1 | MODULE icethd |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icethd *** |
---|
4 | !! sea-ice : master routine for thermodynamics |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) LIM-1 |
---|
7 | !! 2.0 ! 2002-07 (C. Ethe, G. Madec) LIM-2 (F90 rewriting) |
---|
8 | !! 3.0 ! 2005-11 (M. Vancoppenolle) LIM-3 : Multi-layer thermodynamics + salinity variations |
---|
9 | !! - ! 2007-04 (M. Vancoppenolle) add ice_thd_glohec, ice_thd_con_dh and ice_thd_con_dif |
---|
10 | !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in wfx_snw |
---|
11 | !! 3.3 ! 2010-11 (G. Madec) corrected snow melting heat (due to factor betas) |
---|
12 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
13 | !! - ! 2012-05 (C. Rousset) add penetration solar flux |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | #if defined key_lim3 |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | !! 'key_lim3' ESIM sea-ice model |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | !! ice_thd : thermodynamics of sea ice |
---|
20 | !! ice_thd_init : initialisation of sea-ice thermodynamics |
---|
21 | !!---------------------------------------------------------------------- |
---|
22 | USE phycst ! physical constants |
---|
23 | USE dom_oce ! ocean space and time domain variables |
---|
24 | USE ice ! sea-ice: variables |
---|
25 | !!gm list trop longue ==>>> why not passage en argument d'appel ? |
---|
26 | USE sbc_oce , ONLY : sss_m, sst_m, e3t_m, utau, vtau, ssu_m, ssv_m, frq_m, qns_tot, qsr_tot, sprecip, ln_cpl |
---|
27 | USE sbc_ice , ONLY : qsr_oce, qns_oce, qemp_oce, qsr_ice, qns_ice, dqns_ice, evap_ice, qprec_ice, qevap_ice, & |
---|
28 | & qml_ice, qcn_ice, qsr_ice_tr |
---|
29 | USE ice1D ! sea-ice: thermodynamics variables |
---|
30 | USE icethd_zdf ! sea-ice: vertical heat diffusion |
---|
31 | USE icethd_dh ! sea-ice: ice-snow growth and melt |
---|
32 | USE icethd_da ! sea-ice: lateral melting |
---|
33 | USE icethd_sal ! sea-ice: salinity |
---|
34 | USE icethd_ent ! sea-ice: enthalpy redistribution |
---|
35 | USE icethd_do ! sea-ice: growth in open water |
---|
36 | USE icethd_pnd ! sea-ice: melt ponds |
---|
37 | USE iceitd ! sea-ice: remapping thickness distribution |
---|
38 | USE icetab ! sea-ice: 1D <==> 2D transformation |
---|
39 | USE icevar ! sea-ice: operations |
---|
40 | USE icectl ! sea-ice: control print |
---|
41 | ! |
---|
42 | USE in_out_manager ! I/O manager |
---|
43 | USE lib_mpp ! MPP library |
---|
44 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
45 | USE lbclnk ! lateral boundary conditions (or mpp links) |
---|
46 | USE timing ! Timing |
---|
47 | |
---|
48 | IMPLICIT NONE |
---|
49 | PRIVATE |
---|
50 | |
---|
51 | PUBLIC ice_thd ! called by limstp module |
---|
52 | PUBLIC ice_thd_init ! called by ice_init |
---|
53 | |
---|
54 | !!** namelist (namthd) ** |
---|
55 | LOGICAL :: ln_icedH ! activate ice thickness change from growing/melting (T) or not (F) |
---|
56 | LOGICAL :: ln_icedA ! activate lateral melting param. (T) or not (F) |
---|
57 | LOGICAL :: ln_icedO ! activate ice growth in open-water (T) or not (F) |
---|
58 | LOGICAL :: ln_icedS ! activate gravity drainage and flushing (T) or not (F) |
---|
59 | |
---|
60 | !! * Substitutions |
---|
61 | # include "vectopt_loop_substitute.h90" |
---|
62 | !!---------------------------------------------------------------------- |
---|
63 | !! NEMO/ICE 4.0 , NEMO Consortium (2017) |
---|
64 | !! $Id: icethd.F90 8420 2017-08-08 12:18:46Z clem $ |
---|
65 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
66 | !!---------------------------------------------------------------------- |
---|
67 | CONTAINS |
---|
68 | |
---|
69 | SUBROUTINE ice_thd( kt ) |
---|
70 | !!------------------------------------------------------------------- |
---|
71 | !! *** ROUTINE ice_thd *** |
---|
72 | !! |
---|
73 | !! ** Purpose : This routine manages ice thermodynamics |
---|
74 | !! |
---|
75 | !! ** Action : - Initialisation of some variables |
---|
76 | !! - Some preliminary computation (oceanic heat flux |
---|
77 | !! at the ice base, snow acc.,heat budget of the leads) |
---|
78 | !! - selection of the icy points and put them in an array |
---|
79 | !! - call ice_thd_zdf for vertical heat diffusion |
---|
80 | !! - call ice_thd_dh for vertical ice growth and melt |
---|
81 | !! - call ice_thd_ent for enthalpy remapping |
---|
82 | !! - call ice_thd_sal for ice desalination |
---|
83 | !! - call ice_thd_temp to retrieve temperature from ice enthalpy |
---|
84 | !! - call ice_thd_lam for extra lateral ice melt if monocat |
---|
85 | !! - call ice_thd_da for lateral ice melt |
---|
86 | !! - back to the geographic grid |
---|
87 | !! - call ice_thd_rem for remapping thickness distribution |
---|
88 | !! - call ice_thd_do for ice growth in leads |
---|
89 | !!------------------------------------------------------------------- |
---|
90 | INTEGER, INTENT(in) :: kt ! number of iteration |
---|
91 | ! |
---|
92 | INTEGER :: ji, jj, jk, jl ! dummy loop indices |
---|
93 | REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg |
---|
94 | REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) |
---|
95 | REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient |
---|
96 | REAL(wp), DIMENSION(jpi,jpj) :: zu_io, zv_io, zfric ! ice-ocean velocity (m/s) and frictional velocity (m2/s2) |
---|
97 | ! |
---|
98 | !!------------------------------------------------------------------- |
---|
99 | ! controls |
---|
100 | IF( nn_timing == 1 ) CALL timing_start('icethd') ! timing |
---|
101 | |
---|
102 | write(numout,*) "RSRH icethd AA", kt; flush(numout) |
---|
103 | IF( ln_icediachk ) CALL ice_cons_hsm(0, 'icethd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) ! conservation |
---|
104 | write(numout,*) "RSRH icethd BB", kt; flush(numout) |
---|
105 | |
---|
106 | write(numout,*) "RSRH icethd BB u_ice", kt, glob_sum(u_ice(:,:)); flush(numout) |
---|
107 | write(numout,*) "RSRH icethd BB v_ice", kt, glob_sum(v_ice(:,:)); flush(numout) |
---|
108 | write(numout,*) "RSRH icethd BB ssu_m", kt, glob_sum(ssu_m(:,:)); flush(numout) |
---|
109 | write(numout,*) "RSRH icethd BB ssv_m", kt, glob_sum(ssv_m(:,:)); flush(numout) |
---|
110 | IF( kt == nit000 .AND. lwp ) THEN |
---|
111 | WRITE(numout,*) |
---|
112 | WRITE(numout,*) 'ice_thd: sea-ice thermodynamics' |
---|
113 | WRITE(numout,*) '~~~~~~~' |
---|
114 | ENDIF |
---|
115 | write(numout,*) "RSRH icethd CC", kt; flush(numout) |
---|
116 | |
---|
117 | CALL ice_var_glo2eqv |
---|
118 | write(numout,*) "RSRH icethd DD", kt; flush(numout) |
---|
119 | |
---|
120 | ! RSRH. zfric needs to be properly initialised....Duuuuhh! |
---|
121 | zfric(:,:) = 0.0 |
---|
122 | |
---|
123 | !---------------------------------------------! |
---|
124 | ! computation of friction velocity at T points |
---|
125 | !---------------------------------------------! |
---|
126 | IF( ln_icedyn ) THEN |
---|
127 | write(numout,*) "RSRH icethd EE in", kt; flush(numout) |
---|
128 | zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) |
---|
129 | zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) |
---|
130 | |
---|
131 | write(numout,*) "RSRH icethd EE u_ice", kt, glob_sum(u_ice(:,:)); flush(numout) |
---|
132 | write(numout,*) "RSRH icethd EE v_ice", kt, glob_sum(v_ice(:,:)); flush(numout) |
---|
133 | write(numout,*) "RSRH icethd EE ssu_m", kt, glob_sum(ssu_m(:,:)); flush(numout) |
---|
134 | write(numout,*) "RSRH icethd EE ssv_m", kt, glob_sum(ssv_m(:,:)); flush(numout) |
---|
135 | write(numout,*) "RSRH icethd EE zu_io", kt, glob_sum(zu_io(:,:)); flush(numout) |
---|
136 | write(numout,*) "RSRH icethd EE zv_io", kt, glob_sum(zv_io(:,:)); flush(numout) |
---|
137 | |
---|
138 | write(numout,*) "RSRH PE icethd EE u_ice", kt, sum(u_ice(:,:)); flush(numout) |
---|
139 | write(numout,*) "RSRH PE icethd EE v_ice", kt, sum(v_ice(:,:)); flush(numout) |
---|
140 | write(numout,*) "RSRH PE icethd EE ssu_m", kt, sum(ssu_m(:,:)); flush(numout) |
---|
141 | write(numout,*) "RSRH PE icethd EE ssv_m", kt, sum(ssv_m(:,:)); flush(numout) |
---|
142 | write(numout,*) "RSRH PE icethd EE zu_io", kt, sum(zu_io(:,:)); flush(numout) |
---|
143 | write(numout,*) "RSRH PE icethd EE zv_io", kt, sum(zv_io(:,:)); flush(numout) |
---|
144 | |
---|
145 | |
---|
146 | DO jj = 2, jpjm1 |
---|
147 | DO ji = fs_2, fs_jpim1 |
---|
148 | zfric(ji,jj) = rn_cio * ( 0.5_wp * & |
---|
149 | & ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & |
---|
150 | & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
151 | END DO |
---|
152 | END DO |
---|
153 | write(numout,*) "RSRH icethd EE", kt; flush(numout) |
---|
154 | ELSE ! if no ice dynamics => transmit directly the atmospheric stress to the ocean |
---|
155 | write(numout,*) "RSRH icethd FF in", kt; flush(numout) |
---|
156 | DO jj = 2, jpjm1 |
---|
157 | DO ji = fs_2, fs_jpim1 |
---|
158 | zfric(ji,jj) = r1_rau0 * SQRT( 0.5_wp * & |
---|
159 | & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & |
---|
160 | & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1) |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | ENDIF |
---|
164 | write(numout,*) "RSRH icethd GG", kt; flush(numout) |
---|
165 | write(numout,*) "RSRH icethd GG pre zfric link", kt; flush(numout) |
---|
166 | write(numout,*) "RSRH icethd GG sum pre zfric link", kt, glob_sum(zfric(:,:)); flush(numout) |
---|
167 | write(numout,*) "RSRH PE icethd GG sum pre zfric link SUM", kt, sum(zfric(:,:)); flush(numout) |
---|
168 | |
---|
169 | CALL lbc_lnk( zfric, 'T', 1. ) |
---|
170 | write(numout,*) "RSRH icethd GG after zfric link", kt; flush(numout) |
---|
171 | ! |
---|
172 | ftr_ice(:,:,:) = 0._wp ! initialization (part of solar radiation transmitted through the ice) |
---|
173 | |
---|
174 | write(numout,*) "RSRH GG at_i", glob_sum(at_i(:,:)); flush(numout) |
---|
175 | write(numout,*) "RSRH GG at_i_b", glob_sum(at_i_b(:,:)); flush(numout) |
---|
176 | write(numout,*) "RSRH GG qsr_oce", glob_sum(qsr_oce(:,:)); flush(numout) |
---|
177 | write(numout,*) "RSRH GG qns_oce", glob_sum(qns_oce(:,:)); flush(numout) |
---|
178 | write(numout,*) "RSRH GG frq_m", glob_sum(frq_m(:,:)); flush(numout) |
---|
179 | write(numout,*) "RSRH GG qemp_oce", glob_sum(qemp_oce(:,:)); flush(numout) |
---|
180 | write(numout,*) "RSRH GG e3t_m", glob_sum(e3t_m(:,:)); flush(numout) |
---|
181 | write(numout,*) "RSRH GG t_bo", glob_sum(t_bo(:,:)); flush(numout) |
---|
182 | write(numout,*) "RSRH GG sst_m", glob_sum(sst_m(:,:)); flush(numout) |
---|
183 | |
---|
184 | write(numout,*) "RSRH GG zfric", glob_sum(zfric(:,:)); flush(numout) |
---|
185 | |
---|
186 | !--------------------------------------------------------------------! |
---|
187 | ! Partial computation of forcing for the thermodynamic sea ice model |
---|
188 | !--------------------------------------------------------------------! |
---|
189 | DO jj = 1, jpj |
---|
190 | DO ji = 1, jpi |
---|
191 | rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice |
---|
192 | ! |
---|
193 | ! ! solar irradiance transmission at the mixed layer bottom and used in the lead heat budget |
---|
194 | ! ! practically no "direct lateral ablation" |
---|
195 | ! |
---|
196 | ! ! net downward heat flux from the ice to the ocean, expressed as a function of ocean |
---|
197 | ! ! temperature and turbulent mixing (McPhee, 1992) |
---|
198 | ! |
---|
199 | ! --- Energy received in the lead, zqld is defined everywhere (J.m-2) --- ! |
---|
200 | zqld = tmask(ji,jj,1) * rdt_ice * & |
---|
201 | & ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) + & |
---|
202 | & ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) ) |
---|
203 | |
---|
204 | ! --- Energy needed to bring ocean surface layer until its freezing (<0, J.m-2) --- ! |
---|
205 | ! includes supercooling potential energy (>0) or "above-freezing" energy (<0) |
---|
206 | zqfr = tmask(ji,jj,1) * rau0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) |
---|
207 | |
---|
208 | ! --- Above-freezing sensible heat content (J/m2 grid) |
---|
209 | zqfr_neg = tmask(ji,jj,1) * rau0 * rcp * e3t_m(ji,jj) * MIN( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ), 0._wp ) |
---|
210 | |
---|
211 | ! --- Sensible ocean-to-ice heat flux (W/m2) |
---|
212 | zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin ) |
---|
213 | fhtur(ji,jj) = rswitch * rau0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ! W.m-2 |
---|
214 | |
---|
215 | fhtur(ji,jj) = rswitch * MIN( fhtur(ji,jj), - zqfr_neg * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ) |
---|
216 | ! upper bound for fhtur: the heat retrieved from the ocean must be smaller than the heat necessary to reach |
---|
217 | ! the freezing point, so that we do not have SST < T_freeze |
---|
218 | ! This implies: - ( fhtur(ji,jj) * at_i(ji,jj) * rtdice ) - zqfr >= 0 |
---|
219 | |
---|
220 | !-- Energy Budget of the leads (J.m-2), source of lateral accretion. Must be < 0 to form ice |
---|
221 | qlead(ji,jj) = MIN( 0._wp , zqld - ( fhtur(ji,jj) * at_i(ji,jj) * rdt_ice ) - zqfr ) |
---|
222 | |
---|
223 | ! If there is ice and leads are warming, then transfer energy from the lead budget and use it for bottom melting |
---|
224 | IF( zqld > 0._wp ) THEN |
---|
225 | fhld (ji,jj) = rswitch * zqld * r1_rdtice / MAX( at_i(ji,jj), epsi10 ) ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90 |
---|
226 | qlead(ji,jj) = 0._wp |
---|
227 | ELSE |
---|
228 | fhld (ji,jj) = 0._wp |
---|
229 | ENDIF |
---|
230 | ! |
---|
231 | ! Net heat flux on top of the ice-ocean [W.m-2] |
---|
232 | ! --------------------------------------------- |
---|
233 | hfx_in(ji,jj) = qns_tot(ji,jj) + qsr_tot(ji,jj) |
---|
234 | END DO |
---|
235 | END DO |
---|
236 | write(numout,*) "RSRH icethd HH", kt; flush(numout) |
---|
237 | |
---|
238 | ! In case we bypass open-water ice formation |
---|
239 | IF( .NOT. ln_icedO ) qlead(:,:) = 0._wp |
---|
240 | ! In case we bypass growing/melting from top and bottom: we suppose ice is impermeable => ocean is isolated from atmosphere |
---|
241 | IF( .NOT. ln_icedH ) THEN |
---|
242 | hfx_in(:,:) = ( 1._wp - at_i_b(:,:) ) * ( qns_oce(:,:) + qsr_oce(:,:) ) + qemp_oce(:,:) |
---|
243 | fhtur (:,:) = 0._wp |
---|
244 | fhld (:,:) = 0._wp |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! --------------------------------------------------------------------- |
---|
248 | ! Net heat flux on top of the ocean after ice thermo (1st step) [W.m-2] |
---|
249 | ! --------------------------------------------------------------------- |
---|
250 | ! First step here : non solar + precip - qlead - qturb |
---|
251 | ! Second step in icethd_dh : heat remaining if total melt (zq_rema) |
---|
252 | ! Third step in iceupdate.F90 : heat from ice-ocean mass exchange (zf_mass) + solar |
---|
253 | hfx_out(:,:) = ( 1._wp - at_i_b(:,:) ) * qns_oce(:,:) + qemp_oce(:,:) & ! Non solar heat flux received by the ocean |
---|
254 | & - qlead(:,:) * r1_rdtice & ! heat flux taken from the ocean where there is open water ice formation |
---|
255 | & - at_i (:,:) * fhtur(:,:) & ! heat flux taken by turbulence |
---|
256 | & - at_i (:,:) * fhld(:,:) ! heat flux taken during bottom growth/melt |
---|
257 | ! (fhld should be 0 while bott growth) |
---|
258 | write(numout,*) "RSRH icethd II", kt; flush(numout) |
---|
259 | !-------------------------------------------------------------------------------------------! |
---|
260 | ! Thermodynamic computation (only on grid points covered by ice) => loop over ice categories |
---|
261 | !-------------------------------------------------------------------------------------------! |
---|
262 | DO jl = 1, jpl |
---|
263 | |
---|
264 | write(numout,*) "RSRH icethd JJ for Jl",jl, kt; flush(numout) |
---|
265 | ! select ice covered grid points |
---|
266 | npti = 0 ; nptidx(:) = 0 |
---|
267 | DO jj = 1, jpj |
---|
268 | DO ji = 1, jpi |
---|
269 | IF ( a_i(ji,jj,jl) > epsi10 ) THEN |
---|
270 | npti = npti + 1 |
---|
271 | nptidx(npti) = (jj - 1) * jpi + ji |
---|
272 | ENDIF |
---|
273 | END DO |
---|
274 | END DO |
---|
275 | |
---|
276 | write(numout,*) "RSRH icethd KK for Jl",jl, kt; flush(numout) |
---|
277 | IF( lk_mpp ) CALL mpp_ini_ice( npti , numout ) |
---|
278 | |
---|
279 | write(numout,*) "RSRH icethd LL for Jl",jl, kt; flush(numout) |
---|
280 | IF( npti > 0 ) THEN ! If there is no ice, do nothing. |
---|
281 | ! |
---|
282 | CALL ice_thd_1d2d( jl, 1 ) ! --- Move to 1D arrays --- ! |
---|
283 | ! ! --- & Change units of e_i, e_s from J/m2 to J/m3 --- ! |
---|
284 | write(numout,*) "RSRH icethd MM for Jl",jl, kt; flush(numout) |
---|
285 | ! |
---|
286 | s_i_new (1:npti) = 0._wp ; dh_s_tot (1:npti) = 0._wp ! --- some init --- ! (important to have them here) |
---|
287 | dh_i_surf (1:npti) = 0._wp ; dh_i_bott(1:npti) = 0._wp |
---|
288 | dh_snowice(1:npti) = 0._wp ; dh_i_sub (1:npti) = 0._wp ; dh_s_mlt(1:npti) = 0._wp |
---|
289 | ! |
---|
290 | IF( ln_icedH ) THEN ! --- growing/melting --- ! |
---|
291 | CALL ice_thd_zdf ! Ice/Snow Temperature profile |
---|
292 | CALL ice_thd_dh ! Ice/Snow thickness |
---|
293 | CALL ice_thd_pnd ! Melt ponds formation |
---|
294 | CALL ice_thd_ent( e_i_1d(1:npti,:) ) ! Ice enthalpy remapping |
---|
295 | ENDIF |
---|
296 | write(numout,*) "RSRH icethd NN for Jl",jl, kt; flush(numout) |
---|
297 | ! |
---|
298 | CALL ice_thd_sal( ln_icedS ) ! --- Ice salinity --- ! |
---|
299 | write(numout,*) "RSRH icethd OO for Jl",jl, kt; flush(numout) |
---|
300 | ! |
---|
301 | CALL ice_thd_temp ! --- temperature update --- ! |
---|
302 | write(numout,*) "RSRH icethd PP for Jl",jl, kt; flush(numout) |
---|
303 | ! |
---|
304 | !!gm please create a new logical (l_thd_lam or a better explicit name) set one for all in icestp.F90 module |
---|
305 | !!gm l_thd_lam = ln_icedH .AND. ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) |
---|
306 | !!gm by the way, the different options associated with nn_monocat =1 to 4 are quite impossible to identify |
---|
307 | !!gm more comment to add when ready the namelist, with an explicit print in the ocean.output |
---|
308 | IF( ln_icedH ) THEN |
---|
309 | IF ( ( nn_monocat == 1 .OR. nn_monocat == 4 ) .AND. jpl == 1 ) THEN |
---|
310 | CALL ice_thd_lam ! --- extra lateral melting if monocat --- ! |
---|
311 | END IF |
---|
312 | END IF |
---|
313 | ! |
---|
314 | write(numout,*) "RSRH icethd QQ for Jl",jl, kt; flush(numout) |
---|
315 | IF( ln_icedA ) CALL ice_thd_da ! --- lateral melting --- ! |
---|
316 | ! |
---|
317 | write(numout,*) "RSRH icethd RR for Jl",jl, kt; flush(numout) |
---|
318 | CALL ice_thd_1d2d( jl, 2 ) ! --- Change units of e_i, e_s from J/m3 to J/m2 --- ! |
---|
319 | ! ! --- & Move to 2D arrays --- ! |
---|
320 | write(numout,*) "RSRH icethd SS for Jl",jl, kt; flush(numout) |
---|
321 | ! |
---|
322 | IF( lk_mpp ) CALL mpp_comm_free( ncomm_ice ) !RB necessary ?? |
---|
323 | ENDIF |
---|
324 | ! |
---|
325 | END DO |
---|
326 | ! update ice age (in case a_i changed, i.e. becomes 0 or lateral melting) |
---|
327 | oa_i(:,:,:) = o_i(:,:,:) * a_i(:,:,:) |
---|
328 | |
---|
329 | IF( ln_icediachk ) CALL ice_cons_hsm(1, 'icethd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) |
---|
330 | write(numout,*) "RSRH icethd UU for Jl",jl, kt; flush(numout) |
---|
331 | ! |
---|
332 | CALL ice_var_zapsmall ! --- remove very small ice concentration (<1e-10) --- ! |
---|
333 | write(numout,*) "RSRH icethd VV for Jl",jl, kt; flush(numout) |
---|
334 | ! ! & make sure at_i=SUM(a_i) & ato_i=1 where at_i=0 |
---|
335 | ! |
---|
336 | IF( jpl > 1 ) CALL ice_itd_rem( kt ) ! --- Transport ice between thickness categories --- ! |
---|
337 | ! |
---|
338 | IF( ln_icedO ) CALL ice_thd_do ! --- frazil ice growing in leads --- ! |
---|
339 | ! |
---|
340 | ! controls |
---|
341 | IF( ln_icectl ) CALL ice_prt (kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ') ! prints |
---|
342 | IF( ln_ctl ) CALL ice_prt3D ('icethd') ! prints |
---|
343 | IF( nn_timing == 1 ) CALL timing_stop('icethd') ! timing |
---|
344 | ! |
---|
345 | END SUBROUTINE ice_thd |
---|
346 | |
---|
347 | |
---|
348 | SUBROUTINE ice_thd_temp |
---|
349 | !!----------------------------------------------------------------------- |
---|
350 | !! *** ROUTINE ice_thd_temp *** |
---|
351 | !! |
---|
352 | !! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy |
---|
353 | !! |
---|
354 | !! ** Method : Formula (Bitz and Lipscomb, 1999) |
---|
355 | !!------------------------------------------------------------------- |
---|
356 | INTEGER :: ji, jk ! dummy loop indices |
---|
357 | REAL(wp) :: ztmelts, zbbb, zccc ! local scalar |
---|
358 | !!------------------------------------------------------------------- |
---|
359 | ! Recover ice temperature |
---|
360 | DO jk = 1, nlay_i |
---|
361 | DO ji = 1, npti |
---|
362 | ztmelts = -tmut * sz_i_1d(ji,jk) |
---|
363 | ! Conversion q(S,T) -> T (second order equation) |
---|
364 | zbbb = ( rcp - cpic ) * ztmelts + e_i_1d(ji,jk) * r1_rhoic - lfus |
---|
365 | zccc = SQRT( MAX( zbbb * zbbb - 4._wp * cpic * lfus * ztmelts, 0._wp ) ) |
---|
366 | t_i_1d(ji,jk) = rt0 - ( zbbb + zccc ) * 0.5_wp * r1_cpic |
---|
367 | |
---|
368 | ! mask temperature |
---|
369 | rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - h_i_1d(ji) ) ) |
---|
370 | t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0 |
---|
371 | END DO |
---|
372 | END DO |
---|
373 | ! |
---|
374 | END SUBROUTINE ice_thd_temp |
---|
375 | |
---|
376 | |
---|
377 | SUBROUTINE ice_thd_lam |
---|
378 | !!----------------------------------------------------------------------- |
---|
379 | !! *** ROUTINE ice_thd_lam *** |
---|
380 | !! |
---|
381 | !! ** Purpose : Lateral melting in case monocategory |
---|
382 | !! ( dA = A/2h dh ) |
---|
383 | !!----------------------------------------------------------------------- |
---|
384 | INTEGER :: ji ! dummy loop indices |
---|
385 | REAL(wp) :: zhi_bef ! ice thickness before thermo |
---|
386 | REAL(wp) :: zdh_mel, zda_mel ! net melting |
---|
387 | REAL(wp) :: zvi, zvs ! ice/snow volumes |
---|
388 | !!----------------------------------------------------------------------- |
---|
389 | ! |
---|
390 | DO ji = 1, npti |
---|
391 | zdh_mel = MIN( 0._wp, dh_i_surf(ji) + dh_i_bott(ji) + dh_snowice(ji) + dh_i_sub(ji) ) |
---|
392 | IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN |
---|
393 | zvi = a_i_1d(ji) * h_i_1d(ji) |
---|
394 | zvs = a_i_1d(ji) * h_s_1d(ji) |
---|
395 | ! lateral melting = concentration change |
---|
396 | zhi_bef = h_i_1d(ji) - zdh_mel |
---|
397 | rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) ) |
---|
398 | zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) ) |
---|
399 | a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel ) |
---|
400 | ! adjust thickness |
---|
401 | h_i_1d(ji) = zvi / a_i_1d(ji) |
---|
402 | h_s_1d(ji) = zvs / a_i_1d(ji) |
---|
403 | ! retrieve total concentration |
---|
404 | at_i_1d(ji) = a_i_1d(ji) |
---|
405 | END IF |
---|
406 | END DO |
---|
407 | ! |
---|
408 | END SUBROUTINE ice_thd_lam |
---|
409 | |
---|
410 | |
---|
411 | SUBROUTINE ice_thd_1d2d( kl, kn ) |
---|
412 | !!----------------------------------------------------------------------- |
---|
413 | !! *** ROUTINE ice_thd_1d2d *** |
---|
414 | !! |
---|
415 | !! ** Purpose : move arrays from 1d to 2d and the reverse |
---|
416 | !!----------------------------------------------------------------------- |
---|
417 | INTEGER, INTENT(in) :: kl ! index of the ice category |
---|
418 | INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D ; 2= from 1D to 2D |
---|
419 | ! |
---|
420 | INTEGER :: jk ! dummy loop indices |
---|
421 | !!----------------------------------------------------------------------- |
---|
422 | ! |
---|
423 | SELECT CASE( kn ) |
---|
424 | ! !---------------------! |
---|
425 | CASE( 1 ) !== from 2D to 1D ==! |
---|
426 | ! !---------------------! |
---|
427 | CALL tab_2d_1d( npti, nptidx(1:npti), at_i_1d(1:npti), at_i ) |
---|
428 | CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,kl) ) |
---|
429 | CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,kl) ) |
---|
430 | CALL tab_2d_1d( npti, nptidx(1:npti), h_s_1d (1:npti), h_s (:,:,kl) ) |
---|
431 | CALL tab_2d_1d( npti, nptidx(1:npti), t_su_1d(1:npti), t_su(:,:,kl) ) |
---|
432 | CALL tab_2d_1d( npti, nptidx(1:npti), s_i_1d (1:npti), s_i (:,:,kl) ) |
---|
433 | DO jk = 1, nlay_s |
---|
434 | CALL tab_2d_1d( npti, nptidx(1:npti), t_s_1d(1:npti,jk), t_s(:,:,jk,kl) ) |
---|
435 | CALL tab_2d_1d( npti, nptidx(1:npti), e_s_1d(1:npti,jk), e_s(:,:,jk,kl) ) |
---|
436 | END DO |
---|
437 | DO jk = 1, nlay_i |
---|
438 | CALL tab_2d_1d( npti, nptidx(1:npti), t_i_1d (1:npti,jk), t_i (:,:,jk,kl) ) |
---|
439 | CALL tab_2d_1d( npti, nptidx(1:npti), e_i_1d (1:npti,jk), e_i (:,:,jk,kl) ) |
---|
440 | CALL tab_2d_1d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,kl) ) |
---|
441 | END DO |
---|
442 | CALL tab_2d_1d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,kl) ) |
---|
443 | CALL tab_2d_1d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,kl) ) |
---|
444 | CALL tab_2d_1d( npti, nptidx(1:npti), a_ip_frac_1d(1:npti), a_ip_frac(:,:,kl) ) |
---|
445 | ! |
---|
446 | CALL tab_2d_1d( npti, nptidx(1:npti), qprec_ice_1d(1:npti), qprec_ice ) |
---|
447 | CALL tab_2d_1d( npti, nptidx(1:npti), qsr_ice_1d (1:npti), qsr_ice (:,:,kl) ) |
---|
448 | CALL tab_2d_1d( npti, nptidx(1:npti), qns_ice_1d (1:npti), qns_ice (:,:,kl) ) |
---|
449 | CALL tab_2d_1d( npti, nptidx(1:npti), ftr_ice_1d (1:npti), ftr_ice (:,:,kl) ) |
---|
450 | CALL tab_2d_1d( npti, nptidx(1:npti), evap_ice_1d (1:npti), evap_ice(:,:,kl) ) |
---|
451 | CALL tab_2d_1d( npti, nptidx(1:npti), dqns_ice_1d (1:npti), dqns_ice(:,:,kl) ) |
---|
452 | CALL tab_2d_1d( npti, nptidx(1:npti), t_bo_1d (1:npti), t_bo ) |
---|
453 | CALL tab_2d_1d( npti, nptidx(1:npti), sprecip_1d (1:npti), sprecip ) |
---|
454 | CALL tab_2d_1d( npti, nptidx(1:npti), fhtur_1d (1:npti), fhtur ) |
---|
455 | CALL tab_2d_1d( npti, nptidx(1:npti), fhld_1d (1:npti), fhld ) |
---|
456 | |
---|
457 | CALL tab_2d_1d( npti, nptidx(1:npti), qml_ice_1d (1:npti), qml_ice (:,:,kl) ) |
---|
458 | CALL tab_2d_1d( npti, nptidx(1:npti), qcn_ice_1d (1:npti), qcn_ice (:,:,kl) ) |
---|
459 | CALL tab_2d_1d( npti, nptidx(1:npti), qsr_ice_tr_1d(1:npti), qsr_ice_tr (:,:,kl) ) |
---|
460 | ! |
---|
461 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sni_1d(1:npti), wfx_snw_sni ) |
---|
462 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
463 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sub_1d (1:npti), wfx_sub ) |
---|
464 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sub_1d(1:npti), wfx_snw_sub ) |
---|
465 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_ice_sub_1d(1:npti), wfx_ice_sub ) |
---|
466 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_err_sub_1d(1:npti), wfx_err_sub ) |
---|
467 | ! |
---|
468 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_bog_1d (1:npti), wfx_bog ) |
---|
469 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_bom_1d (1:npti), wfx_bom ) |
---|
470 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum ) |
---|
471 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sni_1d (1:npti), wfx_sni ) |
---|
472 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_res_1d (1:npti), wfx_res ) |
---|
473 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_spr_1d (1:npti), wfx_spr ) |
---|
474 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_lam_1d (1:npti), wfx_lam ) |
---|
475 | CALL tab_2d_1d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti), wfx_pnd ) |
---|
476 | ! |
---|
477 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bog_1d (1:npti), sfx_bog ) |
---|
478 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bom_1d (1:npti), sfx_bom ) |
---|
479 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sum_1d (1:npti), sfx_sum ) |
---|
480 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sni_1d (1:npti), sfx_sni ) |
---|
481 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bri_1d (1:npti), sfx_bri ) |
---|
482 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_res_1d (1:npti), sfx_res ) |
---|
483 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sub_1d (1:npti), sfx_sub ) |
---|
484 | CALL tab_2d_1d( npti, nptidx(1:npti), sfx_lam_1d (1:npti), sfx_lam ) |
---|
485 | ! |
---|
486 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_thd_1d (1:npti), hfx_thd ) |
---|
487 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_spr_1d (1:npti), hfx_spr ) |
---|
488 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_sum_1d (1:npti), hfx_sum ) |
---|
489 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_bom_1d (1:npti), hfx_bom ) |
---|
490 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_bog_1d (1:npti), hfx_bog ) |
---|
491 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_dif_1d (1:npti), hfx_dif ) |
---|
492 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_opw_1d (1:npti), hfx_opw ) |
---|
493 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_snw_1d (1:npti), hfx_snw ) |
---|
494 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_sub_1d (1:npti), hfx_sub ) |
---|
495 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_res_1d (1:npti), hfx_res ) |
---|
496 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_err_dif_1d(1:npti), hfx_err_dif ) |
---|
497 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_err_rem_1d(1:npti), hfx_err_rem ) |
---|
498 | CALL tab_2d_1d( npti, nptidx(1:npti), hfx_out_1d (1:npti), hfx_out ) |
---|
499 | ! |
---|
500 | ! SIMIP diagnostics |
---|
501 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_fc_bo_1d(1:npti), diag_fc_bo ) |
---|
502 | CALL tab_2d_1d( npti, nptidx(1:npti), diag_fc_su_1d(1:npti), diag_fc_su ) |
---|
503 | ! ocean surface fields |
---|
504 | CALL tab_2d_1d( npti, nptidx(1:npti), sst_1d(1:npti), sst_m ) |
---|
505 | CALL tab_2d_1d( npti, nptidx(1:npti), sss_1d(1:npti), sss_m ) |
---|
506 | |
---|
507 | ! --- Change units of e_i, e_s from J/m2 to J/m3 --- ! |
---|
508 | DO jk = 1, nlay_i |
---|
509 | WHERE( h_i_1d(1:npti)>0._wp ) e_i_1d(1:npti,jk) = e_i_1d(1:npti,jk) / (h_i_1d(1:npti) * a_i_1d(1:npti)) * nlay_i |
---|
510 | END DO |
---|
511 | DO jk = 1, nlay_s |
---|
512 | WHERE( h_s_1d(1:npti)>0._wp ) e_s_1d(1:npti,jk) = e_s_1d(1:npti,jk) / (h_s_1d(1:npti) * a_i_1d(1:npti)) * nlay_s |
---|
513 | END DO |
---|
514 | ! |
---|
515 | ! !---------------------! |
---|
516 | CASE( 2 ) !== from 1D to 2D ==! |
---|
517 | ! !---------------------! |
---|
518 | ! --- Change units of e_i, e_s from J/m3 to J/m2 --- ! |
---|
519 | DO jk = 1, nlay_i |
---|
520 | e_i_1d(1:npti,jk) = e_i_1d(1:npti,jk) * h_i_1d(1:npti) * a_i_1d(1:npti) * r1_nlay_i |
---|
521 | END DO |
---|
522 | DO jk = 1, nlay_s |
---|
523 | e_s_1d(1:npti,jk) = e_s_1d(1:npti,jk) * h_s_1d(1:npti) * a_i_1d(1:npti) * r1_nlay_s |
---|
524 | END DO |
---|
525 | ! |
---|
526 | ! Change thickness to volume (replaces routine ice_var_eqv2glo) |
---|
527 | v_i_1d (1:npti) = h_i_1d (1:npti) * a_i_1d (1:npti) |
---|
528 | v_s_1d (1:npti) = h_s_1d (1:npti) * a_i_1d (1:npti) |
---|
529 | sv_i_1d(1:npti) = s_i_1d (1:npti) * v_i_1d (1:npti) |
---|
530 | v_ip_1d(1:npti) = h_ip_1d(1:npti) * a_ip_1d(1:npti) |
---|
531 | |
---|
532 | CALL tab_1d_2d( npti, nptidx(1:npti), at_i_1d(1:npti), at_i ) |
---|
533 | CALL tab_1d_2d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,kl) ) |
---|
534 | CALL tab_1d_2d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,kl) ) |
---|
535 | CALL tab_1d_2d( npti, nptidx(1:npti), h_s_1d (1:npti), h_s (:,:,kl) ) |
---|
536 | CALL tab_1d_2d( npti, nptidx(1:npti), t_su_1d(1:npti), t_su(:,:,kl) ) |
---|
537 | CALL tab_1d_2d( npti, nptidx(1:npti), s_i_1d (1:npti), s_i (:,:,kl) ) |
---|
538 | DO jk = 1, nlay_s |
---|
539 | CALL tab_1d_2d( npti, nptidx(1:npti), t_s_1d(1:npti,jk), t_s(:,:,jk,kl) ) |
---|
540 | CALL tab_1d_2d( npti, nptidx(1:npti), e_s_1d(1:npti,jk), e_s(:,:,jk,kl) ) |
---|
541 | END DO |
---|
542 | DO jk = 1, nlay_i |
---|
543 | CALL tab_1d_2d( npti, nptidx(1:npti), t_i_1d (1:npti,jk), t_i (:,:,jk,kl) ) |
---|
544 | CALL tab_1d_2d( npti, nptidx(1:npti), e_i_1d (1:npti,jk), e_i (:,:,jk,kl) ) |
---|
545 | CALL tab_1d_2d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,kl) ) |
---|
546 | END DO |
---|
547 | CALL tab_1d_2d( npti, nptidx(1:npti), a_ip_1d (1:npti), a_ip (:,:,kl) ) |
---|
548 | CALL tab_1d_2d( npti, nptidx(1:npti), h_ip_1d (1:npti), h_ip (:,:,kl) ) |
---|
549 | CALL tab_1d_2d( npti, nptidx(1:npti), a_ip_frac_1d(1:npti), a_ip_frac(:,:,kl) ) |
---|
550 | ! |
---|
551 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sni_1d(1:npti), wfx_snw_sni ) |
---|
552 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum ) |
---|
553 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sub_1d (1:npti), wfx_sub ) |
---|
554 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sub_1d(1:npti), wfx_snw_sub ) |
---|
555 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_ice_sub_1d(1:npti), wfx_ice_sub ) |
---|
556 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_err_sub_1d(1:npti), wfx_err_sub ) |
---|
557 | ! |
---|
558 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_bog_1d (1:npti), wfx_bog ) |
---|
559 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_bom_1d (1:npti), wfx_bom ) |
---|
560 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum ) |
---|
561 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sni_1d (1:npti), wfx_sni ) |
---|
562 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_res_1d (1:npti), wfx_res ) |
---|
563 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_spr_1d (1:npti), wfx_spr ) |
---|
564 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_lam_1d (1:npti), wfx_lam ) |
---|
565 | CALL tab_1d_2d( npti, nptidx(1:npti), wfx_pnd_1d (1:npti), wfx_pnd ) |
---|
566 | ! |
---|
567 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bog_1d (1:npti), sfx_bog ) |
---|
568 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bom_1d (1:npti), sfx_bom ) |
---|
569 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sum_1d (1:npti), sfx_sum ) |
---|
570 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sni_1d (1:npti), sfx_sni ) |
---|
571 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bri_1d (1:npti), sfx_bri ) |
---|
572 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_res_1d (1:npti), sfx_res ) |
---|
573 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sub_1d (1:npti), sfx_sub ) |
---|
574 | CALL tab_1d_2d( npti, nptidx(1:npti), sfx_lam_1d (1:npti), sfx_lam ) |
---|
575 | ! |
---|
576 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_thd_1d (1:npti), hfx_thd ) |
---|
577 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_spr_1d (1:npti), hfx_spr ) |
---|
578 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_sum_1d (1:npti), hfx_sum ) |
---|
579 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_bom_1d (1:npti), hfx_bom ) |
---|
580 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_bog_1d (1:npti), hfx_bog ) |
---|
581 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_dif_1d (1:npti), hfx_dif ) |
---|
582 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_opw_1d (1:npti), hfx_opw ) |
---|
583 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_snw_1d (1:npti), hfx_snw ) |
---|
584 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_sub_1d (1:npti), hfx_sub ) |
---|
585 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_res_1d (1:npti), hfx_res ) |
---|
586 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_err_dif_1d(1:npti), hfx_err_dif ) |
---|
587 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_err_rem_1d(1:npti), hfx_err_rem ) |
---|
588 | CALL tab_1d_2d( npti, nptidx(1:npti), hfx_out_1d (1:npti), hfx_out ) |
---|
589 | ! |
---|
590 | CALL tab_1d_2d( npti, nptidx(1:npti), qns_ice_1d(1:npti), qns_ice(:,:,kl) ) |
---|
591 | CALL tab_1d_2d( npti, nptidx(1:npti), ftr_ice_1d(1:npti), ftr_ice(:,:,kl) ) |
---|
592 | ! effective conductivity (for Jules coupling) |
---|
593 | CALL tab_1d_2d( npti, nptidx(1:npti), cnd_ice_1d(1:npti), cnd_ice(:,:,kl) ) |
---|
594 | CALL tab_1d_2d( npti, nptidx(1:npti), t1_ice_1d (1:npti), t1_ice (:,:,kl) ) |
---|
595 | ! SIMIP diagnostics |
---|
596 | CALL tab_1d_2d( npti, nptidx(1:npti), t_si_1d (1:npti), t_si(:,:,kl) ) |
---|
597 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_fc_bo_1d(1:npti), diag_fc_bo ) |
---|
598 | CALL tab_1d_2d( npti, nptidx(1:npti), diag_fc_su_1d(1:npti), diag_fc_su ) |
---|
599 | ! extensive variables |
---|
600 | CALL tab_1d_2d( npti, nptidx(1:npti), v_i_1d (1:npti), v_i (:,:,kl) ) |
---|
601 | CALL tab_1d_2d( npti, nptidx(1:npti), v_s_1d (1:npti), v_s (:,:,kl) ) |
---|
602 | CALL tab_1d_2d( npti, nptidx(1:npti), sv_i_1d(1:npti), sv_i(:,:,kl) ) |
---|
603 | CALL tab_1d_2d( npti, nptidx(1:npti), v_ip_1d(1:npti), v_ip(:,:,kl) ) |
---|
604 | ! |
---|
605 | END SELECT |
---|
606 | ! |
---|
607 | END SUBROUTINE ice_thd_1d2d |
---|
608 | |
---|
609 | |
---|
610 | SUBROUTINE ice_thd_init |
---|
611 | !!------------------------------------------------------------------- |
---|
612 | !! *** ROUTINE ice_thd_init *** |
---|
613 | !! |
---|
614 | !! ** Purpose : Physical constants and parameters associated with |
---|
615 | !! ice thermodynamics |
---|
616 | !! |
---|
617 | !! ** Method : Read the namthd namelist and check the parameters |
---|
618 | !! called at the first timestep (nit000) |
---|
619 | !! |
---|
620 | !! ** input : Namelist namthd |
---|
621 | !!------------------------------------------------------------------- |
---|
622 | INTEGER :: ios ! Local integer output status for namelist read |
---|
623 | !! |
---|
624 | NAMELIST/namthd/ ln_icedH, ln_icedA, ln_icedO, ln_icedS |
---|
625 | !!------------------------------------------------------------------- |
---|
626 | ! |
---|
627 | REWIND( numnam_ice_ref ) ! Namelist namthd in reference namelist : Ice thermodynamics |
---|
628 | READ ( numnam_ice_ref, namthd, IOSTAT = ios, ERR = 901) |
---|
629 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd in reference namelist', lwp ) |
---|
630 | |
---|
631 | REWIND( numnam_ice_cfg ) ! Namelist namthd in configuration namelist : Ice thermodynamics |
---|
632 | READ ( numnam_ice_cfg, namthd, IOSTAT = ios, ERR = 902 ) |
---|
633 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd in configuration namelist', lwp ) |
---|
634 | IF(lwm) WRITE ( numoni, namthd ) |
---|
635 | ! |
---|
636 | ! |
---|
637 | IF(lwp) THEN ! control print |
---|
638 | WRITE(numout,*) 'ice_thd_init: Ice Thermodynamics' |
---|
639 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
640 | WRITE(numout,*) ' Namelist namthd:' |
---|
641 | WRITE(numout,*) ' activate ice thick change from top/bot (T) or not (F) ln_icedH = ', ln_icedH |
---|
642 | WRITE(numout,*) ' activate lateral melting (T) or not (F) ln_icedA = ', ln_icedA |
---|
643 | WRITE(numout,*) ' activate ice growth in open-water (T) or not (F) ln_icedO = ', ln_icedO |
---|
644 | WRITE(numout,*) ' activate gravity drainage and flushing (T) or not (F) ln_icedS = ', ln_icedS |
---|
645 | ENDIF |
---|
646 | ! |
---|
647 | CALL ice_thd_zdf_init ! set ice heat diffusion parameters |
---|
648 | IF( ln_icedA ) CALL ice_thd_da_init ! set ice lateral melting parameters |
---|
649 | IF( ln_icedO ) CALL ice_thd_do_init ! set ice growth in open water parameters |
---|
650 | CALL ice_thd_sal_init ! set ice salinity parameters |
---|
651 | CALL ice_thd_pnd_init ! set melt ponds parameters |
---|
652 | ! |
---|
653 | END SUBROUTINE ice_thd_init |
---|
654 | |
---|
655 | #else |
---|
656 | !!---------------------------------------------------------------------- |
---|
657 | !! Default option Dummy module NO ESIM sea-ice model |
---|
658 | !!---------------------------------------------------------------------- |
---|
659 | #endif |
---|
660 | |
---|
661 | !!====================================================================== |
---|
662 | END MODULE icethd |
---|