1 | MODULE icethd_zdf |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE icethd_zdf *** |
---|
4 | !! sea-ice: vertical heat diffusion in sea ice (computation of temperatures) |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 02-2003 (M. Vancoppenolle) original 1D code |
---|
7 | !! ! 06-2005 (M. Vancoppenolle) 3d version |
---|
8 | !! ! 11-2006 (X Fettweis) Vectorization by Xavier |
---|
9 | !! ! 04-2007 (M. Vancoppenolle) Energy conservation |
---|
10 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
11 | !! - ! 2012-05 (C. Rousset) add penetration solar flux |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | #if defined key_lim3 |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! 'key_lim3' ESIM sea-ice model |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE dom_oce ! ocean space and time domain |
---|
18 | USE phycst ! physical constants (ocean directory) |
---|
19 | USE ice ! sea-ice: variables |
---|
20 | USE ice1D ! sea-ice: thermodynamics variables |
---|
21 | ! |
---|
22 | USE in_out_manager ! I/O manager |
---|
23 | USE lib_mpp ! MPP library |
---|
24 | USE lib_fortran ! fortran utilities (glob_sum + no signed zero) |
---|
25 | |
---|
26 | IMPLICIT NONE |
---|
27 | PRIVATE |
---|
28 | |
---|
29 | PUBLIC ice_thd_zdf ! called by icethd |
---|
30 | PUBLIC ice_thd_zdf_init ! called by icestp |
---|
31 | |
---|
32 | !!** namelist (namthd_zdf) ** |
---|
33 | LOGICAL :: ln_zdf_BL99 ! Heat diffusion follows Bitz and Lipscomb (1999) |
---|
34 | LOGICAL :: ln_cndi_U64 ! thermal conductivity: Untersteiner (1964) |
---|
35 | LOGICAL :: ln_cndi_P07 ! thermal conductivity: Pringle et al (2007) |
---|
36 | REAL(wp) :: rn_kappa_i ! coef. for the extinction of radiation Grenfell et al. (2006) [1/m] |
---|
37 | REAL(wp), PUBLIC :: rn_cnd_s ! thermal conductivity of the snow [W/m/K] |
---|
38 | |
---|
39 | INTEGER :: nice_zdf ! Choice of the type of vertical heat diffusion formulation |
---|
40 | ! ! associated indices: |
---|
41 | INTEGER, PARAMETER :: np_BL99 = 1 ! Bitz and Lipscomb (1999) |
---|
42 | |
---|
43 | INTEGER , PARAMETER :: np_zdf_jules_OFF = 0 ! compute all temperatures from qsr and qns |
---|
44 | INTEGER , PARAMETER :: np_zdf_jules_SND = 1 ! compute conductive heat flux and surface temperature from qsr and qns |
---|
45 | INTEGER , PARAMETER :: np_zdf_jules_RCV = 2 ! compute snow and inner ice temperatures from qcnd |
---|
46 | |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! NEMO/ICE 4.0 , NEMO Consortium (2017) |
---|
49 | !! $Id: icethd_zdf.F90 8420 2017-08-08 12:18:46Z clem $ |
---|
50 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | CONTAINS |
---|
53 | |
---|
54 | SUBROUTINE ice_thd_zdf |
---|
55 | |
---|
56 | !! |
---|
57 | !!------------------------------------------------------------------- |
---|
58 | !! *** ROUTINE ice_thd_zdf *** |
---|
59 | !! ** Purpose : |
---|
60 | !! This chooses between the appropriate routine for the |
---|
61 | !! computation of vertical diffusion |
---|
62 | !! |
---|
63 | !!------------------------------------------------------------------- |
---|
64 | !! |
---|
65 | |
---|
66 | SELECT CASE ( nice_zdf ) ! Choose the vertical heat diffusion solver |
---|
67 | |
---|
68 | !------------- |
---|
69 | CASE( np_BL99 ) ! BL99 solver |
---|
70 | !------------- |
---|
71 | |
---|
72 | IF ( nice_jules == np_jules_OFF ) THEN ! No Jules coupler |
---|
73 | |
---|
74 | CALL ice_thd_zdf_BL99 ( np_zdf_jules_OFF ) |
---|
75 | |
---|
76 | ENDIF |
---|
77 | |
---|
78 | IF ( nice_jules == np_jules_EMULE ) THEN ! Jules coupler is emulated |
---|
79 | |
---|
80 | CALL ice_thd_zdf_BL99 ( np_zdf_jules_SND ) |
---|
81 | CALL ice_thd_zdf_BL99 ( np_zdf_jules_RCV ) |
---|
82 | |
---|
83 | ENDIF |
---|
84 | |
---|
85 | IF ( nice_jules == np_jules_ACTIVE ) THEN ! Jules coupler is emulated |
---|
86 | |
---|
87 | CALL ice_thd_zdf_BL99 ( np_zdf_jules_RCV ) |
---|
88 | |
---|
89 | ENDIF |
---|
90 | |
---|
91 | END SELECT |
---|
92 | |
---|
93 | END SUBROUTINE ice_thd_zdf |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | SUBROUTINE ice_thd_zdf_BL99(k_jules) |
---|
98 | !!------------------------------------------------------------------- |
---|
99 | !! *** ROUTINE ice_thd_zdf_BL99 *** |
---|
100 | !! ** Purpose : |
---|
101 | !! This routine determines the time evolution of snow and sea-ice |
---|
102 | !! temperature profiles, using the original Bitz and Lipscomb (1999) algorithm |
---|
103 | !! |
---|
104 | !! ** Method : |
---|
105 | !! This is done by solving the heat equation diffusion with |
---|
106 | !! a Neumann boundary condition at the surface and a Dirichlet one |
---|
107 | !! at the bottom. Solar radiation is partially absorbed into the ice. |
---|
108 | !! The specific heat and thermal conductivities depend on ice salinity |
---|
109 | !! and temperature to take into account brine pocket melting. The |
---|
110 | !! numerical |
---|
111 | !! scheme is an iterative Crank-Nicolson on a non-uniform multilayer grid |
---|
112 | !! in the ice and snow system. |
---|
113 | !! |
---|
114 | !! The successive steps of this routine are |
---|
115 | !! 1. initialization of ice-snow layers thicknesses |
---|
116 | !! 2. Internal absorbed and transmitted radiation |
---|
117 | !! Then iterative procedure begins |
---|
118 | !! 3. Thermal conductivity |
---|
119 | !! 4. Kappa factors |
---|
120 | !! 5. specific heat in the ice |
---|
121 | !! 6. eta factors |
---|
122 | !! 7. surface flux computation |
---|
123 | !! 8. tridiagonal system terms |
---|
124 | !! 9. solving the tridiagonal system with Gauss elimination |
---|
125 | !! Iterative procedure ends according to a criterion on evolution |
---|
126 | !! of temperature |
---|
127 | !! 10. Fluxes at the interfaces |
---|
128 | !! |
---|
129 | !! ** Inputs / Ouputs : (global commons) |
---|
130 | !! surface temperature : t_su_1d |
---|
131 | !! ice/snow temperatures : t_i_1d, t_s_1d |
---|
132 | !! ice salinities : sz_i_1d |
---|
133 | !! number of layers in the ice/snow: nlay_i, nlay_s |
---|
134 | !! total ice/snow thickness : h_i_1d, h_s_1d |
---|
135 | !!------------------------------------------------------------------- |
---|
136 | INTEGER, INTENT(in) :: k_jules ! Jules coupling (0=OFF, 1=RECEIVE, 2=SEND) |
---|
137 | |
---|
138 | INTEGER :: ji, jk ! spatial loop index |
---|
139 | INTEGER :: jm ! current reference number of equation |
---|
140 | INTEGER :: jm_mint, jm_maxt |
---|
141 | INTEGER :: iconv ! number of iterations in iterative procedure |
---|
142 | INTEGER :: iconv_max = 50 ! max number of iterations in iterative procedure |
---|
143 | |
---|
144 | INTEGER, DIMENSION(jpij) :: jm_min ! reference number of top equation |
---|
145 | INTEGER, DIMENSION(jpij) :: jm_max ! reference number of bottom equation |
---|
146 | |
---|
147 | REAL(wp) :: zg1s = 2._wp ! for the tridiagonal system |
---|
148 | REAL(wp) :: zg1 = 2._wp ! |
---|
149 | REAL(wp) :: zgamma = 18009._wp ! for specific heat |
---|
150 | REAL(wp) :: zbeta = 0.117_wp ! for thermal conductivity (could be 0.13) |
---|
151 | REAL(wp) :: zraext_s = 10._wp ! extinction coefficient of radiation in the snow |
---|
152 | REAL(wp) :: zkimin = 0.10_wp ! minimum ice thermal conductivity |
---|
153 | REAL(wp) :: ztsu_err = 1.e-5_wp ! range around which t_su is considered at 0C |
---|
154 | REAL(wp) :: zdti_bnd = 1.e-4_wp ! maximal authorized error on temperature |
---|
155 | REAL(wp) :: ztmelt_i ! ice melting temperature |
---|
156 | REAL(wp) :: zdti_max ! current maximal error on temperature |
---|
157 | REAL(wp) :: zcpi ! Ice specific heat |
---|
158 | REAL(wp) :: zhfx_err, zdq ! diag errors on heat |
---|
159 | REAL(wp) :: zfac ! dummy factor |
---|
160 | |
---|
161 | REAL(wp), DIMENSION(jpij) :: isnow ! switch for presence (1) or absence (0) of snow |
---|
162 | REAL(wp), DIMENSION(jpij) :: ztsub ! surface temperature at previous iteration |
---|
163 | REAL(wp), DIMENSION(jpij) :: zh_i, z1_h_i ! ice layer thickness |
---|
164 | REAL(wp), DIMENSION(jpij) :: zh_s, z1_h_s ! snow layer thickness |
---|
165 | REAL(wp), DIMENSION(jpij) :: zqns_ice_b ! solar radiation absorbed at the surface |
---|
166 | REAL(wp), DIMENSION(jpij) :: zfnet ! surface flux function |
---|
167 | REAL(wp), DIMENSION(jpij) :: zdqns_ice_b ! derivative of the surface flux function |
---|
168 | |
---|
169 | REAL(wp), DIMENSION(jpij ) :: ztsuold ! Old surface temperature in the ice |
---|
170 | REAL(wp), DIMENSION(jpij,nlay_i) :: ztiold ! Old temperature in the ice |
---|
171 | REAL(wp), DIMENSION(jpij,nlay_s) :: ztsold ! Old temperature in the snow |
---|
172 | REAL(wp), DIMENSION(jpij,nlay_i) :: ztib ! Temporary temperature in the ice to check the convergence |
---|
173 | REAL(wp), DIMENSION(jpij,nlay_s) :: ztsb ! Temporary temperature in the snow to check the convergence |
---|
174 | REAL(wp), DIMENSION(jpij,0:nlay_i) :: ztcond_i ! Ice thermal conductivity |
---|
175 | REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradtr_i ! Radiation transmitted through the ice |
---|
176 | REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradab_i ! Radiation absorbed in the ice |
---|
177 | REAL(wp), DIMENSION(jpij,0:nlay_i) :: zkappa_i ! Kappa factor in the ice |
---|
178 | REAL(wp), DIMENSION(jpij,0:nlay_i) :: zeta_i ! Eta factor in the ice |
---|
179 | REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradtr_s ! Radiation transmited through the snow |
---|
180 | REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradab_s ! Radiation absorbed in the snow |
---|
181 | REAL(wp), DIMENSION(jpij,0:nlay_s) :: zkappa_s ! Kappa factor in the snow |
---|
182 | REAL(wp), DIMENSION(jpij,0:nlay_s) :: zeta_s ! Eta factor in the snow |
---|
183 | REAL(wp), DIMENSION(jpij,nlay_i+3) :: zindterm ! 'Ind'ependent term |
---|
184 | REAL(wp), DIMENSION(jpij,nlay_i+3) :: zindtbis ! Temporary 'ind'ependent term |
---|
185 | REAL(wp), DIMENSION(jpij,nlay_i+3) :: zdiagbis ! Temporary 'dia'gonal term |
---|
186 | REAL(wp), DIMENSION(jpij,nlay_i+3,3) :: ztrid ! Tridiagonal system terms |
---|
187 | REAL(wp), DIMENSION(jpij) :: zq_ini ! diag errors on heat |
---|
188 | REAL(wp), DIMENSION(jpij) :: zghe ! G(he), th. conduct enhancement factor, mono-cat |
---|
189 | |
---|
190 | REAL(wp) :: zfr1, zfr2, zfrqsr_tr_i ! dummy factor |
---|
191 | |
---|
192 | ! Mono-category |
---|
193 | REAL(wp) :: zepsilon ! determines thres. above which computation of G(h) is done |
---|
194 | REAL(wp) :: zhe ! dummy factor |
---|
195 | REAL(wp) :: zcnd_i ! mean sea ice thermal conductivity |
---|
196 | !!------------------------------------------------------------------ |
---|
197 | |
---|
198 | ! --- diag error on heat diffusion - PART 1 --- ! |
---|
199 | DO ji = 1, npti |
---|
200 | zq_ini(ji) = ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + & |
---|
201 | & SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s ) |
---|
202 | END DO |
---|
203 | |
---|
204 | !------------------ |
---|
205 | ! 1) Initialization |
---|
206 | !------------------ |
---|
207 | DO ji = 1, npti |
---|
208 | isnow(ji)= 1._wp - MAX( 0._wp , SIGN(1._wp, - h_s_1d(ji) ) ) ! is there snow or not |
---|
209 | ! layer thickness |
---|
210 | zh_i(ji) = h_i_1d(ji) * r1_nlay_i |
---|
211 | zh_s(ji) = h_s_1d(ji) * r1_nlay_s |
---|
212 | END DO |
---|
213 | ! |
---|
214 | WHERE( zh_i(1:npti) >= epsi10 ) ; z1_h_i(1:npti) = 1._wp / zh_i(1:npti) |
---|
215 | ELSEWHERE ; z1_h_i(1:npti) = 0._wp |
---|
216 | END WHERE |
---|
217 | |
---|
218 | WHERE( zh_s(1:npti) >= epsi10 ) ; z1_h_s(1:npti) = 1._wp / zh_s(1:npti) |
---|
219 | ELSEWHERE ; z1_h_s(1:npti) = 0._wp |
---|
220 | END WHERE |
---|
221 | |
---|
222 | ! Store initial temperatures and non solar heat fluxes |
---|
223 | IF ( k_jules == np_zdf_jules_OFF .OR. k_jules == np_zdf_jules_SND ) THEN ! OFF or SND mode |
---|
224 | |
---|
225 | ztsub (1:npti) = t_su_1d(1:npti) ! surface temperature at iteration n-1 |
---|
226 | ztsuold(1:npti) = t_su_1d(1:npti) ! surface temperature initial value |
---|
227 | zdqns_ice_b(1:npti) = dqns_ice_1d(1:npti) ! derivative of incoming nonsolar flux |
---|
228 | zqns_ice_b (1:npti) = qns_ice_1d(1:npti) ! store previous qns_ice_1d value |
---|
229 | |
---|
230 | t_su_1d(1:npti) = MIN( t_su_1d(1:npti), rt0 - ztsu_err ) ! required to leave the choice between melting or not |
---|
231 | |
---|
232 | ENDIF |
---|
233 | |
---|
234 | ztsold (1:npti,:) = t_s_1d(1:npti,:) ! Old snow temperature |
---|
235 | ztiold (1:npti,:) = t_i_1d(1:npti,:) ! Old ice temperature |
---|
236 | |
---|
237 | !------------- |
---|
238 | ! 2) Radiation |
---|
239 | !------------- |
---|
240 | ! --- Transmission/absorption of solar radiation in the ice --- ! |
---|
241 | ! zfr1 = ( 0.18 * ( 1.0 - 0.81 ) + 0.35 * 0.81 ) ! standard value |
---|
242 | ! zfr2 = ( 0.82 * ( 1.0 - 0.81 ) + 0.65 * 0.81 ) ! zfr2 such that zfr1 + zfr2 to equal 1 |
---|
243 | |
---|
244 | ! DO ji = 1, npti |
---|
245 | |
---|
246 | ! zfac = MAX( 0._wp , 1._wp - ( h_i_1d(ji) * 10._wp ) ) |
---|
247 | |
---|
248 | ! zfrqsr_tr_i = zfr1 + zfac * zfr2 ! below 10 cm, linearly increase zfrqsr_tr_i until 1 at zero thickness |
---|
249 | ! IF ( h_s_1d(ji) >= 0.0_wp ) zfrqsr_tr_i = 0._wp ! snow fully opaque |
---|
250 | |
---|
251 | ! qsr_ice_tr_1d(ji) = zfrqsr_tr_i * qsr_ice_1d(ji) ! transmitted solar radiation |
---|
252 | |
---|
253 | ! zfsw(ji) = qsr_ice_1d(ji) - qsr_ice_tr_1d(ji) |
---|
254 | ! zftrice(ji) = qsr_ice_tr_1d(ji) |
---|
255 | ! i0(ji) = zfrqsr_tr_i |
---|
256 | |
---|
257 | ! END DO |
---|
258 | |
---|
259 | zradtr_s(1:npti,0) = qsr_ice_tr_1d(1:npti) |
---|
260 | DO jk = 1, nlay_s |
---|
261 | DO ji = 1, npti |
---|
262 | ! ! radiation transmitted below the layer-th snow layer |
---|
263 | zradtr_s(ji,jk) = zradtr_s(ji,0) * EXP( - zraext_s * zh_s(ji) * REAL(jk) ) |
---|
264 | ! ! radiation absorbed by the layer-th snow layer |
---|
265 | zradab_s(ji,jk) = zradtr_s(ji,jk-1) - zradtr_s(ji,jk) |
---|
266 | END DO |
---|
267 | END DO |
---|
268 | |
---|
269 | zradtr_i(1:npti,0) = zradtr_s(1:npti,nlay_s) * isnow(1:npti) + qsr_ice_tr_1d(1:npti) * ( 1._wp - isnow(1:npti) ) |
---|
270 | DO jk = 1, nlay_i |
---|
271 | DO ji = 1, npti |
---|
272 | ! ! radiation transmitted below the layer-th ice layer |
---|
273 | zradtr_i(ji,jk) = zradtr_i(ji,0) * EXP( - rn_kappa_i * zh_i(ji) * REAL(jk) ) |
---|
274 | ! ! radiation absorbed by the layer-th ice layer |
---|
275 | zradab_i(ji,jk) = zradtr_i(ji,jk-1) - zradtr_i(ji,jk) |
---|
276 | END DO |
---|
277 | END DO |
---|
278 | |
---|
279 | ftr_ice_1d(1:npti) = zradtr_i(1:npti,nlay_i) ! record radiation transmitted below the ice |
---|
280 | ! |
---|
281 | iconv = 0 ! number of iterations |
---|
282 | zdti_max = 1000._wp ! maximal value of error on all points |
---|
283 | ! !============================! |
---|
284 | DO WHILE ( zdti_max > zdti_bnd .AND. iconv < iconv_max ) ! Iterative procedure begins ! |
---|
285 | ! !============================! |
---|
286 | iconv = iconv + 1 |
---|
287 | ! |
---|
288 | ztib(1:npti,:) = t_i_1d(1:npti,:) |
---|
289 | ztsb(1:npti,:) = t_s_1d(1:npti,:) |
---|
290 | ! |
---|
291 | !-------------------------------- |
---|
292 | ! 3) Sea ice thermal conductivity |
---|
293 | !-------------------------------- |
---|
294 | IF( ln_cndi_U64 ) THEN !-- Untersteiner (1964) formula: k = k0 + beta.S/T |
---|
295 | ! |
---|
296 | DO ji = 1, npti |
---|
297 | ztcond_i(ji,0) = rcdic + zbeta * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 ) |
---|
298 | ztcond_i(ji,nlay_i) = rcdic + zbeta * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 ) |
---|
299 | END DO |
---|
300 | DO jk = 1, nlay_i-1 |
---|
301 | DO ji = 1, npti |
---|
302 | ztcond_i(ji,jk) = rcdic + zbeta * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / & |
---|
303 | & MIN( -epsi10, 0.5_wp * (t_i_1d(ji,jk) + t_i_1d(ji,jk+1)) - rt0 ) |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | ! |
---|
307 | ELSEIF( ln_cndi_P07 ) THEN !-- Pringle et al formula: k = k0 + beta1.S/T - beta2.T |
---|
308 | ! |
---|
309 | DO ji = 1, npti |
---|
310 | ztcond_i(ji,0) = rcdic + 0.09_wp * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 ) & |
---|
311 | & - 0.011_wp * ( t_i_1d(ji,1) - rt0 ) |
---|
312 | ztcond_i(ji,nlay_i) = rcdic + 0.09_wp * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 ) & |
---|
313 | & - 0.011_wp * ( t_bo_1d(ji) - rt0 ) |
---|
314 | END DO |
---|
315 | DO jk = 1, nlay_i-1 |
---|
316 | DO ji = 1, npti |
---|
317 | ztcond_i(ji,jk) = rcdic + 0.09_wp * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / & |
---|
318 | & MIN( -epsi10, 0.5_wp * (t_i_1d(ji,jk) + t_i_1d(ji,jk+1)) - rt0 ) & |
---|
319 | & - 0.011_wp * ( 0.5_wp * (t_i_1d(ji,jk) + t_i_1d(ji,jk+1)) - rt0 ) |
---|
320 | END DO |
---|
321 | END DO |
---|
322 | ! |
---|
323 | ENDIF |
---|
324 | ztcond_i(1:npti,:) = MAX( zkimin, ztcond_i(1:npti,:) ) |
---|
325 | ! |
---|
326 | !--- G(he) : enhancement of thermal conductivity in mono-category case |
---|
327 | ! Computation of effective thermal conductivity G(h) |
---|
328 | ! Used in mono-category case only to simulate an ITD implicitly |
---|
329 | ! Fichefet and Morales Maqueda, JGR 1997 |
---|
330 | zghe(1:npti) = 1._wp |
---|
331 | ! |
---|
332 | SELECT CASE ( nn_monocat ) |
---|
333 | |
---|
334 | CASE ( 1 , 3 ) |
---|
335 | |
---|
336 | zepsilon = 0.1_wp |
---|
337 | DO ji = 1, npti |
---|
338 | zcnd_i = SUM( ztcond_i(ji,:) ) / REAL( nlay_i+1, wp ) ! Mean sea ice thermal conductivity |
---|
339 | zhe = ( rn_cnd_s * h_i_1d(ji) + zcnd_i * h_s_1d(ji) ) / ( rn_cnd_s + zcnd_i ) ! Effective thickness he (zhe) |
---|
340 | IF( zhe >= zepsilon * 0.5_wp * EXP(1._wp) ) THEN |
---|
341 | zghe(ji) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( 2._wp * zhe / zepsilon ) ) ) ! G(he) |
---|
342 | ENDIF |
---|
343 | END DO |
---|
344 | |
---|
345 | END SELECT |
---|
346 | ! |
---|
347 | !----------------- |
---|
348 | ! 4) kappa factors |
---|
349 | !----------------- |
---|
350 | !--- Snow |
---|
351 | DO jk = 0, nlay_s-1 |
---|
352 | DO ji = 1, npti |
---|
353 | zkappa_s(ji,jk) = zghe(ji) * rn_cnd_s * z1_h_s(ji) |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | DO ji = 1, npti ! Snow-ice interface |
---|
357 | zfac = 0.5_wp * ( ztcond_i(ji,0) * zh_s(ji) + rn_cnd_s * zh_i(ji) ) |
---|
358 | IF( zfac > epsi10 ) THEN |
---|
359 | zkappa_s(ji,nlay_s) = zghe(ji) * rn_cnd_s * ztcond_i(ji,0) / zfac |
---|
360 | ELSE |
---|
361 | zkappa_s(ji,nlay_s) = 0._wp |
---|
362 | ENDIF |
---|
363 | END DO |
---|
364 | |
---|
365 | !--- Ice |
---|
366 | DO jk = 0, nlay_i |
---|
367 | DO ji = 1, npti |
---|
368 | zkappa_i(ji,jk) = zghe(ji) * ztcond_i(ji,jk) * z1_h_i(ji) |
---|
369 | END DO |
---|
370 | END DO |
---|
371 | DO ji = 1, npti ! Snow-ice interface |
---|
372 | zkappa_i(ji,0) = zkappa_s(ji,nlay_s) * isnow(ji) + zkappa_i(ji,0) * ( 1._wp - isnow(ji) ) |
---|
373 | END DO |
---|
374 | ! |
---|
375 | !-------------------------------------- |
---|
376 | ! 5) Sea ice specific heat, eta factors |
---|
377 | !-------------------------------------- |
---|
378 | DO jk = 1, nlay_i |
---|
379 | DO ji = 1, npti |
---|
380 | zcpi = cpic + zgamma * sz_i_1d(ji,jk) / MAX( ( t_i_1d(ji,jk) - rt0 ) * ( ztiold(ji,jk) - rt0 ), epsi10 ) |
---|
381 | zeta_i(ji,jk) = rdt_ice * r1_rhoic * z1_h_i(ji) / MAX( epsi10, zcpi ) |
---|
382 | END DO |
---|
383 | END DO |
---|
384 | |
---|
385 | DO jk = 1, nlay_s |
---|
386 | DO ji = 1, npti |
---|
387 | zeta_s(ji,jk) = rdt_ice * r1_rhosn * r1_cpic * z1_h_s(ji) |
---|
388 | END DO |
---|
389 | END DO |
---|
390 | |
---|
391 | ! |
---|
392 | !----------------------------------------! |
---|
393 | ! ! |
---|
394 | ! JULES IF (OFF or SND MODE) ! |
---|
395 | ! ! |
---|
396 | !----------------------------------------! |
---|
397 | ! |
---|
398 | |
---|
399 | IF ( k_jules == np_zdf_jules_OFF .OR. k_jules == np_zdf_jules_SND ) THEN ! OFF or SND mode |
---|
400 | |
---|
401 | ! |
---|
402 | ! In OFF mode the original BL99 temperature computation is used |
---|
403 | ! (with qsr_ice, qns_ice and dqns_ice as inputs) |
---|
404 | ! |
---|
405 | ! In SND mode, the computation is required to compute the conduction fluxes |
---|
406 | ! |
---|
407 | |
---|
408 | !---------------------------- |
---|
409 | ! 6) surface flux computation |
---|
410 | !---------------------------- |
---|
411 | |
---|
412 | DO ji = 1, npti |
---|
413 | ! update of the non solar flux according to the update in T_su |
---|
414 | qns_ice_1d(ji) = qns_ice_1d(ji) + dqns_ice_1d(ji) * ( t_su_1d(ji) - ztsub(ji) ) |
---|
415 | END DO |
---|
416 | |
---|
417 | DO ji = 1, npti |
---|
418 | zfnet(ji) = qsr_ice_1d(ji) - qsr_ice_tr_1d(ji) + qns_ice_1d(ji) ! net heat flux = net solar - transmitted solar + non solar |
---|
419 | END DO |
---|
420 | ! |
---|
421 | !---------------------------- |
---|
422 | ! 7) tridiagonal system terms |
---|
423 | !---------------------------- |
---|
424 | !!layer denotes the number of the layer in the snow or in the ice |
---|
425 | !!jm denotes the reference number of the equation in the tridiagonal |
---|
426 | !!system, terms of tridiagonal system are indexed as following : |
---|
427 | !!1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one |
---|
428 | |
---|
429 | !!ice interior terms (top equation has the same form as the others) |
---|
430 | ztrid (1:npti,:,:) = 0._wp |
---|
431 | zindterm(1:npti,:) = 0._wp |
---|
432 | zindtbis(1:npti,:) = 0._wp |
---|
433 | zdiagbis(1:npti,:) = 0._wp |
---|
434 | |
---|
435 | DO jm = nlay_s + 2, nlay_s + nlay_i |
---|
436 | DO ji = 1, npti |
---|
437 | jk = jm - nlay_s - 1 |
---|
438 | ztrid(ji,jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1) |
---|
439 | ztrid(ji,jm,2) = 1.0 + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) ) |
---|
440 | ztrid(ji,jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk) |
---|
441 | zindterm(ji,jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk) |
---|
442 | END DO |
---|
443 | ENDDO |
---|
444 | |
---|
445 | jm = nlay_s + nlay_i + 1 |
---|
446 | DO ji = 1, npti |
---|
447 | !!ice bottom term |
---|
448 | ztrid(ji,jm,1) = - zeta_i(ji,nlay_i)*zkappa_i(ji,nlay_i-1) |
---|
449 | ztrid(ji,jm,2) = 1.0 + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i) * zg1 + zkappa_i(ji,nlay_i-1) ) |
---|
450 | ztrid(ji,jm,3) = 0.0 |
---|
451 | zindterm(ji,jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * & |
---|
452 | & ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) ) |
---|
453 | ENDDO |
---|
454 | |
---|
455 | |
---|
456 | DO ji = 1, npti |
---|
457 | ! !---------------------! |
---|
458 | IF ( h_s_1d(ji) > 0.0 ) THEN ! snow-covered cells ! |
---|
459 | ! !---------------------! |
---|
460 | ! snow interior terms (bottom equation has the same form as the others) |
---|
461 | DO jm = 3, nlay_s + 1 |
---|
462 | jk = jm - 1 |
---|
463 | ztrid(ji,jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1) |
---|
464 | ztrid(ji,jm,2) = 1.0 + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) ) |
---|
465 | ztrid(ji,jm,3) = - zeta_s(ji,jk)*zkappa_s(ji,jk) |
---|
466 | zindterm(ji,jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk) |
---|
467 | END DO |
---|
468 | |
---|
469 | ! case of only one layer in the ice (ice equation is altered) |
---|
470 | IF ( nlay_i == 1 ) THEN |
---|
471 | ztrid(ji,nlay_s+2,3) = 0.0 |
---|
472 | zindterm(ji,nlay_s+2) = zindterm(ji,nlay_s+2) + zkappa_i(ji,1) * t_bo_1d(ji) |
---|
473 | ENDIF |
---|
474 | |
---|
475 | IF ( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting |
---|
476 | |
---|
477 | jm_min(ji) = 1 |
---|
478 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
479 | |
---|
480 | ! surface equation |
---|
481 | ztrid(ji,1,1) = 0.0 |
---|
482 | ztrid(ji,1,2) = zdqns_ice_b(ji) - zg1s * zkappa_s(ji,0) |
---|
483 | ztrid(ji,1,3) = zg1s * zkappa_s(ji,0) |
---|
484 | zindterm(ji,1) = zdqns_ice_b(ji) * t_su_1d(ji) - zfnet(ji) |
---|
485 | |
---|
486 | ! first layer of snow equation |
---|
487 | ztrid(ji,2,1) = - zkappa_s(ji,0) * zg1s * zeta_s(ji,1) |
---|
488 | ztrid(ji,2,2) = 1.0 + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s ) |
---|
489 | ztrid(ji,2,3) = - zeta_s(ji,1)* zkappa_s(ji,1) |
---|
490 | zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * zradab_s(ji,1) |
---|
491 | |
---|
492 | ELSE !-- case 2 : surface is melting |
---|
493 | ! |
---|
494 | jm_min(ji) = 2 |
---|
495 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
496 | |
---|
497 | ! first layer of snow equation |
---|
498 | ztrid(ji,2,1) = 0.0 |
---|
499 | ztrid(ji,2,2) = 1.0 + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s ) |
---|
500 | ztrid(ji,2,3) = - zeta_s(ji,1)*zkappa_s(ji,1) |
---|
501 | zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * & |
---|
502 | & ( zradab_s(ji,1) + zkappa_s(ji,0) * zg1s * t_su_1d(ji) ) |
---|
503 | ENDIF |
---|
504 | ! !---------------------! |
---|
505 | ELSE ! cells without snow ! |
---|
506 | ! !---------------------! |
---|
507 | ! |
---|
508 | IF ( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting |
---|
509 | ! |
---|
510 | jm_min(ji) = nlay_s + 1 |
---|
511 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
512 | |
---|
513 | ! surface equation |
---|
514 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
515 | ztrid(ji,jm_min(ji),2) = zdqns_ice_b(ji) - zkappa_i(ji,0)*zg1 |
---|
516 | ztrid(ji,jm_min(ji),3) = zkappa_i(ji,0)*zg1 |
---|
517 | zindterm(ji,jm_min(ji)) = zdqns_ice_b(ji)*t_su_1d(ji) - zfnet(ji) |
---|
518 | |
---|
519 | ! first layer of ice equation |
---|
520 | ztrid(ji,jm_min(ji)+1,1) = - zkappa_i(ji,0) * zg1 * zeta_i(ji,1) |
---|
521 | ztrid(ji,jm_min(ji)+1,2) = 1.0 + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 ) |
---|
522 | ztrid(ji,jm_min(ji)+1,3) = - zeta_i(ji,1) * zkappa_i(ji,1) |
---|
523 | zindterm(ji,jm_min(ji)+1) = ztiold(ji,1) + zeta_i(ji,1) * zradab_i(ji,1) |
---|
524 | |
---|
525 | ! case of only one layer in the ice (surface & ice equations are altered) |
---|
526 | IF ( nlay_i == 1 ) THEN |
---|
527 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
528 | ztrid(ji,jm_min(ji),2) = zdqns_ice_b(ji) - zkappa_i(ji,0) * 2.0 |
---|
529 | ztrid(ji,jm_min(ji),3) = zkappa_i(ji,0) * 2.0 |
---|
530 | ztrid(ji,jm_min(ji)+1,1) = -zkappa_i(ji,0) * 2.0 * zeta_i(ji,1) |
---|
531 | ztrid(ji,jm_min(ji)+1,2) = 1.0 + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2.0 + zkappa_i(ji,1) ) |
---|
532 | ztrid(ji,jm_min(ji)+1,3) = 0.0 |
---|
533 | zindterm(ji,jm_min(ji)+1) = ztiold(ji,1) + zeta_i(ji,1) * & |
---|
534 | & ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) ) |
---|
535 | ENDIF |
---|
536 | |
---|
537 | ELSE !-- case 2 : surface is melting |
---|
538 | |
---|
539 | jm_min(ji) = nlay_s + 2 |
---|
540 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
541 | |
---|
542 | ! first layer of ice equation |
---|
543 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
544 | ztrid(ji,jm_min(ji),2) = 1.0 + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 ) |
---|
545 | ztrid(ji,jm_min(ji),3) = - zeta_i(ji,1) * zkappa_i(ji,1) |
---|
546 | zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * & |
---|
547 | & ( zradab_i(ji,1) + zkappa_i(ji,0) * zg1 * t_su_1d(ji) ) |
---|
548 | |
---|
549 | ! case of only one layer in the ice (surface & ice equations are altered) |
---|
550 | IF ( nlay_i == 1 ) THEN |
---|
551 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
552 | ztrid(ji,jm_min(ji),2) = 1.0 + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2.0 + zkappa_i(ji,1) ) |
---|
553 | ztrid(ji,jm_min(ji),3) = 0.0 |
---|
554 | zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) ) & |
---|
555 | & + t_su_1d(ji) * zeta_i(ji,1) * zkappa_i(ji,0) * 2.0 |
---|
556 | ENDIF |
---|
557 | |
---|
558 | ENDIF |
---|
559 | ENDIF |
---|
560 | ! |
---|
561 | zindtbis(ji,jm_min(ji)) = zindterm(ji,jm_min(ji)) |
---|
562 | zdiagbis(ji,jm_min(ji)) = ztrid(ji,jm_min(ji),2) |
---|
563 | ! |
---|
564 | END DO |
---|
565 | ! |
---|
566 | !------------------------------ |
---|
567 | ! 8) tridiagonal system solving |
---|
568 | !------------------------------ |
---|
569 | ! Solve the tridiagonal system with Gauss elimination method. |
---|
570 | ! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984 |
---|
571 | jm_maxt = 0 |
---|
572 | jm_mint = nlay_i+5 |
---|
573 | DO ji = 1, npti |
---|
574 | jm_mint = MIN(jm_min(ji),jm_mint) |
---|
575 | jm_maxt = MAX(jm_max(ji),jm_maxt) |
---|
576 | END DO |
---|
577 | |
---|
578 | DO jk = jm_mint+1, jm_maxt |
---|
579 | DO ji = 1, npti |
---|
580 | jm = min(max(jm_min(ji)+1,jk),jm_max(ji)) |
---|
581 | zdiagbis(ji,jm) = ztrid(ji,jm,2) - ztrid(ji,jm,1) * ztrid(ji,jm-1,3) / zdiagbis(ji,jm-1) |
---|
582 | zindtbis(ji,jm) = zindterm(ji,jm) - ztrid(ji,jm,1) * zindtbis(ji,jm-1) / zdiagbis(ji,jm-1) |
---|
583 | END DO |
---|
584 | END DO |
---|
585 | |
---|
586 | DO ji = 1, npti |
---|
587 | ! ice temperatures |
---|
588 | t_i_1d(ji,nlay_i) = zindtbis(ji,jm_max(ji)) / zdiagbis(ji,jm_max(ji)) |
---|
589 | END DO |
---|
590 | |
---|
591 | DO jm = nlay_i + nlay_s, nlay_s + 2, -1 |
---|
592 | DO ji = 1, npti |
---|
593 | jk = jm - nlay_s - 1 |
---|
594 | t_i_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(ji,jm) |
---|
595 | END DO |
---|
596 | END DO |
---|
597 | |
---|
598 | DO ji = 1, npti |
---|
599 | ! snow temperatures |
---|
600 | IF( h_s_1d(ji) > 0._wp ) THEN |
---|
601 | t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) & |
---|
602 | & / zdiagbis(ji,nlay_s+1) |
---|
603 | ENDIF |
---|
604 | ! surface temperature |
---|
605 | ztsub(ji) = t_su_1d(ji) |
---|
606 | IF( t_su_1d(ji) < rt0 ) THEN |
---|
607 | t_su_1d(ji) = ( zindtbis(ji,jm_min(ji)) - ztrid(ji,jm_min(ji),3) * & |
---|
608 | & ( isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1) ) ) / zdiagbis(ji,jm_min(ji)) |
---|
609 | ENDIF |
---|
610 | END DO |
---|
611 | ! |
---|
612 | !-------------------------------------------------------------- |
---|
613 | ! 9) Has the scheme converged ?, end of the iterative procedure |
---|
614 | !-------------------------------------------------------------- |
---|
615 | ! check that nowhere it has started to melt |
---|
616 | ! zdti_max is a measure of error, it has to be under zdti_bnd |
---|
617 | zdti_max = 0._wp |
---|
618 | DO ji = 1, npti |
---|
619 | t_su_1d(ji) = MAX( MIN( t_su_1d(ji) , rt0 ) , rt0 - 100._wp ) |
---|
620 | zdti_max = MAX( zdti_max, ABS( t_su_1d(ji) - ztsub(ji) ) ) |
---|
621 | END DO |
---|
622 | |
---|
623 | DO jk = 1, nlay_s |
---|
624 | DO ji = 1, npti |
---|
625 | t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp ) |
---|
626 | zdti_max = MAX( zdti_max, ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) ) |
---|
627 | END DO |
---|
628 | END DO |
---|
629 | |
---|
630 | DO jk = 1, nlay_i |
---|
631 | DO ji = 1, npti |
---|
632 | ztmelt_i = -tmut * sz_i_1d(ji,jk) + rt0 |
---|
633 | t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelt_i ), rt0 - 100._wp ) |
---|
634 | zdti_max = MAX( zdti_max, ABS( t_i_1d(ji,jk) - ztib(ji,jk) ) ) |
---|
635 | END DO |
---|
636 | END DO |
---|
637 | |
---|
638 | ! Compute spatial maximum over all errors |
---|
639 | ! note that this could be optimized substantially by iterating only the non-converging points |
---|
640 | IF( lk_mpp ) CALL mpp_max( zdti_max, kcom=ncomm_ice ) |
---|
641 | ! |
---|
642 | !----------------------------------------! |
---|
643 | ! ! |
---|
644 | ! JULES IF (RCV MODE) ! |
---|
645 | ! ! |
---|
646 | !----------------------------------------! |
---|
647 | ! |
---|
648 | |
---|
649 | ELSE IF ( k_jules == np_zdf_jules_RCV ) THEN ! RCV mode |
---|
650 | |
---|
651 | ! |
---|
652 | ! In RCV mode, we use a modified BL99 solver |
---|
653 | ! with conduction flux (qcn_ice) as forcing term |
---|
654 | ! |
---|
655 | !---------------------------- |
---|
656 | ! 7) tridiagonal system terms |
---|
657 | !---------------------------- |
---|
658 | !!layer denotes the number of the layer in the snow or in the ice |
---|
659 | !!jm denotes the reference number of the equation in the tridiagonal |
---|
660 | !!system, terms of tridiagonal system are indexed as following : |
---|
661 | !!1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one |
---|
662 | |
---|
663 | !!ice interior terms (top equation has the same form as the others) |
---|
664 | ztrid (1:npti,:,:) = 0._wp |
---|
665 | zindterm(1:npti,:) = 0._wp |
---|
666 | zindtbis(1:npti,:) = 0._wp |
---|
667 | zdiagbis(1:npti,:) = 0._wp |
---|
668 | |
---|
669 | DO jm = nlay_s + 2, nlay_s + nlay_i |
---|
670 | DO ji = 1, npti |
---|
671 | jk = jm - nlay_s - 1 |
---|
672 | ztrid(ji,jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1) |
---|
673 | ztrid(ji,jm,2) = 1.0 + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) ) |
---|
674 | ztrid(ji,jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk) |
---|
675 | zindterm(ji,jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk) |
---|
676 | END DO |
---|
677 | ENDDO |
---|
678 | |
---|
679 | jm = nlay_s + nlay_i + 1 |
---|
680 | DO ji = 1, npti |
---|
681 | !!ice bottom term |
---|
682 | ztrid(ji,jm,1) = - zeta_i(ji,nlay_i)*zkappa_i(ji,nlay_i-1) |
---|
683 | ztrid(ji,jm,2) = 1.0 + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i) * zg1 + zkappa_i(ji,nlay_i-1) ) |
---|
684 | ztrid(ji,jm,3) = 0.0 |
---|
685 | zindterm(ji,jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * & |
---|
686 | & ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) ) |
---|
687 | ENDDO |
---|
688 | |
---|
689 | |
---|
690 | DO ji = 1, npti |
---|
691 | ! !---------------------! |
---|
692 | IF ( h_s_1d(ji) > 0.0 ) THEN ! snow-covered cells ! |
---|
693 | ! !---------------------! |
---|
694 | ! snow interior terms (bottom equation has the same form as the others) |
---|
695 | DO jm = 3, nlay_s + 1 |
---|
696 | jk = jm - 1 |
---|
697 | ztrid(ji,jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1) |
---|
698 | ztrid(ji,jm,2) = 1.0 + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) ) |
---|
699 | ztrid(ji,jm,3) = - zeta_s(ji,jk)*zkappa_s(ji,jk) |
---|
700 | zindterm(ji,jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk) |
---|
701 | END DO |
---|
702 | |
---|
703 | ! case of only one layer in the ice (ice equation is altered) |
---|
704 | IF ( nlay_i == 1 ) THEN |
---|
705 | ztrid(ji,nlay_s+2,3) = 0.0 |
---|
706 | zindterm(ji,nlay_s+2) = zindterm(ji,nlay_s+2) + zkappa_i(ji,1) * t_bo_1d(ji) |
---|
707 | ENDIF |
---|
708 | |
---|
709 | jm_min(ji) = 2 |
---|
710 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
711 | |
---|
712 | ! first layer of snow equation |
---|
713 | ztrid(ji,2,1) = 0.0 |
---|
714 | ztrid(ji,2,2) = 1.0 + zeta_s(ji,1) * zkappa_s(ji,1) |
---|
715 | ztrid(ji,2,3) = - zeta_s(ji,1)*zkappa_s(ji,1) |
---|
716 | zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * & |
---|
717 | & ( zradab_s(ji,1) + qcn_ice_1d(ji) ) |
---|
718 | |
---|
719 | ! !---------------------! |
---|
720 | ELSE ! cells without snow ! |
---|
721 | ! !---------------------! |
---|
722 | |
---|
723 | jm_min(ji) = nlay_s + 2 |
---|
724 | jm_max(ji) = nlay_i + nlay_s + 1 |
---|
725 | |
---|
726 | ! first layer of ice equation |
---|
727 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
728 | ztrid(ji,jm_min(ji),2) = 1.0 + zeta_i(ji,1) * zkappa_i(ji,1) |
---|
729 | ztrid(ji,jm_min(ji),3) = - zeta_i(ji,1) * zkappa_i(ji,1) |
---|
730 | zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * & |
---|
731 | & ( zradab_i(ji,1) + qcn_ice_1d(ji) ) |
---|
732 | |
---|
733 | ! case of only one layer in the ice (surface & ice equations are altered) |
---|
734 | IF ( nlay_i == 1 ) THEN |
---|
735 | ztrid(ji,jm_min(ji),1) = 0.0 |
---|
736 | ztrid(ji,jm_min(ji),2) = 1.0 + zeta_i(ji,1) * zkappa_i(ji,1) |
---|
737 | ztrid(ji,jm_min(ji),3) = 0.0 |
---|
738 | zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) & |
---|
739 | & + qcn_ice_1d(ji) ) |
---|
740 | |
---|
741 | ENDIF |
---|
742 | |
---|
743 | ENDIF |
---|
744 | ! |
---|
745 | zindtbis(ji,jm_min(ji)) = zindterm(ji,jm_min(ji)) |
---|
746 | zdiagbis(ji,jm_min(ji)) = ztrid(ji,jm_min(ji),2) |
---|
747 | ! |
---|
748 | END DO |
---|
749 | ! |
---|
750 | !------------------------------ |
---|
751 | ! 8) tridiagonal system solving |
---|
752 | !------------------------------ |
---|
753 | ! Solve the tridiagonal system with Gauss elimination method. |
---|
754 | ! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984 |
---|
755 | jm_maxt = 0 |
---|
756 | jm_mint = nlay_i+5 |
---|
757 | DO ji = 1, npti |
---|
758 | jm_mint = MIN(jm_min(ji),jm_mint) |
---|
759 | jm_maxt = MAX(jm_max(ji),jm_maxt) |
---|
760 | END DO |
---|
761 | |
---|
762 | DO jk = jm_mint+1, jm_maxt |
---|
763 | DO ji = 1, npti |
---|
764 | jm = min(max(jm_min(ji)+1,jk),jm_max(ji)) |
---|
765 | zdiagbis(ji,jm) = ztrid(ji,jm,2) - ztrid(ji,jm,1) * ztrid(ji,jm-1,3) / zdiagbis(ji,jm-1) |
---|
766 | zindtbis(ji,jm) = zindterm(ji,jm) - ztrid(ji,jm,1) * zindtbis(ji,jm-1) / zdiagbis(ji,jm-1) |
---|
767 | END DO |
---|
768 | END DO |
---|
769 | |
---|
770 | DO ji = 1, npti |
---|
771 | ! ice temperatures |
---|
772 | t_i_1d(ji,nlay_i) = zindtbis(ji,jm_max(ji)) / zdiagbis(ji,jm_max(ji)) |
---|
773 | END DO |
---|
774 | |
---|
775 | DO jm = nlay_i + nlay_s, nlay_s + 2, -1 |
---|
776 | DO ji = 1, npti |
---|
777 | jk = jm - nlay_s - 1 |
---|
778 | t_i_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(ji,jm) |
---|
779 | END DO |
---|
780 | END DO |
---|
781 | |
---|
782 | DO ji = 1, npti |
---|
783 | ! snow temperatures |
---|
784 | IF( h_s_1d(ji) > 0._wp ) THEN |
---|
785 | t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) & |
---|
786 | & / zdiagbis(ji,nlay_s+1) |
---|
787 | ENDIF |
---|
788 | END DO |
---|
789 | ! |
---|
790 | !-------------------------------------------------------------- |
---|
791 | ! 9) Has the scheme converged ?, end of the iterative procedure |
---|
792 | !-------------------------------------------------------------- |
---|
793 | ! check that nowhere it has started to melt |
---|
794 | ! zdti_max is a measure of error, it has to be under zdti_bnd |
---|
795 | zdti_max = 0._wp |
---|
796 | |
---|
797 | DO jk = 1, nlay_s |
---|
798 | DO ji = 1, npti |
---|
799 | t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp ) |
---|
800 | zdti_max = MAX( zdti_max, ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) ) |
---|
801 | END DO |
---|
802 | END DO |
---|
803 | |
---|
804 | DO jk = 1, nlay_i |
---|
805 | DO ji = 1, npti |
---|
806 | ztmelt_i = -tmut * sz_i_1d(ji,jk) + rt0 |
---|
807 | t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelt_i ), rt0 - 100._wp ) |
---|
808 | zdti_max = MAX( zdti_max, ABS( t_i_1d(ji,jk) - ztib(ji,jk) ) ) |
---|
809 | END DO |
---|
810 | END DO |
---|
811 | |
---|
812 | ! Compute spatial maximum over all errors |
---|
813 | ! note that this could be optimized substantially by iterating only the non-converging points |
---|
814 | IF( lk_mpp ) CALL mpp_max( zdti_max, kcom=ncomm_ice ) |
---|
815 | |
---|
816 | ENDIF ! k_jules |
---|
817 | |
---|
818 | END DO ! End of the do while iterative procedure |
---|
819 | |
---|
820 | IF( ln_icectl .AND. lwp ) THEN |
---|
821 | WRITE(numout,*) ' zdti_max : ', zdti_max |
---|
822 | WRITE(numout,*) ' iconv : ', iconv |
---|
823 | ENDIF |
---|
824 | |
---|
825 | ! |
---|
826 | !----------------------------- |
---|
827 | ! 10) Fluxes at the interfaces |
---|
828 | !----------------------------- |
---|
829 | ! |
---|
830 | ! --- update conduction fluxes |
---|
831 | ! |
---|
832 | DO ji = 1, npti |
---|
833 | ! ! surface ice conduction flux |
---|
834 | fc_su(ji) = - isnow(ji) * zkappa_s(ji,0) * zg1s * (t_s_1d(ji,1) - t_su_1d(ji)) & |
---|
835 | & - ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 * (t_i_1d(ji,1) - t_su_1d(ji)) |
---|
836 | ! ! bottom ice conduction flux |
---|
837 | fc_bo_i(ji) = - zkappa_i(ji,nlay_i) * ( zg1*(t_bo_1d(ji) - t_i_1d(ji,nlay_i)) ) |
---|
838 | END DO |
---|
839 | |
---|
840 | ! |
---|
841 | ! --- Diagnose the heat loss due to changing non-solar / conduction flux --- ! |
---|
842 | ! |
---|
843 | DO ji = 1, npti |
---|
844 | IF ( k_jules == np_zdf_jules_OFF .OR. k_jules == np_zdf_jules_SND ) THEN |
---|
845 | ! OFF or SND mode |
---|
846 | hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) - ( qns_ice_1d(ji) - zqns_ice_b(ji) ) * a_i_1d(ji) |
---|
847 | ELSE ! RCV mode |
---|
848 | hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) - ( fc_su(ji) - qcn_ice_1d(ji) ) * a_i_1d(ji) |
---|
849 | ENDIF |
---|
850 | END DO |
---|
851 | |
---|
852 | ! |
---|
853 | ! --- Diagnose the heat loss due to non-fully converged temperature solution (should not be above 10-4 W-m2) --- ! |
---|
854 | ! |
---|
855 | |
---|
856 | IF ( ( k_jules == np_zdf_jules_OFF ) .OR. ( k_jules == np_zdf_jules_RCV ) ) THEN ! OFF |
---|
857 | |
---|
858 | CALL ice_thd_enmelt |
---|
859 | |
---|
860 | ! zhfx_err = correction on the diagnosed heat flux due to non-convergence of the algorithm used to solve heat equation |
---|
861 | DO ji = 1, npti |
---|
862 | zdq = - zq_ini(ji) + ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + & |
---|
863 | & SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s ) |
---|
864 | |
---|
865 | IF ( ( k_jules == np_zdf_jules_OFF ) ) THEN |
---|
866 | |
---|
867 | IF( t_su_1d(ji) < rt0 ) THEN ! case T_su < 0degC |
---|
868 | zhfx_err = ( qns_ice_1d(ji) + qsr_ice_1d(ji) - zradtr_i(ji,nlay_i) - fc_bo_i(ji) + zdq * r1_rdtice ) * a_i_1d(ji) |
---|
869 | ELSE ! case T_su = 0degC |
---|
870 | zhfx_err = ( fc_su(ji) + qsr_ice_tr_1d(ji) - zradtr_i(ji,nlay_i) - fc_bo_i(ji) + zdq * r1_rdtice ) * a_i_1d(ji) |
---|
871 | ENDIF |
---|
872 | |
---|
873 | ELSE ! RCV CASE |
---|
874 | |
---|
875 | zhfx_err = ( fc_su(ji) + qsr_ice_tr_1d(ji) - zradtr_i(ji,nlay_i) - fc_bo_i(ji) + zdq * r1_rdtice ) * a_i_1d(ji) |
---|
876 | |
---|
877 | ENDIF |
---|
878 | |
---|
879 | ! total heat sink to be sent to the ocean |
---|
880 | hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) + zhfx_err |
---|
881 | |
---|
882 | ! hfx_dif = Heat flux diagnostic of sensible heat used to warm/cool ice in W.m-2 |
---|
883 | hfx_dif_1d(ji) = hfx_dif_1d(ji) - zdq * r1_rdtice * a_i_1d(ji) |
---|
884 | |
---|
885 | END DO |
---|
886 | |
---|
887 | ! |
---|
888 | ! --- SIMIP diagnostics |
---|
889 | ! |
---|
890 | |
---|
891 | DO ji = 1, npti |
---|
892 | !--- Conduction fluxes (positive downwards) |
---|
893 | diag_fc_bo_1d(ji) = diag_fc_bo_1d(ji) + fc_bo_i(ji) * a_i_1d(ji) / at_i_1d(ji) |
---|
894 | diag_fc_su_1d(ji) = diag_fc_su_1d(ji) + fc_su(ji) * a_i_1d(ji) / at_i_1d(ji) |
---|
895 | |
---|
896 | !--- Snow-ice interfacial temperature (diagnostic SIMIP) |
---|
897 | zfac = rn_cnd_s * zh_i(ji) + ztcond_i(ji,1) * zh_s(ji) |
---|
898 | IF( zh_s(ji) >= 1.e-3 .AND. zfac > epsi10 ) THEN |
---|
899 | t_si_1d(ji) = ( rn_cnd_s * zh_i(ji) * t_s_1d(ji,1) + & |
---|
900 | & ztcond_i(ji,1) * zh_s(ji) * t_i_1d(ji,1) ) / zfac |
---|
901 | ELSE |
---|
902 | t_si_1d(ji) = t_su_1d(ji) |
---|
903 | ENDIF |
---|
904 | END DO |
---|
905 | |
---|
906 | ENDIF |
---|
907 | ! |
---|
908 | !--------------------------------------------------------------------------------------- |
---|
909 | ! 11) Jules coupling: reset inner snow and ice temperatures, update conduction fluxes |
---|
910 | !--------------------------------------------------------------------------------------- |
---|
911 | ! effective conductivity (10cm treshold to avoid cnd_ice to be too big) |
---|
912 | DO ji = 1, npti |
---|
913 | IF( zh_s(ji) >= 0.1_wp ) THEN ; cnd_ice_1d(ji) = zkappa_s(ji,0) * 2._wp |
---|
914 | ELSE ; cnd_ice_1d(ji) = zkappa_i(ji,0) * 2._wp |
---|
915 | ENDIF |
---|
916 | END DO |
---|
917 | ! |
---|
918 | IF ( k_jules == np_zdf_jules_SND ) THEN ! --- Jules coupling in "SND" mode |
---|
919 | |
---|
920 | ! Restore temperatures to their initial values |
---|
921 | t_s_1d(1:npti,:) = ztsold (1:npti,:) |
---|
922 | t_i_1d(1:npti,:) = ztiold (1:npti,:) |
---|
923 | qcn_ice_1d(1:npti) = fc_su(1:npti) |
---|
924 | |
---|
925 | ENDIF |
---|
926 | |
---|
927 | END SUBROUTINE ice_thd_zdf_BL99 |
---|
928 | |
---|
929 | |
---|
930 | |
---|
931 | SUBROUTINE ice_thd_enmelt |
---|
932 | !!------------------------------------------------------------------- |
---|
933 | !! *** ROUTINE ice_thd_enmelt *** |
---|
934 | !! |
---|
935 | !! ** Purpose : Computes sea ice energy of melting q_i (J.m-3) from temperature |
---|
936 | !! |
---|
937 | !! ** Method : Formula (Bitz and Lipscomb, 1999) |
---|
938 | !!------------------------------------------------------------------- |
---|
939 | INTEGER :: ji, jk ! dummy loop indices |
---|
940 | REAL(wp) :: ztmelts ! local scalar |
---|
941 | !!------------------------------------------------------------------- |
---|
942 | ! |
---|
943 | DO jk = 1, nlay_i ! Sea ice energy of melting |
---|
944 | DO ji = 1, npti |
---|
945 | ztmelts = - tmut * sz_i_1d(ji,jk) |
---|
946 | t_i_1d(ji,jk) = MIN( t_i_1d(ji,jk), ztmelts + rt0 ) ! Force t_i_1d to be lower than melting point |
---|
947 | ! (sometimes dif scheme produces abnormally high temperatures) |
---|
948 | e_i_1d(ji,jk) = rhoic * ( cpic * ( ztmelts - ( t_i_1d(ji,jk) - rt0 ) ) & |
---|
949 | & + lfus * ( 1._wp - ztmelts / ( t_i_1d(ji,jk) - rt0 ) ) & |
---|
950 | & - rcp * ztmelts ) |
---|
951 | END DO |
---|
952 | END DO |
---|
953 | DO jk = 1, nlay_s ! Snow energy of melting |
---|
954 | DO ji = 1, npti |
---|
955 | e_s_1d(ji,jk) = rhosn * ( cpic * ( rt0 - t_s_1d(ji,jk) ) + lfus ) |
---|
956 | END DO |
---|
957 | END DO |
---|
958 | ! |
---|
959 | END SUBROUTINE ice_thd_enmelt |
---|
960 | |
---|
961 | |
---|
962 | |
---|
963 | SUBROUTINE ice_thd_zdf_init |
---|
964 | !!----------------------------------------------------------------------- |
---|
965 | !! *** ROUTINE ice_thd_zdf_init *** |
---|
966 | !! |
---|
967 | !! ** Purpose : Physical constants and parameters associated with |
---|
968 | !! ice thermodynamics |
---|
969 | !! |
---|
970 | !! ** Method : Read the namthd_zdf namelist and check the parameters |
---|
971 | !! called at the first timestep (nit000) |
---|
972 | !! |
---|
973 | !! ** input : Namelist namthd_zdf |
---|
974 | !!------------------------------------------------------------------- |
---|
975 | INTEGER :: ios, ioptio ! Local integer output status for namelist read |
---|
976 | !! |
---|
977 | NAMELIST/namthd_zdf/ ln_zdf_BL99, ln_cndi_U64, ln_cndi_P07, rn_cnd_s, rn_kappa_i |
---|
978 | !!------------------------------------------------------------------- |
---|
979 | ! |
---|
980 | REWIND( numnam_ice_ref ) ! Namelist namthd_zdf in reference namelist : Ice thermodynamics |
---|
981 | READ ( numnam_ice_ref, namthd_zdf, IOSTAT = ios, ERR = 901) |
---|
982 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_zdf in reference namelist', lwp ) |
---|
983 | |
---|
984 | REWIND( numnam_ice_cfg ) ! Namelist namthd_zdf in configuration namelist : Ice thermodynamics |
---|
985 | READ ( numnam_ice_cfg, namthd_zdf, IOSTAT = ios, ERR = 902 ) |
---|
986 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_zdf in configuration namelist', lwp ) |
---|
987 | IF(lwm) WRITE ( numoni, namthd_zdf ) |
---|
988 | ! |
---|
989 | ! |
---|
990 | IF(lwp) THEN ! control print |
---|
991 | WRITE(numout,*) 'ice_thd_zdf_init: Ice vertical heat diffusion' |
---|
992 | WRITE(numout,*) '~~~~~~~~~~~~~~~~' |
---|
993 | WRITE(numout,*) ' Namelist namthd_zdf:' |
---|
994 | WRITE(numout,*) ' Bitz and Lipscomb (1999) formulation ln_zdf_BL99 = ', ln_zdf_BL99 |
---|
995 | WRITE(numout,*) ' thermal conductivity in the ice (Untersteiner 1964) ln_cndi_U64 = ', ln_cndi_U64 |
---|
996 | WRITE(numout,*) ' thermal conductivity in the ice (Pringle et al 2007) ln_cndi_P07 = ', ln_cndi_P07 |
---|
997 | WRITE(numout,*) ' thermal conductivity in the snow rn_cnd_s = ', rn_cnd_s |
---|
998 | WRITE(numout,*) ' extinction radiation parameter in sea ice rn_kappa_i = ', rn_kappa_i |
---|
999 | ENDIF |
---|
1000 | |
---|
1001 | ! |
---|
1002 | IF ( ( ln_cndi_U64 .AND. ln_cndi_P07 ) .OR. ( .NOT.ln_cndi_U64 .AND. .NOT.ln_cndi_P07 ) ) THEN |
---|
1003 | CALL ctl_stop( 'ice_thd_zdf_init: choose one and only one formulation for thermal conduction (ln_cndi_U64 or ln_cndi_P07)' ) |
---|
1004 | ENDIF |
---|
1005 | |
---|
1006 | ! !== set the choice of ice vertical thermodynamic formulation ==! |
---|
1007 | ioptio = 0 |
---|
1008 | ! !--- BL99 thermo dynamics (linear liquidus + constant thermal properties) |
---|
1009 | IF( ln_zdf_BL99 ) THEN ; ioptio = ioptio + 1 ; nice_zdf = np_BL99 ; ENDIF |
---|
1010 | IF( ioptio /= 1 ) CALL ctl_stop( 'ice_thd_init: one and only one ice thermo option has to be defined ' ) |
---|
1011 | ! |
---|
1012 | END SUBROUTINE ice_thd_zdf_init |
---|
1013 | |
---|
1014 | #else |
---|
1015 | !!---------------------------------------------------------------------- |
---|
1016 | !! Default option Dummy Module No ESIM sea-ice model |
---|
1017 | !!--------------------------------------------------------------------- |
---|
1018 | #endif |
---|
1019 | |
---|
1020 | !!====================================================================== |
---|
1021 | END MODULE icethd_zdf |
---|