1 | MODULE sbcisf |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbcisf *** |
---|
4 | !! Surface module : update surface ocean boundary condition under ice |
---|
5 | !! shelf |
---|
6 | !!====================================================================== |
---|
7 | !! History : 3.2 ! 2011-02 (C.Harris ) Original code isf cav |
---|
8 | !! X.X ! 2006-02 (C. Wang ) Original code bg03 |
---|
9 | !! 3.4 ! 2013-03 (P. Mathiot) Merging + parametrization |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! sbc_isf : update sbc under ice shelf |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | USE oce ! ocean dynamics and tracers |
---|
16 | USE dom_oce ! ocean space and time domain |
---|
17 | USE phycst ! physical constants |
---|
18 | USE eosbn2 ! equation of state |
---|
19 | USE sbc_oce ! surface boundary condition: ocean fields |
---|
20 | USE lbclnk ! |
---|
21 | USE iom ! I/O manager library |
---|
22 | USE in_out_manager ! I/O manager |
---|
23 | USE wrk_nemo ! Memory allocation |
---|
24 | USE timing ! Timing |
---|
25 | USE lib_fortran ! glob_sum |
---|
26 | USE zdfbfr |
---|
27 | USE fldread ! read input field at current time step |
---|
28 | USE lib_fortran, ONLY: glob_sum |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | PRIVATE |
---|
32 | |
---|
33 | PUBLIC sbc_isf, sbc_isf_div, sbc_isf_alloc ! routine called in sbcmod and divcur |
---|
34 | |
---|
35 | ! public in order to be able to output then |
---|
36 | |
---|
37 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: risf_tsc_b, risf_tsc |
---|
38 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qisf !: net heat flux from ice shelf |
---|
39 | REAL(wp), PUBLIC :: rn_hisf_tbl !: thickness of top boundary layer [m] |
---|
40 | LOGICAL , PUBLIC :: ln_divisf !: flag to correct divergence |
---|
41 | INTEGER , PUBLIC :: nn_isfblk !: |
---|
42 | INTEGER , PUBLIC :: nn_gammablk !: |
---|
43 | LOGICAL , PUBLIC :: ln_conserve !: |
---|
44 | REAL(wp), PUBLIC :: rn_gammat0 !: temperature exchange coeficient |
---|
45 | REAL(wp), PUBLIC :: rn_gammas0 !: salinity exchange coeficient |
---|
46 | REAL(wp), PUBLIC :: rdivisf !: flag to test if fwf apply on divergence |
---|
47 | |
---|
48 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rzisf_tbl !:depth of calving front (shallowest point) nn_isf ==2/3 |
---|
49 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: rhisf_tbl, rhisf_tbl_0 !:thickness of tbl |
---|
50 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: r1_hisf_tbl !:1/thickness of tbl |
---|
51 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ralpha !:proportion of bottom cell influenced by tbl |
---|
52 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: risfLeff !:effective length (Leff) BG03 nn_isf==2 |
---|
53 | REAL(wp) , PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: ttbl, stbl, utbl, vtbl !:top boundary layer variable at T point |
---|
54 | #if defined key_agrif |
---|
55 | ! AGRIF can not handle these arrays as integers. The reason is a mystery but problems avoided by declaring them as reals |
---|
56 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: misfkt, misfkb !:Level of ice shelf base |
---|
57 | !: (first wet level and last level include in the tbl) |
---|
58 | #else |
---|
59 | INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION (:,:) :: misfkt, misfkb !:Level of ice shelf base |
---|
60 | #endif |
---|
61 | |
---|
62 | |
---|
63 | REAL(wp), PUBLIC, SAVE :: rcpi = 2000.0_wp ! phycst ? |
---|
64 | REAL(wp), PUBLIC, SAVE :: kappa = 1.54e-6_wp ! phycst ? |
---|
65 | REAL(wp), PUBLIC, SAVE :: rhoisf = 920.0_wp ! phycst ? |
---|
66 | REAL(wp), PUBLIC, SAVE :: tsurf = -20.0_wp ! phycst ? |
---|
67 | REAL(wp), PUBLIC, SAVE :: lfusisf= 0.334e6_wp ! phycst ? |
---|
68 | |
---|
69 | !: Variable used in fldread to read the forcing file (nn_isf == 4 .OR. nn_isf == 3) |
---|
70 | CHARACTER(len=100), PUBLIC :: cn_dirisf = './' !: Root directory for location of ssr files |
---|
71 | TYPE(FLD_N) , PUBLIC :: sn_qisf, sn_fwfisf !: information about the runoff file to be read |
---|
72 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_qisf, sf_fwfisf |
---|
73 | TYPE(FLD_N) , PUBLIC :: sn_rnfisf !: information about the runoff file to be read |
---|
74 | TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnfisf |
---|
75 | TYPE(FLD_N) , PUBLIC :: sn_depmax_isf, sn_depmin_isf, sn_Leff_isf !: information about the runoff file to be read |
---|
76 | |
---|
77 | !! * Substitutions |
---|
78 | # include "domzgr_substitute.h90" |
---|
79 | !!---------------------------------------------------------------------- |
---|
80 | !! NEMO/OPA 3.0 , LOCEAN-IPSL (2008) |
---|
81 | !! $Id$ |
---|
82 | !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) |
---|
83 | !!---------------------------------------------------------------------- |
---|
84 | |
---|
85 | CONTAINS |
---|
86 | |
---|
87 | SUBROUTINE sbc_isf(kt) |
---|
88 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
89 | INTEGER :: ji, jj, jk, ijkmin, inum, ierror |
---|
90 | INTEGER :: ikt, ikb ! top and bottom level of the isf boundary layer |
---|
91 | REAL(wp) :: zgreenland_fwfisf_sum, zantarctica_fwfisf_sum |
---|
92 | REAL(wp) :: rmin |
---|
93 | REAL(wp) :: zhk |
---|
94 | CHARACTER(len=256) :: cfisf, cvarzisf, cvarhisf ! name for isf file |
---|
95 | CHARACTER(LEN=256) :: cnameis ! name of iceshelf file |
---|
96 | CHARACTER (LEN=32) :: cvarLeff ! variable name for efficient Length scale |
---|
97 | INTEGER :: ios ! Local integer output status for namelist read |
---|
98 | ! |
---|
99 | !!--------------------------------------------------------------------- |
---|
100 | NAMELIST/namsbc_isf/ nn_isfblk, rn_hisf_tbl, ln_divisf, ln_conserve, rn_gammat0, rn_gammas0, nn_gammablk, & |
---|
101 | & sn_fwfisf, sn_qisf, sn_rnfisf, sn_depmax_isf, sn_depmin_isf, sn_Leff_isf |
---|
102 | ! |
---|
103 | ! |
---|
104 | ! ! ====================== ! |
---|
105 | IF( kt == nit000 ) THEN ! First call kt=nit000 ! |
---|
106 | ! ! ====================== ! |
---|
107 | REWIND( numnam_ref ) ! Namelist namsbc_rnf in reference namelist : Runoffs |
---|
108 | READ ( numnam_ref, namsbc_isf, IOSTAT = ios, ERR = 901) |
---|
109 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in reference namelist', lwp ) |
---|
110 | |
---|
111 | REWIND( numnam_cfg ) ! Namelist namsbc_rnf in configuration namelist : Runoffs |
---|
112 | READ ( numnam_cfg, namsbc_isf, IOSTAT = ios, ERR = 902 ) |
---|
113 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_isf in configuration namelist', lwp ) |
---|
114 | IF(lwm) WRITE ( numond, namsbc_isf ) |
---|
115 | |
---|
116 | |
---|
117 | IF ( lwp ) WRITE(numout,*) |
---|
118 | IF ( lwp ) WRITE(numout,*) 'sbc_isf: heat flux of the ice shelf' |
---|
119 | IF ( lwp ) WRITE(numout,*) '~~~~~~~~~' |
---|
120 | IF ( lwp ) WRITE(numout,*) 'sbcisf :' |
---|
121 | IF ( lwp ) WRITE(numout,*) '~~~~~~~~' |
---|
122 | IF ( lwp ) WRITE(numout,*) ' nn_isf = ', nn_isf |
---|
123 | IF ( lwp ) WRITE(numout,*) ' nn_isfblk = ', nn_isfblk |
---|
124 | IF ( lwp ) WRITE(numout,*) ' rn_hisf_tbl = ', rn_hisf_tbl |
---|
125 | IF ( lwp ) WRITE(numout,*) ' ln_divisf = ', ln_divisf |
---|
126 | IF ( lwp ) WRITE(numout,*) ' nn_gammablk = ', nn_gammablk |
---|
127 | IF ( lwp ) WRITE(numout,*) ' rn_tfri2 = ', rn_tfri2 |
---|
128 | IF (ln_divisf) THEN ! keep it in the namelist ??? used true anyway as for runoff ? (PM) |
---|
129 | rdivisf = 1._wp |
---|
130 | ELSE |
---|
131 | rdivisf = 0._wp |
---|
132 | END IF |
---|
133 | ! |
---|
134 | ! Allocate public variable |
---|
135 | IF ( sbc_isf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_isf : unable to allocate arrays' ) |
---|
136 | ! |
---|
137 | ! initialisation |
---|
138 | qisf(:,:) = 0._wp ; fwfisf(:,:) = 0._wp |
---|
139 | risf_tsc(:,:,:) = 0._wp |
---|
140 | ! |
---|
141 | ! define isf tbl tickness, top and bottom indice |
---|
142 | IF (nn_isf == 1) THEN |
---|
143 | rhisf_tbl(:,:) = rn_hisf_tbl |
---|
144 | misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv |
---|
145 | ELSE IF ((nn_isf == 3) .OR. (nn_isf == 2)) THEN |
---|
146 | ALLOCATE( sf_rnfisf(1), STAT=ierror ) |
---|
147 | ALLOCATE( sf_rnfisf(1)%fnow(jpi,jpj,1), sf_rnfisf(1)%fdta(jpi,jpj,1,2) ) |
---|
148 | CALL fld_fill( sf_rnfisf, (/ sn_rnfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf' ) |
---|
149 | |
---|
150 | !: read effective lenght (BG03) |
---|
151 | IF (nn_isf == 2) THEN |
---|
152 | ! Read Data and save some integral values |
---|
153 | CALL iom_open( sn_Leff_isf%clname, inum ) |
---|
154 | cvarLeff = 'soLeff' !: variable name for Efficient Length scale |
---|
155 | CALL iom_get( inum, jpdom_data, cvarLeff, risfLeff , 1) |
---|
156 | CALL iom_close(inum) |
---|
157 | ! |
---|
158 | risfLeff = risfLeff*1000 !: convertion in m |
---|
159 | END IF |
---|
160 | |
---|
161 | ! read depth of the top and bottom of the isf top boundary layer (in this case, isf front depth and grounding line depth) |
---|
162 | CALL iom_open( sn_depmax_isf%clname, inum ) |
---|
163 | cvarhisf = TRIM(sn_depmax_isf%clvar) |
---|
164 | CALL iom_get( inum, jpdom_data, cvarhisf, rhisf_tbl, 1) !: depth of deepest point of the ice shelf base |
---|
165 | CALL iom_close(inum) |
---|
166 | ! |
---|
167 | CALL iom_open( sn_depmin_isf%clname, inum ) |
---|
168 | cvarzisf = TRIM(sn_depmin_isf%clvar) |
---|
169 | CALL iom_get( inum, jpdom_data, cvarzisf, rzisf_tbl, 1) !: depth of shallowest point of the ice shelves base |
---|
170 | CALL iom_close(inum) |
---|
171 | ! |
---|
172 | rhisf_tbl(:,:) = rhisf_tbl(:,:) - rzisf_tbl(:,:) !: tickness isf boundary layer |
---|
173 | |
---|
174 | !! compute first level of the top boundary layer |
---|
175 | DO ji = 1, jpi |
---|
176 | DO jj = 1, jpj |
---|
177 | jk = 2 |
---|
178 | DO WHILE ( jk .LE. mbkt(ji,jj) .AND. fsdepw(ji,jj,jk) < rzisf_tbl(ji,jj) ) ; jk = jk + 1 ; END DO |
---|
179 | misfkt(ji,jj) = jk-1 |
---|
180 | END DO |
---|
181 | END DO |
---|
182 | |
---|
183 | ELSE IF ( nn_isf == 4 ) THEN |
---|
184 | ! as in nn_isf == 1 |
---|
185 | rhisf_tbl(:,:) = rn_hisf_tbl |
---|
186 | misfkt(:,:) = mikt(:,:) ! same indice for bg03 et cav => used in isfdiv |
---|
187 | |
---|
188 | ! load variable used in fldread (use for temporal interpolation of isf fwf forcing) |
---|
189 | ALLOCATE( sf_fwfisf(1), sf_qisf(1), STAT=ierror ) |
---|
190 | ALLOCATE( sf_fwfisf(1)%fnow(jpi,jpj,1), sf_fwfisf(1)%fdta(jpi,jpj,1,2) ) |
---|
191 | ALLOCATE( sf_qisf(1)%fnow(jpi,jpj,1), sf_qisf(1)%fdta(jpi,jpj,1,2) ) |
---|
192 | CALL fld_fill( sf_fwfisf, (/ sn_fwfisf /), cn_dirisf, 'sbc_isf_init', 'read fresh water flux isf data', 'namsbc_isf' ) |
---|
193 | !CALL fld_fill( sf_qisf , (/ sn_qisf /), cn_dirisf, 'sbc_isf_init', 'read heat flux isf data' , 'namsbc_isf' ) |
---|
194 | END IF |
---|
195 | |
---|
196 | rhisf_tbl_0(:,:) = rhisf_tbl(:,:) |
---|
197 | |
---|
198 | ! compute bottom level of isf tbl and thickness of tbl below the ice shelf |
---|
199 | DO jj = 1,jpj |
---|
200 | DO ji = 1,jpi |
---|
201 | ikt = misfkt(ji,jj) |
---|
202 | ikb = misfkt(ji,jj) |
---|
203 | ! thickness of boundary layer at least the top level thickness |
---|
204 | rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), fse3t_n(ji,jj,ikt)) |
---|
205 | |
---|
206 | ! determine the deepest level influenced by the boundary layer |
---|
207 | ! test on tmask useless ????? |
---|
208 | DO jk = ikt, mbkt(ji,jj) |
---|
209 | IF ( (SUM(fse3t_n(ji,jj,ikt:jk-1)) .LT. rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk |
---|
210 | END DO |
---|
211 | rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(fse3t_n(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
212 | misfkb(ji,jj) = ikb ! last wet level of the tbl |
---|
213 | r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj) |
---|
214 | |
---|
215 | zhk = SUM( fse3t(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1 |
---|
216 | ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / fse3t(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | |
---|
220 | END IF |
---|
221 | |
---|
222 | ! ! ---------------------------------------- ! |
---|
223 | IF( kt /= nit000 ) THEN ! Swap of forcing fields ! |
---|
224 | ! ! ---------------------------------------- ! |
---|
225 | fwfisf_b (:,: ) = fwfisf (:,: ) ! Swap the ocean forcing fields except at nit000 |
---|
226 | risf_tsc_b(:,:,:) = risf_tsc(:,:,:) ! where before fields are set at the end of the routine |
---|
227 | ! |
---|
228 | ENDIF |
---|
229 | |
---|
230 | IF( MOD( kt-1, nn_fsbc) == 0 ) THEN |
---|
231 | |
---|
232 | |
---|
233 | ! compute salf and heat flux |
---|
234 | IF (nn_isf == 1) THEN |
---|
235 | ! realistic ice shelf formulation |
---|
236 | ! compute T/S/U/V for the top boundary layer |
---|
237 | CALL sbc_isf_tbl(tsn(:,:,:,jp_tem),ttbl(:,:),'T') |
---|
238 | CALL sbc_isf_tbl(tsn(:,:,:,jp_sal),stbl(:,:),'T') |
---|
239 | CALL sbc_isf_tbl(un(:,:,:),utbl(:,:),'U') |
---|
240 | CALL sbc_isf_tbl(vn(:,:,:),vtbl(:,:),'V') |
---|
241 | ! iom print |
---|
242 | CALL iom_put('ttbl',ttbl(:,:)) |
---|
243 | CALL iom_put('stbl',stbl(:,:)) |
---|
244 | CALL iom_put('utbl',utbl(:,:)) |
---|
245 | CALL iom_put('vtbl',vtbl(:,:)) |
---|
246 | ! compute fwf and heat flux |
---|
247 | CALL sbc_isf_cav (kt) |
---|
248 | |
---|
249 | ELSE IF (nn_isf == 2) THEN |
---|
250 | ! Beckmann and Goosse parametrisation |
---|
251 | stbl(:,:) = soce |
---|
252 | CALL sbc_isf_bg03(kt) |
---|
253 | |
---|
254 | ELSE IF (nn_isf == 3) THEN |
---|
255 | ! specified runoff in depth (Mathiot et al., XXXX in preparation) |
---|
256 | CALL fld_read ( kt, nn_fsbc, sf_rnfisf ) |
---|
257 | fwfisf(:,:) = - sf_rnfisf(1)%fnow(:,:,1) ! fresh water flux from the isf (fwfisf <0 mean melting) |
---|
258 | |
---|
259 | IF( lk_oasis) THEN |
---|
260 | ! ln_coupled_iceshelf_fluxes uninitialised unless lk_oasis=true |
---|
261 | IF( ln_coupled_iceshelf_fluxes ) THEN |
---|
262 | |
---|
263 | ! Adjust total iceshelf melt rates so that sum of iceberg calving and iceshelf melting in the northern |
---|
264 | ! and southern hemispheres equals rate of increase of mass of greenland and antarctic ice sheets |
---|
265 | ! to preserve total freshwater conservation in coupled models without an active ice sheet model. |
---|
266 | |
---|
267 | ! All related global sums must be done bit reproducibly |
---|
268 | zgreenland_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * greenland_icesheet_mask(:,:) ) |
---|
269 | |
---|
270 | ! use ABS function because we need to preserve the sign of fwfisf |
---|
271 | WHERE( greenland_icesheet_mask(:,:) == 1.0 ) & |
---|
272 | & fwfisf(:,:) = fwfisf(:,:) * ABS( greenland_icesheet_mass_rate_of_change * (1.0-rn_greenland_calving_fraction) & |
---|
273 | & / ( zgreenland_fwfisf_sum + 1.0e-10_wp ) ) |
---|
274 | |
---|
275 | ! check |
---|
276 | IF(lwp) WRITE(numout, *) 'Greenland iceshelf melting climatology (kg/s) : ',zgreenland_fwfisf_sum |
---|
277 | |
---|
278 | zgreenland_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * greenland_icesheet_mask(:,:) ) |
---|
279 | |
---|
280 | IF(lwp) WRITE(numout, *) 'Greenland iceshelf melting adjusted value (kg/s) : ',zgreenland_fwfisf_sum |
---|
281 | |
---|
282 | zantarctica_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * antarctica_icesheet_mask(:,:) ) |
---|
283 | |
---|
284 | ! use ABS function because we need to preserve the sign of fwfisf |
---|
285 | WHERE( antarctica_icesheet_mask(:,:) == 1.0 ) & |
---|
286 | & fwfisf(:,:) = fwfisf(:,:) * ABS( antarctica_icesheet_mass_rate_of_change * (1.0-rn_antarctica_calving_fraction) & |
---|
287 | & / ( zantarctica_fwfisf_sum + 1.0e-10_wp ) ) |
---|
288 | |
---|
289 | ! check |
---|
290 | IF(lwp) WRITE(numout, *) 'Antarctica iceshelf melting climatology (kg/s) : ',zantarctica_fwfisf_sum |
---|
291 | |
---|
292 | zantarctica_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * antarctica_icesheet_mask(:,:) ) |
---|
293 | |
---|
294 | IF(lwp) WRITE(numout, *) 'Antarctica iceshelf melting adjusted value (kg/s) : ',zantarctica_fwfisf_sum |
---|
295 | |
---|
296 | ENDIF |
---|
297 | ENDIF |
---|
298 | |
---|
299 | qisf(:,:) = fwfisf(:,:) * lfusisf ! heat flux |
---|
300 | stbl(:,:) = soce |
---|
301 | |
---|
302 | ELSE IF (nn_isf == 4) THEN |
---|
303 | ! specified fwf and heat flux forcing beneath the ice shelf |
---|
304 | CALL fld_read ( kt, nn_fsbc, sf_fwfisf ) |
---|
305 | !CALL fld_read ( kt, nn_fsbc, sf_qisf ) |
---|
306 | fwfisf(:,:) = sf_fwfisf(1)%fnow(:,:,1) ! fwf |
---|
307 | |
---|
308 | IF( lk_oasis) THEN |
---|
309 | ! ln_coupled_iceshelf_fluxes uninitialised unless lk_oasis=true |
---|
310 | IF( ln_coupled_iceshelf_fluxes ) THEN |
---|
311 | |
---|
312 | ! Adjust total iceshelf melt rates so that sum of iceberg calving and iceshelf melting in the northern |
---|
313 | ! and southern hemispheres equals rate of increase of mass of greenland and antarctic ice sheets |
---|
314 | ! to preserve total freshwater conservation in coupled models without an active ice sheet model. |
---|
315 | |
---|
316 | ! All related global sums must be done bit reproducibly |
---|
317 | zgreenland_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * greenland_icesheet_mask(:,:) ) |
---|
318 | |
---|
319 | ! use ABS function because we need to preserve the sign of fwfisf |
---|
320 | WHERE( greenland_icesheet_mask(:,:) == 1.0 ) & |
---|
321 | & fwfisf(:,:) = fwfisf(:,:) * ABS( greenland_icesheet_mass_rate_of_change * (1.0-rn_greenland_calving_fraction) & |
---|
322 | & / ( zgreenland_fwfisf_sum + 1.0e-10_wp ) ) |
---|
323 | |
---|
324 | ! check |
---|
325 | IF(lwp) WRITE(numout, *) 'Greenland iceshelf melting climatology (kg/s) : ',zgreenland_fwfisf_sum |
---|
326 | |
---|
327 | zgreenland_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * greenland_icesheet_mask(:,:) ) |
---|
328 | |
---|
329 | IF(lwp) WRITE(numout, *) 'Greenland iceshelf melting adjusted value (kg/s) : ',zgreenland_fwfisf_sum |
---|
330 | |
---|
331 | zantarctica_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * antarctica_icesheet_mask(:,:) ) |
---|
332 | |
---|
333 | ! use ABS function because we need to preserve the sign of fwfisf |
---|
334 | WHERE( antarctica_icesheet_mask(:,:) == 1.0 ) & |
---|
335 | & fwfisf(:,:) = fwfisf(:,:) * ABS( antarctica_icesheet_mass_rate_of_change * (1.0-rn_antarctica_calving_fraction) & |
---|
336 | & / ( zantarctica_fwfisf_sum + 1.0e-10_wp ) ) |
---|
337 | |
---|
338 | ! check |
---|
339 | IF(lwp) WRITE(numout, *) 'Antarctica iceshelf melting climatology (kg/s) : ',zantarctica_fwfisf_sum |
---|
340 | |
---|
341 | zantarctica_fwfisf_sum = glob_sum( fwfisf(:,:) * e1t(:,:) * e2t(:,:) * antarctica_icesheet_mask(:,:) ) |
---|
342 | |
---|
343 | IF(lwp) WRITE(numout, *) 'Antarctica iceshelf melting adjusted value (kg/s) : ',zantarctica_fwfisf_sum |
---|
344 | |
---|
345 | ENDIF |
---|
346 | ENDIF |
---|
347 | |
---|
348 | qisf(:,:) = fwfisf(:,:) * lfusisf ! heat flux |
---|
349 | !qisf(:,:) = sf_qisf(1)%fnow(:,:,1) ! heat flux |
---|
350 | stbl(:,:) = soce |
---|
351 | |
---|
352 | END IF |
---|
353 | ! compute tsc due to isf |
---|
354 | ! WARNING water add at temp = 0C, correction term is added in trasbc, maybe better here but need a 3D variable). |
---|
355 | risf_tsc(:,:,jp_tem) = qisf(:,:) * r1_rau0_rcp ! |
---|
356 | |
---|
357 | ! salt effect already take into account in vertical advection |
---|
358 | risf_tsc(:,:,jp_sal) = (1.0_wp-rdivisf) * fwfisf(:,:) * stbl(:,:) * r1_rau0 |
---|
359 | |
---|
360 | ! lbclnk |
---|
361 | CALL lbc_lnk(risf_tsc(:,:,jp_tem),'T',1.) |
---|
362 | CALL lbc_lnk(risf_tsc(:,:,jp_sal),'T',1.) |
---|
363 | CALL lbc_lnk(fwfisf(:,:) ,'T',1.) |
---|
364 | CALL lbc_lnk(qisf(:,:) ,'T',1.) |
---|
365 | |
---|
366 | IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 ! |
---|
367 | IF( ln_rstart .AND. & ! Restart: read in restart file |
---|
368 | & iom_varid( numror, 'fwf_isf_b', ldstop = .FALSE. ) > 0 ) THEN |
---|
369 | IF(lwp) WRITE(numout,*) ' nit000-1 isf tracer content forcing fields read in the restart file' |
---|
370 | CALL iom_get( numror, jpdom_autoglo, 'fwf_isf_b', fwfisf_b(:,:) ) ! before salt content isf_tsc trend |
---|
371 | CALL iom_get( numror, jpdom_autoglo, 'isf_sc_b', risf_tsc_b(:,:,jp_sal) ) ! before salt content isf_tsc trend |
---|
372 | CALL iom_get( numror, jpdom_autoglo, 'isf_hc_b', risf_tsc_b(:,:,jp_tem) ) ! before salt content isf_tsc trend |
---|
373 | ELSE |
---|
374 | fwfisf_b(:,:) = fwfisf(:,:) |
---|
375 | risf_tsc_b(:,:,:)= risf_tsc(:,:,:) |
---|
376 | END IF |
---|
377 | ENDIF |
---|
378 | ! |
---|
379 | ! output |
---|
380 | CALL iom_put('qisf' , qisf) |
---|
381 | IF( iom_use('fwfisf') ) CALL iom_put('fwfisf', fwfisf * stbl(:,:) / soce ) |
---|
382 | END IF |
---|
383 | |
---|
384 | END SUBROUTINE sbc_isf |
---|
385 | |
---|
386 | INTEGER FUNCTION sbc_isf_alloc() |
---|
387 | !!---------------------------------------------------------------------- |
---|
388 | !! *** FUNCTION sbc_isf_rnf_alloc *** |
---|
389 | !!---------------------------------------------------------------------- |
---|
390 | sbc_isf_alloc = 0 ! set to zero if no array to be allocated |
---|
391 | IF( .NOT. ALLOCATED( qisf ) ) THEN |
---|
392 | ALLOCATE( risf_tsc(jpi,jpj,jpts), risf_tsc_b(jpi,jpj,jpts), qisf(jpi,jpj) , & |
---|
393 | & rhisf_tbl(jpi,jpj) , r1_hisf_tbl(jpi,jpj), rzisf_tbl(jpi,jpj) , & |
---|
394 | & ttbl(jpi,jpj) , stbl(jpi,jpj) , utbl(jpi,jpj) , & |
---|
395 | & vtbl(jpi, jpj) , risfLeff(jpi,jpj) , rhisf_tbl_0(jpi,jpj), & |
---|
396 | & ralpha(jpi,jpj) , misfkt(jpi,jpj) , misfkb(jpi,jpj) , & |
---|
397 | & STAT= sbc_isf_alloc ) |
---|
398 | ! |
---|
399 | IF( lk_mpp ) CALL mpp_sum ( sbc_isf_alloc ) |
---|
400 | IF( sbc_isf_alloc /= 0 ) CALL ctl_warn('sbc_isf_alloc: failed to allocate arrays.') |
---|
401 | ! |
---|
402 | ENDIF |
---|
403 | END FUNCTION |
---|
404 | |
---|
405 | SUBROUTINE sbc_isf_bg03(kt) |
---|
406 | !!========================================================================== |
---|
407 | !! *** SUBROUTINE sbcisf_bg03 *** |
---|
408 | !! add net heat and fresh water flux from ice shelf melting |
---|
409 | !! into the adjacent ocean using the parameterisation by |
---|
410 | !! Beckmann and Goosse (2003), "A parameterization of ice shelf-ocean |
---|
411 | !! interaction for climate models", Ocean Modelling 5(2003) 157-170. |
---|
412 | !! (hereafter BG) |
---|
413 | !!========================================================================== |
---|
414 | !!---------------------------------------------------------------------- |
---|
415 | !! sbc_isf_bg03 : routine called from sbcmod |
---|
416 | !!---------------------------------------------------------------------- |
---|
417 | !! |
---|
418 | !! ** Purpose : Add heat and fresh water fluxes due to ice shelf melting |
---|
419 | !! ** Reference : Beckmann et Goosse, 2003, Ocean Modelling |
---|
420 | !! |
---|
421 | !! History : |
---|
422 | !! ! 06-02 (C. Wang) Original code |
---|
423 | !!---------------------------------------------------------------------- |
---|
424 | |
---|
425 | INTEGER, INTENT ( in ) :: kt |
---|
426 | |
---|
427 | INTEGER :: ji, jj, jk, jish !temporary integer |
---|
428 | INTEGER :: ijkmin |
---|
429 | INTEGER :: ii, ij, ik |
---|
430 | INTEGER :: inum |
---|
431 | |
---|
432 | REAL(wp) :: zt_sum ! sum of the temperature between 200m and 600m |
---|
433 | REAL(wp) :: zt_ave ! averaged temperature between 200m and 600m |
---|
434 | REAL(wp) :: zt_frz ! freezing point temperature at depth z |
---|
435 | REAL(wp) :: zpress ! pressure to compute the freezing point in depth |
---|
436 | |
---|
437 | !!---------------------------------------------------------------------- |
---|
438 | IF ( nn_timing == 1 ) CALL timing_start('sbc_isf_bg03') |
---|
439 | ! |
---|
440 | |
---|
441 | ! This test is false only in the very first time step of a run (JMM ???- Initialy build to skip 1rst year of run ) |
---|
442 | DO ji = 1, jpi |
---|
443 | DO jj = 1, jpj |
---|
444 | ik = misfkt(ji,jj) |
---|
445 | !! Initialize arrays to 0 (each step) |
---|
446 | zt_sum = 0.e0_wp |
---|
447 | IF ( ik .GT. 1 ) THEN |
---|
448 | ! 3. -----------the average temperature between 200m and 600m --------------------- |
---|
449 | DO jk = misfkt(ji,jj),misfkb(ji,jj) |
---|
450 | ! freezing point temperature at ice shelf base BG eq. 2 (JMM sign pb ??? +7.64e-4 !!!) |
---|
451 | ! after verif with UNESCO, wrong sign in BG eq. 2 |
---|
452 | ! Calculate freezing temperature |
---|
453 | zpress = grav*rau0*fsdept(ji,jj,ik)*1.e-04 |
---|
454 | zt_frz = eos_fzp(tsb(ji,jj,ik,jp_sal), zpress) |
---|
455 | zt_sum = zt_sum + (tsn(ji,jj,ik,jp_tem)-zt_frz) * fse3t(ji,jj,ik) * tmask(ji,jj,ik) ! sum temp |
---|
456 | ENDDO |
---|
457 | zt_ave = zt_sum/rhisf_tbl(ji,jj) ! calcul mean value |
---|
458 | |
---|
459 | ! 4. ------------Net heat flux and fresh water flux due to the ice shelf |
---|
460 | ! For those corresponding to zonal boundary |
---|
461 | qisf(ji,jj) = - rau0 * rcp * rn_gammat0 * risfLeff(ji,jj) * e1t(ji,jj) * zt_ave & |
---|
462 | & / (e1t(ji,jj) * e2t(ji,jj)) * tmask(ji,jj,ik) |
---|
463 | |
---|
464 | fwfisf(ji,jj) = qisf(ji,jj) / lfusisf !fresh water flux kg/(m2s) |
---|
465 | fwfisf(ji,jj) = fwfisf(ji,jj) * ( soce / stbl(ji,jj) ) |
---|
466 | !add to salinity trend |
---|
467 | ELSE |
---|
468 | qisf(ji,jj) = 0._wp ; fwfisf(ji,jj) = 0._wp |
---|
469 | END IF |
---|
470 | ENDDO |
---|
471 | ENDDO |
---|
472 | ! |
---|
473 | IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_bg03') |
---|
474 | END SUBROUTINE sbc_isf_bg03 |
---|
475 | |
---|
476 | SUBROUTINE sbc_isf_cav( kt ) |
---|
477 | !!--------------------------------------------------------------------- |
---|
478 | !! *** ROUTINE sbc_isf_cav *** |
---|
479 | !! |
---|
480 | !! ** Purpose : handle surface boundary condition under ice shelf |
---|
481 | !! |
---|
482 | !! ** Method : - |
---|
483 | !! |
---|
484 | !! ** Action : utau, vtau : remain unchanged |
---|
485 | !! taum, wndm : remain unchanged |
---|
486 | !! qns : update heat flux below ice shelf |
---|
487 | !! emp, emps : update freshwater flux below ice shelf |
---|
488 | !!--------------------------------------------------------------------- |
---|
489 | INTEGER, INTENT(in) :: kt ! ocean time step |
---|
490 | ! |
---|
491 | LOGICAL :: ln_isomip = .true. |
---|
492 | REAL(wp), DIMENSION(:,:), POINTER :: zfrz,zpress,zti |
---|
493 | REAL(wp), DIMENSION(:,:), POINTER :: zgammat2d, zgammas2d |
---|
494 | !REAL(wp), DIMENSION(:,:), POINTER :: zqisf, zfwfisf |
---|
495 | REAL(wp) :: zlamb1, zlamb2, zlamb3 |
---|
496 | REAL(wp) :: zeps1,zeps2,zeps3,zeps4,zeps6,zeps7 |
---|
497 | REAL(wp) :: zaqe,zbqe,zcqe,zaqer,zdis,zsfrz,zcfac |
---|
498 | REAL(wp) :: zfwflx, zhtflx, zhtflx_b |
---|
499 | REAL(wp) :: zgammat, zgammas |
---|
500 | REAL(wp) :: zeps = -1.e-20_wp !== Local constant initialization ==! |
---|
501 | INTEGER :: ji, jj ! dummy loop indices |
---|
502 | INTEGER :: ii0, ii1, ij0, ij1 ! temporary integers |
---|
503 | INTEGER :: ierror ! return error code |
---|
504 | LOGICAL :: lit=.TRUE. |
---|
505 | INTEGER :: nit |
---|
506 | !!--------------------------------------------------------------------- |
---|
507 | ! |
---|
508 | ! coeficient for linearisation of tfreez |
---|
509 | zlamb1=-0.0575 |
---|
510 | zlamb2=0.0901 |
---|
511 | zlamb3=-7.61e-04 |
---|
512 | IF( nn_timing == 1 ) CALL timing_start('sbc_isf_cav') |
---|
513 | ! |
---|
514 | CALL wrk_alloc( jpi,jpj, zfrz,zpress,zti, zgammat2d, zgammas2d ) |
---|
515 | |
---|
516 | zcfac=0.0_wp |
---|
517 | IF (ln_conserve) zcfac=1.0_wp |
---|
518 | zpress(:,:)=0.0_wp |
---|
519 | zgammat2d(:,:)=0.0_wp |
---|
520 | zgammas2d(:,:)=0.0_wp |
---|
521 | ! |
---|
522 | ! |
---|
523 | !CDIR COLLAPSE |
---|
524 | DO jj = 1, jpj |
---|
525 | DO ji = 1, jpi |
---|
526 | ! Crude approximation for pressure (but commonly used) |
---|
527 | ! 1e-04 to convert from Pa to dBar |
---|
528 | zpress(ji,jj)=grav*rau0*fsdepw(ji,jj,mikt(ji,jj))*1.e-04 |
---|
529 | ! |
---|
530 | END DO |
---|
531 | END DO |
---|
532 | |
---|
533 | ! Calculate in-situ temperature (ref to surface) |
---|
534 | zti(:,:)=tinsitu( ttbl, stbl, zpress ) |
---|
535 | ! Calculate freezing temperature |
---|
536 | zfrz(:,:)=eos_fzp( sss_m(:,:), zpress ) |
---|
537 | |
---|
538 | |
---|
539 | zhtflx=0._wp ; zfwflx=0._wp |
---|
540 | IF (nn_isfblk == 1) THEN |
---|
541 | DO jj = 1, jpj |
---|
542 | DO ji = 1, jpi |
---|
543 | IF (mikt(ji,jj) > 1 ) THEN |
---|
544 | nit = 1; lit = .TRUE.; zgammat=rn_gammat0; zgammas=rn_gammas0; zhtflx_b=0._wp |
---|
545 | DO WHILE ( lit ) |
---|
546 | ! compute gamma |
---|
547 | CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx, ji, jj, lit) |
---|
548 | ! zhtflx is upward heat flux (out of ocean) |
---|
549 | zhtflx = zgammat*rcp*rau0*(zti(ji,jj)-zfrz(ji,jj)) |
---|
550 | ! zwflx is upward water flux |
---|
551 | zfwflx = - zhtflx/lfusisf |
---|
552 | ! test convergence and compute gammat |
---|
553 | IF ( (zhtflx - zhtflx_b) .LE. 0.01 ) lit = .FALSE. |
---|
554 | |
---|
555 | nit = nit + 1 |
---|
556 | IF (nit .GE. 100) THEN |
---|
557 | !WRITE(numout,*) "sbcisf : too many iteration ... ", zhtflx, zhtflx_b,zgammat, rn_gammat0, rn_tfri2, nn_gammablk, ji,jj |
---|
558 | !WRITE(numout,*) "sbcisf : too many iteration ... ", (zhtflx - zhtflx_b)/zhtflx |
---|
559 | CALL ctl_stop( 'STOP', 'sbc_isf_hol99 : too many iteration ...' ) |
---|
560 | END IF |
---|
561 | ! save gammat and compute zhtflx_b |
---|
562 | zgammat2d(ji,jj)=zgammat |
---|
563 | zhtflx_b = zhtflx |
---|
564 | END DO |
---|
565 | |
---|
566 | qisf(ji,jj) = - zhtflx |
---|
567 | ! For genuine ISOMIP protocol this should probably be something like |
---|
568 | fwfisf(ji,jj) = zfwflx * ( soce / MAX(stbl(ji,jj),zeps)) |
---|
569 | ELSE |
---|
570 | fwfisf(ji,jj) = 0._wp |
---|
571 | qisf(ji,jj) = 0._wp |
---|
572 | END IF |
---|
573 | ! |
---|
574 | END DO |
---|
575 | END DO |
---|
576 | |
---|
577 | ELSE IF (nn_isfblk == 2 ) THEN |
---|
578 | |
---|
579 | ! More complicated 3 equation thermodynamics as in MITgcm |
---|
580 | !CDIR COLLAPSE |
---|
581 | DO jj = 2, jpj |
---|
582 | DO ji = 2, jpi |
---|
583 | IF (mikt(ji,jj) > 1 ) THEN |
---|
584 | nit=1; lit=.TRUE.; zgammat=rn_gammat0; zgammas=rn_gammas0; zhtflx_b=0._wp; zhtflx=0._wp |
---|
585 | DO WHILE ( lit ) |
---|
586 | CALL sbc_isf_gammats(zgammat, zgammas, zhtflx, zfwflx, ji, jj, lit) |
---|
587 | |
---|
588 | zeps1=rcp*rau0*zgammat |
---|
589 | zeps2=lfusisf*rau0*zgammas |
---|
590 | zeps3=rhoisf*rcpi*kappa/risfdep(ji,jj) |
---|
591 | zeps4=zlamb2+zlamb3*risfdep(ji,jj) |
---|
592 | zeps6=zeps4-zti(ji,jj) |
---|
593 | zeps7=zeps4-tsurf |
---|
594 | zaqe=zlamb1 * (zeps1 + zeps3) |
---|
595 | zaqer=0.5/zaqe |
---|
596 | zbqe=zeps1*zeps6+zeps3*zeps7-zeps2 |
---|
597 | zcqe=zeps2*stbl(ji,jj) |
---|
598 | zdis=zbqe*zbqe-4.0*zaqe*zcqe |
---|
599 | ! Presumably zdis can never be negative because gammas is very small compared to gammat |
---|
600 | zsfrz=(-zbqe-SQRT(zdis))*zaqer |
---|
601 | IF (zsfrz .lt. 0.0) zsfrz=(-zbqe+SQRT(zdis))*zaqer |
---|
602 | zfrz(ji,jj)=zeps4+zlamb1*zsfrz |
---|
603 | |
---|
604 | ! zfwflx is upward water flux |
---|
605 | zfwflx= rau0 * zgammas * ( (zsfrz-stbl(ji,jj)) / zsfrz ) |
---|
606 | ! zhtflx is upward heat flux (out of ocean) |
---|
607 | ! If non conservative we have zcfac=0.0 so zhtflx is as ISOMIP but with different zfrz value |
---|
608 | zhtflx = ( zgammat*rau0 - zcfac*zfwflx ) * rcp * (zti(ji,jj) - zfrz(ji,jj) ) |
---|
609 | ! zwflx is upward water flux |
---|
610 | ! If non conservative we have zcfac=0.0 so what follows is then zfwflx*sss_m/zsfrz |
---|
611 | zfwflx = ( zgammas*rau0 - zcfac*zfwflx ) * (zsfrz - stbl(ji,jj)) / stbl(ji,jj) |
---|
612 | ! test convergence and compute gammat |
---|
613 | IF (( zhtflx - zhtflx_b) .LE. 0.01 ) lit = .FALSE. |
---|
614 | |
---|
615 | nit = nit + 1 |
---|
616 | IF (nit .GE. 51) THEN |
---|
617 | WRITE(numout,*) "sbcisf : too many iteration ... ", & |
---|
618 | & zhtflx, zhtflx_b, zgammat, zgammas, nn_gammablk, ji, jj, mikt(ji,jj), narea |
---|
619 | CALL ctl_stop( 'STOP', 'sbc_isf_hol99 : too many iteration ...' ) |
---|
620 | END IF |
---|
621 | ! save gammat and compute zhtflx_b |
---|
622 | zgammat2d(ji,jj)=zgammat |
---|
623 | zgammas2d(ji,jj)=zgammas |
---|
624 | zhtflx_b = zhtflx |
---|
625 | |
---|
626 | END DO |
---|
627 | ! If non conservative we have zcfac=0.0 so zhtflx is as ISOMIP but with different zfrz value |
---|
628 | qisf(ji,jj) = - zhtflx |
---|
629 | ! If non conservative we have zcfac=0.0 so what follows is then zfwflx*sss_m/zsfrz |
---|
630 | fwfisf(ji,jj) = zfwflx |
---|
631 | ELSE |
---|
632 | fwfisf(ji,jj) = 0._wp |
---|
633 | qisf(ji,jj) = 0._wp |
---|
634 | ENDIF |
---|
635 | ! |
---|
636 | END DO |
---|
637 | END DO |
---|
638 | ENDIF |
---|
639 | ! lbclnk |
---|
640 | CALL lbc_lnk(zgammas2d(:,:),'T',1.) |
---|
641 | CALL lbc_lnk(zgammat2d(:,:),'T',1.) |
---|
642 | ! output |
---|
643 | CALL iom_put('isfgammat', zgammat2d) |
---|
644 | CALL iom_put('isfgammas', zgammas2d) |
---|
645 | ! |
---|
646 | CALL wrk_dealloc( jpi,jpj, zfrz,zpress,zti, zgammat2d, zgammas2d ) |
---|
647 | ! |
---|
648 | IF( nn_timing == 1 ) CALL timing_stop('sbc_isf_cav') |
---|
649 | |
---|
650 | END SUBROUTINE sbc_isf_cav |
---|
651 | |
---|
652 | SUBROUTINE sbc_isf_gammats(gt, gs, zqhisf, zqwisf, ji, jj, lit ) |
---|
653 | !!---------------------------------------------------------------------- |
---|
654 | !! ** Purpose : compute the coefficient echange for heat flux |
---|
655 | !! |
---|
656 | !! ** Method : gamma assume constant or depends of u* and stability |
---|
657 | !! |
---|
658 | !! ** References : Holland and Jenkins, 1999, JPO, p1787-1800, eq 14 |
---|
659 | !! Jenkins et al., 2010, JPO, p2298-2312 |
---|
660 | !!--------------------------------------------------------------------- |
---|
661 | REAL(wp), INTENT(inout) :: gt, gs, zqhisf, zqwisf |
---|
662 | INTEGER , INTENT(in) :: ji,jj |
---|
663 | LOGICAL , INTENT(inout) :: lit |
---|
664 | |
---|
665 | INTEGER :: ikt ! loop index |
---|
666 | REAL(wp) :: zut, zvt, zustar ! U, V at T point and friction velocity |
---|
667 | REAL(wp) :: zdku, zdkv ! U, V shear |
---|
668 | REAL(wp) :: zPr, zSc, zRc ! Prandtl, Scmidth and Richardson number |
---|
669 | REAL(wp) :: zmob, zmols ! Monin Obukov length, coriolis factor at T point |
---|
670 | REAL(wp) :: zbuofdep, zhnu ! Bouyancy length scale, sublayer tickness |
---|
671 | REAL(wp) :: zhmax ! limitation of mol |
---|
672 | REAL(wp) :: zetastar ! stability parameter |
---|
673 | REAL(wp) :: zgmolet, zgmoles, zgturb ! contribution of modelecular sublayer and turbulence |
---|
674 | REAL(wp) :: zcoef ! temporary coef |
---|
675 | REAL(wp) :: zdep |
---|
676 | REAL(wp), PARAMETER :: zxsiN = 0.052 ! dimensionless constant |
---|
677 | REAL(wp), PARAMETER :: epsln = 1.0e-20 ! a small positive number |
---|
678 | REAL(wp), PARAMETER :: znu = 1.95e-6 ! kinamatic viscosity of sea water (m2.s-1) |
---|
679 | REAL(wp) :: rcs = 1.0e-3_wp ! conversion: mm/s ==> m/s |
---|
680 | REAL(wp), DIMENSION(2) :: zts, zab |
---|
681 | !!--------------------------------------------------------------------- |
---|
682 | ! |
---|
683 | IF( nn_gammablk == 0 ) THEN |
---|
684 | !! gamma is constant (specified in namelist) |
---|
685 | gt = rn_gammat0 |
---|
686 | gs = rn_gammas0 |
---|
687 | lit = .FALSE. |
---|
688 | ELSE IF ( nn_gammablk == 1 ) THEN |
---|
689 | !! gamma is assume to be proportional to u* |
---|
690 | !! WARNING in case of Losh 2008 tbl parametrization, |
---|
691 | !! you have to used the mean value of u in the boundary layer) |
---|
692 | !! not yet coded |
---|
693 | !! Jenkins et al., 2010, JPO, p2298-2312 |
---|
694 | ikt = mikt(ji,jj) |
---|
695 | !! Compute U and V at T points |
---|
696 | ! zut = 0.5 * ( utbl(ji-1,jj ) + utbl(ji,jj) ) |
---|
697 | ! zvt = 0.5 * ( vtbl(ji ,jj-1) + vtbl(ji,jj) ) |
---|
698 | zut = utbl(ji,jj) |
---|
699 | zvt = vtbl(ji,jj) |
---|
700 | |
---|
701 | !! compute ustar |
---|
702 | zustar = SQRT( rn_tfri2 * (zut * zut + zvt * zvt) ) |
---|
703 | !! Compute mean value over the TBL |
---|
704 | |
---|
705 | !! Compute gammats |
---|
706 | gt = zustar * rn_gammat0 |
---|
707 | gs = zustar * rn_gammas0 |
---|
708 | lit = .FALSE. |
---|
709 | ELSE IF ( nn_gammablk == 2 ) THEN |
---|
710 | !! gamma depends of stability of boundary layer |
---|
711 | !! WARNING in case of Losh 2008 tbl parametrization, |
---|
712 | !! you have to used the mean value of u in the boundary layer) |
---|
713 | !! not yet coded |
---|
714 | !! Holland and Jenkins, 1999, JPO, p1787-1800, eq 14 |
---|
715 | !! as MOL depends of flux and flux depends of MOL, best will be iteration (TO DO) |
---|
716 | ikt = mikt(ji,jj) |
---|
717 | |
---|
718 | !! Compute U and V at T points |
---|
719 | zut = 0.5 * ( utbl(ji-1,jj ) + utbl(ji,jj) ) |
---|
720 | zvt = 0.5 * ( vtbl(ji ,jj-1) + vtbl(ji,jj) ) |
---|
721 | |
---|
722 | !! compute ustar |
---|
723 | zustar = SQRT( rn_tfri2 * (zut * zut + zvt * zvt) ) |
---|
724 | IF (zustar == 0._wp) THEN ! only for kt = 1 I think |
---|
725 | gt = rn_gammat0 |
---|
726 | gs = rn_gammas0 |
---|
727 | ELSE |
---|
728 | !! compute Rc number (as done in zdfric.F90) |
---|
729 | zcoef = 0.5 / fse3w(ji,jj,ikt) |
---|
730 | ! ! shear of horizontal velocity |
---|
731 | zdku = zcoef * ( un(ji-1,jj ,ikt ) + un(ji,jj,ikt ) & |
---|
732 | & -un(ji-1,jj ,ikt+1) - un(ji,jj,ikt+1) ) |
---|
733 | zdkv = zcoef * ( vn(ji ,jj-1,ikt ) + vn(ji,jj,ikt ) & |
---|
734 | & -vn(ji ,jj-1,ikt+1) - vn(ji,jj,ikt+1) ) |
---|
735 | ! ! richardson number (minimum value set to zero) |
---|
736 | zRc = rn2(ji,jj,ikt+1) / ( zdku*zdku + zdkv*zdkv + 1.e-20 ) |
---|
737 | |
---|
738 | !! compute Pr and Sc number (can be improved) |
---|
739 | zPr = 13.8 |
---|
740 | zSc = 2432.0 |
---|
741 | |
---|
742 | !! compute gamma mole |
---|
743 | zgmolet = 12.5 * zPr ** (2.0/3.0) - 6.0 |
---|
744 | zgmoles = 12.5 * zSc ** (2.0/3.0) -6.0 |
---|
745 | |
---|
746 | !! compute bouyancy |
---|
747 | zts(jp_tem) = ttbl(ji,jj) |
---|
748 | zts(jp_sal) = stbl(ji,jj) |
---|
749 | zdep = fsdepw(ji,jj,ikt) |
---|
750 | ! |
---|
751 | CALL eos_rab( zts, zdep, zab ) |
---|
752 | ! |
---|
753 | !! compute length scale |
---|
754 | zbuofdep = grav * ( zab(jp_tem) * zqhisf - zab(jp_sal) * zqwisf ) !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
755 | |
---|
756 | !! compute Monin Obukov Length |
---|
757 | ! Maximum boundary layer depth |
---|
758 | zhmax = fsdept(ji,jj,mbkt(ji,jj)) - fsdepw(ji,jj,mikt(ji,jj)) -0.001 |
---|
759 | ! Compute Monin obukhov length scale at the surface and Ekman depth: |
---|
760 | zmob = zustar ** 3 / (vkarmn * (zbuofdep + epsln)) |
---|
761 | zmols = SIGN(1._wp, zmob) * MIN(ABS(zmob), zhmax) * tmask(ji,jj,ikt) |
---|
762 | |
---|
763 | !! compute eta* (stability parameter) |
---|
764 | zetastar = 1 / ( SQRT(1 + MAX(zxsiN * zustar / ( ABS(ff(ji,jj)) * zmols * zRc ), 0.0))) |
---|
765 | |
---|
766 | !! compute the sublayer thickness |
---|
767 | zhnu = 5 * znu / zustar |
---|
768 | !! compute gamma turb |
---|
769 | zgturb = 1/vkarmn * LOG(zustar * zxsiN * zetastar * zetastar / ( ABS(ff(ji,jj)) * zhnu )) & |
---|
770 | & + 1 / ( 2 * zxsiN * zetastar ) - 1/vkarmn |
---|
771 | |
---|
772 | !! compute gammats |
---|
773 | gt = zustar / (zgturb + zgmolet) |
---|
774 | gs = zustar / (zgturb + zgmoles) |
---|
775 | END IF |
---|
776 | END IF |
---|
777 | |
---|
778 | END SUBROUTINE |
---|
779 | |
---|
780 | SUBROUTINE sbc_isf_tbl( varin, varout, cptin ) |
---|
781 | !!---------------------------------------------------------------------- |
---|
782 | !! *** SUBROUTINE sbc_isf_tbl *** |
---|
783 | !! |
---|
784 | !! ** Purpose : compute mean T/S/U/V in the boundary layer |
---|
785 | !! |
---|
786 | !!---------------------------------------------------------------------- |
---|
787 | REAL(wp), DIMENSION(:,:,:), INTENT(in) :: varin |
---|
788 | REAL(wp), DIMENSION(:,:) , INTENT(out):: varout |
---|
789 | |
---|
790 | CHARACTER(len=1), INTENT(in) :: cptin ! point of variable in/out |
---|
791 | |
---|
792 | REAL(wp) :: ze3, zhk |
---|
793 | REAL(wp), DIMENSION(:,:), POINTER :: zikt |
---|
794 | |
---|
795 | INTEGER :: ji,jj,jk |
---|
796 | INTEGER :: ikt,ikb |
---|
797 | INTEGER, DIMENSION(:,:), POINTER :: mkt, mkb |
---|
798 | |
---|
799 | CALL wrk_alloc( jpi,jpj, mkt, mkb ) |
---|
800 | CALL wrk_alloc( jpi,jpj, zikt ) |
---|
801 | |
---|
802 | ! get first and last level of tbl |
---|
803 | mkt(:,:) = misfkt(:,:) |
---|
804 | mkb(:,:) = misfkb(:,:) |
---|
805 | |
---|
806 | varout(:,:)=0._wp |
---|
807 | DO jj = 2,jpj |
---|
808 | DO ji = 2,jpi |
---|
809 | IF (ssmask(ji,jj) == 1) THEN |
---|
810 | ikt = mkt(ji,jj) |
---|
811 | ikb = mkb(ji,jj) |
---|
812 | |
---|
813 | ! level fully include in the ice shelf boundary layer |
---|
814 | DO jk = ikt, ikb - 1 |
---|
815 | ze3 = fse3t_n(ji,jj,jk) |
---|
816 | IF (cptin == 'T' ) varout(ji,jj) = varout(ji,jj) + varin(ji,jj,jk) * r1_hisf_tbl(ji,jj) * ze3 |
---|
817 | IF (cptin == 'U' ) varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,jk) + varin(ji-1,jj,jk)) & |
---|
818 | & * r1_hisf_tbl(ji,jj) * ze3 |
---|
819 | IF (cptin == 'V' ) varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,jk) + varin(ji,jj-1,jk)) & |
---|
820 | & * r1_hisf_tbl(ji,jj) * ze3 |
---|
821 | END DO |
---|
822 | |
---|
823 | ! level partially include in ice shelf boundary layer |
---|
824 | zhk = SUM( fse3t_n(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) |
---|
825 | IF (cptin == 'T') & |
---|
826 | & varout(ji,jj) = varout(ji,jj) + varin(ji,jj,ikb) * (1._wp - zhk) |
---|
827 | IF (cptin == 'U') & |
---|
828 | & varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,ikb) + varin(ji-1,jj,ikb)) * (1._wp - zhk) |
---|
829 | IF (cptin == 'V') & |
---|
830 | & varout(ji,jj) = varout(ji,jj) + 0.5_wp * (varin(ji,jj,ikb) + varin(ji,jj-1,ikb)) * (1._wp - zhk) |
---|
831 | END IF |
---|
832 | END DO |
---|
833 | END DO |
---|
834 | |
---|
835 | CALL wrk_dealloc( jpi,jpj, mkt, mkb ) |
---|
836 | CALL wrk_dealloc( jpi,jpj, zikt ) |
---|
837 | |
---|
838 | IF (cptin == 'T') CALL lbc_lnk(varout,'T',1.) |
---|
839 | IF (cptin == 'U' .OR. cptin == 'V') CALL lbc_lnk(varout,'T',-1.) |
---|
840 | |
---|
841 | END SUBROUTINE sbc_isf_tbl |
---|
842 | |
---|
843 | |
---|
844 | SUBROUTINE sbc_isf_div( phdivn ) |
---|
845 | !!---------------------------------------------------------------------- |
---|
846 | !! *** SUBROUTINE sbc_isf_div *** |
---|
847 | !! |
---|
848 | !! ** Purpose : update the horizontal divergence with the runoff inflow |
---|
849 | !! |
---|
850 | !! ** Method : |
---|
851 | !! CAUTION : risf_tsc(:,:,jp_sal) is negative (outflow) increase the |
---|
852 | !! divergence and expressed in m/s |
---|
853 | !! |
---|
854 | !! ** Action : phdivn decreased by the runoff inflow |
---|
855 | !!---------------------------------------------------------------------- |
---|
856 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence |
---|
857 | !! |
---|
858 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
859 | INTEGER :: ikt, ikb |
---|
860 | INTEGER :: nk_isf |
---|
861 | REAL(wp) :: zhk, z1_hisf_tbl, zhisf_tbl |
---|
862 | REAL(wp) :: zfact ! local scalar |
---|
863 | !!---------------------------------------------------------------------- |
---|
864 | ! |
---|
865 | zfact = 0.5_wp |
---|
866 | ! |
---|
867 | IF (lk_vvl) THEN ! need to re compute level distribution of isf fresh water |
---|
868 | DO jj = 1,jpj |
---|
869 | DO ji = 1,jpi |
---|
870 | ikt = misfkt(ji,jj) |
---|
871 | ikb = misfkt(ji,jj) |
---|
872 | ! thickness of boundary layer at least the top level thickness |
---|
873 | rhisf_tbl(ji,jj) = MAX(rhisf_tbl_0(ji,jj), fse3t(ji,jj,ikt)) |
---|
874 | |
---|
875 | ! determine the deepest level influenced by the boundary layer |
---|
876 | ! test on tmask useless ????? |
---|
877 | DO jk = ikt, mbkt(ji,jj) |
---|
878 | ! IF ( (SUM(fse3t(ji,jj,ikt:jk-1)) .LT. rhisf_tbl(ji,jj)) .AND. (tmask(ji,jj,jk) == 1) ) ikb = jk |
---|
879 | END DO |
---|
880 | rhisf_tbl(ji,jj) = MIN(rhisf_tbl(ji,jj), SUM(fse3t(ji,jj,ikt:ikb))) ! limit the tbl to water thickness. |
---|
881 | misfkb(ji,jj) = ikb ! last wet level of the tbl |
---|
882 | r1_hisf_tbl(ji,jj) = 1._wp / rhisf_tbl(ji,jj) |
---|
883 | |
---|
884 | zhk = SUM( fse3t(ji, jj, ikt:ikb - 1)) * r1_hisf_tbl(ji,jj) ! proportion of tbl cover by cell from ikt to ikb - 1 |
---|
885 | ralpha(ji,jj) = rhisf_tbl(ji,jj) * (1._wp - zhk ) / fse3t(ji,jj,ikb) ! proportion of bottom cell influenced by boundary layer |
---|
886 | END DO |
---|
887 | END DO |
---|
888 | END IF ! vvl case |
---|
889 | ! |
---|
890 | DO jj = 1,jpj |
---|
891 | DO ji = 1,jpi |
---|
892 | ikt = misfkt(ji,jj) |
---|
893 | ikb = misfkb(ji,jj) |
---|
894 | ! level fully include in the ice shelf boundary layer |
---|
895 | DO jk = ikt, ikb - 1 |
---|
896 | phdivn(ji,jj,jk) = phdivn(ji,jj,jk) + ( fwfisf(ji,jj) + fwfisf_b(ji,jj) ) & |
---|
897 | & * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact |
---|
898 | END DO |
---|
899 | ! level partially include in ice shelf boundary layer |
---|
900 | phdivn(ji,jj,ikb) = phdivn(ji,jj,ikb) + ( fwfisf(ji,jj) & |
---|
901 | & + fwfisf_b(ji,jj) ) * r1_hisf_tbl(ji,jj) * r1_rau0 * zfact * ralpha(ji,jj) |
---|
902 | !== ice shelf melting mass distributed over several levels ==! |
---|
903 | END DO |
---|
904 | END DO |
---|
905 | ! |
---|
906 | END SUBROUTINE sbc_isf_div |
---|
907 | |
---|
908 | FUNCTION tinsitu( ptem, psal, ppress ) RESULT( pti ) |
---|
909 | !!---------------------------------------------------------------------- |
---|
910 | !! *** ROUTINE eos_init *** |
---|
911 | !! |
---|
912 | !! ** Purpose : Compute the in-situ temperature [Celcius] |
---|
913 | !! |
---|
914 | !! ** Method : |
---|
915 | !! |
---|
916 | !! Reference : Bryden,h.,1973,deep-sea res.,20,401-408 |
---|
917 | !!---------------------------------------------------------------------- |
---|
918 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ptem ! potential temperature [Celcius] |
---|
919 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: psal ! salinity [psu] |
---|
920 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: ppress ! pressure [dBar] |
---|
921 | REAL(wp), DIMENSION(:,:), POINTER :: pti ! in-situ temperature [Celcius] |
---|
922 | ! REAL(wp) :: fsatg |
---|
923 | ! REAL(wp) :: pfps, pfpt, pfphp |
---|
924 | REAL(wp) :: zt, zs, zp, zh, zq, zxk |
---|
925 | INTEGER :: ji, jj ! dummy loop indices |
---|
926 | ! |
---|
927 | CALL wrk_alloc( jpi,jpj, pti ) |
---|
928 | ! |
---|
929 | DO jj=1,jpj |
---|
930 | DO ji=1,jpi |
---|
931 | zh = ppress(ji,jj) |
---|
932 | ! Theta1 |
---|
933 | zt = ptem(ji,jj) |
---|
934 | zs = psal(ji,jj) |
---|
935 | zp = 0.0 |
---|
936 | zxk= zh * fsatg( zs, zt, zp ) |
---|
937 | zt = zt + 0.5 * zxk |
---|
938 | zq = zxk |
---|
939 | ! Theta2 |
---|
940 | zp = zp + 0.5 * zh |
---|
941 | zxk= zh*fsatg( zs, zt, zp ) |
---|
942 | zt = zt + 0.29289322 * ( zxk - zq ) |
---|
943 | zq = 0.58578644 * zxk + 0.121320344 * zq |
---|
944 | ! Theta3 |
---|
945 | zxk= zh * fsatg( zs, zt, zp ) |
---|
946 | zt = zt + 1.707106781 * ( zxk - zq ) |
---|
947 | zq = 3.414213562 * zxk - 4.121320344 * zq |
---|
948 | ! Theta4 |
---|
949 | zp = zp + 0.5 * zh |
---|
950 | zxk= zh * fsatg( zs, zt, zp ) |
---|
951 | pti(ji,jj) = zt + ( zxk - 2.0 * zq ) / 6.0 |
---|
952 | END DO |
---|
953 | END DO |
---|
954 | ! |
---|
955 | CALL wrk_dealloc( jpi,jpj, pti ) |
---|
956 | ! |
---|
957 | END FUNCTION tinsitu |
---|
958 | ! |
---|
959 | FUNCTION fsatg( pfps, pfpt, pfphp ) |
---|
960 | !!---------------------------------------------------------------------- |
---|
961 | !! *** FUNCTION fsatg *** |
---|
962 | !! |
---|
963 | !! ** Purpose : Compute the Adiabatic laspse rate [Celcius].[decibar]^-1 |
---|
964 | !! |
---|
965 | !! ** Reference : Bryden,h.,1973,deep-sea res.,20,401-408 |
---|
966 | !! |
---|
967 | !! ** units : pressure pfphp decibars |
---|
968 | !! temperature pfpt deg celsius (ipts-68) |
---|
969 | !! salinity pfps (ipss-78) |
---|
970 | !! adiabatic fsatg deg. c/decibar |
---|
971 | !!---------------------------------------------------------------------- |
---|
972 | REAL(wp) :: pfps, pfpt, pfphp |
---|
973 | REAL(wp) :: fsatg |
---|
974 | ! |
---|
975 | fsatg = (((-2.1687e-16*pfpt+1.8676e-14)*pfpt-4.6206e-13)*pfphp & |
---|
976 | & +((2.7759e-12*pfpt-1.1351e-10)*(pfps-35.)+((-5.4481e-14*pfpt & |
---|
977 | & +8.733e-12)*pfpt-6.7795e-10)*pfpt+1.8741e-8))*pfphp & |
---|
978 | & +(-4.2393e-8*pfpt+1.8932e-6)*(pfps-35.) & |
---|
979 | & +((6.6228e-10*pfpt-6.836e-8)*pfpt+8.5258e-6)*pfpt+3.5803e-5 |
---|
980 | ! |
---|
981 | END FUNCTION fsatg |
---|
982 | !!====================================================================== |
---|
983 | END MODULE sbcisf |
---|