd_thick , sn_snd_crt , sn_snd_co2, & |
---|
238 | & sn_snd_cond, sn_snd_mpnd , sn_snd_sstfrz, sn_snd_thick1, & |
---|
239 | & sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau , sn_rcv_dqnsdt, sn_rcv_qsr, & |
---|
240 | & sn_rcv_qns , sn_rcv_emp , sn_rcv_rnf , sn_rcv_cal , sn_rcv_iceflx, & |
---|
241 | & sn_rcv_co2 , sn_rcv_grnm , sn_rcv_antm , sn_rcv_ts_ice, nn_cplmodel , & |
---|
242 | & ln_usecplmask, nn_coupled_iceshelf_fluxes, ln_iceshelf_init_atmos, & |
---|
243 | & rn_greenland_total_fw_input, rn_greenland_calving_fraction, & |
---|
244 | & rn_antarctica_total_fw_input, rn_antarctica_calving_fraction, rn_iceshelf_fluxes_tolerance |
---|
245 | !!--------------------------------------------------------------------- |
---|
246 | |
---|
247 | ! Add MEDUSA related fields to namelist |
---|
248 | NAMELIST/namsbc_cpl/ sn_snd_bio_co2, sn_snd_bio_dms, & |
---|
249 | & sn_rcv_atm_pco2, sn_rcv_atm_dust |
---|
250 | |
---|
251 | !!--------------------------------------------------------------------- |
---|
252 | |
---|
253 | ! |
---|
254 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_init') |
---|
255 | ! |
---|
256 | CALL wrk_alloc( jpi,jpj, zacs, zaos ) |
---|
257 | |
---|
258 | ! ================================ ! |
---|
259 | ! Namelist informations ! |
---|
260 | ! ================================ ! |
---|
261 | |
---|
262 | REWIND( numnam_ref ) ! Namelist namsbc_cpl in reference namelist : Variables for OASIS coupling |
---|
263 | READ ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901) |
---|
264 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist', lwp ) |
---|
265 | |
---|
266 | REWIND( numnam_cfg ) ! Namelist namsbc_cpl in configuration namelist : Variables for OASIS coupling |
---|
267 | READ ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 ) |
---|
268 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist', lwp ) |
---|
269 | IF(lwm) WRITE ( numond, namsbc_cpl ) |
---|
270 | |
---|
271 | IF(lwp) THEN ! control print |
---|
272 | WRITE(numout,*) |
---|
273 | WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist ' |
---|
274 | WRITE(numout,*)'~~~~~~~~~~~~' |
---|
275 | ENDIF |
---|
276 | IF( lwp .AND. ln_cpl ) THEN ! control print |
---|
277 | WRITE(numout,*)' received fields (mutiple ice categories)' |
---|
278 | WRITE(numout,*)' 10m wind module = ', TRIM(sn_rcv_w10m%cldes ), ' (', TRIM(sn_rcv_w10m%clcat ), ')' |
---|
279 | WRITE(numout,*)' stress module = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')' |
---|
280 | WRITE(numout,*)' surface stress = ', TRIM(sn_rcv_tau%cldes ), ' (', TRIM(sn_rcv_tau%clcat ), ')' |
---|
281 | WRITE(numout,*)' - referential = ', sn_rcv_tau%clvref |
---|
282 | WRITE(numout,*)' - orientation = ', sn_rcv_tau%clvor |
---|
283 | WRITE(numout,*)' - mesh = ', sn_rcv_tau%clvgrd |
---|
284 | WRITE(numout,*)' non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')' |
---|
285 | WRITE(numout,*)' solar heat flux = ', TRIM(sn_rcv_qsr%cldes ), ' (', TRIM(sn_rcv_qsr%clcat ), ')' |
---|
286 | WRITE(numout,*)' non-solar heat flux = ', TRIM(sn_rcv_qns%cldes ), ' (', TRIM(sn_rcv_qns%clcat ), ')' |
---|
287 | WRITE(numout,*)' freshwater budget = ', TRIM(sn_rcv_emp%cldes ), ' (', TRIM(sn_rcv_emp%clcat ), ')' |
---|
288 | WRITE(numout,*)' runoffs = ', TRIM(sn_rcv_rnf%cldes ), ' (', TRIM(sn_rcv_rnf%clcat ), ')' |
---|
289 | WRITE(numout,*)' calving = ', TRIM(sn_rcv_cal%cldes ), ' (', TRIM(sn_rcv_cal%clcat ), ')' |
---|
290 | WRITE(numout,*)' Greenland ice mass = ', TRIM(sn_rcv_grnm%cldes ), ' (', TRIM(sn_rcv_grnm%clcat ), ')' |
---|
291 | WRITE(numout,*)' Antarctica ice mass = ', TRIM(sn_rcv_antm%cldes ), ' (', TRIM(sn_rcv_antm%clcat ), ')' |
---|
292 | WRITE(numout,*)' sea ice heat fluxes = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')' |
---|
293 | WRITE(numout,*)' atm co2 = ', TRIM(sn_rcv_co2%cldes ), ' (', TRIM(sn_rcv_co2%clcat ), ')' |
---|
294 | WRITE(numout,*)' atm pco2 = ', TRIM(sn_rcv_atm_pco2%cldes), ' (', TRIM(sn_rcv_atm_pco2%clcat), ')' |
---|
295 | WRITE(numout,*)' atm dust = ', TRIM(sn_rcv_atm_dust%cldes), ' (', TRIM(sn_rcv_atm_dust%clcat), ')' |
---|
296 | WRITE(numout,*)' sent fields (multiple ice categories)' |
---|
297 | WRITE(numout,*)' surface temperature = ', TRIM(sn_snd_temp%cldes ), ' (', TRIM(sn_snd_temp%clcat ), ')' |
---|
298 | WRITE(numout,*)' albedo = ', TRIM(sn_snd_alb%cldes ), ' (', TRIM(sn_snd_alb%clcat ), ')' |
---|
299 | WRITE(numout,*)' ice/snow thickness = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')' |
---|
300 | WRITE(numout,*)' surface current = ', TRIM(sn_snd_crt%cldes ), ' (', TRIM(sn_snd_crt%clcat ), ')' |
---|
301 | WRITE(numout,*)' - referential = ', sn_snd_crt%clvref |
---|
302 | WRITE(numout,*)' - orientation = ', sn_snd_crt%clvor |
---|
303 | WRITE(numout,*)' - mesh = ', sn_snd_crt%clvgrd |
---|
304 | WRITE(numout,*)' bio co2 flux = ', TRIM(sn_snd_bio_co2%cldes), ' (', TRIM(sn_snd_bio_co2%clcat), ')' |
---|
305 | WRITE(numout,*)' bio dms flux = ', TRIM(sn_snd_bio_dms%cldes), ' (', TRIM(sn_snd_bio_dms%clcat), ')' |
---|
306 | WRITE(numout,*)' oce co2 flux = ', TRIM(sn_snd_co2%cldes ), ' (', TRIM(sn_snd_co2%clcat ), ')' |
---|
307 | WRITE(numout,*)' ice effective conductivity = ', TRIM(sn_snd_cond%cldes ), ' (', TRIM(sn_snd_cond%clcat ), ')' |
---|
308 | WRITE(numout,*)' meltponds fraction & depth = ', TRIM(sn_snd_mpnd%cldes ), ' (', TRIM(sn_snd_mpnd%clcat ), ')' |
---|
309 | WRITE(numout,*)' sea surface freezing temp = ', TRIM(sn_snd_sstfrz%cldes ), ' (', TRIM(sn_snd_sstfrz%clcat ), ')' |
---|
310 | |
---|
311 | WRITE(numout,*)' nn_cplmodel = ', nn_cplmodel |
---|
312 | WRITE(numout,*)' ln_usecplmask = ', ln_usecplmask |
---|
313 | WRITE(numout,*)' nn_coupled_iceshelf_fluxes = ', nn_coupled_iceshelf_fluxes |
---|
314 | WRITE(numout,*)' ln_iceshelf_init_atmos = ', ln_iceshelf_init_atmos |
---|
315 | WRITE(numout,*)' rn_greenland_total_fw_input = ', rn_greenland_total_fw_input |
---|
316 | WRITE(numout,*)' rn_antarctica_total_fw_input = ', rn_antarctica_total_fw_input |
---|
317 | WRITE(numout,*)' rn_greenland_calving_fraction = ', rn_greenland_calving_fraction |
---|
318 | WRITE(numout,*)' rn_antarctica_calving_fraction = ', rn_antarctica_calving_fraction |
---|
319 | WRITE(numout,*)' rn_iceshelf_fluxes_tolerance = ', rn_iceshelf_fluxes_tolerance |
---|
320 | ENDIF |
---|
321 | |
---|
322 | ! ! allocate sbccpl arrays |
---|
323 | IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' ) |
---|
324 | |
---|
325 | ! ================================ ! |
---|
326 | ! Define the receive interface ! |
---|
327 | ! ================================ ! |
---|
328 | nrcvinfo(:) = OASIS_idle ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress |
---|
329 | |
---|
330 | ! for each field: define the OASIS name (srcv(:)%clname) |
---|
331 | ! define receive or not from the namelist parameters (srcv(:)%laction) |
---|
332 | ! define the north fold type of lbc (srcv(:)%nsgn) |
---|
333 | |
---|
334 | ! default definitions of srcv |
---|
335 | srcv(:)%laction = .FALSE. ; srcv(:)%clgrid = 'T' ; srcv(:)%nsgn = 1. ; srcv(:)%nct = 1 |
---|
336 | |
---|
337 | ! ! ------------------------- ! |
---|
338 | ! ! ice and ocean wind stress ! |
---|
339 | ! ! ------------------------- ! |
---|
340 | ! ! Name |
---|
341 | srcv(jpr_otx1)%clname = 'O_OTaux1' ! 1st ocean component on grid ONE (T or U) |
---|
342 | srcv(jpr_oty1)%clname = 'O_OTauy1' ! 2nd - - - - |
---|
343 | srcv(jpr_otz1)%clname = 'O_OTauz1' ! 3rd - - - - |
---|
344 | srcv(jpr_otx2)%clname = 'O_OTaux2' ! 1st ocean component on grid TWO (V) |
---|
345 | srcv(jpr_oty2)%clname = 'O_OTauy2' ! 2nd - - - - |
---|
346 | srcv(jpr_otz2)%clname = 'O_OTauz2' ! 3rd - - - - |
---|
347 | ! |
---|
348 | srcv(jpr_itx1)%clname = 'O_ITaux1' ! 1st ice component on grid ONE (T, F, I or U) |
---|
349 | srcv(jpr_ity1)%clname = 'O_ITauy1' ! 2nd - - - - |
---|
350 | srcv(jpr_itz1)%clname = 'O_ITauz1' ! 3rd - - - - |
---|
351 | srcv(jpr_itx2)%clname = 'O_ITaux2' ! 1st ice component on grid TWO (V) |
---|
352 | srcv(jpr_ity2)%clname = 'O_ITauy2' ! 2nd - - - - |
---|
353 | srcv(jpr_itz2)%clname = 'O_ITauz2' ! 3rd - - - - |
---|
354 | ! |
---|
355 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
356 | IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) srcv(jpr_otx1:jpr_itz2)%nsgn = -1. |
---|
357 | |
---|
358 | ! ! Set grid and action |
---|
359 | SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) ) ! 'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V' |
---|
360 | CASE( 'T' ) |
---|
361 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
362 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
363 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
364 | CASE( 'U,V' ) |
---|
365 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
366 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
367 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
368 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
369 | srcv(jpr_otx1:jpr_itz2)%laction = .TRUE. ! receive oce and ice components on both grid 1 & 2 |
---|
370 | CASE( 'U,V,T' ) |
---|
371 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
372 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
373 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'T' ! ice components given at T-point |
---|
374 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
375 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
376 | CASE( 'U,V,I' ) |
---|
377 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
378 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
379 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
380 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
381 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
382 | CASE( 'U,V,F' ) |
---|
383 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
384 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
385 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
386 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
387 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
388 | CASE( 'T,I' ) |
---|
389 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
390 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
391 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
392 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
393 | CASE( 'T,F' ) |
---|
394 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
395 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
396 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
397 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
398 | CASE( 'T,U,V' ) |
---|
399 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'T' ! oce components given at T-point |
---|
400 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
401 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
402 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 only |
---|
403 | srcv(jpr_itx1:jpr_itz2)%laction = .TRUE. ! receive ice components on grid 1 & 2 |
---|
404 | CASE default |
---|
405 | CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' ) |
---|
406 | END SELECT |
---|
407 | ! |
---|
408 | IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' ) & ! spherical: 3rd component not received |
---|
409 | & srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE. |
---|
410 | ! |
---|
411 | IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) THEN ! already on local grid -> no need of the second grid |
---|
412 | srcv(jpr_otx2:jpr_otz2)%laction = .FALSE. |
---|
413 | srcv(jpr_itx2:jpr_itz2)%laction = .FALSE. |
---|
414 | srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid ! not needed but cleaner... |
---|
415 | srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid ! not needed but cleaner... |
---|
416 | ENDIF |
---|
417 | ! |
---|
418 | IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN ! 'oce and ice' case ocean stress on ocean mesh used |
---|
419 | srcv(jpr_itx1:jpr_itz2)%laction = .FALSE. ! ice components not received |
---|
420 | srcv(jpr_itx1)%clgrid = 'U' ! ocean stress used after its transformation |
---|
421 | srcv(jpr_ity1)%clgrid = 'V' ! i.e. it is always at U- & V-points for i- & j-comp. resp. |
---|
422 | ENDIF |
---|
423 | |
---|
424 | ! ! ------------------------- ! |
---|
425 | ! ! freshwater budget ! E-P |
---|
426 | ! ! ------------------------- ! |
---|
427 | ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid) |
---|
428 | ! over ice of free ocean within the same atmospheric cell.cd |
---|
429 | srcv(jpr_rain)%clname = 'OTotRain' ! Rain = liquid precipitation |
---|
430 | srcv(jpr_snow)%clname = 'OTotSnow' ! Snow = solid precipitation |
---|
431 | srcv(jpr_tevp)%clname = 'OTotEvap' ! total evaporation (over oce + ice sublimation) |
---|
432 | srcv(jpr_ievp)%clname = 'OIceEvp' ! evaporation over ice = sublimation |
---|
433 | srcv(jpr_sbpr)%clname = 'OSubMPre' ! sublimation - liquid precipitation - solid precipitation |
---|
434 | srcv(jpr_semp)%clname = 'OISubMSn' ! ice solid water budget = sublimation - solid precipitation |
---|
435 | srcv(jpr_oemp)%clname = 'OOEvaMPr' ! ocean water budget = ocean Evap - ocean precip |
---|
436 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) |
---|
437 | CASE( 'none' ) ! nothing to do |
---|
438 | CASE( 'oce only' ) ; srcv( jpr_oemp )%laction = .TRUE. |
---|
439 | CASE( 'conservative' ) |
---|
440 | srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE. |
---|
441 | IF ( k_ice <= 1 ) srcv(jpr_ievp)%laction = .FALSE. |
---|
442 | CASE( 'oce and ice' ) ; srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE. |
---|
443 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' ) |
---|
444 | END SELECT |
---|
445 | !Set the number of categories for coupling of sublimation |
---|
446 | IF ( TRIM( sn_rcv_emp%clcat ) == 'yes' ) srcv(jpr_ievp)%nct = jpl |
---|
447 | ! |
---|
448 | ! ! ------------------------- ! |
---|
449 | ! ! Runoffs & Calving ! |
---|
450 | ! ! ------------------------- ! |
---|
451 | srcv(jpr_rnf )%clname = 'O_Runoff' |
---|
452 | IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) THEN |
---|
453 | srcv(jpr_rnf)%laction = .TRUE. |
---|
454 | l_rnfcpl = .TRUE. ! -> no need to read runoffs in sbcrnf |
---|
455 | ln_rnf = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas |
---|
456 | IF(lwp) WRITE(numout,*) |
---|
457 | IF(lwp) WRITE(numout,*) ' runoffs received from oasis -> force ln_rnf = ', ln_rnf |
---|
458 | ENDIF |
---|
459 | ! |
---|
460 | srcv(jpr_cal )%clname = 'OCalving' ; IF( TRIM( sn_rcv_cal%cldes ) == 'coupled' ) srcv(jpr_cal)%laction = .TRUE. |
---|
461 | srcv(jpr_grnm )%clname = 'OGrnmass' ; IF( TRIM( sn_rcv_grnm%cldes ) == 'coupled' ) srcv(jpr_grnm)%laction = .TRUE. |
---|
462 | srcv(jpr_antm )%clname = 'OAntmass' ; IF( TRIM( sn_rcv_antm%cldes ) == 'coupled' ) srcv(jpr_antm)%laction = .TRUE. |
---|
463 | |
---|
464 | |
---|
465 | ! ! ------------------------- ! |
---|
466 | ! ! non solar radiation ! Qns |
---|
467 | ! ! ------------------------- ! |
---|
468 | srcv(jpr_qnsoce)%clname = 'O_QnsOce' |
---|
469 | srcv(jpr_qnsice)%clname = 'O_QnsIce' |
---|
470 | srcv(jpr_qnsmix)%clname = 'O_QnsMix' |
---|
471 | SELECT CASE( TRIM( sn_rcv_qns%cldes ) ) |
---|
472 | CASE( 'none' ) ! nothing to do |
---|
473 | CASE( 'oce only' ) ; srcv( jpr_qnsoce )%laction = .TRUE. |
---|
474 | CASE( 'conservative' ) ; srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE. |
---|
475 | CASE( 'oce and ice' ) ; srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE. |
---|
476 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qnsmix )%laction = .TRUE. |
---|
477 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' ) |
---|
478 | END SELECT |
---|
479 | IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) & |
---|
480 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' ) |
---|
481 | ! ! ------------------------- ! |
---|
482 | ! ! solar radiation ! Qsr |
---|
483 | ! ! ------------------------- ! |
---|
484 | srcv(jpr_qsroce)%clname = 'O_QsrOce' |
---|
485 | srcv(jpr_qsrice)%clname = 'O_QsrIce' |
---|
486 | srcv(jpr_qsrmix)%clname = 'O_QsrMix' |
---|
487 | SELECT CASE( TRIM( sn_rcv_qsr%cldes ) ) |
---|
488 | CASE( 'none' ) ! nothing to do |
---|
489 | CASE( 'oce only' ) ; srcv( jpr_qsroce )%laction = .TRUE. |
---|
490 | CASE( 'conservative' ) ; srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE. |
---|
491 | CASE( 'oce and ice' ) ; srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE. |
---|
492 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qsrmix )%laction = .TRUE. |
---|
493 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' ) |
---|
494 | END SELECT |
---|
495 | IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) & |
---|
496 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' ) |
---|
497 | ! ! ------------------------- ! |
---|
498 | ! ! non solar sensitivity ! d(Qns)/d(T) |
---|
499 | ! ! ------------------------- ! |
---|
500 | srcv(jpr_dqnsdt)%clname = 'O_dQnsdT' |
---|
501 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' ) srcv(jpr_dqnsdt)%laction = .TRUE. |
---|
502 | ! |
---|
503 | ! non solar sensitivity mandatory for LIM ice model |
---|
504 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. k_ice /= 0 .AND. k_ice /= 4 .AND. nn_components /= jp_iam_sas ) & |
---|
505 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_dqnsdt%cldes must be coupled in namsbc_cpl namelist' ) |
---|
506 | ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique |
---|
507 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' ) & |
---|
508 | CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' ) |
---|
509 | ! ! ------------------------- ! |
---|
510 | ! ! 10m wind module ! |
---|
511 | ! ! ------------------------- ! |
---|
512 | srcv(jpr_w10m)%clname = 'O_Wind10' ; IF( TRIM(sn_rcv_w10m%cldes ) == 'coupled' ) srcv(jpr_w10m)%laction = .TRUE. |
---|
513 | ! |
---|
514 | ! ! ------------------------- ! |
---|
515 | ! ! wind stress module ! |
---|
516 | ! ! ------------------------- ! |
---|
517 | srcv(jpr_taum)%clname = 'O_TauMod' ; IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' ) srcv(jpr_taum)%laction = .TRUE. |
---|
518 | lhftau = srcv(jpr_taum)%laction |
---|
519 | |
---|
520 | ! ! ------------------------- ! |
---|
521 | ! ! Atmospheric CO2 ! |
---|
522 | ! ! ------------------------- ! |
---|
523 | srcv(jpr_co2 )%clname = 'O_AtmCO2' ; IF( TRIM(sn_rcv_co2%cldes ) == 'coupled' ) srcv(jpr_co2 )%laction = .TRUE. |
---|
524 | |
---|
525 | |
---|
526 | ! ! --------------------------------------- ! |
---|
527 | ! ! Incoming CO2 and DUST fluxes for MEDUSA ! |
---|
528 | ! ! --------------------------------------- ! |
---|
529 | srcv(jpr_atm_pco2)%clname = 'OATMPCO2' |
---|
530 | |
---|
531 | IF (TRIM(sn_rcv_atm_pco2%cldes) == 'medusa') THEN |
---|
532 | srcv(jpr_atm_pco2)%laction = .TRUE. |
---|
533 | END IF |
---|
534 | |
---|
535 | srcv(jpr_atm_dust)%clname = 'OATMDUST' |
---|
536 | IF (TRIM(sn_rcv_atm_dust%cldes) == 'medusa') THEN |
---|
537 | srcv(jpr_atm_dust)%laction = .TRUE. |
---|
538 | END IF |
---|
539 | |
---|
540 | ! ! ------------------------- ! |
---|
541 | ! ! topmelt and botmelt ! |
---|
542 | ! ! ------------------------- ! |
---|
543 | srcv(jpr_topm )%clname = 'OTopMlt' |
---|
544 | srcv(jpr_botm )%clname = 'OBotMlt' |
---|
545 | IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN |
---|
546 | IF ( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN |
---|
547 | srcv(jpr_topm:jpr_botm)%nct = jpl |
---|
548 | ELSE |
---|
549 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' ) |
---|
550 | ENDIF |
---|
551 | srcv(jpr_topm:jpr_botm)%laction = .TRUE. |
---|
552 | ENDIF |
---|
553 | |
---|
554 | #if defined key_cice && ! defined key_cice4 |
---|
555 | ! ! ----------------------------- ! |
---|
556 | ! ! sea-ice skin temperature ! |
---|
557 | ! ! used in meltpond scheme ! |
---|
558 | ! ! May be calculated in Atm ! |
---|
559 | ! ! ----------------------------- ! |
---|
560 | srcv(jpr_ts_ice)%clname = 'OTsfIce' |
---|
561 | IF ( TRIM( sn_rcv_ts_ice%cldes ) == 'ice' ) srcv(jpr_ts_ice)%laction = .TRUE. |
---|
562 | IF ( TRIM( sn_rcv_ts_ice%clcat ) == 'yes' ) srcv(jpr_ts_ice)%nct = jpl |
---|
563 | !TODO: Should there be a consistency check here? |
---|
564 | #endif |
---|
565 | |
---|
566 | ! ! ------------------------------- ! |
---|
567 | ! ! OPA-SAS coupling - rcv by opa ! |
---|
568 | ! ! ------------------------------- ! |
---|
569 | srcv(jpr_sflx)%clname = 'O_SFLX' |
---|
570 | srcv(jpr_fice)%clname = 'RIceFrc' |
---|
571 | ! |
---|
572 | IF( nn_components == jp_iam_opa ) THEN ! OPA coupled to SAS via OASIS: force received field by OPA (sent by SAS) |
---|
573 | srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
574 | srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling |
---|
575 | srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling |
---|
576 | srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE. |
---|
577 | srcv(jpr_otx1)%clgrid = 'U' ! oce components given at U-point |
---|
578 | srcv(jpr_oty1)%clgrid = 'V' ! and V-point |
---|
579 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
580 | srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1. |
---|
581 | sn_rcv_tau%clvgrd = 'U,V' |
---|
582 | sn_rcv_tau%clvor = 'local grid' |
---|
583 | sn_rcv_tau%clvref = 'spherical' |
---|
584 | sn_rcv_emp%cldes = 'oce only' |
---|
585 | ! |
---|
586 | IF(lwp) THEN ! control print |
---|
587 | WRITE(numout,*) |
---|
588 | WRITE(numout,*)' Special conditions for SAS-OPA coupling ' |
---|
589 | WRITE(numout,*)' OPA component ' |
---|
590 | WRITE(numout,*) |
---|
591 | WRITE(numout,*)' received fields from SAS component ' |
---|
592 | WRITE(numout,*)' ice cover ' |
---|
593 | WRITE(numout,*)' oce only EMP ' |
---|
594 | WRITE(numout,*)' salt flux ' |
---|
595 | WRITE(numout,*)' mixed oce-ice solar flux ' |
---|
596 | WRITE(numout,*)' mixed oce-ice non solar flux ' |
---|
597 | WRITE(numout,*)' wind stress U,V on local grid and sperical coordinates ' |
---|
598 | WRITE(numout,*)' wind stress module' |
---|
599 | WRITE(numout,*) |
---|
600 | ENDIF |
---|
601 | ENDIF |
---|
602 | ! ! -------------------------------- ! |
---|
603 | ! ! OPA-SAS coupling - rcv by sas ! |
---|
604 | ! ! -------------------------------- ! |
---|
605 | srcv(jpr_toce )%clname = 'I_SSTSST' |
---|
606 | srcv(jpr_soce )%clname = 'I_SSSal' |
---|
607 | srcv(jpr_ocx1 )%clname = 'I_OCurx1' |
---|
608 | srcv(jpr_ocy1 )%clname = 'I_OCury1' |
---|
609 | srcv(jpr_ssh )%clname = 'I_SSHght' |
---|
610 | srcv(jpr_e3t1st)%clname = 'I_E3T1st' |
---|
611 | srcv(jpr_fraqsr)%clname = 'I_FraQsr' |
---|
612 | ! |
---|
613 | IF( nn_components == jp_iam_sas ) THEN |
---|
614 | IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
615 | IF( .NOT. ln_cpl ) srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling |
---|
616 | IF( .NOT. ln_cpl ) srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling |
---|
617 | srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE. |
---|
618 | srcv( jpr_e3t1st )%laction = lk_vvl |
---|
619 | srcv(jpr_ocx1)%clgrid = 'U' ! oce components given at U-point |
---|
620 | srcv(jpr_ocy1)%clgrid = 'V' ! and V-point |
---|
621 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
622 | srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1. |
---|
623 | ! Change first letter to couple with atmosphere if already coupled OPA |
---|
624 | ! this is nedeed as each variable name used in the namcouple must be unique: |
---|
625 | ! for example O_Runoff received by OPA from SAS and therefore O_Runoff received by SAS from the Atmosphere |
---|
626 | DO jn = 1, jprcv |
---|
627 | IF ( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname)) |
---|
628 | END DO |
---|
629 | ! |
---|
630 | IF(lwp) THEN ! control print |
---|
631 | WRITE(numout,*) |
---|
632 | WRITE(numout,*)' Special conditions for SAS-OPA coupling ' |
---|
633 | WRITE(numout,*)' SAS component ' |
---|
634 | WRITE(numout,*) |
---|
635 | IF( .NOT. ln_cpl ) THEN |
---|
636 | WRITE(numout,*)' received fields from OPA component ' |
---|
637 | ELSE |
---|
638 | WRITE(numout,*)' Additional received fields from OPA component : ' |
---|
639 | ENDIF |
---|
640 | WRITE(numout,*)' sea surface temperature (Celcius) ' |
---|
641 | WRITE(numout,*)' sea surface salinity ' |
---|
642 | WRITE(numout,*)' surface currents ' |
---|
643 | WRITE(numout,*)' sea surface height ' |
---|
644 | WRITE(numout,*)' thickness of first ocean T level ' |
---|
645 | WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level' |
---|
646 | WRITE(numout,*) |
---|
647 | ENDIF |
---|
648 | ENDIF |
---|
649 | |
---|
650 | ! =================================================== ! |
---|
651 | ! Allocate all parts of frcv used for received fields ! |
---|
652 | ! =================================================== ! |
---|
653 | DO jn = 1, jprcv |
---|
654 | IF ( srcv(jn)%laction ) ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) ) |
---|
655 | END DO |
---|
656 | ! Allocate taum part of frcv which is used even when not received as coupling field |
---|
657 | IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) ) |
---|
658 | ! Allocate w10m part of frcv which is used even when not received as coupling field |
---|
659 | IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) ) |
---|
660 | ! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field |
---|
661 | IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) ) |
---|
662 | IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) ) |
---|
663 | ! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE. |
---|
664 | IF( k_ice /= 0 ) THEN |
---|
665 | IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) ) |
---|
666 | IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) ) |
---|
667 | END IF |
---|
668 | |
---|
669 | ! ================================ ! |
---|
670 | ! Define the send interface ! |
---|
671 | ! ================================ ! |
---|
672 | ! for each field: define the OASIS name (ssnd(:)%clname) |
---|
673 | ! define send or not from the namelist parameters (ssnd(:)%laction) |
---|
674 | ! define the north fold type of lbc (ssnd(:)%nsgn) |
---|
675 | |
---|
676 | ! default definitions of nsnd |
---|
677 | ssnd(:)%laction = .FALSE. ; ssnd(:)%clgrid = 'T' ; ssnd(:)%nsgn = 1. ; ssnd(:)%nct = 1 |
---|
678 | |
---|
679 | ! ! ------------------------- ! |
---|
680 | ! ! Surface temperature ! |
---|
681 | ! ! ------------------------- ! |
---|
682 | ssnd(jps_toce)%clname = 'O_SSTSST' |
---|
683 | ssnd(jps_tice)%clname = 'OTepIce' |
---|
684 | ssnd(jps_tmix)%clname = 'O_TepMix' |
---|
685 | SELECT CASE( TRIM( sn_snd_temp%cldes ) ) |
---|
686 | CASE( 'none' ) ! nothing to do |
---|
687 | CASE( 'oce only' ) ; ssnd( jps_toce )%laction = .TRUE. |
---|
688 | CASE( 'oce and ice' , 'weighted oce and ice' , 'oce and weighted ice') |
---|
689 | ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE. |
---|
690 | IF ( TRIM( sn_snd_temp%clcat ) == 'yes' ) ssnd(jps_tice)%nct = jpl |
---|
691 | CASE( 'mixed oce-ice' ) ; ssnd( jps_tmix )%laction = .TRUE. |
---|
692 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' ) |
---|
693 | END SELECT |
---|
694 | |
---|
695 | ! ! ------------------------- ! |
---|
696 | ! ! Albedo ! |
---|
697 | ! ! ------------------------- ! |
---|
698 | ssnd(jps_albice)%clname = 'O_AlbIce' |
---|
699 | ssnd(jps_albmix)%clname = 'O_AlbMix' |
---|
700 | SELECT CASE( TRIM( sn_snd_alb%cldes ) ) |
---|
701 | CASE( 'none' ) ! nothing to do |
---|
702 | CASE( 'ice' , 'weighted ice' ) ; ssnd(jps_albice)%laction = .TRUE. |
---|
703 | CASE( 'mixed oce-ice' ) ; ssnd(jps_albmix)%laction = .TRUE. |
---|
704 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' ) |
---|
705 | END SELECT |
---|
706 | ! |
---|
707 | ! Need to calculate oceanic albedo if |
---|
708 | ! 1. sending mixed oce-ice albedo or |
---|
709 | ! 2. receiving mixed oce-ice solar radiation |
---|
710 | IF ( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN |
---|
711 | CALL albedo_oce( zaos, zacs ) |
---|
712 | ! Due to lack of information on nebulosity : mean clear/overcast sky |
---|
713 | albedo_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5 |
---|
714 | ENDIF |
---|
715 | |
---|
716 | ! ! ------------------------- ! |
---|
717 | ! ! Ice fraction & Thickness |
---|
718 | ! ! ------------------------- ! |
---|
719 | ssnd(jps_fice)%clname = 'OIceFrc' |
---|
720 | ssnd(jps_hice)%clname = 'OIceTck' |
---|
721 | ssnd(jps_hsnw)%clname = 'OSnwTck' |
---|
722 | ssnd(jps_a_p)%clname = 'OPndFrc' |
---|
723 | ssnd(jps_ht_p)%clname = 'OPndTck' |
---|
724 | ssnd(jps_fice1)%clname = 'OIceFrd' |
---|
725 | IF( k_ice /= 0 ) THEN |
---|
726 | ssnd(jps_fice)%laction = .TRUE. ! if ice treated in the ocean (even in climato case) |
---|
727 | ssnd(jps_fice1)%laction = .TRUE. ! First-order regridded ice concentration, to be used |
---|
728 | ! in producing atmos-to-ice fluxes |
---|
729 | ! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now |
---|
730 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_fice)%nct = jpl |
---|
731 | IF ( TRIM( sn_snd_thick1%clcat ) == 'yes' ) ssnd(jps_fice1)%nct = jpl |
---|
732 | ENDIF |
---|
733 | |
---|
734 | SELECT CASE ( TRIM( sn_snd_thick%cldes ) ) |
---|
735 | CASE( 'none' ) ! nothing to do |
---|
736 | CASE( 'ice and snow' ) |
---|
737 | ssnd(jps_hice:jps_hsnw)%laction = .TRUE. |
---|
738 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN |
---|
739 | ssnd(jps_hice:jps_hsnw)%nct = jpl |
---|
740 | ENDIF |
---|
741 | CASE ( 'weighted ice and snow' ) |
---|
742 | ssnd(jps_hice:jps_hsnw)%laction = .TRUE. |
---|
743 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = jpl |
---|
744 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' ) |
---|
745 | END SELECT |
---|
746 | |
---|
747 | ! ! ------------------------- ! |
---|
748 | ! ! Ice Meltponds ! |
---|
749 | ! ! ------------------------- ! |
---|
750 | #if defined key_cice && ! defined key_cice4 |
---|
751 | ! Meltponds only CICE5 |
---|
752 | ssnd(jps_a_p)%clname = 'OPndFrc' |
---|
753 | ssnd(jps_ht_p)%clname = 'OPndTck' |
---|
754 | SELECT CASE ( TRIM( sn_snd_mpnd%cldes ) ) |
---|
755 | CASE ( 'none' ) |
---|
756 | ssnd(jps_a_p)%laction = .FALSE. |
---|
757 | ssnd(jps_ht_p)%laction = .FALSE. |
---|
758 | CASE ( 'ice only' ) |
---|
759 | ssnd(jps_a_p)%laction = .TRUE. |
---|
760 | ssnd(jps_ht_p)%laction = .TRUE. |
---|
761 | IF ( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN |
---|
762 | ssnd(jps_a_p)%nct = jpl |
---|
763 | ssnd(jps_ht_p)%nct = jpl |
---|
764 | ELSE |
---|
765 | IF ( jpl > 1 ) THEN |
---|
766 | CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_mpnd%cldes if not exchanging category fields' ) |
---|
767 | ENDIF |
---|
768 | ENDIF |
---|
769 | CASE ( 'weighted ice' ) |
---|
770 | ssnd(jps_a_p)%laction = .TRUE. |
---|
771 | ssnd(jps_ht_p)%laction = .TRUE. |
---|
772 | IF ( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN |
---|
773 | ssnd(jps_a_p)%nct = jpl |
---|
774 | ssnd(jps_ht_p)%nct = jpl |
---|
775 | ENDIF |
---|
776 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_mpnd%cldes' ) |
---|
777 | END SELECT |
---|
778 | #else |
---|
779 | IF( TRIM( sn_snd_mpnd%cldes ) /= 'none' ) THEN |
---|
780 | CALL ctl_stop('Meltponds can only be used with CICEv5') |
---|
781 | ENDIF |
---|
782 | #endif |
---|
783 | |
---|
784 | ! ! ------------------------- ! |
---|
785 | ! ! Surface current ! |
---|
786 | ! ! ------------------------- ! |
---|
787 | ! ocean currents ! ice velocities |
---|
788 | ssnd(jps_ocx1)%clname = 'O_OCurx1' ; ssnd(jps_ivx1)%clname = 'O_IVelx1' |
---|
789 | ssnd(jps_ocy1)%clname = 'O_OCury1' ; ssnd(jps_ivy1)%clname = 'O_IVely1' |
---|
790 | ssnd(jps_ocz1)%clname = 'O_OCurz1' ; ssnd(jps_ivz1)%clname = 'O_IVelz1' |
---|
791 | ! |
---|
792 | ssnd(jps_ocx1:jps_ivz1)%nsgn = -1. ! vectors: change of the sign at the north fold |
---|
793 | |
---|
794 | IF( sn_snd_crt%clvgrd == 'U,V' ) THEN |
---|
795 | ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V' |
---|
796 | ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN |
---|
797 | CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' ) |
---|
798 | ssnd(jps_ocx1:jps_ivz1)%clgrid = 'T' ! all oce and ice components on the same unique grid |
---|
799 | ENDIF |
---|
800 | ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE. ! default: all are send |
---|
801 | IF( TRIM( sn_snd_crt%clvref ) == 'spherical' ) ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE. |
---|
802 | IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1. |
---|
803 | SELECT CASE( TRIM( sn_snd_crt%cldes ) ) |
---|
804 | CASE( 'none' ) ; ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE. |
---|
805 | CASE( 'oce only' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
806 | CASE( 'weighted oce and ice' ) ! nothing to do |
---|
807 | CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
808 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' ) |
---|
809 | END SELECT |
---|
810 | |
---|
811 | ! ! ------------------------- ! |
---|
812 | ! ! CO2 flux ! |
---|
813 | ! ! ------------------------- ! |
---|
814 | ssnd(jps_co2)%clname = 'O_CO2FLX' ; IF( TRIM(sn_snd_co2%cldes) == 'coupled' ) ssnd(jps_co2 )%laction = .TRUE. |
---|
815 | ! |
---|
816 | |
---|
817 | ! ! ------------------------- ! |
---|
818 | ! ! MEDUSA output fields ! |
---|
819 | ! ! ------------------------- ! |
---|
820 | ! Surface dimethyl sulphide from Medusa |
---|
821 | ssnd(jps_bio_dms)%clname = 'OBioDMS' |
---|
822 | IF( TRIM(sn_snd_bio_dms%cldes) == 'medusa' ) ssnd(jps_bio_dms )%laction = .TRUE. |
---|
823 | |
---|
824 | ! Surface CO2 flux from Medusa |
---|
825 | ssnd(jps_bio_co2)%clname = 'OBioCO2' |
---|
826 | IF( TRIM(sn_snd_bio_co2%cldes) == 'medusa' ) ssnd(jps_bio_co2 )%laction = .TRUE. |
---|
827 | |
---|
828 | ! ! ------------------------- ! |
---|
829 | ! ! Sea surface freezing temp ! |
---|
830 | ! ! ------------------------- ! |
---|
831 | ssnd(jps_sstfrz)%clname = 'O_SSTFrz' ; IF( TRIM(sn_snd_sstfrz%cldes) == 'coupled' ) ssnd(jps_sstfrz)%laction = .TRUE. |
---|
832 | ! |
---|
833 | ! ! ------------------------- ! |
---|
834 | ! ! Ice conductivity ! |
---|
835 | ! ! ------------------------- ! |
---|
836 | ! Note that ultimately we will move to passing an ocean effective conductivity as well so there |
---|
837 | ! will be some changes to the parts of the code which currently relate only to ice conductivity |
---|
838 | ssnd(jps_kice )%clname = 'OIceKn' |
---|
839 | SELECT CASE ( TRIM( sn_snd_cond%cldes ) ) |
---|
840 | CASE ( 'none' ) |
---|
841 | ssnd(jps_kice)%laction = .FALSE. |
---|
842 | CASE ( 'ice only' ) |
---|
843 | ssnd(jps_kice)%laction = .TRUE. |
---|
844 | IF ( TRIM( sn_snd_cond%clcat ) == 'yes' ) THEN |
---|
845 | ssnd(jps_kice)%nct = jpl |
---|
846 | ELSE |
---|
847 | IF ( jpl > 1 ) THEN |
---|
848 | CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_cond%cldes if not exchanging category fields' ) |
---|
849 | ENDIF |
---|
850 | ENDIF |
---|
851 | CASE ( 'weighted ice' ) |
---|
852 | ssnd(jps_kice)%laction = .TRUE. |
---|
853 | IF ( TRIM( sn_snd_cond%clcat ) == 'yes' ) ssnd(jps_kice)%nct = jpl |
---|
854 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_cond%cldes' ) |
---|
855 | END SELECT |
---|
856 | ! |
---|
857 | |
---|
858 | |
---|
859 | ! ! ------------------------------- ! |
---|
860 | ! ! OPA-SAS coupling - snd by opa ! |
---|
861 | ! ! ------------------------------- ! |
---|
862 | ssnd(jps_ssh )%clname = 'O_SSHght' |
---|
863 | ssnd(jps_soce )%clname = 'O_SSSal' |
---|
864 | ssnd(jps_e3t1st)%clname = 'O_E3T1st' |
---|
865 | ssnd(jps_fraqsr)%clname = 'O_FraQsr' |
---|
866 | ! |
---|
867 | IF( nn_components == jp_iam_opa ) THEN |
---|
868 | ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
869 | ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE. |
---|
870 | ssnd( jps_e3t1st )%laction = lk_vvl |
---|
871 | ! vector definition: not used but cleaner... |
---|
872 | ssnd(jps_ocx1)%clgrid = 'U' ! oce components given at U-point |
---|
873 | ssnd(jps_ocy1)%clgrid = 'V' ! and V-point |
---|
874 | sn_snd_crt%clvgrd = 'U,V' |
---|
875 | sn_snd_crt%clvor = 'local grid' |
---|
876 | sn_snd_crt%clvref = 'spherical' |
---|
877 | ! |
---|
878 | IF(lwp) THEN ! control print |
---|
879 | WRITE(numout,*) |
---|
880 | WRITE(numout,*)' sent fields to SAS component ' |
---|
881 | WRITE(numout,*)' sea surface temperature (T before, Celcius) ' |
---|
882 | WRITE(numout,*)' sea surface salinity ' |
---|
883 | WRITE(numout,*)' surface currents U,V on local grid and spherical coordinates' |
---|
884 | WRITE(numout,*)' sea surface height ' |
---|
885 | WRITE(numout,*)' thickness of first ocean T level ' |
---|
886 | WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level' |
---|
887 | WRITE(numout,*) |
---|
888 | ENDIF |
---|
889 | ENDIF |
---|
890 | ! ! ------------------------------- ! |
---|
891 | ! ! OPA-SAS coupling - snd by sas ! |
---|
892 | ! ! ------------------------------- ! |
---|
893 | ssnd(jps_sflx )%clname = 'I_SFLX' |
---|
894 | ssnd(jps_fice2 )%clname = 'IIceFrc' |
---|
895 | ssnd(jps_qsroce)%clname = 'I_QsrOce' |
---|
896 | ssnd(jps_qnsoce)%clname = 'I_QnsOce' |
---|
897 | ssnd(jps_oemp )%clname = 'IOEvaMPr' |
---|
898 | ssnd(jps_otx1 )%clname = 'I_OTaux1' |
---|
899 | ssnd(jps_oty1 )%clname = 'I_OTauy1' |
---|
900 | ssnd(jps_rnf )%clname = 'I_Runoff' |
---|
901 | ssnd(jps_taum )%clname = 'I_TauMod' |
---|
902 | ! |
---|
903 | IF( nn_components == jp_iam_sas ) THEN |
---|
904 | IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
905 | ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE. |
---|
906 | ! |
---|
907 | ! Change first letter to couple with atmosphere if already coupled with sea_ice |
---|
908 | ! this is nedeed as each variable name used in the namcouple must be unique: |
---|
909 | ! for example O_SSTSST sent by OPA to SAS and therefore S_SSTSST sent by SAS to the Atmosphere |
---|
910 | DO jn = 1, jpsnd |
---|
911 | IF ( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname)) |
---|
912 | END DO |
---|
913 | ! |
---|
914 | IF(lwp) THEN ! control print |
---|
915 | WRITE(numout,*) |
---|
916 | IF( .NOT. ln_cpl ) THEN |
---|
917 | WRITE(numout,*)' sent fields to OPA component ' |
---|
918 | ELSE |
---|
919 | WRITE(numout,*)' Additional sent fields to OPA component : ' |
---|
920 | ENDIF |
---|
921 | WRITE(numout,*)' ice cover ' |
---|
922 | WRITE(numout,*)' oce only EMP ' |
---|
923 | WRITE(numout,*)' salt flux ' |
---|
924 | WRITE(numout,*)' mixed oce-ice solar flux ' |
---|
925 | WRITE(numout,*)' mixed oce-ice non solar flux ' |
---|
926 | WRITE(numout,*)' wind stress U,V components' |
---|
927 | WRITE(numout,*)' wind stress module' |
---|
928 | ENDIF |
---|
929 | ENDIF |
---|
930 | |
---|
931 | ! |
---|
932 | ! ================================ ! |
---|
933 | ! initialisation of the coupler ! |
---|
934 | ! ================================ ! |
---|
935 | |
---|
936 | CALL cpl_define(jprcv, jpsnd, nn_cplmodel) |
---|
937 | |
---|
938 | IF (ln_usecplmask) THEN |
---|
939 | xcplmask(:,:,:) = 0. |
---|
940 | CALL iom_open( 'cplmask', inum ) |
---|
941 | CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:nlci,1:nlcj,1:nn_cplmodel), & |
---|
942 | & kstart = (/ mig(1),mjg(1),1 /), kcount = (/ nlci,nlcj,nn_cplmodel /) ) |
---|
943 | CALL iom_close( inum ) |
---|
944 | ELSE |
---|
945 | xcplmask(:,:,:) = 1. |
---|
946 | ENDIF |
---|
947 | xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 ) |
---|
948 | ! |
---|
949 | ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' ) |
---|
950 | IF( ln_dm2dc .AND. ln_cpl .AND. ncpl_qsr_freq /= 86400 ) & |
---|
951 | & CALL ctl_stop( 'sbc_cpl_init: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' ) |
---|
952 | ncpl_qsr_freq = 86400 / ncpl_qsr_freq |
---|
953 | |
---|
954 | IF( nn_coupled_iceshelf_fluxes .gt. 0 ) THEN |
---|
955 | ! Crude masks to separate the Antarctic and Greenland icesheets. Obviously something |
---|
956 | ! more complicated could be done if required. |
---|
957 | greenland_icesheet_mask = 0.0 |
---|
958 | WHERE( gphit >= 0.0 ) greenland_icesheet_mask = 1.0 |
---|
959 | antarctica_icesheet_mask = 0.0 |
---|
960 | WHERE( gphit < 0.0 ) antarctica_icesheet_mask = 1.0 |
---|
961 | |
---|
962 | ! initialise other variables |
---|
963 | greenland_icesheet_mass_array(:,:) = 0.0 |
---|
964 | antarctica_icesheet_mass_array(:,:) = 0.0 |
---|
965 | |
---|
966 | IF( .not. ln_rstart ) THEN |
---|
967 | greenland_icesheet_mass = 0.0 |
---|
968 | greenland_icesheet_mass_rate_of_change = 0.0 |
---|
969 | greenland_icesheet_timelapsed = 0.0 |
---|
970 | antarctica_icesheet_mass = 0.0 |
---|
971 | antarctica_icesheet_mass_rate_of_change = 0.0 |
---|
972 | antarctica_icesheet_timelapsed = 0.0 |
---|
973 | ENDIF |
---|
974 | |
---|
975 | ENDIF |
---|
976 | |
---|
977 | CALL wrk_dealloc( jpi,jpj, zacs, zaos ) |
---|
978 | ! |
---|
979 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_init') |
---|
980 | ! |
---|
981 | END SUBROUTINE sbc_cpl_init |
---|
982 | |
---|
983 | |
---|
984 | SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice ) |
---|
985 | !!---------------------------------------------------------------------- |
---|
986 | !! *** ROUTINE sbc_cpl_rcv *** |
---|
987 | !! |
---|
988 | !! ** Purpose : provide the stress over the ocean and, if no sea-ice, |
---|
989 | !! provide the ocean heat and freshwater fluxes. |
---|
990 | !! |
---|
991 | !! ** Method : - Receive all the atmospheric fields (stored in frcv array). called at each time step. |
---|
992 | !! OASIS controls if there is something do receive or not. nrcvinfo contains the info |
---|
993 | !! to know if the field was really received or not |
---|
994 | !! |
---|
995 | !! --> If ocean stress was really received: |
---|
996 | !! |
---|
997 | !! - transform the received ocean stress vector from the received |
---|
998 | !! referential and grid into an atmosphere-ocean stress in |
---|
999 | !! the (i,j) ocean referencial and at the ocean velocity point. |
---|
1000 | !! The received stress are : |
---|
1001 | !! - defined by 3 components (if cartesian coordinate) |
---|
1002 | !! or by 2 components (if spherical) |
---|
1003 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
1004 | !! or along the local grid coordinate (if local grid) |
---|
1005 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
1006 | !! or at T-point if received on 1 grid |
---|
1007 | !! Therefore and if necessary, they are successively |
---|
1008 | !! processed in order to obtain them |
---|
1009 | !! first as 2 components on the sphere |
---|
1010 | !! second as 2 components oriented along the local grid |
---|
1011 | !! third as 2 components on the U,V grid |
---|
1012 | !! |
---|
1013 | !! --> |
---|
1014 | !! |
---|
1015 | !! - In 'ocean only' case, non solar and solar ocean heat fluxes |
---|
1016 | !! and total ocean freshwater fluxes |
---|
1017 | !! |
---|
1018 | !! ** Method : receive all fields from the atmosphere and transform |
---|
1019 | !! them into ocean surface boundary condition fields |
---|
1020 | !! |
---|
1021 | !! ** Action : update utau, vtau ocean stress at U,V grid |
---|
1022 | !! taum wind stress module at T-point |
---|
1023 | !! wndm wind speed module at T-point over free ocean or leads in presence of sea-ice |
---|
1024 | !! qns non solar heat fluxes including emp heat content (ocean only case) |
---|
1025 | !! and the latent heat flux of solid precip. melting |
---|
1026 | !! qsr solar ocean heat fluxes (ocean only case) |
---|
1027 | !! emp upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case) |
---|
1028 | !!---------------------------------------------------------------------- |
---|
1029 | INTEGER, INTENT(in) :: kt ! ocean model time step index |
---|
1030 | INTEGER, INTENT(in) :: k_fsbc ! frequency of sbc (-> ice model) computation |
---|
1031 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
1032 | |
---|
1033 | !! |
---|
1034 | LOGICAL :: llnewtx, llnewtau ! update wind stress components and module?? |
---|
1035 | INTEGER :: ji, jj, jl, jn ! dummy loop indices |
---|
1036 | INTEGER :: isec ! number of seconds since nit000 (assuming rdttra did not change since nit000) |
---|
1037 | REAL(wp) :: zcumulneg, zcumulpos ! temporary scalars |
---|
1038 | REAL(wp) :: zgreenland_icesheet_mass_in, zantarctica_icesheet_mass_in |
---|
1039 | REAL(wp) :: zgreenland_icesheet_mass_b, zantarctica_icesheet_mass_b |
---|
1040 | REAL(wp) :: zmask_sum, zepsilon |
---|
1041 | REAL(wp) :: zcoef ! temporary scalar |
---|
1042 | REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 |
---|
1043 | REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient |
---|
1044 | REAL(wp) :: zzx, zzy ! temporary variables |
---|
1045 | REAL(wp), POINTER, DIMENSION(:,:) :: ztx, zty, zmsk, zemp, zqns, zqsr |
---|
1046 | !!---------------------------------------------------------------------- |
---|
1047 | |
---|
1048 | ! RSRH temporary arrays for testing, just to recieve incoming MEDUSA related fields |
---|
1049 | ! until we know where they need to go. |
---|
1050 | REAL(wp), ALLOCATABLE :: atm_pco2(:,:) |
---|
1051 | REAL(wp), ALLOCATABLE :: atm_dust(:,:) |
---|
1052 | |
---|
1053 | ! |
---|
1054 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_rcv') |
---|
1055 | ! |
---|
1056 | CALL wrk_alloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr ) |
---|
1057 | ! |
---|
1058 | IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0) |
---|
1059 | ! |
---|
1060 | ! ! ======================================================= ! |
---|
1061 | ! ! Receive all the atmos. fields (including ice information) |
---|
1062 | ! ! ======================================================= ! |
---|
1063 | isec = ( kt - nit000 ) * NINT( rdttra(1) ) ! date of exchanges |
---|
1064 | DO jn = 1, jprcv ! received fields sent by the atmosphere |
---|
1065 | IF( srcv(jn)%laction ) CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) ) |
---|
1066 | END DO |
---|
1067 | |
---|
1068 | ! ! ========================= ! |
---|
1069 | IF( srcv(jpr_otx1)%laction ) THEN ! ocean stress components ! |
---|
1070 | ! ! ========================= ! |
---|
1071 | ! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid |
---|
1072 | ! => need to be done only when we receive the field |
---|
1073 | IF( nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN |
---|
1074 | ! |
---|
1075 | IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
1076 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
1077 | ! |
---|
1078 | CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1), & |
---|
1079 | & srcv(jpr_otx1)%clgrid, ztx, zty ) |
---|
1080 | frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
1081 | frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
1082 | ! |
---|
1083 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
1084 | CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1), & |
---|
1085 | & srcv(jpr_otx2)%clgrid, ztx, zty ) |
---|
1086 | frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
1087 | frcv(jpr_oty2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
1088 | ENDIF |
---|
1089 | ! |
---|
1090 | ENDIF |
---|
1091 | ! |
---|
1092 | IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
1093 | ! ! (geographical to local grid -> rotate the components) |
---|
1094 | CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx ) |
---|
1095 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
1096 | CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty ) |
---|
1097 | ELSE |
---|
1098 | CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty ) |
---|
1099 | ENDIF |
---|
1100 | frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
1101 | frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 2nd grid |
---|
1102 | ENDIF |
---|
1103 | ! |
---|
1104 | IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN |
---|
1105 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
1106 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1107 | frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) ) |
---|
1108 | frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) ) |
---|
1109 | END DO |
---|
1110 | END DO |
---|
1111 | CALL lbc_lnk( frcv(jpr_otx1)%z3(:,:,1), 'U', -1. ) ; CALL lbc_lnk( frcv(jpr_oty1)%z3(:,:,1), 'V', -1. ) |
---|
1112 | ENDIF |
---|
1113 | llnewtx = .TRUE. |
---|
1114 | ELSE |
---|
1115 | llnewtx = .FALSE. |
---|
1116 | ENDIF |
---|
1117 | ! ! ========================= ! |
---|
1118 | ELSE ! No dynamical coupling ! |
---|
1119 | ! ! ========================= ! |
---|
1120 | frcv(jpr_otx1)%z3(:,:,1) = 0.e0 ! here simply set to zero |
---|
1121 | frcv(jpr_oty1)%z3(:,:,1) = 0.e0 ! an external read in a file can be added instead |
---|
1122 | llnewtx = .TRUE. |
---|
1123 | ! |
---|
1124 | ENDIF |
---|
1125 | ! ! ========================= ! |
---|
1126 | ! ! wind stress module ! (taum) |
---|
1127 | ! ! ========================= ! |
---|
1128 | ! |
---|
1129 | IF( .NOT. srcv(jpr_taum)%laction ) THEN ! compute wind stress module from its components if not received |
---|
1130 | ! => need to be done only when otx1 was changed |
---|
1131 | IF( llnewtx ) THEN |
---|
1132 | !CDIR NOVERRCHK |
---|
1133 | DO jj = 2, jpjm1 |
---|
1134 | !CDIR NOVERRCHK |
---|
1135 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
1136 | zzx = frcv(jpr_otx1)%z3(ji-1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) |
---|
1137 | zzy = frcv(jpr_oty1)%z3(ji ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1) |
---|
1138 | frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy ) |
---|
1139 | END DO |
---|
1140 | END DO |
---|
1141 | CALL lbc_lnk( frcv(jpr_taum)%z3(:,:,1), 'T', 1. ) |
---|
1142 | llnewtau = .TRUE. |
---|
1143 | ELSE |
---|
1144 | llnewtau = .FALSE. |
---|
1145 | ENDIF |
---|
1146 | ELSE |
---|
1147 | llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv |
---|
1148 | ! Stress module can be negative when received (interpolation problem) |
---|
1149 | IF( llnewtau ) THEN |
---|
1150 | frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) ) |
---|
1151 | ENDIF |
---|
1152 | ENDIF |
---|
1153 | ! |
---|
1154 | ! ! ========================= ! |
---|
1155 | ! ! 10 m wind speed ! (wndm) |
---|
1156 | ! ! ========================= ! |
---|
1157 | ! |
---|
1158 | IF( .NOT. srcv(jpr_w10m)%laction ) THEN ! compute wind spreed from wind stress module if not received |
---|
1159 | ! => need to be done only when taumod was changed |
---|
1160 | IF( llnewtau ) THEN |
---|
1161 | zcoef = 1. / ( zrhoa * zcdrag ) |
---|
1162 | !CDIR NOVERRCHK |
---|
1163 | DO jj = 1, jpj |
---|
1164 | !CDIR NOVERRCHK |
---|
1165 | DO ji = 1, jpi |
---|
1166 | frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef ) |
---|
1167 | END DO |
---|
1168 | END DO |
---|
1169 | ENDIF |
---|
1170 | ENDIF |
---|
1171 | |
---|
1172 | ! u(v)tau and taum will be modified by ice model |
---|
1173 | ! -> need to be reset before each call of the ice/fsbc |
---|
1174 | IF( MOD( kt-1, k_fsbc ) == 0 ) THEN |
---|
1175 | ! |
---|
1176 | IF( ln_mixcpl ) THEN |
---|
1177 | utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:) |
---|
1178 | vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:) |
---|
1179 | taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:) |
---|
1180 | wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:) |
---|
1181 | ELSE |
---|
1182 | utau(:,:) = frcv(jpr_otx1)%z3(:,:,1) |
---|
1183 | vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1) |
---|
1184 | taum(:,:) = frcv(jpr_taum)%z3(:,:,1) |
---|
1185 | wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1) |
---|
1186 | ENDIF |
---|
1187 | CALL iom_put( "taum_oce", taum ) ! output wind stress module |
---|
1188 | ! |
---|
1189 | ENDIF |
---|
1190 | |
---|
1191 | IF (ln_medusa) THEN |
---|
1192 | IF( srcv(jpr_atm_pco2)%laction) PCO2a_in_cpl(:,:) = frcv(jpr_atm_pco2)%z3(:,:,1) |
---|
1193 | IF( srcv(jpr_atm_dust)%laction) Dust_in_cpl(:,:) = frcv(jpr_atm_dust)%z3(:,:,1) |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | #if defined key_cpl_carbon_cycle |
---|
1197 | ! ! ================== ! |
---|
1198 | ! ! atmosph. CO2 (ppm) ! |
---|
1199 | ! ! ================== ! |
---|
1200 | IF( srcv(jpr_co2)%laction ) atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1) |
---|
1201 | #endif |
---|
1202 | |
---|
1203 | #if defined key_cice && ! defined key_cice4 |
---|
1204 | ! ! Sea ice surface skin temp: |
---|
1205 | IF( srcv(jpr_ts_ice)%laction ) THEN |
---|
1206 | DO jl = 1, jpl |
---|
1207 | DO jj = 1, jpj |
---|
1208 | DO ji = 1, jpi |
---|
1209 | IF (frcv(jpr_ts_ice)%z3(ji,jj,jl) > 0.0) THEN |
---|
1210 | tsfc_ice(ji,jj,jl) = 0.0 |
---|
1211 | ELSE IF (frcv(jpr_ts_ice)%z3(ji,jj,jl) < -60.0) THEN |
---|
1212 | tsfc_ice(ji,jj,jl) = -60.0 |
---|
1213 | ELSE |
---|
1214 | tsfc_ice(ji,jj,jl) = frcv(jpr_ts_ice)%z3(ji,jj,jl) |
---|
1215 | ENDIF |
---|
1216 | END DO |
---|
1217 | END DO |
---|
1218 | END DO |
---|
1219 | ENDIF |
---|
1220 | #endif |
---|
1221 | |
---|
1222 | ! Fields received by SAS when OASIS coupling |
---|
1223 | ! (arrays no more filled at sbcssm stage) |
---|
1224 | ! ! ================== ! |
---|
1225 | ! ! SSS ! |
---|
1226 | ! ! ================== ! |
---|
1227 | IF( srcv(jpr_soce)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1228 | sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1) |
---|
1229 | CALL iom_put( 'sss_m', sss_m ) |
---|
1230 | ENDIF |
---|
1231 | ! |
---|
1232 | ! ! ================== ! |
---|
1233 | ! ! SST ! |
---|
1234 | ! ! ================== ! |
---|
1235 | IF( srcv(jpr_toce)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1236 | sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1) |
---|
1237 | IF( srcv(jpr_soce)%laction .AND. ln_useCT ) THEN ! make sure that sst_m is the potential temperature |
---|
1238 | sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) ) |
---|
1239 | ENDIF |
---|
1240 | ENDIF |
---|
1241 | ! ! ================== ! |
---|
1242 | ! ! SSH ! |
---|
1243 | ! ! ================== ! |
---|
1244 | IF( srcv(jpr_ssh )%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1245 | ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1) |
---|
1246 | CALL iom_put( 'ssh_m', ssh_m ) |
---|
1247 | ENDIF |
---|
1248 | ! ! ================== ! |
---|
1249 | ! ! surface currents ! |
---|
1250 | ! ! ================== ! |
---|
1251 | IF( srcv(jpr_ocx1)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1252 | ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1) |
---|
1253 | ub (:,:,1) = ssu_m(:,:) ! will be used in sbcice_lim in the call of lim_sbc_tau |
---|
1254 | un (:,:,1) = ssu_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling |
---|
1255 | CALL iom_put( 'ssu_m', ssu_m ) |
---|
1256 | ENDIF |
---|
1257 | IF( srcv(jpr_ocy1)%laction ) THEN |
---|
1258 | ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1) |
---|
1259 | vb (:,:,1) = ssv_m(:,:) ! will be used in sbcice_lim in the call of lim_sbc_tau |
---|
1260 | vn (:,:,1) = ssv_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling |
---|
1261 | CALL iom_put( 'ssv_m', ssv_m ) |
---|
1262 | ENDIF |
---|
1263 | ! ! ======================== ! |
---|
1264 | ! ! first T level thickness ! |
---|
1265 | ! ! ======================== ! |
---|
1266 | IF( srcv(jpr_e3t1st )%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1267 | e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1) |
---|
1268 | CALL iom_put( 'e3t_m', e3t_m(:,:) ) |
---|
1269 | ENDIF |
---|
1270 | ! ! ================================ ! |
---|
1271 | ! ! fraction of solar net radiation ! |
---|
1272 | ! ! ================================ ! |
---|
1273 | IF( srcv(jpr_fraqsr)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1274 | frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1) |
---|
1275 | CALL iom_put( 'frq_m', frq_m ) |
---|
1276 | ENDIF |
---|
1277 | |
---|
1278 | ! ! ========================= ! |
---|
1279 | IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN ! heat & freshwater fluxes ! (Ocean only case) |
---|
1280 | ! ! ========================= ! |
---|
1281 | ! |
---|
1282 | ! ! total freshwater fluxes over the ocean (emp) |
---|
1283 | IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN |
---|
1284 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) ! evaporation - precipitation |
---|
1285 | CASE( 'conservative' ) |
---|
1286 | zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) ) |
---|
1287 | CASE( 'oce only', 'oce and ice' ) |
---|
1288 | zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1) |
---|
1289 | CASE default |
---|
1290 | CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' ) |
---|
1291 | END SELECT |
---|
1292 | ELSE |
---|
1293 | zemp(:,:) = 0._wp |
---|
1294 | ENDIF |
---|
1295 | ! |
---|
1296 | ! ! runoffs and calving (added in emp) |
---|
1297 | IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1) |
---|
1298 | IF( srcv(jpr_cal)%laction ) zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1299 | |
---|
1300 | IF( ln_mixcpl ) THEN ; emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:) |
---|
1301 | ELSE ; emp(:,:) = zemp(:,:) |
---|
1302 | ENDIF |
---|
1303 | ! |
---|
1304 | ! ! non solar heat flux over the ocean (qns) |
---|
1305 | IF( srcv(jpr_qnsoce)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1306 | ELSE IF( srcv(jpr_qnsmix)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1307 | ELSE ; zqns(:,:) = 0._wp |
---|
1308 | END IF |
---|
1309 | ! update qns over the free ocean with: |
---|
1310 | IF( nn_components /= jp_iam_opa ) THEN |
---|
1311 | zqns(:,:) = zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp ! remove heat content due to mass flux (assumed to be at SST) |
---|
1312 | IF( srcv(jpr_snow )%laction ) THEN |
---|
1313 | zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * lfus ! energy for melting solid precipitation over the free ocean |
---|
1314 | ENDIF |
---|
1315 | ENDIF |
---|
1316 | IF( ln_mixcpl ) THEN ; qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:) |
---|
1317 | ELSE ; qns(:,:) = zqns(:,:) |
---|
1318 | ENDIF |
---|
1319 | |
---|
1320 | ! ! solar flux over the ocean (qsr) |
---|
1321 | IF ( srcv(jpr_qsroce)%laction ) THEN ; zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1) |
---|
1322 | ELSE IF( srcv(jpr_qsrmix)%laction ) then ; zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1323 | ELSE ; zqsr(:,:) = 0._wp |
---|
1324 | ENDIF |
---|
1325 | IF( ln_dm2dc .AND. ln_cpl ) zqsr(:,:) = sbc_dcy( zqsr ) ! modify qsr to include the diurnal cycle |
---|
1326 | IF( ln_mixcpl ) THEN ; qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:) |
---|
1327 | ELSE ; qsr(:,:) = zqsr(:,:) |
---|
1328 | ENDIF |
---|
1329 | ! |
---|
1330 | ! salt flux over the ocean (received by opa in case of opa <-> sas coupling) |
---|
1331 | IF( srcv(jpr_sflx )%laction ) sfx(:,:) = frcv(jpr_sflx )%z3(:,:,1) |
---|
1332 | ! Ice cover (received by opa in case of opa <-> sas coupling) |
---|
1333 | IF( srcv(jpr_fice )%laction ) fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1) |
---|
1334 | ! |
---|
1335 | |
---|
1336 | ENDIF |
---|
1337 | |
---|
1338 | ! ! land ice masses : Greenland |
---|
1339 | zepsilon = rn_iceshelf_fluxes_tolerance |
---|
1340 | |
---|
1341 | |
---|
1342 | ! See if we need zmask_sum... |
---|
1343 | IF ( srcv(jpr_grnm)%laction .OR. srcv(jpr_antm)%laction ) THEN |
---|
1344 | zmask_sum = glob_sum( tmask(:,:,1) ) |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | IF( srcv(jpr_grnm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN |
---|
1348 | greenland_icesheet_mass_array(:,:) = frcv(jpr_grnm)%z3(:,:,1) |
---|
1349 | ! take average over ocean points of input array to avoid cumulative error over time |
---|
1350 | ! The following must be bit reproducible over different PE decompositions |
---|
1351 | zgreenland_icesheet_mass_in = glob_sum( greenland_icesheet_mass_array(:,:) * tmask(:,:,1) ) |
---|
1352 | |
---|
1353 | zgreenland_icesheet_mass_in = zgreenland_icesheet_mass_in / zmask_sum |
---|
1354 | greenland_icesheet_timelapsed = greenland_icesheet_timelapsed + rdt |
---|
1355 | |
---|
1356 | IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN |
---|
1357 | ! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart |
---|
1358 | ! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts. |
---|
1359 | zgreenland_icesheet_mass_b = zgreenland_icesheet_mass_in |
---|
1360 | greenland_icesheet_mass = zgreenland_icesheet_mass_in |
---|
1361 | ENDIF |
---|
1362 | |
---|
1363 | IF( ABS( zgreenland_icesheet_mass_in - greenland_icesheet_mass ) > zepsilon ) THEN |
---|
1364 | zgreenland_icesheet_mass_b = greenland_icesheet_mass |
---|
1365 | |
---|
1366 | ! Only update the mass if it has increased. |
---|
1367 | IF ( (zgreenland_icesheet_mass_in - greenland_icesheet_mass) > 0.0 ) THEN |
---|
1368 | greenland_icesheet_mass = zgreenland_icesheet_mass_in |
---|
1369 | ENDIF |
---|
1370 | |
---|
1371 | IF( zgreenland_icesheet_mass_b /= 0.0 ) & |
---|
1372 | & greenland_icesheet_mass_rate_of_change = ( greenland_icesheet_mass - zgreenland_icesheet_mass_b ) / greenland_icesheet_timelapsed |
---|
1373 | greenland_icesheet_timelapsed = 0.0_wp |
---|
1374 | ENDIF |
---|
1375 | IF(lwp) WRITE(numout,*) 'Greenland icesheet mass (kg) read in is ', zgreenland_icesheet_mass_in |
---|
1376 | IF(lwp) WRITE(numout,*) 'Greenland icesheet mass (kg) used is ', greenland_icesheet_mass |
---|
1377 | IF(lwp) WRITE(numout,*) 'Greenland icesheet mass rate of change (kg/s) is ', greenland_icesheet_mass_rate_of_change |
---|
1378 | IF(lwp) WRITE(numout,*) 'Greenland icesheet seconds lapsed since last change is ', greenland_icesheet_timelapsed |
---|
1379 | ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN |
---|
1380 | greenland_icesheet_mass_rate_of_change = rn_greenland_total_fw_input |
---|
1381 | ENDIF |
---|
1382 | |
---|
1383 | ! ! land ice masses : Antarctica |
---|
1384 | IF( srcv(jpr_antm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN |
---|
1385 | antarctica_icesheet_mass_array(:,:) = frcv(jpr_antm)%z3(:,:,1) |
---|
1386 | ! take average over ocean points of input array to avoid cumulative error from rounding errors over time |
---|
1387 | ! The following must be bit reproducible over different PE decompositions |
---|
1388 | zantarctica_icesheet_mass_in = glob_sum( antarctica_icesheet_mass_array(:,:) * tmask(:,:,1) ) |
---|
1389 | |
---|
1390 | zantarctica_icesheet_mass_in = zantarctica_icesheet_mass_in / zmask_sum |
---|
1391 | antarctica_icesheet_timelapsed = antarctica_icesheet_timelapsed + rdt |
---|
1392 | |
---|
1393 | IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN |
---|
1394 | ! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart |
---|
1395 | ! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts. |
---|
1396 | zantarctica_icesheet_mass_b = zantarctica_icesheet_mass_in |
---|
1397 | antarctica_icesheet_mass = zantarctica_icesheet_mass_in |
---|
1398 | ENDIF |
---|
1399 | |
---|
1400 | IF( ABS( zantarctica_icesheet_mass_in - antarctica_icesheet_mass ) > zepsilon ) THEN |
---|
1401 | zantarctica_icesheet_mass_b = antarctica_icesheet_mass |
---|
1402 | |
---|
1403 | ! Only update the mass if it has increased. |
---|
1404 | IF ( (zantarctica_icesheet_mass_in - antarctica_icesheet_mass) > 0.0 ) THEN |
---|
1405 | antarctica_icesheet_mass = zantarctica_icesheet_mass_in |
---|
1406 | END IF |
---|
1407 | |
---|
1408 | IF( zantarctica_icesheet_mass_b /= 0.0 ) & |
---|
1409 | & antarctica_icesheet_mass_rate_of_change = ( antarctica_icesheet_mass - zantarctica_icesheet_mass_b ) / antarctica_icesheet_timelapsed |
---|
1410 | antarctica_icesheet_timelapsed = 0.0_wp |
---|
1411 | ENDIF |
---|
1412 | IF(lwp) WRITE(numout,*) 'Antarctica icesheet mass (kg) read in is ', zantarctica_icesheet_mass_in |
---|
1413 | IF(lwp) WRITE(numout,*) 'Antarctica icesheet mass (kg) used is ', antarctica_icesheet_mass |
---|
1414 | IF(lwp) WRITE(numout,*) 'Antarctica icesheet mass rate of change (kg/s) is ', antarctica_icesheet_mass_rate_of_change |
---|
1415 | IF(lwp) WRITE(numout,*) 'Antarctica icesheet seconds lapsed since last change is ', antarctica_icesheet_timelapsed |
---|
1416 | ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN |
---|
1417 | antarctica_icesheet_mass_rate_of_change = rn_antarctica_total_fw_input |
---|
1418 | ENDIF |
---|
1419 | |
---|
1420 | ! |
---|
1421 | CALL wrk_dealloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr ) |
---|
1422 | ! |
---|
1423 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_rcv') |
---|
1424 | ! |
---|
1425 | END SUBROUTINE sbc_cpl_rcv |
---|
1426 | |
---|
1427 | |
---|
1428 | SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj ) |
---|
1429 | !!---------------------------------------------------------------------- |
---|
1430 | !! *** ROUTINE sbc_cpl_ice_tau *** |
---|
1431 | !! |
---|
1432 | !! ** Purpose : provide the stress over sea-ice in coupled mode |
---|
1433 | !! |
---|
1434 | !! ** Method : transform the received stress from the atmosphere into |
---|
1435 | !! an atmosphere-ice stress in the (i,j) ocean referencial |
---|
1436 | !! and at the velocity point of the sea-ice model (cp_ice_msh): |
---|
1437 | !! 'C'-grid : i- (j-) components given at U- (V-) point |
---|
1438 | !! 'I'-grid : B-grid lower-left corner: both components given at I-point |
---|
1439 | !! |
---|
1440 | !! The received stress are : |
---|
1441 | !! - defined by 3 components (if cartesian coordinate) |
---|
1442 | !! or by 2 components (if spherical) |
---|
1443 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
1444 | !! or along the local grid coordinate (if local grid) |
---|
1445 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
1446 | !! or at a same point (T or I) if received on 1 grid |
---|
1447 | !! Therefore and if necessary, they are successively |
---|
1448 | !! processed in order to obtain them |
---|
1449 | !! first as 2 components on the sphere |
---|
1450 | !! second as 2 components oriented along the local grid |
---|
1451 | !! third as 2 components on the cp_ice_msh point |
---|
1452 | !! |
---|
1453 | !! Except in 'oce and ice' case, only one vector stress field |
---|
1454 | !! is received. It has already been processed in sbc_cpl_rcv |
---|
1455 | !! so that it is now defined as (i,j) components given at U- |
---|
1456 | !! and V-points, respectively. Therefore, only the third |
---|
1457 | !! transformation is done and only if the ice-grid is a 'I'-grid. |
---|
1458 | !! |
---|
1459 | !! ** Action : return ptau_i, ptau_j, the stress over the ice at cp_ice_msh point |
---|
1460 | !!---------------------------------------------------------------------- |
---|
1461 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_taui ! i- & j-components of atmos-ice stress [N/m2] |
---|
1462 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid) |
---|
1463 | !! |
---|
1464 | INTEGER :: ji, jj ! dummy loop indices |
---|
1465 | INTEGER :: itx ! index of taux over ice |
---|
1466 | REAL(wp), POINTER, DIMENSION(:,:) :: ztx, zty |
---|
1467 | !!---------------------------------------------------------------------- |
---|
1468 | ! |
---|
1469 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_ice_tau') |
---|
1470 | ! |
---|
1471 | CALL wrk_alloc( jpi,jpj, ztx, zty ) |
---|
1472 | |
---|
1473 | IF( srcv(jpr_itx1)%laction ) THEN ; itx = jpr_itx1 |
---|
1474 | ELSE ; itx = jpr_otx1 |
---|
1475 | ENDIF |
---|
1476 | |
---|
1477 | ! do something only if we just received the stress from atmosphere |
---|
1478 | IF( nrcvinfo(itx) == OASIS_Rcv ) THEN |
---|
1479 | |
---|
1480 | ! ! ======================= ! |
---|
1481 | IF( srcv(jpr_itx1)%laction ) THEN ! ice stress received ! |
---|
1482 | ! ! ======================= ! |
---|
1483 | ! |
---|
1484 | IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
1485 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
1486 | CALL geo2oce( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1), & |
---|
1487 | & srcv(jpr_itx1)%clgrid, ztx, zty ) |
---|
1488 | frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
1489 | frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
1490 | ! |
---|
1491 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
1492 | CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1), & |
---|
1493 | & srcv(jpr_itx2)%clgrid, ztx, zty ) |
---|
1494 | frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
1495 | frcv(jpr_ity2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
1496 | ENDIF |
---|
1497 | ! |
---|
1498 | ENDIF |
---|
1499 | ! |
---|
1500 | IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
1501 | ! ! (geographical to local grid -> rotate the components) |
---|
1502 | CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx ) |
---|
1503 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
1504 | CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty ) |
---|
1505 | ELSE |
---|
1506 | CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty ) |
---|
1507 | ENDIF |
---|
1508 | frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
1509 | frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 1st grid |
---|
1510 | ENDIF |
---|
1511 | ! ! ======================= ! |
---|
1512 | ELSE ! use ocean stress ! |
---|
1513 | ! ! ======================= ! |
---|
1514 | frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1) |
---|
1515 | frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1) |
---|
1516 | ! |
---|
1517 | ENDIF |
---|
1518 | ! ! ======================= ! |
---|
1519 | ! ! put on ice grid ! |
---|
1520 | ! ! ======================= ! |
---|
1521 | ! |
---|
1522 | ! j+1 j -----V---F |
---|
1523 | ! ice stress on ice velocity point (cp_ice_msh) ! | |
---|
1524 | ! (C-grid ==>(U,V) or B-grid ==> I or F) j | T U |
---|
1525 | ! | | |
---|
1526 | ! j j-1 -I-------| |
---|
1527 | ! (for I) | | |
---|
1528 | ! i-1 i i |
---|
1529 | ! i i+1 (for I) |
---|
1530 | SELECT CASE ( cp_ice_msh ) |
---|
1531 | ! |
---|
1532 | CASE( 'I' ) ! B-grid ==> I |
---|
1533 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1534 | CASE( 'U' ) |
---|
1535 | DO jj = 2, jpjm1 ! (U,V) ==> I |
---|
1536 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1537 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji-1,jj ,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) ) |
---|
1538 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji ,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) ) |
---|
1539 | END DO |
---|
1540 | END DO |
---|
1541 | CASE( 'F' ) |
---|
1542 | DO jj = 2, jpjm1 ! F ==> I |
---|
1543 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1544 | p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji-1,jj-1,1) |
---|
1545 | p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji-1,jj-1,1) |
---|
1546 | END DO |
---|
1547 | END DO |
---|
1548 | CASE( 'T' ) |
---|
1549 | DO jj = 2, jpjm1 ! T ==> I |
---|
1550 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1551 | p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj ,1) + frcv(jpr_itx1)%z3(ji-1,jj ,1) & |
---|
1552 | & + frcv(jpr_itx1)%z3(ji,jj-1,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) ) |
---|
1553 | p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj ,1) + frcv(jpr_ity1)%z3(ji-1,jj ,1) & |
---|
1554 | & + frcv(jpr_oty1)%z3(ji,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) ) |
---|
1555 | END DO |
---|
1556 | END DO |
---|
1557 | CASE( 'I' ) |
---|
1558 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! I ==> I |
---|
1559 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1560 | END SELECT |
---|
1561 | IF( srcv(jpr_itx1)%clgrid /= 'I' ) THEN |
---|
1562 | CALL lbc_lnk( p_taui, 'I', -1. ) ; CALL lbc_lnk( p_tauj, 'I', -1. ) |
---|
1563 | ENDIF |
---|
1564 | ! |
---|
1565 | CASE( 'F' ) ! B-grid ==> F |
---|
1566 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1567 | CASE( 'U' ) |
---|
1568 | DO jj = 2, jpjm1 ! (U,V) ==> F |
---|
1569 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1570 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji ,jj+1,1) ) |
---|
1571 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji,jj,1) + frcv(jpr_ity1)%z3(ji+1,jj ,1) ) |
---|
1572 | END DO |
---|
1573 | END DO |
---|
1574 | CASE( 'I' ) |
---|
1575 | DO jj = 2, jpjm1 ! I ==> F |
---|
1576 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1577 | p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji+1,jj+1,1) |
---|
1578 | p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji+1,jj+1,1) |
---|
1579 | END DO |
---|
1580 | END DO |
---|
1581 | CASE( 'T' ) |
---|
1582 | DO jj = 2, jpjm1 ! T ==> F |
---|
1583 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1584 | p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj ,1) + frcv(jpr_itx1)%z3(ji+1,jj ,1) & |
---|
1585 | & + frcv(jpr_itx1)%z3(ji,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj+1,1) ) |
---|
1586 | p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj ,1) + frcv(jpr_ity1)%z3(ji+1,jj ,1) & |
---|
1587 | & + frcv(jpr_ity1)%z3(ji,jj+1,1) + frcv(jpr_ity1)%z3(ji+1,jj+1,1) ) |
---|
1588 | END DO |
---|
1589 | END DO |
---|
1590 | CASE( 'F' ) |
---|
1591 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! F ==> F |
---|
1592 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1593 | END SELECT |
---|
1594 | IF( srcv(jpr_itx1)%clgrid /= 'F' ) THEN |
---|
1595 | CALL lbc_lnk( p_taui, 'F', -1. ) ; CALL lbc_lnk( p_tauj, 'F', -1. ) |
---|
1596 | ENDIF |
---|
1597 | ! |
---|
1598 | CASE( 'C' ) ! C-grid ==> U,V |
---|
1599 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1600 | CASE( 'U' ) |
---|
1601 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! (U,V) ==> (U,V) |
---|
1602 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1603 | CASE( 'F' ) |
---|
1604 | DO jj = 2, jpjm1 ! F ==> (U,V) |
---|
1605 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1606 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji ,jj-1,1) ) |
---|
1607 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(jj,jj,1) + frcv(jpr_ity1)%z3(ji-1,jj ,1) ) |
---|
1608 | END DO |
---|
1609 | END DO |
---|
1610 | CASE( 'T' ) |
---|
1611 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
1612 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1613 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj ,1) + frcv(jpr_itx1)%z3(ji,jj,1) ) |
---|
1614 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) ) |
---|
1615 | END DO |
---|
1616 | END DO |
---|
1617 | CASE( 'I' ) |
---|
1618 | DO jj = 2, jpjm1 ! I ==> (U,V) |
---|
1619 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1620 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj ,1) ) |
---|
1621 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji+1,jj+1,1) + frcv(jpr_ity1)%z3(ji ,jj+1,1) ) |
---|
1622 | END DO |
---|
1623 | END DO |
---|
1624 | END SELECT |
---|
1625 | IF( srcv(jpr_itx1)%clgrid /= 'U' ) THEN |
---|
1626 | CALL lbc_lnk( p_taui, 'U', -1. ) ; CALL lbc_lnk( p_tauj, 'V', -1. ) |
---|
1627 | ENDIF |
---|
1628 | END SELECT |
---|
1629 | |
---|
1630 | ENDIF |
---|
1631 | ! |
---|
1632 | CALL wrk_dealloc( jpi,jpj, ztx, zty ) |
---|
1633 | ! |
---|
1634 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_ice_tau') |
---|
1635 | ! |
---|
1636 | END SUBROUTINE sbc_cpl_ice_tau |
---|
1637 | |
---|
1638 | |
---|
1639 | SUBROUTINE sbc_cpl_ice_flx( p_frld, palbi, psst, pist ) |
---|
1640 | !!---------------------------------------------------------------------- |
---|
1641 | !! *** ROUTINE sbc_cpl_ice_flx *** |
---|
1642 | !! |
---|
1643 | !! ** Purpose : provide the heat and freshwater fluxes of the ocean-ice system |
---|
1644 | !! |
---|
1645 | !! ** Method : transform the fields received from the atmosphere into |
---|
1646 | !! surface heat and fresh water boundary condition for the |
---|
1647 | !! ice-ocean system. The following fields are provided: |
---|
1648 | !! * total non solar, solar and freshwater fluxes (qns_tot, |
---|
1649 | !! qsr_tot and emp_tot) (total means weighted ice-ocean flux) |
---|
1650 | !! NB: emp_tot include runoffs and calving. |
---|
1651 | !! * fluxes over ice (qns_ice, qsr_ice, emp_ice) where |
---|
1652 | !! emp_ice = sublimation - solid precipitation as liquid |
---|
1653 | !! precipitation are re-routed directly to the ocean and |
---|
1654 | !! calving directly enter the ocean (runoffs are read but included in trasbc.F90) |
---|
1655 | !! * solid precipitation (sprecip), used to add to qns_tot |
---|
1656 | !! the heat lost associated to melting solid precipitation |
---|
1657 | !! over the ocean fraction. |
---|
1658 | !! * heat content of rain, snow and evap can also be provided, |
---|
1659 | !! otherwise heat flux associated with these mass flux are |
---|
1660 | !! guessed (qemp_oce, qemp_ice) |
---|
1661 | !! |
---|
1662 | !! - the fluxes have been separated from the stress as |
---|
1663 | !! (a) they are updated at each ice time step compare to |
---|
1664 | !! an update at each coupled time step for the stress, and |
---|
1665 | !! (b) the conservative computation of the fluxes over the |
---|
1666 | !! sea-ice area requires the knowledge of the ice fraction |
---|
1667 | !! after the ice advection and before the ice thermodynamics, |
---|
1668 | !! so that the stress is updated before the ice dynamics |
---|
1669 | !! while the fluxes are updated after it. |
---|
1670 | !! |
---|
1671 | !! ** Details |
---|
1672 | !! qns_tot = pfrld * qns_oce + ( 1 - pfrld ) * qns_ice => provided |
---|
1673 | !! + qemp_oce + qemp_ice => recalculated and added up to qns |
---|
1674 | !! |
---|
1675 | !! qsr_tot = pfrld * qsr_oce + ( 1 - pfrld ) * qsr_ice => provided |
---|
1676 | !! |
---|
1677 | !! emp_tot = emp_oce + emp_ice => calving is provided and added to emp_tot (and emp_oce) |
---|
1678 | !! river runoff (rnf) is provided but not included here |
---|
1679 | !! |
---|
1680 | !! ** Action : update at each nf_ice time step: |
---|
1681 | !! qns_tot, qsr_tot non-solar and solar total heat fluxes |
---|
1682 | !! qns_ice, qsr_ice non-solar and solar heat fluxes over the ice |
---|
1683 | !! emp_tot total evaporation - precipitation(liquid and solid) (-calving) |
---|
1684 | !! emp_ice ice sublimation - solid precipitation over the ice |
---|
1685 | !! dqns_ice d(non-solar heat flux)/d(Temperature) over the ice |
---|
1686 | !! sprecip solid precipitation over the ocean |
---|
1687 | !!---------------------------------------------------------------------- |
---|
1688 | REAL(wp), INTENT(in ), DIMENSION(:,:) :: p_frld ! lead fraction [0 to 1] |
---|
1689 | ! optional arguments, used only in 'mixed oce-ice' case |
---|
1690 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: palbi ! all skies ice albedo |
---|
1691 | REAL(wp), INTENT(in ), DIMENSION(:,: ), OPTIONAL :: psst ! sea surface temperature [Celsius] |
---|
1692 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: pist ! ice surface temperature [Kelvin] |
---|
1693 | ! |
---|
1694 | INTEGER :: jl ! dummy loop index |
---|
1695 | REAL(wp), POINTER, DIMENSION(:,: ) :: zcptn, ztmp, zicefr, zmsk, zsnw |
---|
1696 | REAL(wp), POINTER, DIMENSION(:,: ) :: zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice |
---|
1697 | REAL(wp), POINTER, DIMENSION(:,: ) :: zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice |
---|
1698 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice |
---|
1699 | !!---------------------------------------------------------------------- |
---|
1700 | ! |
---|
1701 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_ice_flx') |
---|
1702 | ! |
---|
1703 | CALL wrk_alloc( jpi,jpj, zcptn, ztmp, zicefr, zmsk, zsnw ) |
---|
1704 | CALL wrk_alloc( jpi,jpj, zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice ) |
---|
1705 | CALL wrk_alloc( jpi,jpj, zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice ) |
---|
1706 | CALL wrk_alloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice ) |
---|
1707 | |
---|
1708 | IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0) |
---|
1709 | zicefr(:,:) = 1.- p_frld(:,:) |
---|
1710 | zcptn(:,:) = rcp * sst_m(:,:) |
---|
1711 | ! |
---|
1712 | ! ! ========================= ! |
---|
1713 | ! ! freshwater budget ! (emp_tot) |
---|
1714 | ! ! ========================= ! |
---|
1715 | ! |
---|
1716 | ! ! solid Precipitation (sprecip) |
---|
1717 | ! ! liquid + solid Precipitation (tprecip) |
---|
1718 | ! ! total Evaporation - total Precipitation (emp_tot) |
---|
1719 | ! ! sublimation - solid precipitation (cell average) (emp_ice) |
---|
1720 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) |
---|
1721 | CASE( 'conservative' ) ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp |
---|
1722 | zsprecip(:,:) = frcv(jpr_snow)%z3(:,:,1) ! May need to ensure positive here |
---|
1723 | ztprecip(:,:) = frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:) ! May need to ensure positive here |
---|
1724 | zemp_tot(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:) |
---|
1725 | #if defined key_cice |
---|
1726 | IF ( TRIM(sn_rcv_emp%clcat) == 'yes' ) THEN |
---|
1727 | ! zemp_ice is the sum of frcv(jpr_ievp)%z3(:,:,1) over all layers - snow |
---|
1728 | zemp_ice(:,:) = - frcv(jpr_snow)%z3(:,:,1) |
---|
1729 | DO jl=1,jpl |
---|
1730 | zemp_ice(:,: ) = zemp_ice(:,:) + frcv(jpr_ievp)%z3(:,:,jl) |
---|
1731 | ENDDO |
---|
1732 | ! latent heat coupled for each category in CICE |
---|
1733 | qla_ice(:,:,1:jpl) = - frcv(jpr_ievp)%z3(:,:,1:jpl) * lsub |
---|
1734 | ELSE |
---|
1735 | ! If CICE has multicategories it still expects coupling fields for |
---|
1736 | ! each even if we treat as a single field |
---|
1737 | ! The latent heat flux is split between the ice categories according |
---|
1738 | ! to the fraction of the ice in each category |
---|
1739 | zemp_ice(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_snow)%z3(:,:,1) |
---|
1740 | WHERE ( zicefr(:,:) /= 0._wp ) |
---|
1741 | ztmp(:,:) = 1./zicefr(:,:) |
---|
1742 | ELSEWHERE |
---|
1743 | ztmp(:,:) = 0.e0 |
---|
1744 | END WHERE |
---|
1745 | DO jl=1,jpl |
---|
1746 | qla_ice(:,:,jl) = - a_i(:,:,jl) * ztmp(:,:) * frcv(jpr_ievp)%z3(:,:,1) * lsub |
---|
1747 | END DO |
---|
1748 | WHERE ( zicefr(:,:) == 0._wp ) qla_ice(:,:,1) = -frcv(jpr_ievp)%z3(:,:,1) * lsub |
---|
1749 | ENDIF |
---|
1750 | #else |
---|
1751 | zemp_ice(:,:) = ( frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_snow)%z3(:,:,1) ) * zicefr(:,:) |
---|
1752 | #endif |
---|
1753 | CALL iom_put( 'rain' , frcv(jpr_rain)%z3(:,:,1) * tmask(:,:,1) ) ! liquid precipitation |
---|
1754 | CALL iom_put( 'rain_ao_cea' , frcv(jpr_rain)%z3(:,:,1)* p_frld(:,:) * tmask(:,:,1) ) ! liquid precipitation |
---|
1755 | IF( iom_use('hflx_rain_cea') ) & |
---|
1756 | & CALL iom_put( 'hflx_rain_cea', frcv(jpr_rain)%z3(:,:,1) * zcptn(:,:) * tmask(:,:,1)) ! heat flux from liq. precip. |
---|
1757 | IF( iom_use('hflx_prec_cea') ) & |
---|
1758 | & CALL iom_put( 'hflx_prec_cea', ztprecip * zcptn(:,:) * tmask(:,:,1) * p_frld(:,:) ) ! heat content flux from all precip (cell avg) |
---|
1759 | IF( iom_use('evap_ao_cea') .OR. iom_use('hflx_evap_cea') ) & |
---|
1760 | & ztmp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) |
---|
1761 | IF( iom_use('evap_ao_cea' ) ) & |
---|
1762 | & CALL iom_put( 'evap_ao_cea' , ztmp * tmask(:,:,1) ) ! ice-free oce evap (cell average) |
---|
1763 | IF( iom_use('hflx_evap_cea') ) & |
---|
1764 | & CALL iom_put( 'hflx_evap_cea', ztmp(:,:) * zcptn(:,:) * tmask(:,:,1) ) ! heat flux from from evap (cell average) |
---|
1765 | CASE( 'oce and ice' ) ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp |
---|
1766 | zemp_tot(:,:) = p_frld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + zicefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1) |
---|
1767 | zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * zicefr(:,:) |
---|
1768 | zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1) |
---|
1769 | ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:) |
---|
1770 | END SELECT |
---|
1771 | |
---|
1772 | #if defined key_lim3 |
---|
1773 | ! zsnw = snow fraction over ice after wind blowing |
---|
1774 | zsnw(:,:) = 0._wp ; CALL lim_thd_snwblow( p_frld, zsnw ) |
---|
1775 | |
---|
1776 | ! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- ! |
---|
1777 | zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( zicefr(:,:) - zsnw(:,:) ) ! emp_ice = A * sublimation - zsnw * sprecip |
---|
1778 | zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:) ! emp_oce = emp_tot - emp_ice |
---|
1779 | |
---|
1780 | ! --- evaporation over ocean (used later for qemp) --- ! |
---|
1781 | zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) |
---|
1782 | |
---|
1783 | ! --- evaporation over ice (kg/m2/s) --- ! |
---|
1784 | zevap_ice(:,:) = frcv(jpr_ievp)%z3(:,:,1) |
---|
1785 | ! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0 |
---|
1786 | ! therefore, sublimation is not redistributed over the ice categories in case no subgrid scale fluxes are provided by atm. |
---|
1787 | zdevap_ice(:,:) = 0._wp |
---|
1788 | |
---|
1789 | ! --- runoffs (included in emp later on) --- ! |
---|
1790 | IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1) |
---|
1791 | |
---|
1792 | ! --- calving (put in emp_tot and emp_oce) --- ! |
---|
1793 | IF( srcv(jpr_cal)%laction ) THEN |
---|
1794 | zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1795 | zemp_oce(:,:) = zemp_oce(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1796 | CALL iom_put( 'calving_cea', frcv(jpr_cal)%z3(:,:,1) ) |
---|
1797 | ENDIF |
---|
1798 | |
---|
1799 | IF( ln_mixcpl ) THEN |
---|
1800 | emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:) |
---|
1801 | emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:) |
---|
1802 | emp_oce(:,:) = emp_oce(:,:) * xcplmask(:,:,0) + zemp_oce(:,:) * zmsk(:,:) |
---|
1803 | sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:) |
---|
1804 | tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:) |
---|
1805 | DO jl=1,jpl |
---|
1806 | evap_ice (:,:,jl) = evap_ice (:,:,jl) * xcplmask(:,:,0) + zevap_ice (:,:) * zmsk(:,:) |
---|
1807 | devap_ice(:,:,jl) = devap_ice(:,:,jl) * xcplmask(:,:,0) + zdevap_ice(:,:) * zmsk(:,:) |
---|
1808 | ENDDO |
---|
1809 | ELSE |
---|
1810 | emp_tot(:,:) = zemp_tot(:,:) |
---|
1811 | emp_ice(:,:) = zemp_ice(:,:) |
---|
1812 | emp_oce(:,:) = zemp_oce(:,:) |
---|
1813 | sprecip(:,:) = zsprecip(:,:) |
---|
1814 | tprecip(:,:) = ztprecip(:,:) |
---|
1815 | DO jl=1,jpl |
---|
1816 | evap_ice (:,:,jl) = zevap_ice (:,:) |
---|
1817 | devap_ice(:,:,jl) = zdevap_ice(:,:) |
---|
1818 | ENDDO |
---|
1819 | ENDIF |
---|
1820 | |
---|
1821 | IF( iom_use('subl_ai_cea') ) CALL iom_put( 'subl_ai_cea', zevap_ice(:,:) * zicefr(:,:) ) ! Sublimation over sea-ice (cell average) |
---|
1822 | CALL iom_put( 'snowpre' , sprecip(:,:) ) ! Snow |
---|
1823 | IF( iom_use('snow_ao_cea') ) CALL iom_put( 'snow_ao_cea', sprecip(:,:) * ( 1._wp - zsnw(:,:) ) ) ! Snow over ice-free ocean (cell average) |
---|
1824 | IF( iom_use('snow_ai_cea') ) CALL iom_put( 'snow_ai_cea', sprecip(:,:) * zsnw(:,:) ) ! Snow over sea-ice (cell average) |
---|
1825 | #else |
---|
1826 | ! runoffs and calving (put in emp_tot) |
---|
1827 | IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1) |
---|
1828 | IF( iom_use('hflx_rnf_cea') ) & |
---|
1829 | CALL iom_put( 'hflx_rnf_cea' , rnf(:,:) * zcptn(:,:) ) |
---|
1830 | IF( srcv(jpr_cal)%laction ) THEN |
---|
1831 | zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1832 | CALL iom_put( 'calving_cea', frcv(jpr_cal)%z3(:,:,1) ) |
---|
1833 | ENDIF |
---|
1834 | |
---|
1835 | IF( ln_mixcpl ) THEN |
---|
1836 | emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:) |
---|
1837 | emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:) |
---|
1838 | sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:) |
---|
1839 | tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:) |
---|
1840 | ELSE |
---|
1841 | emp_tot(:,:) = zemp_tot(:,:) |
---|
1842 | emp_ice(:,:) = zemp_ice(:,:) |
---|
1843 | sprecip(:,:) = zsprecip(:,:) |
---|
1844 | tprecip(:,:) = ztprecip(:,:) |
---|
1845 | ENDIF |
---|
1846 | |
---|
1847 | IF( iom_use('subl_ai_cea') ) CALL iom_put( 'subl_ai_cea', frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) ) ! Sublimation over sea-ice (cell average) |
---|
1848 | CALL iom_put( 'snowpre' , sprecip(:,:) ) ! Snow |
---|
1849 | IF( iom_use('snow_ao_cea') ) CALL iom_put( 'snow_ao_cea', sprecip(:,:) * p_frld(:,:) ) ! Snow over ice-free ocean (cell average) |
---|
1850 | IF( iom_use('snow_ai_cea') ) CALL iom_put( 'snow_ai_cea', sprecip(:,:) * zicefr(:,:) ) ! Snow over sea-ice (cell average) |
---|
1851 | #endif |
---|
1852 | |
---|
1853 | ! ! ========================= ! |
---|
1854 | SELECT CASE( TRIM( sn_rcv_qns%cldes ) ) ! non solar heat fluxes ! (qns) |
---|
1855 | ! ! ========================= ! |
---|
1856 | CASE( 'oce only' ) ! the required field is directly provided |
---|
1857 | zqns_tot(:,:) = frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1858 | CASE( 'conservative' ) ! the required fields are directly provided |
---|
1859 | zqns_tot(:,:) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1860 | IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN |
---|
1861 | zqns_ice(:,:,1:jpl) = frcv(jpr_qnsice)%z3(:,:,1:jpl) |
---|
1862 | ELSE |
---|
1863 | DO jl=1,jpl |
---|
1864 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) ! Set all category values equal |
---|
1865 | ENDDO |
---|
1866 | ENDIF |
---|
1867 | CASE( 'oce and ice' ) ! the total flux is computed from ocean and ice fluxes |
---|
1868 | zqns_tot(:,:) = p_frld(:,:) * frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1869 | IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN |
---|
1870 | DO jl=1,jpl |
---|
1871 | zqns_tot(:,: ) = zqns_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qnsice)%z3(:,:,jl) |
---|
1872 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,jl) |
---|
1873 | ENDDO |
---|
1874 | ELSE |
---|
1875 | qns_tot(:,:) = qns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1) |
---|
1876 | DO jl=1,jpl |
---|
1877 | zqns_tot(:,: ) = zqns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1) |
---|
1878 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) |
---|
1879 | ENDDO |
---|
1880 | ENDIF |
---|
1881 | CASE( 'mixed oce-ice' ) ! the ice flux is cumputed from the total flux, the SST and ice informations |
---|
1882 | ! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED ** |
---|
1883 | zqns_tot(:,: ) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1884 | zqns_ice(:,:,1) = frcv(jpr_qnsmix)%z3(:,:,1) & |
---|
1885 | & + frcv(jpr_dqnsdt)%z3(:,:,1) * ( pist(:,:,1) - ( (rt0 + psst(:,: ) ) * p_frld(:,:) & |
---|
1886 | & + pist(:,:,1) * zicefr(:,:) ) ) |
---|
1887 | END SELECT |
---|
1888 | !!gm |
---|
1889 | !! currently it is taken into account in leads budget but not in the zqns_tot, and thus not in |
---|
1890 | !! the flux that enter the ocean.... |
---|
1891 | !! moreover 1 - it is not diagnose anywhere.... |
---|
1892 | !! 2 - it is unclear for me whether this heat lost is taken into account in the atmosphere or not... |
---|
1893 | !! |
---|
1894 | !! similar job should be done for snow and precipitation temperature |
---|
1895 | ! |
---|
1896 | IF( srcv(jpr_cal)%laction ) THEN ! Iceberg melting |
---|
1897 | zqns_tot(:,:) = zqns_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) * lfus ! add the latent heat of iceberg melting |
---|
1898 | ! we suppose it melts at 0deg, though it should be temp. of surrounding ocean |
---|
1899 | IF( iom_use('hflx_cal_cea') ) CALL iom_put( 'hflx_cal_cea', - frcv(jpr_cal)%z3(:,:,1) * lfus ) ! heat flux from calving |
---|
1900 | ENDIF |
---|
1901 | |
---|
1902 | #if defined key_lim3 |
---|
1903 | ! --- non solar flux over ocean --- ! |
---|
1904 | ! note: p_frld cannot be = 0 since we limit the ice concentration to amax |
---|
1905 | zqns_oce = 0._wp |
---|
1906 | WHERE( p_frld /= 0._wp ) zqns_oce(:,:) = ( zqns_tot(:,:) - SUM( a_i * zqns_ice, dim=3 ) ) / p_frld(:,:) |
---|
1907 | |
---|
1908 | ! --- heat flux associated with emp (W/m2) --- ! |
---|
1909 | zqemp_oce(:,:) = - zevap_oce(:,:) * zcptn(:,:) & ! evap |
---|
1910 | & + ( ztprecip(:,:) - zsprecip(:,:) ) * zcptn(:,:) & ! liquid precip |
---|
1911 | & + zsprecip(:,:) * ( 1._wp - zsnw ) * ( zcptn(:,:) - lfus ) ! solid precip over ocean + snow melting |
---|
1912 | ! zqemp_ice(:,:) = - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) * zcptn(:,:) & ! ice evap |
---|
1913 | ! & + zsprecip(:,:) * zsnw * ( zcptn(:,:) - lfus ) ! solid precip over ice |
---|
1914 | zqemp_ice(:,:) = zsprecip(:,:) * zsnw * ( zcptn(:,:) - lfus ) ! solid precip over ice (only) |
---|
1915 | ! qevap_ice=0 since we consider Tice=0degC |
---|
1916 | |
---|
1917 | ! --- enthalpy of snow precip over ice in J/m3 (to be used in 1D-thermo) --- ! |
---|
1918 | zqprec_ice(:,:) = rhosn * ( zcptn(:,:) - lfus ) |
---|
1919 | |
---|
1920 | ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- ! |
---|
1921 | DO jl = 1, jpl |
---|
1922 | zqevap_ice(:,:,jl) = 0._wp ! should be -evap * ( ( Tice - rt0 ) * cpic ) but we do not have Tice, so we consider Tice=0degC |
---|
1923 | END DO |
---|
1924 | |
---|
1925 | ! --- total non solar flux (including evap/precip) --- ! |
---|
1926 | zqns_tot(:,:) = zqns_tot(:,:) + zqemp_ice(:,:) + zqemp_oce(:,:) |
---|
1927 | |
---|
1928 | ! --- in case both coupled/forced are active, we must mix values --- ! |
---|
1929 | IF( ln_mixcpl ) THEN |
---|
1930 | qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:) |
---|
1931 | qns_oce(:,:) = qns_oce(:,:) * xcplmask(:,:,0) + zqns_oce(:,:)* zmsk(:,:) |
---|
1932 | DO jl=1,jpl |
---|
1933 | qns_ice (:,:,jl) = qns_ice (:,:,jl) * xcplmask(:,:,0) + zqns_ice (:,:,jl)* zmsk(:,:) |
---|
1934 | qevap_ice(:,:,jl) = qevap_ice(:,:,jl) * xcplmask(:,:,0) + zqevap_ice(:,:,jl)* zmsk(:,:) |
---|
1935 | ENDDO |
---|
1936 | qprec_ice(:,:) = qprec_ice(:,:) * xcplmask(:,:,0) + zqprec_ice(:,:)* zmsk(:,:) |
---|
1937 | qemp_oce (:,:) = qemp_oce(:,:) * xcplmask(:,:,0) + zqemp_oce(:,:)* zmsk(:,:) |
---|
1938 | qemp_ice (:,:) = qemp_ice(:,:) * xcplmask(:,:,0) + zqemp_ice(:,:)* zmsk(:,:) |
---|
1939 | ELSE |
---|
1940 | qns_tot (:,: ) = zqns_tot (:,: ) |
---|
1941 | qns_oce (:,: ) = zqns_oce (:,: ) |
---|
1942 | qns_ice (:,:,:) = zqns_ice (:,:,:) |
---|
1943 | qevap_ice(:,:,:) = zqevap_ice(:,:,:) |
---|
1944 | qprec_ice(:,: ) = zqprec_ice(:,: ) |
---|
1945 | qemp_oce (:,: ) = zqemp_oce (:,: ) |
---|
1946 | qemp_ice (:,: ) = zqemp_ice (:,: ) |
---|
1947 | ENDIF |
---|
1948 | |
---|
1949 | !! clem: we should output qemp_oce and qemp_ice (at least) |
---|
1950 | IF( iom_use('hflx_snow_cea') ) CALL iom_put( 'hflx_snow_cea', sprecip(:,:) * ( zcptn(:,:) - Lfus ) ) ! heat flux from snow (cell average) |
---|
1951 | !! these diags are not outputed yet |
---|
1952 | !! IF( iom_use('hflx_rain_cea') ) CALL iom_put( 'hflx_rain_cea', ( tprecip(:,:) - sprecip(:,:) ) * zcptn(:,:) ) ! heat flux from rain (cell average) |
---|
1953 | !! IF( iom_use('hflx_snow_ao_cea') ) CALL iom_put( 'hflx_snow_ao_cea', sprecip(:,:) * ( zcptn(:,:) - Lfus ) * (1._wp - zsnw(:,:)) ) ! heat flux from snow (cell average) |
---|
1954 | !! IF( iom_use('hflx_snow_ai_cea') ) CALL iom_put( 'hflx_snow_ai_cea', sprecip(:,:) * ( zcptn(:,:) - Lfus ) * zsnw(:,:) ) ! heat flux from snow (cell average) |
---|
1955 | |
---|
1956 | #else |
---|
1957 | ! clem: this formulation is certainly wrong... but better than it was... |
---|
1958 | |
---|
1959 | zqns_tot(:,:) = zqns_tot(:,:) & ! zqns_tot update over free ocean with: |
---|
1960 | & - (p_frld(:,:) * zsprecip(:,:) * lfus) & ! remove the latent heat flux of solid precip. melting |
---|
1961 | & - ( zemp_tot(:,:) & ! remove the heat content of mass flux (assumed to be at SST) |
---|
1962 | & - zemp_ice(:,:) ) * zcptn(:,:) |
---|
1963 | |
---|
1964 | IF( ln_mixcpl ) THEN |
---|
1965 | qns_tot(:,:) = qns(:,:) * p_frld(:,:) + SUM( qns_ice(:,:,:) * a_i(:,:,:), dim=3 ) ! total flux from blk |
---|
1966 | qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:) |
---|
1967 | DO jl=1,jpl |
---|
1968 | qns_ice(:,:,jl) = qns_ice(:,:,jl) * xcplmask(:,:,0) + zqns_ice(:,:,jl)* zmsk(:,:) |
---|
1969 | ENDDO |
---|
1970 | ELSE |
---|
1971 | qns_tot(:,: ) = zqns_tot(:,: ) |
---|
1972 | qns_ice(:,:,:) = zqns_ice(:,:,:) |
---|
1973 | ENDIF |
---|
1974 | #endif |
---|
1975 | |
---|
1976 | ! ! ========================= ! |
---|
1977 | SELECT CASE( TRIM( sn_rcv_qsr%cldes ) ) ! solar heat fluxes ! (qsr) |
---|
1978 | ! ! ========================= ! |
---|
1979 | CASE( 'oce only' ) |
---|
1980 | zqsr_tot(:,: ) = MAX( 0._wp , frcv(jpr_qsroce)%z3(:,:,1) ) |
---|
1981 | CASE( 'conservative' ) |
---|
1982 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1983 | IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN |
---|
1984 | zqsr_ice(:,:,1:jpl) = frcv(jpr_qsrice)%z3(:,:,1:jpl) |
---|
1985 | ELSE |
---|
1986 | ! Set all category values equal for the moment |
---|
1987 | DO jl=1,jpl |
---|
1988 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
1989 | ENDDO |
---|
1990 | ENDIF |
---|
1991 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1992 | zqsr_ice(:,:,1) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
1993 | CASE( 'oce and ice' ) |
---|
1994 | zqsr_tot(:,: ) = p_frld(:,:) * frcv(jpr_qsroce)%z3(:,:,1) |
---|
1995 | IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN |
---|
1996 | DO jl=1,jpl |
---|
1997 | zqsr_tot(:,: ) = zqsr_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qsrice)%z3(:,:,jl) |
---|
1998 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,jl) |
---|
1999 | ENDDO |
---|
2000 | ELSE |
---|
2001 | qsr_tot(:,: ) = qsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1) |
---|
2002 | DO jl=1,jpl |
---|
2003 | zqsr_tot(:,: ) = zqsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1) |
---|
2004 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
2005 | ENDDO |
---|
2006 | ENDIF |
---|
2007 | CASE( 'mixed oce-ice' ) |
---|
2008 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
2009 | ! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED ** |
---|
2010 | ! Create solar heat flux over ice using incoming solar heat flux and albedos |
---|
2011 | ! ( see OASIS3 user guide, 5th edition, p39 ) |
---|
2012 | zqsr_ice(:,:,1) = frcv(jpr_qsrmix)%z3(:,:,1) * ( 1.- palbi(:,:,1) ) & |
---|
2013 | & / ( 1.- ( albedo_oce_mix(:,: ) * p_frld(:,:) & |
---|
2014 | & + palbi (:,:,1) * zicefr(:,:) ) ) |
---|
2015 | END SELECT |
---|
2016 | IF( ln_dm2dc .AND. ln_cpl ) THEN ! modify qsr to include the diurnal cycle |
---|
2017 | zqsr_tot(:,: ) = sbc_dcy( zqsr_tot(:,: ) ) |
---|
2018 | DO jl=1,jpl |
---|
2019 | zqsr_ice(:,:,jl) = sbc_dcy( zqsr_ice(:,:,jl) ) |
---|
2020 | ENDDO |
---|
2021 | ENDIF |
---|
2022 | |
---|
2023 | #if defined key_lim3 |
---|
2024 | ! --- solar flux over ocean --- ! |
---|
2025 | ! note: p_frld cannot be = 0 since we limit the ice concentration to amax |
---|
2026 | zqsr_oce = 0._wp |
---|
2027 | WHERE( p_frld /= 0._wp ) zqsr_oce(:,:) = ( zqsr_tot(:,:) - SUM( a_i * zqsr_ice, dim=3 ) ) / p_frld(:,:) |
---|
2028 | |
---|
2029 | IF( ln_mixcpl ) THEN ; qsr_oce(:,:) = qsr_oce(:,:) * xcplmask(:,:,0) + zqsr_oce(:,:)* zmsk(:,:) |
---|
2030 | ELSE ; qsr_oce(:,:) = zqsr_oce(:,:) ; ENDIF |
---|
2031 | #endif |
---|
2032 | |
---|
2033 | IF( ln_mixcpl ) THEN |
---|
2034 | qsr_tot(:,:) = qsr(:,:) * p_frld(:,:) + SUM( qsr_ice(:,:,:) * a_i(:,:,:), dim=3 ) ! total flux from blk |
---|
2035 | qsr_tot(:,:) = qsr_tot(:,:) * xcplmask(:,:,0) + zqsr_tot(:,:)* zmsk(:,:) |
---|
2036 | DO jl=1,jpl |
---|
2037 | qsr_ice(:,:,jl) = qsr_ice(:,:,jl) * xcplmask(:,:,0) + zqsr_ice(:,:,jl)* zmsk(:,:) |
---|
2038 | ENDDO |
---|
2039 | ELSE |
---|
2040 | qsr_tot(:,: ) = zqsr_tot(:,: ) |
---|
2041 | qsr_ice(:,:,:) = zqsr_ice(:,:,:) |
---|
2042 | ENDIF |
---|
2043 | |
---|
2044 | ! ! ========================= ! |
---|
2045 | SELECT CASE( TRIM( sn_rcv_dqnsdt%cldes ) ) ! d(qns)/dt ! |
---|
2046 | ! ! ========================= ! |
---|
2047 | CASE ('coupled') |
---|
2048 | IF ( TRIM(sn_rcv_dqnsdt%clcat) == 'yes' ) THEN |
---|
2049 | zdqns_ice(:,:,1:jpl) = frcv(jpr_dqnsdt)%z3(:,:,1:jpl) |
---|
2050 | ELSE |
---|
2051 | ! Set all category values equal for the moment |
---|
2052 | DO jl=1,jpl |
---|
2053 | zdqns_ice(:,:,jl) = frcv(jpr_dqnsdt)%z3(:,:,1) |
---|
2054 | ENDDO |
---|
2055 | ENDIF |
---|
2056 | END SELECT |
---|
2057 | |
---|
2058 | IF( ln_mixcpl ) THEN |
---|
2059 | DO jl=1,jpl |
---|
2060 | dqns_ice(:,:,jl) = dqns_ice(:,:,jl) * xcplmask(:,:,0) + zdqns_ice(:,:,jl) * zmsk(:,:) |
---|
2061 | ENDDO |
---|
2062 | ELSE |
---|
2063 | dqns_ice(:,:,:) = zdqns_ice(:,:,:) |
---|
2064 | ENDIF |
---|
2065 | |
---|
2066 | ! ! ========================= ! |
---|
2067 | SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) ) ! topmelt and botmelt ! |
---|
2068 | ! ! ========================= ! |
---|
2069 | CASE ('coupled') |
---|
2070 | topmelt(:,:,:)=frcv(jpr_topm)%z3(:,:,:) |
---|
2071 | botmelt(:,:,:)=frcv(jpr_botm)%z3(:,:,:) |
---|
2072 | END SELECT |
---|
2073 | |
---|
2074 | ! Surface transimission parameter io (Maykut Untersteiner , 1971 ; Ebert and Curry, 1993 ) |
---|
2075 | ! Used for LIM2 and LIM3 |
---|
2076 | ! Coupled case: since cloud cover is not received from atmosphere |
---|
2077 | ! ===> used prescribed cloud fraction representative for polar oceans in summer (0.81) |
---|
2078 | fr1_i0(:,:) = ( 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice ) |
---|
2079 | fr2_i0(:,:) = ( 0.82 * ( 1.0 - cldf_ice ) + 0.65 * cldf_ice ) |
---|
2080 | |
---|
2081 | CALL wrk_dealloc( jpi,jpj, zcptn, ztmp, zicefr, zmsk, zsnw ) |
---|
2082 | CALL wrk_dealloc( jpi,jpj, zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip, zevap_oce, zevap_ice, zdevap_ice ) |
---|
2083 | CALL wrk_dealloc( jpi,jpj, zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice ) |
---|
2084 | CALL wrk_dealloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice ) |
---|
2085 | ! |
---|
2086 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_ice_flx') |
---|
2087 | ! |
---|
2088 | END SUBROUTINE sbc_cpl_ice_flx |
---|
2089 | |
---|
2090 | |
---|
2091 | SUBROUTINE sbc_cpl_snd( kt ) |
---|
2092 | !!---------------------------------------------------------------------- |
---|
2093 | !! *** ROUTINE sbc_cpl_snd *** |
---|
2094 | !! |
---|
2095 | !! ** Purpose : provide the ocean-ice informations to the atmosphere |
---|
2096 | !! |
---|
2097 | !! ** Method : send to the atmosphere through a call to cpl_snd |
---|
2098 | !! all the needed fields (as defined in sbc_cpl_init) |
---|
2099 | !!---------------------------------------------------------------------- |
---|
2100 | INTEGER, INTENT(in) :: kt |
---|
2101 | ! |
---|
2102 | INTEGER :: ji, jj, jl ! dummy loop indices |
---|
2103 | INTEGER :: isec, info ! local integer |
---|
2104 | REAL(wp) :: zumax, zvmax |
---|
2105 | REAL(wp), POINTER, DIMENSION(:,:) :: zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 |
---|
2106 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ztmp3, ztmp4 |
---|
2107 | !!---------------------------------------------------------------------- |
---|
2108 | ! |
---|
2109 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_snd') |
---|
2110 | ! |
---|
2111 | CALL wrk_alloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 ) |
---|
2112 | CALL wrk_alloc( jpi,jpj,jpl, ztmp3, ztmp4 ) |
---|
2113 | |
---|
2114 | isec = ( kt - nit000 ) * NINT(rdttra(1)) ! date of exchanges |
---|
2115 | |
---|
2116 | zfr_l(:,:) = 1.- fr_i(:,:) |
---|
2117 | ! ! ------------------------- ! |
---|
2118 | ! ! Surface temperature ! in Kelvin |
---|
2119 | ! ! ------------------------- ! |
---|
2120 | IF( ssnd(jps_toce)%laction .OR. ssnd(jps_tice)%laction .OR. ssnd(jps_tmix)%laction ) THEN |
---|
2121 | |
---|
2122 | IF ( nn_components == jp_iam_opa ) THEN |
---|
2123 | ztmp1(:,:) = tsn(:,:,1,jp_tem) ! send temperature as it is (potential or conservative) -> use of ln_useCT on the received part |
---|
2124 | ELSE |
---|
2125 | ! we must send the surface potential temperature |
---|
2126 | IF( ln_useCT ) THEN ; ztmp1(:,:) = eos_pt_from_ct( tsn(:,:,1,jp_tem), tsn(:,:,1,jp_sal) ) |
---|
2127 | ELSE ; ztmp1(:,:) = tsn(:,:,1,jp_tem) |
---|
2128 | ENDIF |
---|
2129 | ! |
---|
2130 | SELECT CASE( sn_snd_temp%cldes) |
---|
2131 | CASE( 'oce only' ) ; ztmp1(:,:) = ztmp1(:,:) + rt0 |
---|
2132 | CASE( 'oce and ice' ) ; ztmp1(:,:) = ztmp1(:,:) + rt0 |
---|
2133 | SELECT CASE( sn_snd_temp%clcat ) |
---|
2134 | CASE( 'yes' ) |
---|
2135 | ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) |
---|
2136 | CASE( 'no' ) |
---|
2137 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
2138 | ztmp3(:,:,1) = SUM( tn_ice * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
2139 | ELSEWHERE |
---|
2140 | ztmp3(:,:,1) = rt0 |
---|
2141 | END WHERE |
---|
2142 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) |
---|
2143 | END SELECT |
---|
2144 | CASE( 'weighted oce and ice' ) ; ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) |
---|
2145 | SELECT CASE( sn_snd_temp%clcat ) |
---|
2146 | CASE( 'yes' ) |
---|
2147 | ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2148 | CASE( 'no' ) |
---|
2149 | ztmp3(:,:,:) = 0.0 |
---|
2150 | DO jl=1,jpl |
---|
2151 | ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2152 | ENDDO |
---|
2153 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) |
---|
2154 | END SELECT |
---|
2155 | CASE( 'oce and weighted ice' ) ; ztmp1(:,:) = tsn(:,:,1,jp_tem) + rt0 |
---|
2156 | SELECT CASE( sn_snd_temp%clcat ) |
---|
2157 | CASE( 'yes' ) |
---|
2158 | ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2159 | CASE( 'no' ) |
---|
2160 | ztmp3(:,:,:) = 0.0 |
---|
2161 | DO jl=1,jpl |
---|
2162 | ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2163 | ENDDO |
---|
2164 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) |
---|
2165 | END SELECT |
---|
2166 | CASE( 'mixed oce-ice' ) |
---|
2167 | ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) |
---|
2168 | DO jl=1,jpl |
---|
2169 | ztmp1(:,:) = ztmp1(:,:) + tn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2170 | ENDDO |
---|
2171 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%cldes' ) |
---|
2172 | END SELECT |
---|
2173 | ENDIF |
---|
2174 | IF( ssnd(jps_toce)%laction ) CALL cpl_snd( jps_toce, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2175 | IF( ssnd(jps_tice)%laction ) CALL cpl_snd( jps_tice, isec, ztmp3, info ) |
---|
2176 | IF( ssnd(jps_tmix)%laction ) CALL cpl_snd( jps_tmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2177 | ENDIF |
---|
2178 | ! ! ------------------------- ! |
---|
2179 | ! ! Albedo ! |
---|
2180 | ! ! ------------------------- ! |
---|
2181 | IF( ssnd(jps_albice)%laction ) THEN ! ice |
---|
2182 | SELECT CASE( sn_snd_alb%cldes ) |
---|
2183 | CASE( 'ice' ) |
---|
2184 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2185 | CASE( 'yes' ) |
---|
2186 | ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl) |
---|
2187 | CASE( 'no' ) |
---|
2188 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
2189 | ztmp1(:,:) = SUM( alb_ice (:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) / SUM( a_i(:,:,1:jpl), dim=3 ) |
---|
2190 | ELSEWHERE |
---|
2191 | ztmp1(:,:) = albedo_oce_mix(:,:) |
---|
2192 | END WHERE |
---|
2193 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%clcat' ) |
---|
2194 | END SELECT |
---|
2195 | CASE( 'weighted ice' ) ; |
---|
2196 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2197 | CASE( 'yes' ) |
---|
2198 | ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2199 | CASE( 'no' ) |
---|
2200 | WHERE( fr_i (:,:) > 0. ) |
---|
2201 | ztmp1(:,:) = SUM ( alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) |
---|
2202 | ELSEWHERE |
---|
2203 | ztmp1(:,:) = 0. |
---|
2204 | END WHERE |
---|
2205 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_ice%clcat' ) |
---|
2206 | END SELECT |
---|
2207 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%cldes' ) |
---|
2208 | END SELECT |
---|
2209 | |
---|
2210 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2211 | CASE( 'yes' ) |
---|
2212 | CALL cpl_snd( jps_albice, isec, ztmp3, info ) !-> MV this has never been checked in coupled mode |
---|
2213 | CASE( 'no' ) |
---|
2214 | CALL cpl_snd( jps_albice, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2215 | END SELECT |
---|
2216 | ENDIF |
---|
2217 | |
---|
2218 | IF( ssnd(jps_albmix)%laction ) THEN ! mixed ice-ocean |
---|
2219 | ztmp1(:,:) = albedo_oce_mix(:,:) * zfr_l(:,:) |
---|
2220 | DO jl=1,jpl |
---|
2221 | ztmp1(:,:) = ztmp1(:,:) + alb_ice(:,:,jl) * a_i(:,:,jl) |
---|
2222 | ENDDO |
---|
2223 | CALL cpl_snd( jps_albmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2224 | ENDIF |
---|
2225 | ! ! ------------------------- ! |
---|
2226 | ! ! Ice fraction & Thickness ! |
---|
2227 | ! ! ------------------------- ! |
---|
2228 | ! Send ice fraction field to atmosphere |
---|
2229 | IF( ssnd(jps_fice)%laction ) THEN |
---|
2230 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2231 | CASE( 'yes' ) ; ztmp3(:,:,1:jpl) = a_i(:,:,1:jpl) |
---|
2232 | CASE( 'no' ) ; ztmp3(:,:,1 ) = fr_i(:,: ) |
---|
2233 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2234 | END SELECT |
---|
2235 | IF( ssnd(jps_fice)%laction ) CALL cpl_snd( jps_fice, isec, ztmp3, info ) |
---|
2236 | ENDIF |
---|
2237 | |
---|
2238 | ! Send ice fraction field (first order interpolation), for weighting UM fluxes to be passed to NEMO |
---|
2239 | IF (ssnd(jps_fice1)%laction) THEN |
---|
2240 | SELECT CASE (sn_snd_thick1%clcat) |
---|
2241 | CASE( 'yes' ) ; ztmp3(:,:,1:jpl) = a_i(:,:,1:jpl) |
---|
2242 | CASE( 'no' ) ; ztmp3(:,:,1) = fr_i(:,:) |
---|
2243 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick1%clcat' ) |
---|
2244 | END SELECT |
---|
2245 | CALL cpl_snd (jps_fice1, isec, ztmp3, info) |
---|
2246 | ENDIF |
---|
2247 | |
---|
2248 | ! Send ice fraction field to OPA (sent by SAS in SAS-OPA coupling) |
---|
2249 | IF( ssnd(jps_fice2)%laction ) THEN |
---|
2250 | ztmp3(:,:,1) = fr_i(:,:) |
---|
2251 | IF( ssnd(jps_fice2)%laction ) CALL cpl_snd( jps_fice2, isec, ztmp3, info ) |
---|
2252 | ENDIF |
---|
2253 | |
---|
2254 | ! Send ice and snow thickness field |
---|
2255 | IF( ssnd(jps_hice)%laction .OR. ssnd(jps_hsnw)%laction ) THEN |
---|
2256 | SELECT CASE( sn_snd_thick%cldes) |
---|
2257 | CASE( 'none' ) ! nothing to do |
---|
2258 | CASE( 'weighted ice and snow' ) |
---|
2259 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2260 | CASE( 'yes' ) |
---|
2261 | ztmp3(:,:,1:jpl) = ht_i(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2262 | ztmp4(:,:,1:jpl) = ht_s(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2263 | CASE( 'no' ) |
---|
2264 | ztmp3(:,:,:) = 0.0 ; ztmp4(:,:,:) = 0.0 |
---|
2265 | DO jl=1,jpl |
---|
2266 | ztmp3(:,:,1) = ztmp3(:,:,1) + ht_i(:,:,jl) * a_i(:,:,jl) |
---|
2267 | ztmp4(:,:,1) = ztmp4(:,:,1) + ht_s(:,:,jl) * a_i(:,:,jl) |
---|
2268 | ENDDO |
---|
2269 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2270 | END SELECT |
---|
2271 | CASE( 'ice and snow' ) |
---|
2272 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2273 | CASE( 'yes' ) |
---|
2274 | ztmp3(:,:,1:jpl) = ht_i(:,:,1:jpl) |
---|
2275 | ztmp4(:,:,1:jpl) = ht_s(:,:,1:jpl) |
---|
2276 | CASE( 'no' ) |
---|
2277 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
2278 | ztmp3(:,:,1) = SUM( ht_i * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
2279 | ztmp4(:,:,1) = SUM( ht_s * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
2280 | ELSEWHERE |
---|
2281 | ztmp3(:,:,1) = 0. |
---|
2282 | ztmp4(:,:,1) = 0. |
---|
2283 | END WHERE |
---|
2284 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2285 | END SELECT |
---|
2286 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%cldes' ) |
---|
2287 | END SELECT |
---|
2288 | IF( ssnd(jps_hice)%laction ) CALL cpl_snd( jps_hice, isec, ztmp3, info ) |
---|
2289 | IF( ssnd(jps_hsnw)%laction ) CALL cpl_snd( jps_hsnw, isec, ztmp4, info ) |
---|
2290 | ENDIF |
---|
2291 | ! |
---|
2292 | #if defined key_cice && ! defined key_cice4 |
---|
2293 | ! Send meltpond fields |
---|
2294 | IF( ssnd(jps_a_p)%laction .OR. ssnd(jps_ht_p)%laction ) THEN |
---|
2295 | SELECT CASE( sn_snd_mpnd%cldes) |
---|
2296 | CASE( 'weighted ice' ) |
---|
2297 | SELECT CASE( sn_snd_mpnd%clcat ) |
---|
2298 | CASE( 'yes' ) |
---|
2299 | ztmp3(:,:,1:jpl) = a_p(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2300 | ztmp4(:,:,1:jpl) = ht_p(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2301 | CASE( 'no' ) |
---|
2302 | ztmp3(:,:,:) = 0.0 |
---|
2303 | ztmp4(:,:,:) = 0.0 |
---|
2304 | DO jl=1,jpl |
---|
2305 | ztmp3(:,:,1) = ztmp3(:,:,1) + a_p(:,:,jpl) * a_i(:,:,jpl) |
---|
2306 | ztmp4(:,:,1) = ztmp4(:,:,1) + ht_p(:,:,jpl) * a_i(:,:,jpl) |
---|
2307 | ENDDO |
---|
2308 | CASE default ; CALL ctl_stop( 'sbc_cpl_mpd: wrong definition of sn_snd_mpnd%clcat' ) |
---|
2309 | END SELECT |
---|
2310 | CASE( 'ice only' ) |
---|
2311 | ztmp3(:,:,1:jpl) = a_p(:,:,1:jpl) |
---|
2312 | ztmp4(:,:,1:jpl) = ht_p(:,:,1:jpl) |
---|
2313 | END SELECT |
---|
2314 | IF( ssnd(jps_a_p)%laction ) CALL cpl_snd( jps_a_p, isec, ztmp3, info ) |
---|
2315 | IF( ssnd(jps_ht_p)%laction ) CALL cpl_snd( jps_ht_p, isec, ztmp4, info ) |
---|
2316 | ! |
---|
2317 | ! Send ice effective conductivity |
---|
2318 | SELECT CASE( sn_snd_cond%cldes) |
---|
2319 | CASE( 'weighted ice' ) |
---|
2320 | SELECT CASE( sn_snd_cond%clcat ) |
---|
2321 | CASE( 'yes' ) |
---|
2322 | ztmp3(:,:,1:jpl) = kn_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2323 | CASE( 'no' ) |
---|
2324 | ztmp3(:,:,:) = 0.0 |
---|
2325 | DO jl=1,jpl |
---|
2326 | ztmp3(:,:,1) = ztmp3(:,:,1) + kn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2327 | ENDDO |
---|
2328 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_cond%clcat' ) |
---|
2329 | END SELECT |
---|
2330 | CASE( 'ice only' ) |
---|
2331 | ztmp3(:,:,1:jpl) = kn_ice(:,:,1:jpl) |
---|
2332 | END SELECT |
---|
2333 | IF( ssnd(jps_kice)%laction ) CALL cpl_snd( jps_kice, isec, ztmp3, info ) |
---|
2334 | ENDIF |
---|
2335 | #endif |
---|
2336 | ! |
---|
2337 | ! |
---|
2338 | #if defined key_cpl_carbon_cycle |
---|
2339 | ! ! ------------------------- ! |
---|
2340 | ! ! CO2 flux from PISCES ! |
---|
2341 | ! ! ------------------------- ! |
---|
2342 | IF( ssnd(jps_co2)%laction ) CALL cpl_snd( jps_co2, isec, RESHAPE ( oce_co2, (/jpi,jpj,1/) ) , info ) |
---|
2343 | ! |
---|
2344 | #endif |
---|
2345 | |
---|
2346 | |
---|
2347 | |
---|
2348 | IF (ln_medusa) THEN |
---|
2349 | ! ! --------------------------------- ! |
---|
2350 | ! ! CO2 flux and DMS from MEDUSA ! |
---|
2351 | ! ! --------------------------------- ! |
---|
2352 | IF ( ssnd(jps_bio_co2)%laction ) THEN |
---|
2353 | CALL cpl_snd( jps_bio_co2, isec, RESHAPE( CO2Flux_out_cpl, (/jpi,jpj,1/) ), info ) |
---|
2354 | ENDIF |
---|
2355 | |
---|
2356 | IF ( ssnd(jps_bio_dms)%laction ) THEN |
---|
2357 | CALL cpl_snd( jps_bio_dms, isec, RESHAPE( DMS_out_cpl, (/jpi,jpj,1/) ), info ) |
---|
2358 | ENDIF |
---|
2359 | ENDIF |
---|
2360 | |
---|
2361 | ! ! ------------------------- ! |
---|
2362 | IF( ssnd(jps_ocx1)%laction ) THEN ! Surface current ! |
---|
2363 | ! ! ------------------------- ! |
---|
2364 | ! |
---|
2365 | ! j+1 j -----V---F |
---|
2366 | ! surface velocity always sent from T point ! | |
---|
2367 | ! j | T U |
---|
2368 | ! | | |
---|
2369 | ! j j-1 -I-------| |
---|
2370 | ! (for I) | | |
---|
2371 | ! i-1 i i |
---|
2372 | ! i i+1 (for I) |
---|
2373 | IF( nn_components == jp_iam_opa ) THEN |
---|
2374 | zotx1(:,:) = un(:,:,1) |
---|
2375 | zoty1(:,:) = vn(:,:,1) |
---|
2376 | ELSE |
---|
2377 | SELECT CASE( TRIM( sn_snd_crt%cldes ) ) |
---|
2378 | CASE( 'oce only' ) ! C-grid ==> T |
---|
2379 | DO jj = 2, jpjm1 |
---|
2380 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2381 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) |
---|
2382 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) |
---|
2383 | END DO |
---|
2384 | END DO |
---|
2385 | CASE( 'weighted oce and ice' ) |
---|
2386 | SELECT CASE ( cp_ice_msh ) |
---|
2387 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2388 | DO jj = 2, jpjm1 |
---|
2389 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2390 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2391 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2392 | zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2393 | zity1(ji,jj) = 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2394 | END DO |
---|
2395 | END DO |
---|
2396 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2397 | DO jj = 2, jpjm1 |
---|
2398 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2399 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2400 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2401 | zitx1(ji,jj) = 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2402 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2403 | zity1(ji,jj) = 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2404 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2405 | END DO |
---|
2406 | END DO |
---|
2407 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2408 | DO jj = 2, jpjm1 |
---|
2409 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2410 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2411 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2412 | zitx1(ji,jj) = 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2413 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2414 | zity1(ji,jj) = 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2415 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2416 | END DO |
---|
2417 | END DO |
---|
2418 | END SELECT |
---|
2419 | CALL lbc_lnk( zitx1, 'T', -1. ) ; CALL lbc_lnk( zity1, 'T', -1. ) |
---|
2420 | CASE( 'mixed oce-ice' ) |
---|
2421 | SELECT CASE ( cp_ice_msh ) |
---|
2422 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2423 | DO jj = 2, jpjm1 |
---|
2424 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2425 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2426 | & + 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2427 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2428 | & + 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2429 | END DO |
---|
2430 | END DO |
---|
2431 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2432 | DO jj = 2, jpjm1 |
---|
2433 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2434 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2435 | & + 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2436 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2437 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2438 | & + 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2439 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2440 | END DO |
---|
2441 | END DO |
---|
2442 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2443 | DO jj = 2, jpjm1 |
---|
2444 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2445 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2446 | & + 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2447 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2448 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2449 | & + 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2450 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2451 | END DO |
---|
2452 | END DO |
---|
2453 | END SELECT |
---|
2454 | END SELECT |
---|
2455 | CALL lbc_lnk( zotx1, ssnd(jps_ocx1)%clgrid, -1. ) ; CALL lbc_lnk( zoty1, ssnd(jps_ocy1)%clgrid, -1. ) |
---|
2456 | ! |
---|
2457 | ENDIF |
---|
2458 | ! |
---|
2459 | ! |
---|
2460 | IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) THEN ! Rotation of the components |
---|
2461 | ! ! Ocean component |
---|
2462 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2463 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2464 | zotx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2465 | zoty1(:,:) = ztmp2(:,:) |
---|
2466 | IF( ssnd(jps_ivx1)%laction ) THEN ! Ice component |
---|
2467 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2468 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2469 | zitx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2470 | zity1(:,:) = ztmp2(:,:) |
---|
2471 | ENDIF |
---|
2472 | ENDIF |
---|
2473 | ! |
---|
2474 | ! spherical coordinates to cartesian -> 2 components to 3 components |
---|
2475 | IF( TRIM( sn_snd_crt%clvref ) == 'cartesian' ) THEN |
---|
2476 | ztmp1(:,:) = zotx1(:,:) ! ocean currents |
---|
2477 | ztmp2(:,:) = zoty1(:,:) |
---|
2478 | CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 ) |
---|
2479 | ! |
---|
2480 | IF( ssnd(jps_ivx1)%laction ) THEN ! ice velocities |
---|
2481 | ztmp1(:,:) = zitx1(:,:) |
---|
2482 | ztmp1(:,:) = zity1(:,:) |
---|
2483 | CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 ) |
---|
2484 | ENDIF |
---|
2485 | ENDIF |
---|
2486 | ! |
---|
2487 | IF( ssnd(jps_ocx1)%laction ) CALL cpl_snd( jps_ocx1, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info ) ! ocean x current 1st grid |
---|
2488 | IF( ssnd(jps_ocy1)%laction ) CALL cpl_snd( jps_ocy1, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info ) ! ocean y current 1st grid |
---|
2489 | IF( ssnd(jps_ocz1)%laction ) CALL cpl_snd( jps_ocz1, isec, RESHAPE ( zotz1, (/jpi,jpj,1/) ), info ) ! ocean z current 1st grid |
---|
2490 | ! |
---|
2491 | IF( ssnd(jps_ivx1)%laction ) CALL cpl_snd( jps_ivx1, isec, RESHAPE ( zitx1, (/jpi,jpj,1/) ), info ) ! ice x current 1st grid |
---|
2492 | IF( ssnd(jps_ivy1)%laction ) CALL cpl_snd( jps_ivy1, isec, RESHAPE ( zity1, (/jpi,jpj,1/) ), info ) ! ice y current 1st grid |
---|
2493 | IF( ssnd(jps_ivz1)%laction ) CALL cpl_snd( jps_ivz1, isec, RESHAPE ( zitz1, (/jpi,jpj,1/) ), info ) ! ice z current 1st grid |
---|
2494 | ! |
---|
2495 | ENDIF |
---|
2496 | ! |
---|
2497 | ! |
---|
2498 | ! Fields sent by OPA to SAS when doing OPA<->SAS coupling |
---|
2499 | ! ! SSH |
---|
2500 | IF( ssnd(jps_ssh )%laction ) THEN |
---|
2501 | ! ! removed inverse barometer ssh when Patm |
---|
2502 | ! forcing is used (for sea-ice dynamics) |
---|
2503 | IF( ln_apr_dyn ) THEN ; ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) |
---|
2504 | ELSE ; ztmp1(:,:) = sshn(:,:) |
---|
2505 | ENDIF |
---|
2506 | CALL cpl_snd( jps_ssh , isec, RESHAPE ( ztmp1 , (/jpi,jpj,1/) ), info ) |
---|
2507 | |
---|
2508 | ENDIF |
---|
2509 | ! ! SSS |
---|
2510 | IF( ssnd(jps_soce )%laction ) THEN |
---|
2511 | CALL cpl_snd( jps_soce , isec, RESHAPE ( tsn(:,:,1,jp_sal), (/jpi,jpj,1/) ), info ) |
---|
2512 | ENDIF |
---|
2513 | ! ! first T level thickness |
---|
2514 | IF( ssnd(jps_e3t1st )%laction ) THEN |
---|
2515 | CALL cpl_snd( jps_e3t1st, isec, RESHAPE ( fse3t_n(:,:,1) , (/jpi,jpj,1/) ), info ) |
---|
2516 | ENDIF |
---|
2517 | ! ! Qsr fraction |
---|
2518 | IF( ssnd(jps_fraqsr)%laction ) THEN |
---|
2519 | CALL cpl_snd( jps_fraqsr, isec, RESHAPE ( fraqsr_1lev(:,:) , (/jpi,jpj,1/) ), info ) |
---|
2520 | ENDIF |
---|
2521 | ! |
---|
2522 | ! Fields sent by SAS to OPA when OASIS coupling |
---|
2523 | ! ! Solar heat flux |
---|
2524 | IF( ssnd(jps_qsroce)%laction ) CALL cpl_snd( jps_qsroce, isec, RESHAPE ( qsr , (/jpi,jpj,1/) ), info ) |
---|
2525 | IF( ssnd(jps_qnsoce)%laction ) CALL cpl_snd( jps_qnsoce, isec, RESHAPE ( qns , (/jpi,jpj,1/) ), info ) |
---|
2526 | IF( ssnd(jps_oemp )%laction ) CALL cpl_snd( jps_oemp , isec, RESHAPE ( emp , (/jpi,jpj,1/) ), info ) |
---|
2527 | IF( ssnd(jps_sflx )%laction ) CALL cpl_snd( jps_sflx , isec, RESHAPE ( sfx , (/jpi,jpj,1/) ), info ) |
---|
2528 | IF( ssnd(jps_otx1 )%laction ) CALL cpl_snd( jps_otx1 , isec, RESHAPE ( utau, (/jpi,jpj,1/) ), info ) |
---|
2529 | IF( ssnd(jps_oty1 )%laction ) CALL cpl_snd( jps_oty1 , isec, RESHAPE ( vtau, (/jpi,jpj,1/) ), info ) |
---|
2530 | IF( ssnd(jps_rnf )%laction ) CALL cpl_snd( jps_rnf , isec, RESHAPE ( rnf , (/jpi,jpj,1/) ), info ) |
---|
2531 | IF( ssnd(jps_taum )%laction ) CALL cpl_snd( jps_taum , isec, RESHAPE ( taum, (/jpi,jpj,1/) ), info ) |
---|
2532 | |
---|
2533 | #if defined key_cice |
---|
2534 | ztmp1(:,:) = sstfrz(:,:) + rt0 |
---|
2535 | IF( ssnd(jps_sstfrz)%laction ) CALL cpl_snd( jps_sstfrz, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2536 | #endif |
---|
2537 | ! |
---|
2538 | CALL wrk_dealloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 ) |
---|
2539 | CALL wrk_dealloc( jpi,jpj,jpl, ztmp3, ztmp4 ) |
---|
2540 | ! |
---|
2541 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_snd') |
---|
2542 | ! |
---|
2543 | END SUBROUTINE sbc_cpl_snd |
---|
2544 | |
---|
2545 | !!====================================================================== |
---|
2546 | END MODULE sbccpl |
---|