1 | MODULE sbccpl |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE sbccpl *** |
---|
4 | !! Surface Boundary Condition : momentum, heat and freshwater fluxes in coupled mode |
---|
5 | !!====================================================================== |
---|
6 | !! History : 2.0 ! 2007-06 (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod |
---|
7 | !! 3.0 ! 2008-02 (G. Madec, C Talandier) surface module |
---|
8 | !! 3.1 ! 2009_02 (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface |
---|
9 | !! 3.4 ! 2011_11 (C. Harris) more flexibility + multi-category fields |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! namsbc_cpl : coupled formulation namlist |
---|
13 | !! sbc_cpl_init : initialisation of the coupled exchanges |
---|
14 | !! sbc_cpl_rcv : receive fields from the atmosphere over the ocean (ocean only) |
---|
15 | !! receive stress from the atmosphere over the ocean (ocean-ice case) |
---|
16 | !! sbc_cpl_ice_tau : receive stress from the atmosphere over ice |
---|
17 | !! sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice |
---|
18 | !! sbc_cpl_snd : send fields to the atmosphere |
---|
19 | !!---------------------------------------------------------------------- |
---|
20 | USE dom_oce ! ocean space and time domain |
---|
21 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
22 | USE sbc_ice ! Surface boundary condition: ice fields |
---|
23 | USE sbcapr |
---|
24 | USE sbcdcy ! surface boundary condition: diurnal cycle |
---|
25 | USE sbcwave ! surface boundary condition: waves |
---|
26 | USE phycst ! physical constants |
---|
27 | #if defined key_lim3 |
---|
28 | USE ice ! ice variables |
---|
29 | #endif |
---|
30 | #if defined key_lim2 |
---|
31 | USE par_ice_2 ! ice parameters |
---|
32 | USE ice_2 ! ice variables |
---|
33 | #endif |
---|
34 | USE cpl_oasis3 ! OASIS3 coupling |
---|
35 | USE geo2ocean ! |
---|
36 | USE oce , ONLY : tsn, un, vn, sshn, ub, vb, sshb, fraqsr_1lev |
---|
37 | USE albedo ! |
---|
38 | USE in_out_manager ! I/O manager |
---|
39 | USE iom ! NetCDF library |
---|
40 | USE lib_mpp ! distribued memory computing library |
---|
41 | USE wrk_nemo ! work arrays |
---|
42 | USE timing ! Timing |
---|
43 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
44 | USE eosbn2 |
---|
45 | USE sbcrnf , ONLY : l_rnfcpl |
---|
46 | #if defined key_cpl_carbon_cycle |
---|
47 | USE p4zflx, ONLY : oce_co2 |
---|
48 | #endif |
---|
49 | #if defined key_cice |
---|
50 | USE ice_domain_size, only: ncat |
---|
51 | #endif |
---|
52 | #if defined key_lim3 |
---|
53 | USE limthd_dh ! for CALL lim_thd_snwblow |
---|
54 | #endif |
---|
55 | |
---|
56 | IMPLICIT NONE |
---|
57 | PRIVATE |
---|
58 | |
---|
59 | PUBLIC sbc_cpl_init ! routine called by sbcmod.F90 |
---|
60 | PUBLIC sbc_cpl_rcv ! routine called by sbc_ice_lim(_2).F90 |
---|
61 | PUBLIC sbc_cpl_snd ! routine called by step.F90 |
---|
62 | PUBLIC sbc_cpl_ice_tau ! routine called by sbc_ice_lim(_2).F90 |
---|
63 | PUBLIC sbc_cpl_ice_flx ! routine called by sbc_ice_lim(_2).F90 |
---|
64 | PUBLIC sbc_cpl_alloc ! routine called in sbcice_cice.F90 |
---|
65 | |
---|
66 | INTEGER, PARAMETER :: jpr_otx1 = 1 ! 3 atmosphere-ocean stress components on grid 1 |
---|
67 | INTEGER, PARAMETER :: jpr_oty1 = 2 ! |
---|
68 | INTEGER, PARAMETER :: jpr_otz1 = 3 ! |
---|
69 | INTEGER, PARAMETER :: jpr_otx2 = 4 ! 3 atmosphere-ocean stress components on grid 2 |
---|
70 | INTEGER, PARAMETER :: jpr_oty2 = 5 ! |
---|
71 | INTEGER, PARAMETER :: jpr_otz2 = 6 ! |
---|
72 | INTEGER, PARAMETER :: jpr_itx1 = 7 ! 3 atmosphere-ice stress components on grid 1 |
---|
73 | INTEGER, PARAMETER :: jpr_ity1 = 8 ! |
---|
74 | INTEGER, PARAMETER :: jpr_itz1 = 9 ! |
---|
75 | INTEGER, PARAMETER :: jpr_itx2 = 10 ! 3 atmosphere-ice stress components on grid 2 |
---|
76 | INTEGER, PARAMETER :: jpr_ity2 = 11 ! |
---|
77 | INTEGER, PARAMETER :: jpr_itz2 = 12 ! |
---|
78 | INTEGER, PARAMETER :: jpr_qsroce = 13 ! Qsr above the ocean |
---|
79 | INTEGER, PARAMETER :: jpr_qsrice = 14 ! Qsr above the ice |
---|
80 | INTEGER, PARAMETER :: jpr_qsrmix = 15 |
---|
81 | INTEGER, PARAMETER :: jpr_qnsoce = 16 ! Qns above the ocean |
---|
82 | INTEGER, PARAMETER :: jpr_qnsice = 17 ! Qns above the ice |
---|
83 | INTEGER, PARAMETER :: jpr_qnsmix = 18 |
---|
84 | INTEGER, PARAMETER :: jpr_rain = 19 ! total liquid precipitation (rain) |
---|
85 | INTEGER, PARAMETER :: jpr_snow = 20 ! solid precipitation over the ocean (snow) |
---|
86 | INTEGER, PARAMETER :: jpr_tevp = 21 ! total evaporation |
---|
87 | INTEGER, PARAMETER :: jpr_ievp = 22 ! solid evaporation (sublimation) |
---|
88 | INTEGER, PARAMETER :: jpr_sbpr = 23 ! sublimation - liquid precipitation - solid precipitation |
---|
89 | INTEGER, PARAMETER :: jpr_semp = 24 ! solid freshwater budget (sublimation - snow) |
---|
90 | INTEGER, PARAMETER :: jpr_oemp = 25 ! ocean freshwater budget (evap - precip) |
---|
91 | INTEGER, PARAMETER :: jpr_w10m = 26 ! 10m wind |
---|
92 | INTEGER, PARAMETER :: jpr_dqnsdt = 27 ! d(Q non solar)/d(temperature) |
---|
93 | INTEGER, PARAMETER :: jpr_rnf = 28 ! runoffs |
---|
94 | INTEGER, PARAMETER :: jpr_cal = 29 ! calving |
---|
95 | INTEGER, PARAMETER :: jpr_taum = 30 ! wind stress module |
---|
96 | INTEGER, PARAMETER :: jpr_co2 = 31 |
---|
97 | INTEGER, PARAMETER :: jpr_topm = 32 ! topmeltn |
---|
98 | INTEGER, PARAMETER :: jpr_botm = 33 ! botmeltn |
---|
99 | INTEGER, PARAMETER :: jpr_sflx = 34 ! salt flux |
---|
100 | INTEGER, PARAMETER :: jpr_toce = 35 ! ocean temperature |
---|
101 | INTEGER, PARAMETER :: jpr_soce = 36 ! ocean salinity |
---|
102 | INTEGER, PARAMETER :: jpr_ocx1 = 37 ! ocean current on grid 1 |
---|
103 | INTEGER, PARAMETER :: jpr_ocy1 = 38 ! |
---|
104 | INTEGER, PARAMETER :: jpr_ssh = 39 ! sea surface height |
---|
105 | INTEGER, PARAMETER :: jpr_fice = 40 ! ice fraction |
---|
106 | INTEGER, PARAMETER :: jpr_e3t1st = 41 ! first T level thickness |
---|
107 | INTEGER, PARAMETER :: jpr_fraqsr = 42 ! fraction of solar net radiation absorbed in the first ocean level |
---|
108 | INTEGER, PARAMETER :: jpr_mslp = 43 ! mean sea level pressure |
---|
109 | INTEGER, PARAMETER :: jpr_hsig = 44 ! Hsig |
---|
110 | INTEGER, PARAMETER :: jpr_phioc = 45 ! Wave=>ocean energy flux |
---|
111 | INTEGER, PARAMETER :: jpr_sdrftx = 46 ! Stokes drift on grid 1 |
---|
112 | INTEGER, PARAMETER :: jpr_sdrfty = 47 ! Stokes drift on grid 2 |
---|
113 | INTEGER, PARAMETER :: jpr_wper = 48 ! Mean wave period |
---|
114 | INTEGER, PARAMETER :: jpr_wnum = 49 ! Mean wavenumber |
---|
115 | INTEGER, PARAMETER :: jpr_tauoc = 50 ! Stress fraction adsorbed by waves |
---|
116 | INTEGER, PARAMETER :: jpr_wdrag = 51 ! Neutral surface drag coefficient |
---|
117 | INTEGER, PARAMETER :: jpr_wfreq = 52 ! Wave peak frequency |
---|
118 | INTEGER, PARAMETER :: jpr_tauwx = 53 ! x component of the ocean stress from waves |
---|
119 | INTEGER, PARAMETER :: jpr_tauwy = 54 ! y component of the ocean stress from waves |
---|
120 | INTEGER, PARAMETER :: jprcv = 54 ! total number of fields received |
---|
121 | |
---|
122 | INTEGER, PARAMETER :: jps_fice = 1 ! ice fraction sent to the atmosphere |
---|
123 | INTEGER, PARAMETER :: jps_toce = 2 ! ocean temperature |
---|
124 | INTEGER, PARAMETER :: jps_tice = 3 ! ice temperature |
---|
125 | INTEGER, PARAMETER :: jps_tmix = 4 ! mixed temperature (ocean+ice) |
---|
126 | INTEGER, PARAMETER :: jps_albice = 5 ! ice albedo |
---|
127 | INTEGER, PARAMETER :: jps_albmix = 6 ! mixed albedo |
---|
128 | INTEGER, PARAMETER :: jps_hice = 7 ! ice thickness |
---|
129 | INTEGER, PARAMETER :: jps_hsnw = 8 ! snow thickness |
---|
130 | INTEGER, PARAMETER :: jps_ocx1 = 9 ! ocean current on grid 1 |
---|
131 | INTEGER, PARAMETER :: jps_ocy1 = 10 ! |
---|
132 | INTEGER, PARAMETER :: jps_ocz1 = 11 ! |
---|
133 | INTEGER, PARAMETER :: jps_ivx1 = 12 ! ice current on grid 1 |
---|
134 | INTEGER, PARAMETER :: jps_ivy1 = 13 ! |
---|
135 | INTEGER, PARAMETER :: jps_ivz1 = 14 ! |
---|
136 | INTEGER, PARAMETER :: jps_co2 = 15 |
---|
137 | INTEGER, PARAMETER :: jps_soce = 16 ! ocean salinity |
---|
138 | INTEGER, PARAMETER :: jps_ssh = 17 ! sea surface height |
---|
139 | INTEGER, PARAMETER :: jps_qsroce = 18 ! Qsr above the ocean |
---|
140 | INTEGER, PARAMETER :: jps_qnsoce = 19 ! Qns above the ocean |
---|
141 | INTEGER, PARAMETER :: jps_oemp = 20 ! ocean freshwater budget (evap - precip) |
---|
142 | INTEGER, PARAMETER :: jps_sflx = 21 ! salt flux |
---|
143 | INTEGER, PARAMETER :: jps_otx1 = 22 ! 2 atmosphere-ocean stress components on grid 1 |
---|
144 | INTEGER, PARAMETER :: jps_oty1 = 23 ! |
---|
145 | INTEGER, PARAMETER :: jps_rnf = 24 ! runoffs |
---|
146 | INTEGER, PARAMETER :: jps_taum = 25 ! wind stress module |
---|
147 | INTEGER, PARAMETER :: jps_fice2 = 26 ! ice fraction sent to OPA (by SAS when doing SAS-OPA coupling) |
---|
148 | INTEGER, PARAMETER :: jps_e3t1st = 27 ! first level depth (vvl) |
---|
149 | INTEGER, PARAMETER :: jps_fraqsr = 28 ! fraction of solar net radiation absorbed in the first ocean level |
---|
150 | INTEGER, PARAMETER :: jps_ficet = 29 ! total ice fraction |
---|
151 | INTEGER, PARAMETER :: jps_ocxw = 30 ! currents on grid 1 |
---|
152 | INTEGER, PARAMETER :: jps_ocyw = 31 ! currents on grid 2 |
---|
153 | INTEGER, PARAMETER :: jps_wlev = 32 ! water level |
---|
154 | INTEGER, PARAMETER :: jpsnd = 32 ! total number of fields sent |
---|
155 | |
---|
156 | ! !!** namelist namsbc_cpl ** |
---|
157 | TYPE :: FLD_C |
---|
158 | CHARACTER(len = 32) :: cldes ! desciption of the coupling strategy |
---|
159 | CHARACTER(len = 32) :: clcat ! multiple ice categories strategy |
---|
160 | CHARACTER(len = 32) :: clvref ! reference of vector ('spherical' or 'cartesian') |
---|
161 | CHARACTER(len = 32) :: clvor ! orientation of vector fields ('eastward-northward' or 'local grid') |
---|
162 | CHARACTER(len = 32) :: clvgrd ! grids on which is located the vector fields |
---|
163 | END TYPE FLD_C |
---|
164 | ! Send to the atmosphere ! |
---|
165 | TYPE(FLD_C) :: sn_snd_temp, sn_snd_alb, sn_snd_thick, sn_snd_crt, sn_snd_co2 |
---|
166 | ! Received from the atmosphere ! |
---|
167 | TYPE(FLD_C) :: sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_dqnsdt, sn_rcv_qsr, sn_rcv_qns, sn_rcv_emp, sn_rcv_rnf |
---|
168 | TYPE(FLD_C) :: sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2, sn_rcv_mslp |
---|
169 | ! Send to waves |
---|
170 | TYPE(FLD_C) :: sn_snd_ifrac, sn_snd_crtw, sn_snd_wlev |
---|
171 | ! Received from waves |
---|
172 | TYPE(FLD_C) :: sn_rcv_hsig,sn_rcv_phioc,sn_rcv_sdrft,sn_rcv_wper, & |
---|
173 | sn_rcv_wfreq,sn_rcv_wnum,sn_rcv_tauoc,sn_rcv_tauw, & |
---|
174 | sn_rcv_wdrag |
---|
175 | ! Other namelist parameters ! |
---|
176 | INTEGER :: nn_cplmodel ! Maximum number of models to/from which NEMO is potentialy sending/receiving data |
---|
177 | LOGICAL :: ln_usecplmask ! use a coupling mask file to merge data received from several models |
---|
178 | ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel) |
---|
179 | TYPE :: DYNARR |
---|
180 | REAL(wp), POINTER, DIMENSION(:,:,:) :: z3 |
---|
181 | END TYPE DYNARR |
---|
182 | |
---|
183 | TYPE( DYNARR ), SAVE, DIMENSION(jprcv) :: frcv ! all fields recieved from the atmosphere |
---|
184 | |
---|
185 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: albedo_oce_mix ! ocean albedo sent to atmosphere (mix clear/overcast sky) |
---|
186 | |
---|
187 | REAL(wp) :: rpref = 101000._wp ! reference atmospheric pressure[N/m2] |
---|
188 | REAL(wp) :: r1_grau ! = 1.e0 / (grav * rau0 |
---|
189 | |
---|
190 | INTEGER , ALLOCATABLE, SAVE, DIMENSION( :) :: nrcvinfo ! OASIS info argument |
---|
191 | |
---|
192 | !! Substitution |
---|
193 | # include "domzgr_substitute.h90" |
---|
194 | # include "vectopt_loop_substitute.h90" |
---|
195 | !!---------------------------------------------------------------------- |
---|
196 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
197 | !! $Id$ |
---|
198 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
199 | !!---------------------------------------------------------------------- |
---|
200 | |
---|
201 | CONTAINS |
---|
202 | |
---|
203 | INTEGER FUNCTION sbc_cpl_alloc() |
---|
204 | !!---------------------------------------------------------------------- |
---|
205 | !! *** FUNCTION sbc_cpl_alloc *** |
---|
206 | !!---------------------------------------------------------------------- |
---|
207 | INTEGER :: ierr(4) |
---|
208 | !!---------------------------------------------------------------------- |
---|
209 | ierr(:) = 0 |
---|
210 | ! |
---|
211 | ALLOCATE( albedo_oce_mix(jpi,jpj), nrcvinfo(jprcv), STAT=ierr(1) ) |
---|
212 | |
---|
213 | #if ! defined key_lim3 && ! defined key_lim2 && ! defined key_cice |
---|
214 | ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) ) ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init) |
---|
215 | #endif |
---|
216 | ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) ) |
---|
217 | ! |
---|
218 | IF( .NOT. ln_apr_dyn ) ALLOCATE( ssh_ib(jpi,jpj), ssh_ibb(jpi,jpj), apr(jpi, jpj), STAT=ierr(4) ) |
---|
219 | |
---|
220 | sbc_cpl_alloc = MAXVAL( ierr ) |
---|
221 | IF( lk_mpp ) CALL mpp_sum ( sbc_cpl_alloc ) |
---|
222 | IF( sbc_cpl_alloc > 0 ) CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed') |
---|
223 | ! |
---|
224 | END FUNCTION sbc_cpl_alloc |
---|
225 | |
---|
226 | |
---|
227 | SUBROUTINE sbc_cpl_init( k_ice ) |
---|
228 | !!---------------------------------------------------------------------- |
---|
229 | !! *** ROUTINE sbc_cpl_init *** |
---|
230 | !! |
---|
231 | !! ** Purpose : Initialisation of send and received information from |
---|
232 | !! the atmospheric component |
---|
233 | !! |
---|
234 | !! ** Method : * Read namsbc_cpl namelist |
---|
235 | !! * define the receive interface |
---|
236 | !! * define the send interface |
---|
237 | !! * initialise the OASIS coupler |
---|
238 | !!---------------------------------------------------------------------- |
---|
239 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
240 | !! |
---|
241 | INTEGER :: jn ! dummy loop index |
---|
242 | INTEGER :: ios ! Local integer output status for namelist read |
---|
243 | INTEGER :: inum |
---|
244 | REAL(wp), POINTER, DIMENSION(:,:) :: zacs, zaos |
---|
245 | !! |
---|
246 | NAMELIST/namsbc_cpl/ sn_snd_temp , sn_snd_alb , sn_snd_thick , sn_snd_crt , sn_snd_co2, & |
---|
247 | & sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau , sn_rcv_dqnsdt, sn_rcv_qsr, & |
---|
248 | & sn_snd_ifrac, sn_snd_crtw , sn_snd_wlev , sn_rcv_hsig , sn_rcv_phioc , & |
---|
249 | & sn_rcv_sdrft, sn_rcv_wper , sn_rcv_wnum , sn_rcv_wfreq, sn_rcv_tauoc, & |
---|
250 | & sn_rcv_wdrag, sn_rcv_qns , sn_rcv_emp , sn_rcv_rnf , sn_rcv_cal , & |
---|
251 | & sn_rcv_iceflx, sn_rcv_co2 , sn_rcv_mslp , sn_rcv_tauw , & |
---|
252 | & nn_cplmodel, ln_usecplmask |
---|
253 | !!--------------------------------------------------------------------- |
---|
254 | ! |
---|
255 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_init') |
---|
256 | ! |
---|
257 | CALL wrk_alloc( jpi,jpj, zacs, zaos ) |
---|
258 | |
---|
259 | ! ================================ ! |
---|
260 | ! Namelist informations ! |
---|
261 | ! ================================ ! |
---|
262 | |
---|
263 | REWIND( numnam_ref ) ! Namelist namsbc_cpl in reference namelist : Variables for OASIS coupling |
---|
264 | READ ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901) |
---|
265 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist', lwp ) |
---|
266 | |
---|
267 | REWIND( numnam_cfg ) ! Namelist namsbc_cpl in configuration namelist : Variables for OASIS coupling |
---|
268 | READ ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 ) |
---|
269 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist', lwp ) |
---|
270 | IF(lwm) WRITE ( numond, namsbc_cpl ) |
---|
271 | |
---|
272 | IF(lwp) THEN ! control print |
---|
273 | WRITE(numout,*) |
---|
274 | WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist ' |
---|
275 | WRITE(numout,*)'~~~~~~~~~~~~' |
---|
276 | ENDIF |
---|
277 | IF( lwp .AND. ln_cpl ) THEN ! control print |
---|
278 | WRITE(numout,*)' received fields (mutiple ice categogies)' |
---|
279 | WRITE(numout,*)' 10m wind module = ', TRIM(sn_rcv_w10m%cldes ), ' (', TRIM(sn_rcv_w10m%clcat ), ')' |
---|
280 | WRITE(numout,*)' stress module = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')' |
---|
281 | WRITE(numout,*)' surface stress = ', TRIM(sn_rcv_tau%cldes ), ' (', TRIM(sn_rcv_tau%clcat ), ')' |
---|
282 | WRITE(numout,*)' - referential = ', sn_rcv_tau%clvref |
---|
283 | WRITE(numout,*)' - orientation = ', sn_rcv_tau%clvor |
---|
284 | WRITE(numout,*)' - mesh = ', sn_rcv_tau%clvgrd |
---|
285 | WRITE(numout,*)' non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')' |
---|
286 | WRITE(numout,*)' solar heat flux = ', TRIM(sn_rcv_qsr%cldes ), ' (', TRIM(sn_rcv_qsr%clcat ), ')' |
---|
287 | WRITE(numout,*)' non-solar heat flux = ', TRIM(sn_rcv_qns%cldes ), ' (', TRIM(sn_rcv_qns%clcat ), ')' |
---|
288 | WRITE(numout,*)' freshwater budget = ', TRIM(sn_rcv_emp%cldes ), ' (', TRIM(sn_rcv_emp%clcat ), ')' |
---|
289 | WRITE(numout,*)' runoffs = ', TRIM(sn_rcv_rnf%cldes ), ' (', TRIM(sn_rcv_rnf%clcat ), ')' |
---|
290 | WRITE(numout,*)' calving = ', TRIM(sn_rcv_cal%cldes ), ' (', TRIM(sn_rcv_cal%clcat ), ')' |
---|
291 | WRITE(numout,*)' sea ice heat fluxes = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')' |
---|
292 | WRITE(numout,*)' atm co2 = ', TRIM(sn_rcv_co2%cldes ), ' (', TRIM(sn_rcv_co2%clcat ), ')' |
---|
293 | WRITE(numout,*)' mean sea level pressure = ', TRIM(sn_rcv_mslp%cldes ), ' (', TRIM(sn_rcv_mslp%clcat ), ')' |
---|
294 | WRITE(numout,*)' significant wave heigth = ', TRIM(sn_rcv_hsig%cldes ), ' (', TRIM(sn_rcv_hsig%clcat ), ')' |
---|
295 | WRITE(numout,*)' wave to oce energy flux = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')' |
---|
296 | WRITE(numout,*)' Surface Stokes drift u,v = ', TRIM(sn_rcv_sdrft%cldes ), ' (', TRIM(sn_rcv_sdrft%clcat ), ')' |
---|
297 | WRITE(numout,*)' Mean wave period = ', TRIM(sn_rcv_wper%cldes ), ' (', TRIM(sn_rcv_wper%clcat ), ')' |
---|
298 | WRITE(numout,*)' Mean wave number = ', TRIM(sn_rcv_wnum%cldes ), ' (', TRIM(sn_rcv_wnum%clcat ), ')' |
---|
299 | WRITE(numout,*)' Wave peak frequency = ', TRIM(sn_rcv_wfreq%cldes ), ' (', TRIM(sn_rcv_wfreq%clcat ), ')' |
---|
300 | WRITE(numout,*)' Stress frac adsorbed by waves = ', TRIM(sn_rcv_tauoc%cldes ), ' (', TRIM(sn_rcv_tauoc%clcat ), ')' |
---|
301 | WRITE(numout,*)' Stress components by waves = ', TRIM(sn_rcv_tauw%cldes ), ' (', TRIM(sn_rcv_tauw%clcat ), ')' |
---|
302 | WRITE(numout,*)' Neutral surf drag coefficient = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')' |
---|
303 | WRITE(numout,*)' sent fields (multiple ice categories)' |
---|
304 | WRITE(numout,*)' surface temperature = ', TRIM(sn_snd_temp%cldes ), ' (', TRIM(sn_snd_temp%clcat ), ')' |
---|
305 | WRITE(numout,*)' albedo = ', TRIM(sn_snd_alb%cldes ), ' (', TRIM(sn_snd_alb%clcat ), ')' |
---|
306 | WRITE(numout,*)' ice/snow thickness = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')' |
---|
307 | WRITE(numout,*)' total ice fraction = ', TRIM(sn_snd_ifrac%cldes ), ' (', TRIM(sn_snd_ifrac%clcat ), ')' |
---|
308 | WRITE(numout,*)' surface current = ', TRIM(sn_snd_crt%cldes ), ' (', TRIM(sn_snd_crt%clcat ), ')' |
---|
309 | WRITE(numout,*)' - referential = ', sn_snd_crt%clvref |
---|
310 | WRITE(numout,*)' - orientation = ', sn_snd_crt%clvor |
---|
311 | WRITE(numout,*)' - mesh = ', sn_snd_crt%clvgrd |
---|
312 | WRITE(numout,*)' oce co2 flux = ', TRIM(sn_snd_co2%cldes ), ' (', TRIM(sn_snd_co2%clcat ), ')' |
---|
313 | WRITE(numout,*)' water level = ', TRIM(sn_snd_wlev%cldes ), ' (', TRIM(sn_snd_wlev%clcat ), ')' |
---|
314 | WRITE(numout,*)' surface current to waves = ', TRIM(sn_snd_crtw%cldes ), ' (', TRIM(sn_snd_crtw%clcat ), ')' |
---|
315 | WRITE(numout,*)' - referential = ', sn_snd_crtw%clvref |
---|
316 | WRITE(numout,*)' - orientation = ', sn_snd_crtw%clvor |
---|
317 | WRITE(numout,*)' - mesh = ', sn_snd_crtw%clvgrd |
---|
318 | WRITE(numout,*)' nn_cplmodel = ', nn_cplmodel |
---|
319 | WRITE(numout,*)' ln_usecplmask = ', ln_usecplmask |
---|
320 | ENDIF |
---|
321 | |
---|
322 | ! ! allocate sbccpl arrays |
---|
323 | IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' ) |
---|
324 | |
---|
325 | ! ================================ ! |
---|
326 | ! Define the receive interface ! |
---|
327 | ! ================================ ! |
---|
328 | nrcvinfo(:) = OASIS_idle ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress |
---|
329 | |
---|
330 | ! for each field: define the OASIS name (srcv(:)%clname) |
---|
331 | ! define receive or not from the namelist parameters (srcv(:)%laction) |
---|
332 | ! define the north fold type of lbc (srcv(:)%nsgn) |
---|
333 | |
---|
334 | ! default definitions of srcv |
---|
335 | srcv(:)%laction = .FALSE. ; srcv(:)%clgrid = 'T' ; srcv(:)%nsgn = 1. ; srcv(:)%nct = 1 |
---|
336 | |
---|
337 | ! ! ------------------------- ! |
---|
338 | ! ! ice and ocean wind stress ! |
---|
339 | ! ! ------------------------- ! |
---|
340 | ! ! Name |
---|
341 | srcv(jpr_otx1)%clname = 'O_OTaux1' ! 1st ocean component on grid ONE (T or U) |
---|
342 | srcv(jpr_oty1)%clname = 'O_OTauy1' ! 2nd - - - - |
---|
343 | srcv(jpr_otz1)%clname = 'O_OTauz1' ! 3rd - - - - |
---|
344 | srcv(jpr_otx2)%clname = 'O_OTaux2' ! 1st ocean component on grid TWO (V) |
---|
345 | srcv(jpr_oty2)%clname = 'O_OTauy2' ! 2nd - - - - |
---|
346 | srcv(jpr_otz2)%clname = 'O_OTauz2' ! 3rd - - - - |
---|
347 | ! |
---|
348 | srcv(jpr_itx1)%clname = 'O_ITaux1' ! 1st ice component on grid ONE (T, F, I or U) |
---|
349 | srcv(jpr_ity1)%clname = 'O_ITauy1' ! 2nd - - - - |
---|
350 | srcv(jpr_itz1)%clname = 'O_ITauz1' ! 3rd - - - - |
---|
351 | srcv(jpr_itx2)%clname = 'O_ITaux2' ! 1st ice component on grid TWO (V) |
---|
352 | srcv(jpr_ity2)%clname = 'O_ITauy2' ! 2nd - - - - |
---|
353 | srcv(jpr_itz2)%clname = 'O_ITauz2' ! 3rd - - - - |
---|
354 | ! |
---|
355 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
356 | IF( TRIM( sn_rcv_tau%cldes ) == 'oce only' .OR. TRIM(sn_rcv_tau%cldes ) == 'oce and ice') THEN ! avoid working with the atmospheric fields if they are not coupled |
---|
357 | IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) srcv(jpr_otx1:jpr_itz2)%nsgn = -1. |
---|
358 | |
---|
359 | ! ! Set grid and action |
---|
360 | SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) ) ! 'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V' |
---|
361 | CASE( 'T' ) |
---|
362 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
363 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
364 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
365 | CASE( 'U,V' ) |
---|
366 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
367 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
368 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
369 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
370 | srcv(jpr_otx1:jpr_itz2)%laction = .TRUE. ! receive oce and ice components on both grid 1 & 2 |
---|
371 | CASE( 'U,V,T' ) |
---|
372 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
373 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
374 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'T' ! ice components given at T-point |
---|
375 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
376 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
377 | CASE( 'U,V,I' ) |
---|
378 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
379 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
380 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
381 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
382 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
383 | CASE( 'U,V,F' ) |
---|
384 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point |
---|
385 | srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point |
---|
386 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
387 | srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2 |
---|
388 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only |
---|
389 | CASE( 'T,I' ) |
---|
390 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
391 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point |
---|
392 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
393 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
394 | CASE( 'T,F' ) |
---|
395 | srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point |
---|
396 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point |
---|
397 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 |
---|
398 | srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 |
---|
399 | CASE( 'T,U,V' ) |
---|
400 | srcv(jpr_otx1:jpr_otz1)%clgrid = 'T' ! oce components given at T-point |
---|
401 | srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point |
---|
402 | srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point |
---|
403 | srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 only |
---|
404 | srcv(jpr_itx1:jpr_itz2)%laction = .TRUE. ! receive ice components on grid 1 & 2 |
---|
405 | CASE default |
---|
406 | CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' ) |
---|
407 | END SELECT |
---|
408 | ! |
---|
409 | IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' ) & ! spherical: 3rd component not received |
---|
410 | & srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE. |
---|
411 | ! |
---|
412 | IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) THEN ! already on local grid -> no need of the second grid |
---|
413 | srcv(jpr_otx2:jpr_otz2)%laction = .FALSE. |
---|
414 | srcv(jpr_itx2:jpr_itz2)%laction = .FALSE. |
---|
415 | srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid ! not needed but cleaner... |
---|
416 | srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid ! not needed but cleaner... |
---|
417 | ENDIF |
---|
418 | ! |
---|
419 | IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN ! 'oce and ice' case ocean stress on ocean mesh used |
---|
420 | srcv(jpr_itx1:jpr_itz2)%laction = .FALSE. ! ice components not received |
---|
421 | srcv(jpr_itx1)%clgrid = 'U' ! ocean stress used after its transformation |
---|
422 | srcv(jpr_ity1)%clgrid = 'V' ! i.e. it is always at U- & V-points for i- & j-comp. resp. |
---|
423 | ENDIF |
---|
424 | ENDIF |
---|
425 | |
---|
426 | ! ! ------------------------- ! |
---|
427 | ! ! freshwater budget ! E-P |
---|
428 | ! ! ------------------------- ! |
---|
429 | ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid) |
---|
430 | ! over ice of free ocean within the same atmospheric cell.cd |
---|
431 | srcv(jpr_rain)%clname = 'OTotRain' ! Rain = liquid precipitation |
---|
432 | srcv(jpr_snow)%clname = 'OTotSnow' ! Snow = solid precipitation |
---|
433 | srcv(jpr_tevp)%clname = 'OTotEvap' ! total evaporation (over oce + ice sublimation) |
---|
434 | srcv(jpr_ievp)%clname = 'OIceEvap' ! evaporation over ice = sublimation |
---|
435 | srcv(jpr_sbpr)%clname = 'OSubMPre' ! sublimation - liquid precipitation - solid precipitation |
---|
436 | srcv(jpr_semp)%clname = 'OISubMSn' ! ice solid water budget = sublimation - solid precipitation |
---|
437 | srcv(jpr_oemp)%clname = 'OOEvaMPr' ! ocean water budget = ocean Evap - ocean precip |
---|
438 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) |
---|
439 | CASE( 'none' ) ! nothing to do |
---|
440 | CASE( 'oce only' ) ; srcv( jpr_oemp )%laction = .TRUE. |
---|
441 | CASE( 'conservative' ) |
---|
442 | srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE. |
---|
443 | IF ( k_ice <= 1 ) srcv(jpr_ievp)%laction = .FALSE. |
---|
444 | CASE( 'oce and ice' ) ; srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE. |
---|
445 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' ) |
---|
446 | END SELECT |
---|
447 | |
---|
448 | ! ! ------------------------- ! |
---|
449 | ! ! Runoffs & Calving ! |
---|
450 | ! ! ------------------------- ! |
---|
451 | srcv(jpr_rnf )%clname = 'O_Runoff' |
---|
452 | IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) THEN |
---|
453 | srcv(jpr_rnf)%laction = .TRUE. |
---|
454 | l_rnfcpl = .TRUE. ! -> no need to read runoffs in sbcrnf |
---|
455 | ln_rnf = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas |
---|
456 | IF(lwp) WRITE(numout,*) |
---|
457 | IF(lwp) WRITE(numout,*) ' runoffs received from oasis -> force ln_rnf = ', ln_rnf |
---|
458 | ENDIF |
---|
459 | ! |
---|
460 | srcv(jpr_cal )%clname = 'OCalving' ; IF( TRIM( sn_rcv_cal%cldes ) == 'coupled' ) srcv(jpr_cal)%laction = .TRUE. |
---|
461 | |
---|
462 | ! ! ------------------------- ! |
---|
463 | ! ! non solar radiation ! Qns |
---|
464 | ! ! ------------------------- ! |
---|
465 | srcv(jpr_qnsoce)%clname = 'O_QnsOce' |
---|
466 | srcv(jpr_qnsice)%clname = 'O_QnsIce' |
---|
467 | srcv(jpr_qnsmix)%clname = 'O_QnsMix' |
---|
468 | SELECT CASE( TRIM( sn_rcv_qns%cldes ) ) |
---|
469 | CASE( 'none' ) ! nothing to do |
---|
470 | CASE( 'oce only' ) ; srcv( jpr_qnsoce )%laction = .TRUE. |
---|
471 | CASE( 'conservative' ) ; srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE. |
---|
472 | CASE( 'oce and ice' ) ; srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE. |
---|
473 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qnsmix )%laction = .TRUE. |
---|
474 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' ) |
---|
475 | END SELECT |
---|
476 | IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) & |
---|
477 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' ) |
---|
478 | ! ! ------------------------- ! |
---|
479 | ! ! solar radiation ! Qsr |
---|
480 | ! ! ------------------------- ! |
---|
481 | srcv(jpr_qsroce)%clname = 'O_QsrOce' |
---|
482 | srcv(jpr_qsrice)%clname = 'O_QsrIce' |
---|
483 | srcv(jpr_qsrmix)%clname = 'O_QsrMix' |
---|
484 | SELECT CASE( TRIM( sn_rcv_qsr%cldes ) ) |
---|
485 | CASE( 'none' ) ! nothing to do |
---|
486 | CASE( 'oce only' ) ; srcv( jpr_qsroce )%laction = .TRUE. |
---|
487 | CASE( 'conservative' ) ; srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE. |
---|
488 | CASE( 'oce and ice' ) ; srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE. |
---|
489 | CASE( 'mixed oce-ice' ) ; srcv( jpr_qsrmix )%laction = .TRUE. |
---|
490 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' ) |
---|
491 | END SELECT |
---|
492 | IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. jpl > 1 ) & |
---|
493 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' ) |
---|
494 | ! ! ------------------------- ! |
---|
495 | ! ! non solar sensitivity ! d(Qns)/d(T) |
---|
496 | ! ! ------------------------- ! |
---|
497 | srcv(jpr_dqnsdt)%clname = 'O_dQnsdT' |
---|
498 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' ) srcv(jpr_dqnsdt)%laction = .TRUE. |
---|
499 | ! |
---|
500 | ! non solar sensitivity mandatory for LIM ice model |
---|
501 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. k_ice /= 0 .AND. k_ice /= 4 .AND. nn_components /= jp_iam_sas ) & |
---|
502 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_dqnsdt%cldes must be coupled in namsbc_cpl namelist' ) |
---|
503 | ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique |
---|
504 | IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' ) & |
---|
505 | CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' ) |
---|
506 | ! ! ------------------------- ! |
---|
507 | ! ! 10m wind module ! |
---|
508 | ! ! ------------------------- ! |
---|
509 | srcv(jpr_w10m)%clname = 'O_Wind10' ; IF( TRIM(sn_rcv_w10m%cldes ) == 'coupled' ) srcv(jpr_w10m)%laction = .TRUE. |
---|
510 | ! |
---|
511 | ! ! ------------------------- ! |
---|
512 | ! ! wind stress module ! |
---|
513 | ! ! ------------------------- ! |
---|
514 | srcv(jpr_taum)%clname = 'O_TauMod' ; IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' ) srcv(jpr_taum)%laction = .TRUE. |
---|
515 | lhftau = srcv(jpr_taum)%laction |
---|
516 | |
---|
517 | ! ! ------------------------- ! |
---|
518 | ! ! Atmospheric CO2 ! |
---|
519 | ! ! ------------------------- ! |
---|
520 | srcv(jpr_co2 )%clname = 'O_AtmCO2' ; IF( TRIM(sn_rcv_co2%cldes ) == 'coupled' ) srcv(jpr_co2 )%laction = .TRUE. |
---|
521 | |
---|
522 | ! ! ------------------------- ! |
---|
523 | ! ! Mean Sea Level Pressure ! |
---|
524 | ! ! ------------------------- ! |
---|
525 | srcv(jpr_mslp)%clname = 'O_MSLP' ; IF( TRIM(sn_rcv_mslp%cldes ) == 'coupled' ) srcv(jpr_mslp)%laction = .TRUE. |
---|
526 | |
---|
527 | ! ! ------------------------- ! |
---|
528 | ! ! topmelt and botmelt ! |
---|
529 | ! ! ------------------------- ! |
---|
530 | srcv(jpr_topm )%clname = 'OTopMlt' |
---|
531 | srcv(jpr_botm )%clname = 'OBotMlt' |
---|
532 | IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN |
---|
533 | IF ( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN |
---|
534 | srcv(jpr_topm:jpr_botm)%nct = jpl |
---|
535 | ELSE |
---|
536 | CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' ) |
---|
537 | ENDIF |
---|
538 | srcv(jpr_topm:jpr_botm)%laction = .TRUE. |
---|
539 | ENDIF |
---|
540 | ! ! ------------------------- ! |
---|
541 | ! ! Wave breaking ! |
---|
542 | ! ! ------------------------- ! |
---|
543 | srcv(jpr_hsig)%clname = 'O_Hsigwa' ! significant wave height |
---|
544 | IF( TRIM(sn_rcv_hsig%cldes ) == 'coupled' ) THEN |
---|
545 | srcv(jpr_hsig)%laction = .TRUE. |
---|
546 | cpl_hsig = .TRUE. |
---|
547 | ENDIF |
---|
548 | srcv(jpr_phioc)%clname = 'O_PhiOce' ! wave to ocean energy |
---|
549 | IF( TRIM(sn_rcv_phioc%cldes ) == 'coupled' ) THEN |
---|
550 | srcv(jpr_phioc)%laction = .TRUE. |
---|
551 | cpl_phioc = .TRUE. |
---|
552 | ENDIF |
---|
553 | srcv(jpr_sdrftx)%clname = 'O_Sdrfx' ! Stokes drift in the u direction |
---|
554 | srcv(jpr_sdrfty)%clname = 'O_Sdrfy' ! Stokes drift in the v direction |
---|
555 | IF( TRIM(sn_rcv_sdrft%cldes ) == 'coupled' ) THEN |
---|
556 | srcv(jpr_sdrftx)%laction = .TRUE. |
---|
557 | srcv(jpr_sdrfty)%laction = .TRUE. |
---|
558 | cpl_sdrft = .TRUE. |
---|
559 | ENDIF |
---|
560 | srcv(jpr_wper)%clname = 'O_WPer' ! mean wave period |
---|
561 | IF( TRIM(sn_rcv_wper%cldes ) == 'coupled' ) THEN |
---|
562 | srcv(jpr_wper)%laction = .TRUE. |
---|
563 | cpl_wper = .TRUE. |
---|
564 | ENDIF |
---|
565 | srcv(jpr_wfreq)%clname = 'O_WFreq' ! wave peak frequency |
---|
566 | IF( TRIM(sn_rcv_wfreq%cldes ) == 'coupled' ) THEN |
---|
567 | srcv(jpr_wfreq)%laction = .TRUE. |
---|
568 | cpl_wfreq = .TRUE. |
---|
569 | ENDIF |
---|
570 | srcv(jpr_wnum)%clname = 'O_WNum' ! mean wave number |
---|
571 | IF( TRIM(sn_rcv_wnum%cldes ) == 'coupled' ) THEN |
---|
572 | srcv(jpr_wnum)%laction = .TRUE. |
---|
573 | cpl_wnum = .TRUE. |
---|
574 | ENDIF |
---|
575 | srcv(jpr_tauoc)%clname = 'O_TauOce' ! stress fraction adsorbed by the wave |
---|
576 | IF( TRIM(sn_rcv_tauoc%cldes ) == 'coupled' ) THEN |
---|
577 | srcv(jpr_tauoc)%laction = .TRUE. |
---|
578 | cpl_tauoc = .TRUE. |
---|
579 | ENDIF |
---|
580 | srcv(jpr_tauwx)%clname = 'O_Tauwx' ! ocean stress from wave in the x direction |
---|
581 | srcv(jpr_tauwy)%clname = 'O_Tauwy' ! ocean stress from wave in the y direction |
---|
582 | IF( TRIM(sn_rcv_tauw%cldes ) == 'coupled' ) THEN |
---|
583 | srcv(jpr_tauwx)%laction = .TRUE. |
---|
584 | srcv(jpr_tauwy)%laction = .TRUE. |
---|
585 | cpl_tauw = .TRUE. |
---|
586 | ENDIF |
---|
587 | srcv(jpr_wdrag)%clname = 'O_WDrag' ! neutral surface drag coefficient |
---|
588 | IF( TRIM(sn_rcv_wdrag%cldes ) == 'coupled' ) THEN |
---|
589 | srcv(jpr_wdrag)%laction = .TRUE. |
---|
590 | cpl_wdrag = .TRUE. |
---|
591 | ENDIF |
---|
592 | ! |
---|
593 | IF( srcv(jpr_tauoc)%laction .AND. srcv(jpr_tauwx)%laction .AND. srcv(jpr_tauwy)%laction ) & |
---|
594 | CALL ctl_stop( 'More than one method for modifying the ocean stress has been selected ', & |
---|
595 | '(sn_rcv_tauoc=coupled and sn_rcv_tauw=coupled)' ) |
---|
596 | ! |
---|
597 | ! |
---|
598 | ! ! ------------------------------- ! |
---|
599 | ! ! OPA-SAS coupling - rcv by opa ! |
---|
600 | ! ! ------------------------------- ! |
---|
601 | srcv(jpr_sflx)%clname = 'O_SFLX' |
---|
602 | srcv(jpr_fice)%clname = 'RIceFrc' |
---|
603 | ! |
---|
604 | IF( nn_components == jp_iam_opa ) THEN ! OPA coupled to SAS via OASIS: force received field by OPA (sent by SAS) |
---|
605 | srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
606 | srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling |
---|
607 | srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling |
---|
608 | srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE. |
---|
609 | srcv(jpr_otx1)%clgrid = 'U' ! oce components given at U-point |
---|
610 | srcv(jpr_oty1)%clgrid = 'V' ! and V-point |
---|
611 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
612 | srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1. |
---|
613 | sn_rcv_tau%clvgrd = 'U,V' |
---|
614 | sn_rcv_tau%clvor = 'local grid' |
---|
615 | sn_rcv_tau%clvref = 'spherical' |
---|
616 | sn_rcv_emp%cldes = 'oce only' |
---|
617 | ! |
---|
618 | IF(lwp) THEN ! control print |
---|
619 | WRITE(numout,*) |
---|
620 | WRITE(numout,*)' Special conditions for SAS-OPA coupling ' |
---|
621 | WRITE(numout,*)' OPA component ' |
---|
622 | WRITE(numout,*) |
---|
623 | WRITE(numout,*)' received fields from SAS component ' |
---|
624 | WRITE(numout,*)' ice cover ' |
---|
625 | WRITE(numout,*)' oce only EMP ' |
---|
626 | WRITE(numout,*)' salt flux ' |
---|
627 | WRITE(numout,*)' mixed oce-ice solar flux ' |
---|
628 | WRITE(numout,*)' mixed oce-ice non solar flux ' |
---|
629 | WRITE(numout,*)' wind stress U,V on local grid and sperical coordinates ' |
---|
630 | WRITE(numout,*)' wind stress module' |
---|
631 | WRITE(numout,*) |
---|
632 | ENDIF |
---|
633 | ENDIF |
---|
634 | ! ! -------------------------------- ! |
---|
635 | ! ! OPA-SAS coupling - rcv by sas ! |
---|
636 | ! ! -------------------------------- ! |
---|
637 | srcv(jpr_toce )%clname = 'I_SSTSST' |
---|
638 | srcv(jpr_soce )%clname = 'I_SSSal' |
---|
639 | srcv(jpr_ocx1 )%clname = 'I_OCurx1' |
---|
640 | srcv(jpr_ocy1 )%clname = 'I_OCury1' |
---|
641 | srcv(jpr_ssh )%clname = 'I_SSHght' |
---|
642 | srcv(jpr_e3t1st)%clname = 'I_E3T1st' |
---|
643 | srcv(jpr_fraqsr)%clname = 'I_FraQsr' |
---|
644 | ! |
---|
645 | IF( nn_components == jp_iam_sas ) THEN |
---|
646 | IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
647 | IF( .NOT. ln_cpl ) srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling |
---|
648 | IF( .NOT. ln_cpl ) srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling |
---|
649 | srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE. |
---|
650 | srcv( jpr_e3t1st )%laction = lk_vvl |
---|
651 | srcv(jpr_ocx1)%clgrid = 'U' ! oce components given at U-point |
---|
652 | srcv(jpr_ocy1)%clgrid = 'V' ! and V-point |
---|
653 | ! Vectors: change of sign at north fold ONLY if on the local grid |
---|
654 | srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1. |
---|
655 | ! Change first letter to couple with atmosphere if already coupled OPA |
---|
656 | ! this is nedeed as each variable name used in the namcouple must be unique: |
---|
657 | ! for example O_Runoff received by OPA from SAS and therefore O_Runoff received by SAS from the Atmosphere |
---|
658 | DO jn = 1, jprcv |
---|
659 | IF ( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname)) |
---|
660 | END DO |
---|
661 | ! |
---|
662 | IF(lwp) THEN ! control print |
---|
663 | WRITE(numout,*) |
---|
664 | WRITE(numout,*)' Special conditions for SAS-OPA coupling ' |
---|
665 | WRITE(numout,*)' SAS component ' |
---|
666 | WRITE(numout,*) |
---|
667 | IF( .NOT. ln_cpl ) THEN |
---|
668 | WRITE(numout,*)' received fields from OPA component ' |
---|
669 | ELSE |
---|
670 | WRITE(numout,*)' Additional received fields from OPA component : ' |
---|
671 | ENDIF |
---|
672 | WRITE(numout,*)' sea surface temperature (Celcius) ' |
---|
673 | WRITE(numout,*)' sea surface salinity ' |
---|
674 | WRITE(numout,*)' surface currents ' |
---|
675 | WRITE(numout,*)' sea surface height ' |
---|
676 | WRITE(numout,*)' thickness of first ocean T level ' |
---|
677 | WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level' |
---|
678 | WRITE(numout,*) |
---|
679 | ENDIF |
---|
680 | ENDIF |
---|
681 | |
---|
682 | ! =================================================== ! |
---|
683 | ! Allocate all parts of frcv used for received fields ! |
---|
684 | ! =================================================== ! |
---|
685 | DO jn = 1, jprcv |
---|
686 | IF ( srcv(jn)%laction ) ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) ) |
---|
687 | END DO |
---|
688 | ! Allocate taum part of frcv which is used even when not received as coupling field |
---|
689 | IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) ) |
---|
690 | ! Allocate w10m part of frcv which is used even when not received as coupling field |
---|
691 | IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) ) |
---|
692 | ! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field |
---|
693 | IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) ) |
---|
694 | IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) ) |
---|
695 | ! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE. |
---|
696 | IF( k_ice /= 0 ) THEN |
---|
697 | IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) ) |
---|
698 | IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) ) |
---|
699 | END IF |
---|
700 | |
---|
701 | ! ================================ ! |
---|
702 | ! Define the send interface ! |
---|
703 | ! ================================ ! |
---|
704 | ! for each field: define the OASIS name (ssnd(:)%clname) |
---|
705 | ! define send or not from the namelist parameters (ssnd(:)%laction) |
---|
706 | ! define the north fold type of lbc (ssnd(:)%nsgn) |
---|
707 | |
---|
708 | ! default definitions of nsnd |
---|
709 | ssnd(:)%laction = .FALSE. ; ssnd(:)%clgrid = 'T' ; ssnd(:)%nsgn = 1. ; ssnd(:)%nct = 1 |
---|
710 | |
---|
711 | ! ! ------------------------- ! |
---|
712 | ! ! Surface temperature ! |
---|
713 | ! ! ------------------------- ! |
---|
714 | ssnd(jps_toce)%clname = 'O_SSTSST' |
---|
715 | ssnd(jps_tice)%clname = 'O_TepIce' |
---|
716 | ssnd(jps_tmix)%clname = 'O_TepMix' |
---|
717 | SELECT CASE( TRIM( sn_snd_temp%cldes ) ) |
---|
718 | CASE( 'none' ) ! nothing to do |
---|
719 | CASE( 'oce only' ) ; ssnd( jps_toce )%laction = .TRUE. |
---|
720 | CASE( 'oce and ice' , 'weighted oce and ice' ) |
---|
721 | ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE. |
---|
722 | IF ( TRIM( sn_snd_temp%clcat ) == 'yes' ) ssnd(jps_tice)%nct = jpl |
---|
723 | CASE( 'mixed oce-ice' ) ; ssnd( jps_tmix )%laction = .TRUE. |
---|
724 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' ) |
---|
725 | END SELECT |
---|
726 | |
---|
727 | ! ! ------------------------- ! |
---|
728 | ! ! Albedo ! |
---|
729 | ! ! ------------------------- ! |
---|
730 | ssnd(jps_albice)%clname = 'O_AlbIce' |
---|
731 | ssnd(jps_albmix)%clname = 'O_AlbMix' |
---|
732 | SELECT CASE( TRIM( sn_snd_alb%cldes ) ) |
---|
733 | CASE( 'none' ) ! nothing to do |
---|
734 | CASE( 'ice' , 'weighted ice' ) ; ssnd(jps_albice)%laction = .TRUE. |
---|
735 | CASE( 'mixed oce-ice' ) ; ssnd(jps_albmix)%laction = .TRUE. |
---|
736 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' ) |
---|
737 | END SELECT |
---|
738 | ! |
---|
739 | ! Need to calculate oceanic albedo if |
---|
740 | ! 1. sending mixed oce-ice albedo or |
---|
741 | ! 2. receiving mixed oce-ice solar radiation |
---|
742 | IF ( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN |
---|
743 | CALL albedo_oce( zaos, zacs ) |
---|
744 | ! Due to lack of information on nebulosity : mean clear/overcast sky |
---|
745 | albedo_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5 |
---|
746 | ENDIF |
---|
747 | |
---|
748 | ! ! ------------------------- ! |
---|
749 | ! ! Ice fraction & Thickness ! |
---|
750 | ! ! ------------------------- ! |
---|
751 | ssnd(jps_fice)%clname = 'OIceFrc' |
---|
752 | ssnd(jps_ficet)%clname = 'OIceFrcT' |
---|
753 | ssnd(jps_hice)%clname = 'OIceTck' |
---|
754 | ssnd(jps_hsnw)%clname = 'OSnwTck' |
---|
755 | IF( k_ice /= 0 ) THEN |
---|
756 | ssnd(jps_fice)%laction = .TRUE. ! if ice treated in the ocean (even in climato case) |
---|
757 | ! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now |
---|
758 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_fice)%nct = jpl |
---|
759 | ENDIF |
---|
760 | |
---|
761 | IF (TRIM( sn_snd_ifrac%cldes ) == 'coupled') ssnd(jps_ficet)%laction = .TRUE. |
---|
762 | |
---|
763 | SELECT CASE ( TRIM( sn_snd_thick%cldes ) ) |
---|
764 | CASE( 'none' ) ! nothing to do |
---|
765 | CASE( 'ice and snow' ) |
---|
766 | ssnd(jps_hice:jps_hsnw)%laction = .TRUE. |
---|
767 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN |
---|
768 | ssnd(jps_hice:jps_hsnw)%nct = jpl |
---|
769 | ENDIF |
---|
770 | CASE ( 'weighted ice and snow' ) |
---|
771 | ssnd(jps_hice:jps_hsnw)%laction = .TRUE. |
---|
772 | IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = jpl |
---|
773 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' ) |
---|
774 | END SELECT |
---|
775 | |
---|
776 | ! ! ------------------------- ! |
---|
777 | ! ! Surface current ! |
---|
778 | ! ! ------------------------- ! |
---|
779 | ! ocean currents ! ice velocities |
---|
780 | ssnd(jps_ocx1)%clname = 'O_OCurx1' ; ssnd(jps_ivx1)%clname = 'O_IVelx1' |
---|
781 | ssnd(jps_ocy1)%clname = 'O_OCury1' ; ssnd(jps_ivy1)%clname = 'O_IVely1' |
---|
782 | ssnd(jps_ocz1)%clname = 'O_OCurz1' ; ssnd(jps_ivz1)%clname = 'O_IVelz1' |
---|
783 | ssnd(jps_ocxw)%clname = 'O_OCurxw' |
---|
784 | ssnd(jps_ocyw)%clname = 'O_OCuryw' |
---|
785 | ! |
---|
786 | ssnd(jps_ocx1:jps_ivz1)%nsgn = -1. ! vectors: change of the sign at the north fold |
---|
787 | |
---|
788 | IF( sn_snd_crt%clvgrd == 'U,V' ) THEN |
---|
789 | ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V' |
---|
790 | ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN |
---|
791 | CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' ) |
---|
792 | ssnd(jps_ocx1:jps_ivz1)%clgrid = 'T' ! all oce and ice components on the same unique grid |
---|
793 | ENDIF |
---|
794 | ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE. ! default: all are send |
---|
795 | IF( TRIM( sn_snd_crt%clvref ) == 'spherical' ) ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE. |
---|
796 | IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1. |
---|
797 | SELECT CASE( TRIM( sn_snd_crt%cldes ) ) |
---|
798 | CASE( 'none' ) ; ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE. |
---|
799 | CASE( 'oce only' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
800 | CASE( 'weighted oce and ice' ) ! nothing to do |
---|
801 | CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
802 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' ) |
---|
803 | END SELECT |
---|
804 | |
---|
805 | ssnd(jps_ocxw:jps_ocyw)%nsgn = -1. ! vectors: change of the sign at the north fold |
---|
806 | |
---|
807 | IF( sn_snd_crtw%clvgrd == 'U,V' ) THEN |
---|
808 | ssnd(jps_ocxw)%clgrid = 'U' ; ssnd(jps_ocyw)%clgrid = 'V' |
---|
809 | ELSE IF( sn_snd_crtw%clvgrd /= 'T' ) THEN |
---|
810 | CALL ctl_stop( 'sn_snd_crtw%clvgrd must be equal to T' ) |
---|
811 | ENDIF |
---|
812 | IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) ssnd(jps_ocxw:jps_ocyw)%nsgn = 1. |
---|
813 | SELECT CASE( TRIM( sn_snd_crtw%cldes ) ) |
---|
814 | CASE( 'none' ) ; ssnd(jps_ocxw:jps_ocyw)%laction = .FALSE. |
---|
815 | CASE( 'oce only' ) ; ssnd(jps_ocxw:jps_ocyw)%laction = .TRUE. |
---|
816 | CASE( 'weighted oce and ice' ) ! nothing to do |
---|
817 | CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. |
---|
818 | CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crtw%cldes' ) |
---|
819 | END SELECT |
---|
820 | |
---|
821 | ! ! ------------------------- ! |
---|
822 | ! ! CO2 flux ! |
---|
823 | ! ! ------------------------- ! |
---|
824 | ssnd(jps_co2)%clname = 'O_CO2FLX' ; IF( TRIM(sn_snd_co2%cldes) == 'coupled' ) ssnd(jps_co2 )%laction = .TRUE. |
---|
825 | |
---|
826 | ! ! ------------------------- ! |
---|
827 | ! ! Sea surface height ! |
---|
828 | ! ! ------------------------- ! |
---|
829 | ssnd(jps_wlev)%clname = 'O_Wlevel' ; IF( TRIM(sn_snd_wlev%cldes) == 'coupled' ) ssnd(jps_wlev)%laction = .TRUE. |
---|
830 | |
---|
831 | ! ! ------------------------------- ! |
---|
832 | ! ! OPA-SAS coupling - snd by opa ! |
---|
833 | ! ! ------------------------------- ! |
---|
834 | ssnd(jps_ssh )%clname = 'O_SSHght' |
---|
835 | ssnd(jps_soce )%clname = 'O_SSSal' |
---|
836 | ssnd(jps_e3t1st)%clname = 'O_E3T1st' |
---|
837 | ssnd(jps_fraqsr)%clname = 'O_FraQsr' |
---|
838 | ! |
---|
839 | IF( nn_components == jp_iam_opa ) THEN |
---|
840 | ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
841 | ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE. |
---|
842 | ssnd( jps_e3t1st )%laction = lk_vvl |
---|
843 | ! vector definition: not used but cleaner... |
---|
844 | ssnd(jps_ocx1)%clgrid = 'U' ! oce components given at U-point |
---|
845 | ssnd(jps_ocy1)%clgrid = 'V' ! and V-point |
---|
846 | sn_snd_crt%clvgrd = 'U,V' |
---|
847 | sn_snd_crt%clvor = 'local grid' |
---|
848 | sn_snd_crt%clvref = 'spherical' |
---|
849 | ! |
---|
850 | IF(lwp) THEN ! control print |
---|
851 | WRITE(numout,*) |
---|
852 | WRITE(numout,*)' sent fields to SAS component ' |
---|
853 | WRITE(numout,*)' sea surface temperature (T before, Celcius) ' |
---|
854 | WRITE(numout,*)' sea surface salinity ' |
---|
855 | WRITE(numout,*)' surface currents U,V on local grid and spherical coordinates' |
---|
856 | WRITE(numout,*)' sea surface height ' |
---|
857 | WRITE(numout,*)' thickness of first ocean T level ' |
---|
858 | WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level' |
---|
859 | WRITE(numout,*) |
---|
860 | ENDIF |
---|
861 | ENDIF |
---|
862 | ! ! ------------------------------- ! |
---|
863 | ! ! OPA-SAS coupling - snd by sas ! |
---|
864 | ! ! ------------------------------- ! |
---|
865 | ssnd(jps_sflx )%clname = 'I_SFLX' |
---|
866 | ssnd(jps_fice2 )%clname = 'IIceFrc' |
---|
867 | ssnd(jps_qsroce)%clname = 'I_QsrOce' |
---|
868 | ssnd(jps_qnsoce)%clname = 'I_QnsOce' |
---|
869 | ssnd(jps_oemp )%clname = 'IOEvaMPr' |
---|
870 | ssnd(jps_otx1 )%clname = 'I_OTaux1' |
---|
871 | ssnd(jps_oty1 )%clname = 'I_OTauy1' |
---|
872 | ssnd(jps_rnf )%clname = 'I_Runoff' |
---|
873 | ssnd(jps_taum )%clname = 'I_TauMod' |
---|
874 | ! |
---|
875 | IF( nn_components == jp_iam_sas ) THEN |
---|
876 | IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling |
---|
877 | ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE. |
---|
878 | ! |
---|
879 | ! Change first letter to couple with atmosphere if already coupled with sea_ice |
---|
880 | ! this is nedeed as each variable name used in the namcouple must be unique: |
---|
881 | ! for example O_SSTSST sent by OPA to SAS and therefore S_SSTSST sent by SAS to the Atmosphere |
---|
882 | DO jn = 1, jpsnd |
---|
883 | IF ( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname)) |
---|
884 | END DO |
---|
885 | ! |
---|
886 | IF(lwp) THEN ! control print |
---|
887 | WRITE(numout,*) |
---|
888 | IF( .NOT. ln_cpl ) THEN |
---|
889 | WRITE(numout,*)' sent fields to OPA component ' |
---|
890 | ELSE |
---|
891 | WRITE(numout,*)' Additional sent fields to OPA component : ' |
---|
892 | ENDIF |
---|
893 | WRITE(numout,*)' ice cover ' |
---|
894 | WRITE(numout,*)' oce only EMP ' |
---|
895 | WRITE(numout,*)' salt flux ' |
---|
896 | WRITE(numout,*)' mixed oce-ice solar flux ' |
---|
897 | WRITE(numout,*)' mixed oce-ice non solar flux ' |
---|
898 | WRITE(numout,*)' wind stress U,V components' |
---|
899 | WRITE(numout,*)' wind stress module' |
---|
900 | ENDIF |
---|
901 | ENDIF |
---|
902 | |
---|
903 | ! |
---|
904 | ! ================================ ! |
---|
905 | ! initialisation of the coupler ! |
---|
906 | ! ================================ ! |
---|
907 | |
---|
908 | CALL cpl_define(jprcv, jpsnd, nn_cplmodel) |
---|
909 | |
---|
910 | IF (ln_usecplmask) THEN |
---|
911 | xcplmask(:,:,:) = 0. |
---|
912 | CALL iom_open( 'cplmask', inum ) |
---|
913 | CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:nlci,1:nlcj,1:nn_cplmodel), & |
---|
914 | & kstart = (/ mig(1),mjg(1),1 /), kcount = (/ nlci,nlcj,nn_cplmodel /) ) |
---|
915 | CALL iom_close( inum ) |
---|
916 | ELSE |
---|
917 | xcplmask(:,:,:) = 1. |
---|
918 | ENDIF |
---|
919 | xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 ) |
---|
920 | ! |
---|
921 | ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' ) |
---|
922 | IF( ln_dm2dc .AND. ln_cpl .AND. ncpl_qsr_freq /= 86400 ) & |
---|
923 | & CALL ctl_stop( 'sbc_cpl_init: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' ) |
---|
924 | IF( ln_dm2dc .AND. ln_cpl ) ncpl_qsr_freq = 86400 / ncpl_qsr_freq |
---|
925 | |
---|
926 | CALL wrk_dealloc( jpi,jpj, zacs, zaos ) |
---|
927 | ! |
---|
928 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_init') |
---|
929 | ! |
---|
930 | END SUBROUTINE sbc_cpl_init |
---|
931 | |
---|
932 | |
---|
933 | SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice ) |
---|
934 | !!---------------------------------------------------------------------- |
---|
935 | !! *** ROUTINE sbc_cpl_rcv *** |
---|
936 | !! |
---|
937 | !! ** Purpose : provide the stress over the ocean and, if no sea-ice, |
---|
938 | !! provide the ocean heat and freshwater fluxes. |
---|
939 | !! |
---|
940 | !! ** Method : - Receive all the atmospheric fields (stored in frcv array). called at each time step. |
---|
941 | !! OASIS controls if there is something do receive or not. nrcvinfo contains the info |
---|
942 | !! to know if the field was really received or not |
---|
943 | !! |
---|
944 | !! --> If ocean stress was really received: |
---|
945 | !! |
---|
946 | !! - transform the received ocean stress vector from the received |
---|
947 | !! referential and grid into an atmosphere-ocean stress in |
---|
948 | !! the (i,j) ocean referencial and at the ocean velocity point. |
---|
949 | !! The received stress are : |
---|
950 | !! - defined by 3 components (if cartesian coordinate) |
---|
951 | !! or by 2 components (if spherical) |
---|
952 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
953 | !! or along the local grid coordinate (if local grid) |
---|
954 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
955 | !! or at T-point if received on 1 grid |
---|
956 | !! Therefore and if necessary, they are successively |
---|
957 | !! processed in order to obtain them |
---|
958 | !! first as 2 components on the sphere |
---|
959 | !! second as 2 components oriented along the local grid |
---|
960 | !! third as 2 components on the U,V grid |
---|
961 | !! |
---|
962 | !! --> |
---|
963 | !! |
---|
964 | !! - In 'ocean only' case, non solar and solar ocean heat fluxes |
---|
965 | !! and total ocean freshwater fluxes |
---|
966 | !! |
---|
967 | !! ** Method : receive all fields from the atmosphere and transform |
---|
968 | !! them into ocean surface boundary condition fields |
---|
969 | !! |
---|
970 | !! ** Action : update utau, vtau ocean stress at U,V grid |
---|
971 | !! taum wind stress module at T-point |
---|
972 | !! wndm wind speed module at T-point over free ocean or leads in presence of sea-ice |
---|
973 | !! qns non solar heat fluxes including emp heat content (ocean only case) |
---|
974 | !! and the latent heat flux of solid precip. melting |
---|
975 | !! qsr solar ocean heat fluxes (ocean only case) |
---|
976 | !! emp upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case) |
---|
977 | !!---------------------------------------------------------------------- |
---|
978 | USE sbcflx , ONLY : ln_shelf_flx |
---|
979 | |
---|
980 | INTEGER, INTENT(in) :: kt ! ocean model time step index |
---|
981 | INTEGER, INTENT(in) :: k_fsbc ! frequency of sbc (-> ice model) computation |
---|
982 | INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3) |
---|
983 | |
---|
984 | !! |
---|
985 | LOGICAL :: llnewtx, llnewtau ! update wind stress components and module?? |
---|
986 | INTEGER :: ji, jj, jn ! dummy loop indices |
---|
987 | INTEGER :: isec ! number of seconds since nit000 (assuming rdttra did not change since nit000) |
---|
988 | REAL(wp) :: zcumulneg, zcumulpos ! temporary scalars |
---|
989 | REAL(wp) :: zcoef ! temporary scalar |
---|
990 | REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3 |
---|
991 | REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient |
---|
992 | REAL(wp) :: zzx, zzy ! temporary variables |
---|
993 | REAL(wp), POINTER, DIMENSION(:,:) :: ztx, zty, zmsk, zemp, zqns, zqsr |
---|
994 | !!---------------------------------------------------------------------- |
---|
995 | ! |
---|
996 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_rcv') |
---|
997 | ! |
---|
998 | CALL wrk_alloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr ) |
---|
999 | ! |
---|
1000 | IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0) |
---|
1001 | ! |
---|
1002 | ! ! ======================================================= ! |
---|
1003 | ! ! Receive all the atmos. fields (including ice information) |
---|
1004 | ! ! ======================================================= ! |
---|
1005 | isec = ( kt - nit000 ) * NINT( rdttra(1) ) ! date of exchanges |
---|
1006 | DO jn = 1, jprcv ! received fields sent by the atmosphere |
---|
1007 | IF( srcv(jn)%laction ) CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) ) |
---|
1008 | END DO |
---|
1009 | |
---|
1010 | ! ! ========================= ! |
---|
1011 | IF( srcv(jpr_otx1)%laction ) THEN ! ocean stress components ! |
---|
1012 | ! ! ========================= ! |
---|
1013 | ! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid |
---|
1014 | ! => need to be done only when we receive the field |
---|
1015 | IF( nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN |
---|
1016 | ! |
---|
1017 | IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
1018 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
1019 | ! |
---|
1020 | CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1), & |
---|
1021 | & srcv(jpr_otx1)%clgrid, ztx, zty ) |
---|
1022 | frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
1023 | frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
1024 | ! |
---|
1025 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
1026 | CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1), & |
---|
1027 | & srcv(jpr_otx2)%clgrid, ztx, zty ) |
---|
1028 | frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
1029 | frcv(jpr_oty2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
1030 | ENDIF |
---|
1031 | ! |
---|
1032 | ENDIF |
---|
1033 | ! |
---|
1034 | IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
1035 | ! ! (geographical to local grid -> rotate the components) |
---|
1036 | CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx ) |
---|
1037 | IF( srcv(jpr_otx2)%laction ) THEN |
---|
1038 | CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty ) |
---|
1039 | ELSE |
---|
1040 | CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty ) |
---|
1041 | ENDIF |
---|
1042 | frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
1043 | frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 2nd grid |
---|
1044 | ENDIF |
---|
1045 | ! |
---|
1046 | IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN |
---|
1047 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
1048 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1049 | frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) ) |
---|
1050 | frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) ) |
---|
1051 | END DO |
---|
1052 | END DO |
---|
1053 | CALL lbc_lnk( frcv(jpr_otx1)%z3(:,:,1), 'U', -1. ) ; CALL lbc_lnk( frcv(jpr_oty1)%z3(:,:,1), 'V', -1. ) |
---|
1054 | ENDIF |
---|
1055 | llnewtx = .TRUE. |
---|
1056 | ELSE |
---|
1057 | llnewtx = .FALSE. |
---|
1058 | ENDIF |
---|
1059 | ! ! ========================= ! |
---|
1060 | ELSE ! No dynamical coupling ! |
---|
1061 | ! ! ========================= ! |
---|
1062 | ! it is possible that the momentum is calculated from the winds (ln_shelf_flx) and a coupled drag coefficient |
---|
1063 | IF( srcv(jpr_wdrag)%laction .AND. ln_shelf_flx .AND. ln_cdgw .AND. nn_drag == jp_std ) THEN |
---|
1064 | DO jj = 1, jpj |
---|
1065 | DO ji = 1, jpi |
---|
1066 | ! here utau and vtau should contain the wind components as read from the forcing files |
---|
1067 | zcoef = SQRT(utau(ji,jj)*utau(ji,jj) + vtau(ji,jj)*vtau(ji,jj)) |
---|
1068 | frcv(jpr_otx1)%z3(ji,jj,1) = zrhoa * frcv(jpr_wdrag)%z3(ji,jj,1) * utau(ji,jj) * zcoef |
---|
1069 | frcv(jpr_oty1)%z3(ji,jj,1) = zrhoa * frcv(jpr_wdrag)%z3(ji,jj,1) * vtau(ji,jj) * zcoef |
---|
1070 | utau(ji,jj) = frcv(jpr_otx1)%z3(ji,jj,1) |
---|
1071 | vtau(ji,jj) = frcv(jpr_oty1)%z3(ji,jj,1) |
---|
1072 | END DO |
---|
1073 | END DO |
---|
1074 | llnewtx = .TRUE. |
---|
1075 | ELSE |
---|
1076 | frcv(jpr_otx1)%z3(:,:,1) = 0.e0 ! here simply set to zero |
---|
1077 | frcv(jpr_oty1)%z3(:,:,1) = 0.e0 ! an external read in a file can be added instead |
---|
1078 | llnewtx = .TRUE. |
---|
1079 | ENDIF |
---|
1080 | ! |
---|
1081 | ENDIF |
---|
1082 | ! ! ========================= ! |
---|
1083 | ! ! wind stress module ! (taum) |
---|
1084 | ! ! ========================= ! |
---|
1085 | ! |
---|
1086 | IF( .NOT. srcv(jpr_taum)%laction ) THEN ! compute wind stress module from its components if not received |
---|
1087 | ! => need to be done only when otx1 was changed |
---|
1088 | IF( llnewtx ) THEN |
---|
1089 | !CDIR NOVERRCHK |
---|
1090 | DO jj = 2, jpjm1 |
---|
1091 | !CDIR NOVERRCHK |
---|
1092 | DO ji = fs_2, fs_jpim1 ! vect. opt. |
---|
1093 | zzx = frcv(jpr_otx1)%z3(ji-1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) |
---|
1094 | zzy = frcv(jpr_oty1)%z3(ji ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1) |
---|
1095 | frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy ) |
---|
1096 | END DO |
---|
1097 | END DO |
---|
1098 | CALL lbc_lnk( frcv(jpr_taum)%z3(:,:,1), 'T', 1. ) |
---|
1099 | IF( .NOT. srcv(jpr_otx1)%laction .AND. srcv(jpr_wdrag)%laction .AND. & |
---|
1100 | ln_shelf_flx .AND. ln_cdgw .AND. nn_drag == jp_std ) & |
---|
1101 | taum(:,:) = frcv(jpr_taum)%z3(:,:,1) |
---|
1102 | llnewtau = .TRUE. |
---|
1103 | ELSE |
---|
1104 | llnewtau = .FALSE. |
---|
1105 | ENDIF |
---|
1106 | ELSE |
---|
1107 | llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv |
---|
1108 | ! Stress module can be negative when received (interpolation problem) |
---|
1109 | IF( llnewtau ) THEN |
---|
1110 | frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) ) |
---|
1111 | ENDIF |
---|
1112 | ENDIF |
---|
1113 | ! |
---|
1114 | ! ! ========================= ! |
---|
1115 | ! ! 10 m wind speed ! (wndm) |
---|
1116 | ! ! include wave drag coef ! (wndm) |
---|
1117 | ! ! ========================= ! |
---|
1118 | ! |
---|
1119 | IF( .NOT. srcv(jpr_w10m)%laction ) THEN ! compute wind spreed from wind stress module if not received |
---|
1120 | ! => need to be done only when taumod was changed |
---|
1121 | IF( llnewtau ) THEN |
---|
1122 | zcoef = 1. / ( zrhoa * zcdrag ) |
---|
1123 | !CDIR NOVERRCHK |
---|
1124 | DO jj = 1, jpj |
---|
1125 | !CDIR NOVERRCHK |
---|
1126 | DO ji = 1, jpi |
---|
1127 | IF( ln_shelf_flx ) THEN ! the 10 wind module is properly calculated before if ln_shelf_flx |
---|
1128 | frcv(jpr_w10m)%z3(ji,jj,1) = wndm(ji,jj) |
---|
1129 | ELSE |
---|
1130 | frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef ) |
---|
1131 | ENDIF |
---|
1132 | END DO |
---|
1133 | END DO |
---|
1134 | ENDIF |
---|
1135 | ENDIF |
---|
1136 | |
---|
1137 | ! u(v)tau and taum will be modified by ice model |
---|
1138 | ! -> need to be reset before each call of the ice/fsbc |
---|
1139 | IF( MOD( kt-1, k_fsbc ) == 0 ) THEN |
---|
1140 | ! |
---|
1141 | ! if ln_wavcpl, the fields already contain the right information from forcing even if not ln_mixcpl |
---|
1142 | IF( ln_mixcpl ) THEN |
---|
1143 | IF( srcv(jpr_otx1)%laction ) THEN |
---|
1144 | utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:) |
---|
1145 | vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:) |
---|
1146 | ENDIF |
---|
1147 | IF( srcv(jpr_taum)%laction ) & |
---|
1148 | taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:) |
---|
1149 | IF( srcv(jpr_w10m)%laction ) & |
---|
1150 | wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:) |
---|
1151 | ELSE IF( ll_purecpl ) THEN |
---|
1152 | utau(:,:) = frcv(jpr_otx1)%z3(:,:,1) |
---|
1153 | vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1) |
---|
1154 | taum(:,:) = frcv(jpr_taum)%z3(:,:,1) |
---|
1155 | wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1) |
---|
1156 | ENDIF |
---|
1157 | CALL iom_put( "taum_oce", taum ) ! output wind stress module |
---|
1158 | ! |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | #if defined key_cpl_carbon_cycle |
---|
1162 | ! ! ================== ! |
---|
1163 | ! ! atmosph. CO2 (ppm) ! |
---|
1164 | ! ! ================== ! |
---|
1165 | IF( srcv(jpr_co2)%laction ) atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1) |
---|
1166 | #endif |
---|
1167 | ! |
---|
1168 | ! ! ========================= ! |
---|
1169 | ! ! Mean Sea Level Pressure ! (taum) |
---|
1170 | ! ! ========================= ! |
---|
1171 | ! |
---|
1172 | IF( srcv(jpr_mslp)%laction ) THEN ! UKMO SHELF effect of atmospheric pressure on SSH |
---|
1173 | IF( kt /= nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) !* Swap of ssh_ib fields |
---|
1174 | |
---|
1175 | r1_grau = 1.e0 / (grav * rau0) !* constant for optimization |
---|
1176 | ssh_ib(:,:) = - ( frcv(jpr_mslp)%z3(:,:,1) - rpref ) * r1_grau ! equivalent ssh (inverse barometer) |
---|
1177 | apr (:,:) = frcv(jpr_mslp)%z3(:,:,1) !atmospheric pressure |
---|
1178 | |
---|
1179 | IF( kt == nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) ! correct this later (read from restart if possible) |
---|
1180 | END IF |
---|
1181 | ! |
---|
1182 | IF( ln_sdw ) THEN ! Stokes Drift correction activated |
---|
1183 | ! ! ========================= ! |
---|
1184 | ! ! Stokes drift u,v ! |
---|
1185 | ! ! ========================= ! |
---|
1186 | IF( srcv(jpr_sdrftx)%laction .AND. srcv(jpr_sdrfty)%laction ) THEN |
---|
1187 | ut0sd(:,:) = frcv(jpr_sdrftx)%z3(:,:,1) |
---|
1188 | vt0sd(:,:) = frcv(jpr_sdrfty)%z3(:,:,1) |
---|
1189 | ENDIF |
---|
1190 | ! |
---|
1191 | ! ! ========================= ! |
---|
1192 | ! ! Wave mean period ! |
---|
1193 | ! ! ========================= ! |
---|
1194 | IF( srcv(jpr_wper)%laction ) wmp(:,:) = frcv(jpr_wper)%z3(:,:,1) |
---|
1195 | ! |
---|
1196 | ! ! ========================= ! |
---|
1197 | ! ! Significant wave height ! |
---|
1198 | ! ! ========================= ! |
---|
1199 | IF( srcv(jpr_hsig)%laction ) hsw(:,:) = frcv(jpr_hsig)%z3(:,:,1) |
---|
1200 | ! |
---|
1201 | ! ! ========================= ! |
---|
1202 | ! ! Wave peak frequency ! |
---|
1203 | ! ! ========================= ! |
---|
1204 | IF( srcv(jpr_wfreq)%laction ) wfreq(:,:) = frcv(jpr_wfreq)%z3(:,:,1) |
---|
1205 | ! |
---|
1206 | ! ! ========================= ! |
---|
1207 | ! ! Vertical mixing Qiao ! |
---|
1208 | ! ! ========================= ! |
---|
1209 | IF( srcv(jpr_wnum)%laction .AND. ln_zdfqiao ) wnum(:,:) = frcv(jpr_wnum)%z3(:,:,1) |
---|
1210 | |
---|
1211 | ! Calculate the 3D Stokes drift both in coupled and not fully uncoupled mode |
---|
1212 | IF( (srcv(jpr_sdrftx)%laction .AND. srcv(jpr_sdrfty)%laction) .OR. srcv(jpr_wper)%laction & |
---|
1213 | .OR. srcv(jpr_hsig)%laction .OR. srcv(jpr_wfreq)%laction) & |
---|
1214 | CALL sbc_stokes() |
---|
1215 | ENDIF |
---|
1216 | ! ! ========================= ! |
---|
1217 | ! ! Stress adsorbed by waves ! |
---|
1218 | ! ! ========================= ! |
---|
1219 | IF( srcv(jpr_tauoc)%laction .AND. ln_tauoc ) THEN |
---|
1220 | tauoc_wave(:,:) = frcv(jpr_tauoc)%z3(:,:,1) |
---|
1221 | ! cap the value of tauoc |
---|
1222 | WHERE(tauoc_wave < 0.0 ) tauoc_wave = 1.0 |
---|
1223 | WHERE(tauoc_wave > 100.0 ) tauoc_wave = 1.0 |
---|
1224 | ENDIF |
---|
1225 | ! ! ========================= ! |
---|
1226 | ! ! Stress component by waves ! |
---|
1227 | ! ! ========================= ! |
---|
1228 | IF( srcv(jpr_tauwx)%laction .AND. srcv(jpr_tauwy)%laction .AND. ln_tauw ) THEN |
---|
1229 | tauw_x(:,:) = frcv(jpr_tauwx)%z3(:,:,1) |
---|
1230 | tauw_y(:,:) = frcv(jpr_tauwy)%z3(:,:,1) |
---|
1231 | ! cap the value of tauoc |
---|
1232 | WHERE(tauw_x < -100.0 ) tauw_x = 0.0 |
---|
1233 | WHERE(tauw_x > 100.0 ) tauw_x = 0.0 |
---|
1234 | WHERE(tauw_y < -100.0 ) tauw_y = 0.0 |
---|
1235 | WHERE(tauw_y > 100.0 ) tauw_y = 0.0 |
---|
1236 | ENDIF |
---|
1237 | |
---|
1238 | ! ! ========================= ! |
---|
1239 | ! ! Wave to ocean energy ! |
---|
1240 | ! ! ========================= ! |
---|
1241 | IF( srcv(jpr_phioc)%laction .AND. ln_phioc ) THEN |
---|
1242 | rn_crban(:,:) = 29.0 * frcv(jpr_phioc)%z3(:,:,1) |
---|
1243 | WHERE( rn_crban < 0.0 ) rn_crban = 0.0 |
---|
1244 | WHERE( rn_crban > 1000.0 ) rn_crban = 1000.0 |
---|
1245 | ENDIF |
---|
1246 | |
---|
1247 | ! Fields received by SAS when OASIS coupling |
---|
1248 | ! (arrays no more filled at sbcssm stage) |
---|
1249 | ! ! ================== ! |
---|
1250 | ! ! SSS ! |
---|
1251 | ! ! ================== ! |
---|
1252 | IF( srcv(jpr_soce)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1253 | sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1) |
---|
1254 | CALL iom_put( 'sss_m', sss_m ) |
---|
1255 | ENDIF |
---|
1256 | ! |
---|
1257 | ! ! ================== ! |
---|
1258 | ! ! SST ! |
---|
1259 | ! ! ================== ! |
---|
1260 | IF( srcv(jpr_toce)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1261 | sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1) |
---|
1262 | IF( srcv(jpr_soce)%laction .AND. ln_useCT ) THEN ! make sure that sst_m is the potential temperature |
---|
1263 | sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) ) |
---|
1264 | ENDIF |
---|
1265 | ENDIF |
---|
1266 | ! ! ================== ! |
---|
1267 | ! ! SSH ! |
---|
1268 | ! ! ================== ! |
---|
1269 | IF( srcv(jpr_ssh )%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1270 | ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1) |
---|
1271 | CALL iom_put( 'ssh_m', ssh_m ) |
---|
1272 | ENDIF |
---|
1273 | ! ! ================== ! |
---|
1274 | ! ! surface currents ! |
---|
1275 | ! ! ================== ! |
---|
1276 | IF( srcv(jpr_ocx1)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1277 | ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1) |
---|
1278 | ub (:,:,1) = ssu_m(:,:) ! will be used in sbcice_lim in the call of lim_sbc_tau |
---|
1279 | un (:,:,1) = ssu_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling |
---|
1280 | CALL iom_put( 'ssu_m', ssu_m ) |
---|
1281 | ENDIF |
---|
1282 | IF( srcv(jpr_ocy1)%laction ) THEN |
---|
1283 | ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1) |
---|
1284 | vb (:,:,1) = ssv_m(:,:) ! will be used in sbcice_lim in the call of lim_sbc_tau |
---|
1285 | vn (:,:,1) = ssv_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling |
---|
1286 | CALL iom_put( 'ssv_m', ssv_m ) |
---|
1287 | ENDIF |
---|
1288 | ! ! ======================== ! |
---|
1289 | ! ! first T level thickness ! |
---|
1290 | ! ! ======================== ! |
---|
1291 | IF( srcv(jpr_e3t1st )%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1292 | e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1) |
---|
1293 | CALL iom_put( 'e3t_m', e3t_m(:,:) ) |
---|
1294 | ENDIF |
---|
1295 | ! ! ================================ ! |
---|
1296 | ! ! fraction of solar net radiation ! |
---|
1297 | ! ! ================================ ! |
---|
1298 | IF( srcv(jpr_fraqsr)%laction ) THEN ! received by sas in case of opa <-> sas coupling |
---|
1299 | frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1) |
---|
1300 | CALL iom_put( 'frq_m', frq_m ) |
---|
1301 | ENDIF |
---|
1302 | |
---|
1303 | ! ! ========================= ! |
---|
1304 | IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN ! heat & freshwater fluxes ! (Ocean only case) |
---|
1305 | ! ! ========================= ! |
---|
1306 | ! |
---|
1307 | ! ! total freshwater fluxes over the ocean (emp) |
---|
1308 | IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN |
---|
1309 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) ! evaporation - precipitation |
---|
1310 | CASE( 'conservative' ) |
---|
1311 | zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) ) |
---|
1312 | CASE( 'oce only', 'oce and ice' ) |
---|
1313 | zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1) |
---|
1314 | CASE default |
---|
1315 | CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' ) |
---|
1316 | END SELECT |
---|
1317 | ELSE IF( ll_purecpl ) THEN |
---|
1318 | zemp(:,:) = 0._wp |
---|
1319 | ENDIF |
---|
1320 | ! |
---|
1321 | ! ! runoffs and calving (added in emp) |
---|
1322 | IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1) |
---|
1323 | IF( srcv(jpr_cal)%laction ) zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1324 | |
---|
1325 | IF( ln_mixcpl .AND. ( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction )) THEN |
---|
1326 | emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:) |
---|
1327 | ELSE IF( ll_purecpl ) THEN ; emp(:,:) = zemp(:,:) |
---|
1328 | ENDIF |
---|
1329 | ! |
---|
1330 | ! ! non solar heat flux over the ocean (qns) |
---|
1331 | IF( srcv(jpr_qnsoce)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1332 | ELSE IF( srcv(jpr_qnsmix)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1333 | ELSE ; zqns(:,:) = 0._wp |
---|
1334 | END IF |
---|
1335 | ! update qns over the free ocean with: |
---|
1336 | IF( nn_components /= jp_iam_opa ) THEN |
---|
1337 | zqns(:,:) = zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp ! remove heat content due to mass flux (assumed to be at SST) |
---|
1338 | IF( srcv(jpr_snow )%laction ) THEN |
---|
1339 | zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * lfus ! energy for melting solid precipitation over the free ocean |
---|
1340 | ENDIF |
---|
1341 | ENDIF |
---|
1342 | IF( ln_mixcpl .AND. ( srcv(jpr_qnsoce)%laction .OR. srcv(jpr_qnsmix)%laction )) THEN |
---|
1343 | qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:) |
---|
1344 | ELSE IF( ll_purecpl ) THEN ; qns(:,:) = zqns(:,:) |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | ! ! solar flux over the ocean (qsr) |
---|
1348 | IF ( srcv(jpr_qsroce)%laction ) THEN ; zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1) |
---|
1349 | ELSE IF( srcv(jpr_qsrmix)%laction ) then ; zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1350 | ELSE ; zqsr(:,:) = 0._wp |
---|
1351 | ENDIF |
---|
1352 | IF( ln_dm2dc .AND. ln_cpl ) zqsr(:,:) = sbc_dcy( zqsr ) ! modify qsr to include the diurnal cycle |
---|
1353 | IF( ln_mixcpl .AND. ( srcv(jpr_qsroce)%laction .OR. srcv(jpr_qsrmix)%laction )) THEN |
---|
1354 | qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:) |
---|
1355 | ELSE IF( ll_purecpl ) THEN ; qsr(:,:) = zqsr(:,:) |
---|
1356 | ENDIF |
---|
1357 | ! |
---|
1358 | ! salt flux over the ocean (received by opa in case of opa <-> sas coupling) |
---|
1359 | IF( srcv(jpr_sflx )%laction ) sfx(:,:) = frcv(jpr_sflx )%z3(:,:,1) |
---|
1360 | ! Ice cover (received by opa in case of opa <-> sas coupling) |
---|
1361 | IF( srcv(jpr_fice )%laction ) fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1) |
---|
1362 | ! |
---|
1363 | |
---|
1364 | ENDIF |
---|
1365 | ! |
---|
1366 | CALL wrk_dealloc( jpi,jpj, ztx, zty, zmsk, zemp, zqns, zqsr ) |
---|
1367 | ! |
---|
1368 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_rcv') |
---|
1369 | ! |
---|
1370 | END SUBROUTINE sbc_cpl_rcv |
---|
1371 | |
---|
1372 | |
---|
1373 | SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj ) |
---|
1374 | !!---------------------------------------------------------------------- |
---|
1375 | !! *** ROUTINE sbc_cpl_ice_tau *** |
---|
1376 | !! |
---|
1377 | !! ** Purpose : provide the stress over sea-ice in coupled mode |
---|
1378 | !! |
---|
1379 | !! ** Method : transform the received stress from the atmosphere into |
---|
1380 | !! an atmosphere-ice stress in the (i,j) ocean referencial |
---|
1381 | !! and at the velocity point of the sea-ice model (cp_ice_msh): |
---|
1382 | !! 'C'-grid : i- (j-) components given at U- (V-) point |
---|
1383 | !! 'I'-grid : B-grid lower-left corner: both components given at I-point |
---|
1384 | !! |
---|
1385 | !! The received stress are : |
---|
1386 | !! - defined by 3 components (if cartesian coordinate) |
---|
1387 | !! or by 2 components (if spherical) |
---|
1388 | !! - oriented along geographical coordinate (if eastward-northward) |
---|
1389 | !! or along the local grid coordinate (if local grid) |
---|
1390 | !! - given at U- and V-point, resp. if received on 2 grids |
---|
1391 | !! or at a same point (T or I) if received on 1 grid |
---|
1392 | !! Therefore and if necessary, they are successively |
---|
1393 | !! processed in order to obtain them |
---|
1394 | !! first as 2 components on the sphere |
---|
1395 | !! second as 2 components oriented along the local grid |
---|
1396 | !! third as 2 components on the cp_ice_msh point |
---|
1397 | !! |
---|
1398 | !! Except in 'oce and ice' case, only one vector stress field |
---|
1399 | !! is received. It has already been processed in sbc_cpl_rcv |
---|
1400 | !! so that it is now defined as (i,j) components given at U- |
---|
1401 | !! and V-points, respectively. Therefore, only the third |
---|
1402 | !! transformation is done and only if the ice-grid is a 'I'-grid. |
---|
1403 | !! |
---|
1404 | !! ** Action : return ptau_i, ptau_j, the stress over the ice at cp_ice_msh point |
---|
1405 | !!---------------------------------------------------------------------- |
---|
1406 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_taui ! i- & j-components of atmos-ice stress [N/m2] |
---|
1407 | REAL(wp), INTENT(out), DIMENSION(:,:) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid) |
---|
1408 | !! |
---|
1409 | INTEGER :: ji, jj ! dummy loop indices |
---|
1410 | INTEGER :: itx ! index of taux over ice |
---|
1411 | REAL(wp), POINTER, DIMENSION(:,:) :: ztx, zty |
---|
1412 | !!---------------------------------------------------------------------- |
---|
1413 | ! |
---|
1414 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_ice_tau') |
---|
1415 | ! |
---|
1416 | CALL wrk_alloc( jpi,jpj, ztx, zty ) |
---|
1417 | |
---|
1418 | IF( srcv(jpr_itx1)%laction ) THEN ; itx = jpr_itx1 |
---|
1419 | ELSE ; itx = jpr_otx1 |
---|
1420 | ENDIF |
---|
1421 | |
---|
1422 | ! do something only if we just received the stress from atmosphere |
---|
1423 | IF( nrcvinfo(itx) == OASIS_Rcv ) THEN |
---|
1424 | |
---|
1425 | ! ! ======================= ! |
---|
1426 | IF( srcv(jpr_itx1)%laction ) THEN ! ice stress received ! |
---|
1427 | ! ! ======================= ! |
---|
1428 | ! |
---|
1429 | IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere |
---|
1430 | ! ! (cartesian to spherical -> 3 to 2 components) |
---|
1431 | CALL geo2oce( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1), & |
---|
1432 | & srcv(jpr_itx1)%clgrid, ztx, zty ) |
---|
1433 | frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid |
---|
1434 | frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid |
---|
1435 | ! |
---|
1436 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
1437 | CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1), & |
---|
1438 | & srcv(jpr_itx2)%clgrid, ztx, zty ) |
---|
1439 | frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid |
---|
1440 | frcv(jpr_ity2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid |
---|
1441 | ENDIF |
---|
1442 | ! |
---|
1443 | ENDIF |
---|
1444 | ! |
---|
1445 | IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid |
---|
1446 | ! ! (geographical to local grid -> rotate the components) |
---|
1447 | CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx ) |
---|
1448 | IF( srcv(jpr_itx2)%laction ) THEN |
---|
1449 | CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty ) |
---|
1450 | ELSE |
---|
1451 | CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty ) |
---|
1452 | ENDIF |
---|
1453 | frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid |
---|
1454 | frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 1st grid |
---|
1455 | ENDIF |
---|
1456 | ! ! ======================= ! |
---|
1457 | ELSE ! use ocean stress ! |
---|
1458 | ! ! ======================= ! |
---|
1459 | frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1) |
---|
1460 | frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1) |
---|
1461 | ! |
---|
1462 | ENDIF |
---|
1463 | ! ! ======================= ! |
---|
1464 | ! ! put on ice grid ! |
---|
1465 | ! ! ======================= ! |
---|
1466 | ! |
---|
1467 | ! j+1 j -----V---F |
---|
1468 | ! ice stress on ice velocity point (cp_ice_msh) ! | |
---|
1469 | ! (C-grid ==>(U,V) or B-grid ==> I or F) j | T U |
---|
1470 | ! | | |
---|
1471 | ! j j-1 -I-------| |
---|
1472 | ! (for I) | | |
---|
1473 | ! i-1 i i |
---|
1474 | ! i i+1 (for I) |
---|
1475 | SELECT CASE ( cp_ice_msh ) |
---|
1476 | ! |
---|
1477 | CASE( 'I' ) ! B-grid ==> I |
---|
1478 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1479 | CASE( 'U' ) |
---|
1480 | DO jj = 2, jpjm1 ! (U,V) ==> I |
---|
1481 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1482 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji-1,jj ,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) ) |
---|
1483 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji ,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) ) |
---|
1484 | END DO |
---|
1485 | END DO |
---|
1486 | CASE( 'F' ) |
---|
1487 | DO jj = 2, jpjm1 ! F ==> I |
---|
1488 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1489 | p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji-1,jj-1,1) |
---|
1490 | p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji-1,jj-1,1) |
---|
1491 | END DO |
---|
1492 | END DO |
---|
1493 | CASE( 'T' ) |
---|
1494 | DO jj = 2, jpjm1 ! T ==> I |
---|
1495 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1496 | p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj ,1) + frcv(jpr_itx1)%z3(ji-1,jj ,1) & |
---|
1497 | & + frcv(jpr_itx1)%z3(ji,jj-1,1) + frcv(jpr_itx1)%z3(ji-1,jj-1,1) ) |
---|
1498 | p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj ,1) + frcv(jpr_ity1)%z3(ji-1,jj ,1) & |
---|
1499 | & + frcv(jpr_oty1)%z3(ji,jj-1,1) + frcv(jpr_ity1)%z3(ji-1,jj-1,1) ) |
---|
1500 | END DO |
---|
1501 | END DO |
---|
1502 | CASE( 'I' ) |
---|
1503 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! I ==> I |
---|
1504 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1505 | END SELECT |
---|
1506 | IF( srcv(jpr_itx1)%clgrid /= 'I' ) THEN |
---|
1507 | CALL lbc_lnk( p_taui, 'I', -1. ) ; CALL lbc_lnk( p_tauj, 'I', -1. ) |
---|
1508 | ENDIF |
---|
1509 | ! |
---|
1510 | CASE( 'F' ) ! B-grid ==> F |
---|
1511 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1512 | CASE( 'U' ) |
---|
1513 | DO jj = 2, jpjm1 ! (U,V) ==> F |
---|
1514 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1515 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji ,jj+1,1) ) |
---|
1516 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji,jj,1) + frcv(jpr_ity1)%z3(ji+1,jj ,1) ) |
---|
1517 | END DO |
---|
1518 | END DO |
---|
1519 | CASE( 'I' ) |
---|
1520 | DO jj = 2, jpjm1 ! I ==> F |
---|
1521 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1522 | p_taui(ji,jj) = frcv(jpr_itx1)%z3(ji+1,jj+1,1) |
---|
1523 | p_tauj(ji,jj) = frcv(jpr_ity1)%z3(ji+1,jj+1,1) |
---|
1524 | END DO |
---|
1525 | END DO |
---|
1526 | CASE( 'T' ) |
---|
1527 | DO jj = 2, jpjm1 ! T ==> F |
---|
1528 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1529 | p_taui(ji,jj) = 0.25 * ( frcv(jpr_itx1)%z3(ji,jj ,1) + frcv(jpr_itx1)%z3(ji+1,jj ,1) & |
---|
1530 | & + frcv(jpr_itx1)%z3(ji,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj+1,1) ) |
---|
1531 | p_tauj(ji,jj) = 0.25 * ( frcv(jpr_ity1)%z3(ji,jj ,1) + frcv(jpr_ity1)%z3(ji+1,jj ,1) & |
---|
1532 | & + frcv(jpr_ity1)%z3(ji,jj+1,1) + frcv(jpr_ity1)%z3(ji+1,jj+1,1) ) |
---|
1533 | END DO |
---|
1534 | END DO |
---|
1535 | CASE( 'F' ) |
---|
1536 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! F ==> F |
---|
1537 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1538 | END SELECT |
---|
1539 | IF( srcv(jpr_itx1)%clgrid /= 'F' ) THEN |
---|
1540 | CALL lbc_lnk( p_taui, 'F', -1. ) ; CALL lbc_lnk( p_tauj, 'F', -1. ) |
---|
1541 | ENDIF |
---|
1542 | ! |
---|
1543 | CASE( 'C' ) ! C-grid ==> U,V |
---|
1544 | SELECT CASE ( srcv(jpr_itx1)%clgrid ) |
---|
1545 | CASE( 'U' ) |
---|
1546 | p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! (U,V) ==> (U,V) |
---|
1547 | p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1) |
---|
1548 | CASE( 'F' ) |
---|
1549 | DO jj = 2, jpjm1 ! F ==> (U,V) |
---|
1550 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1551 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji ,jj-1,1) ) |
---|
1552 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(jj,jj,1) + frcv(jpr_ity1)%z3(ji-1,jj ,1) ) |
---|
1553 | END DO |
---|
1554 | END DO |
---|
1555 | CASE( 'T' ) |
---|
1556 | DO jj = 2, jpjm1 ! T ==> (U,V) |
---|
1557 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
1558 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj ,1) + frcv(jpr_itx1)%z3(ji,jj,1) ) |
---|
1559 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) ) |
---|
1560 | END DO |
---|
1561 | END DO |
---|
1562 | CASE( 'I' ) |
---|
1563 | DO jj = 2, jpjm1 ! I ==> (U,V) |
---|
1564 | DO ji = 2, jpim1 ! NO vector opt. |
---|
1565 | p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj ,1) ) |
---|
1566 | p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji+1,jj+1,1) + frcv(jpr_ity1)%z3(ji ,jj+1,1) ) |
---|
1567 | END DO |
---|
1568 | END DO |
---|
1569 | END SELECT |
---|
1570 | IF( srcv(jpr_itx1)%clgrid /= 'U' ) THEN |
---|
1571 | CALL lbc_lnk( p_taui, 'U', -1. ) ; CALL lbc_lnk( p_tauj, 'V', -1. ) |
---|
1572 | ENDIF |
---|
1573 | END SELECT |
---|
1574 | |
---|
1575 | ENDIF |
---|
1576 | ! |
---|
1577 | CALL wrk_dealloc( jpi,jpj, ztx, zty ) |
---|
1578 | ! |
---|
1579 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_ice_tau') |
---|
1580 | ! |
---|
1581 | END SUBROUTINE sbc_cpl_ice_tau |
---|
1582 | |
---|
1583 | |
---|
1584 | SUBROUTINE sbc_cpl_ice_flx( p_frld, palbi, psst, pist ) |
---|
1585 | !!---------------------------------------------------------------------- |
---|
1586 | !! *** ROUTINE sbc_cpl_ice_flx *** |
---|
1587 | !! |
---|
1588 | !! ** Purpose : provide the heat and freshwater fluxes of the |
---|
1589 | !! ocean-ice system. |
---|
1590 | !! |
---|
1591 | !! ** Method : transform the fields received from the atmosphere into |
---|
1592 | !! surface heat and fresh water boundary condition for the |
---|
1593 | !! ice-ocean system. The following fields are provided: |
---|
1594 | !! * total non solar, solar and freshwater fluxes (qns_tot, |
---|
1595 | !! qsr_tot and emp_tot) (total means weighted ice-ocean flux) |
---|
1596 | !! NB: emp_tot include runoffs and calving. |
---|
1597 | !! * fluxes over ice (qns_ice, qsr_ice, emp_ice) where |
---|
1598 | !! emp_ice = sublimation - solid precipitation as liquid |
---|
1599 | !! precipitation are re-routed directly to the ocean and |
---|
1600 | !! runoffs and calving directly enter the ocean. |
---|
1601 | !! * solid precipitation (sprecip), used to add to qns_tot |
---|
1602 | !! the heat lost associated to melting solid precipitation |
---|
1603 | !! over the ocean fraction. |
---|
1604 | !! ===>> CAUTION here this changes the net heat flux received from |
---|
1605 | !! the atmosphere |
---|
1606 | !! |
---|
1607 | !! - the fluxes have been separated from the stress as |
---|
1608 | !! (a) they are updated at each ice time step compare to |
---|
1609 | !! an update at each coupled time step for the stress, and |
---|
1610 | !! (b) the conservative computation of the fluxes over the |
---|
1611 | !! sea-ice area requires the knowledge of the ice fraction |
---|
1612 | !! after the ice advection and before the ice thermodynamics, |
---|
1613 | !! so that the stress is updated before the ice dynamics |
---|
1614 | !! while the fluxes are updated after it. |
---|
1615 | !! |
---|
1616 | !! ** Action : update at each nf_ice time step: |
---|
1617 | !! qns_tot, qsr_tot non-solar and solar total heat fluxes |
---|
1618 | !! qns_ice, qsr_ice non-solar and solar heat fluxes over the ice |
---|
1619 | !! emp_tot total evaporation - precipitation(liquid and solid) (-runoff)(-calving) |
---|
1620 | !! emp_ice ice sublimation - solid precipitation over the ice |
---|
1621 | !! dqns_ice d(non-solar heat flux)/d(Temperature) over the ice |
---|
1622 | !! sprecip solid precipitation over the ocean |
---|
1623 | !!---------------------------------------------------------------------- |
---|
1624 | REAL(wp), INTENT(in ), DIMENSION(:,:) :: p_frld ! lead fraction [0 to 1] |
---|
1625 | ! optional arguments, used only in 'mixed oce-ice' case |
---|
1626 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: palbi ! all skies ice albedo |
---|
1627 | REAL(wp), INTENT(in ), DIMENSION(:,: ), OPTIONAL :: psst ! sea surface temperature [Celsius] |
---|
1628 | REAL(wp), INTENT(in ), DIMENSION(:,:,:), OPTIONAL :: pist ! ice surface temperature [Kelvin] |
---|
1629 | ! |
---|
1630 | INTEGER :: jl ! dummy loop index |
---|
1631 | REAL(wp), POINTER, DIMENSION(:,: ) :: zcptn, ztmp, zicefr, zmsk |
---|
1632 | REAL(wp), POINTER, DIMENSION(:,: ) :: zemp_tot, zemp_ice, zsprecip, ztprecip, zqns_tot, zqsr_tot |
---|
1633 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zqns_ice, zqsr_ice, zdqns_ice |
---|
1634 | REAL(wp), POINTER, DIMENSION(:,: ) :: zevap, zsnw, zqns_oce, zqsr_oce, zqprec_ice, zqemp_oce ! for LIM3 |
---|
1635 | !!---------------------------------------------------------------------- |
---|
1636 | ! |
---|
1637 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_ice_flx') |
---|
1638 | ! |
---|
1639 | CALL wrk_alloc( jpi,jpj, zcptn, ztmp, zicefr, zmsk, zemp_tot, zemp_ice, zsprecip, ztprecip, zqns_tot, zqsr_tot ) |
---|
1640 | CALL wrk_alloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice ) |
---|
1641 | |
---|
1642 | IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0) |
---|
1643 | zicefr(:,:) = 1.- p_frld(:,:) |
---|
1644 | zcptn(:,:) = rcp * sst_m(:,:) |
---|
1645 | ! |
---|
1646 | ! ! ========================= ! |
---|
1647 | ! ! freshwater budget ! (emp) |
---|
1648 | ! ! ========================= ! |
---|
1649 | ! |
---|
1650 | ! ! total Precipitation - total Evaporation (emp_tot) |
---|
1651 | ! ! solid precipitation - sublimation (emp_ice) |
---|
1652 | ! ! solid Precipitation (sprecip) |
---|
1653 | ! ! liquid + solid Precipitation (tprecip) |
---|
1654 | SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) |
---|
1655 | CASE( 'conservative' ) ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp |
---|
1656 | zsprecip(:,:) = frcv(jpr_snow)%z3(:,:,1) ! May need to ensure positive here |
---|
1657 | ztprecip(:,:) = frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:) ! May need to ensure positive here |
---|
1658 | zemp_tot(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:) |
---|
1659 | zemp_ice(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_snow)%z3(:,:,1) |
---|
1660 | CALL iom_put( 'rain' , frcv(jpr_rain)%z3(:,:,1) ) ! liquid precipitation |
---|
1661 | IF( iom_use('hflx_rain_cea') ) & |
---|
1662 | CALL iom_put( 'hflx_rain_cea', frcv(jpr_rain)%z3(:,:,1) * zcptn(:,:) ) ! heat flux from liq. precip. |
---|
1663 | IF( iom_use('evap_ao_cea') .OR. iom_use('hflx_evap_cea') ) & |
---|
1664 | ztmp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) |
---|
1665 | IF( iom_use('evap_ao_cea' ) ) & |
---|
1666 | CALL iom_put( 'evap_ao_cea' , ztmp ) ! ice-free oce evap (cell average) |
---|
1667 | IF( iom_use('hflx_evap_cea') ) & |
---|
1668 | CALL iom_put( 'hflx_evap_cea', ztmp(:,:) * zcptn(:,:) ) ! heat flux from from evap (cell average) |
---|
1669 | CASE( 'oce and ice' ) ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp |
---|
1670 | zemp_tot(:,:) = p_frld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + zicefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1) |
---|
1671 | zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) |
---|
1672 | zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1) |
---|
1673 | ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:) |
---|
1674 | END SELECT |
---|
1675 | |
---|
1676 | IF( iom_use('subl_ai_cea') ) & |
---|
1677 | CALL iom_put( 'subl_ai_cea', frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) ) ! Sublimation over sea-ice (cell average) |
---|
1678 | ! |
---|
1679 | ! ! runoffs and calving (put in emp_tot) |
---|
1680 | IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1) |
---|
1681 | IF( srcv(jpr_cal)%laction ) THEN |
---|
1682 | zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) |
---|
1683 | CALL iom_put( 'calving_cea', frcv(jpr_cal)%z3(:,:,1) ) |
---|
1684 | ENDIF |
---|
1685 | |
---|
1686 | IF( ln_mixcpl ) THEN |
---|
1687 | emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:) |
---|
1688 | emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:) |
---|
1689 | sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:) |
---|
1690 | tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:) |
---|
1691 | ELSE |
---|
1692 | emp_tot(:,:) = zemp_tot(:,:) |
---|
1693 | emp_ice(:,:) = zemp_ice(:,:) |
---|
1694 | sprecip(:,:) = zsprecip(:,:) |
---|
1695 | tprecip(:,:) = ztprecip(:,:) |
---|
1696 | ENDIF |
---|
1697 | |
---|
1698 | CALL iom_put( 'snowpre' , sprecip ) ! Snow |
---|
1699 | IF( iom_use('snow_ao_cea') ) & |
---|
1700 | CALL iom_put( 'snow_ao_cea', sprecip(:,:) * p_frld(:,:) ) ! Snow over ice-free ocean (cell average) |
---|
1701 | IF( iom_use('snow_ai_cea') ) & |
---|
1702 | CALL iom_put( 'snow_ai_cea', sprecip(:,:) * zicefr(:,:) ) ! Snow over sea-ice (cell average) |
---|
1703 | |
---|
1704 | ! ! ========================= ! |
---|
1705 | SELECT CASE( TRIM( sn_rcv_qns%cldes ) ) ! non solar heat fluxes ! (qns) |
---|
1706 | ! ! ========================= ! |
---|
1707 | CASE( 'oce only' ) ! the required field is directly provided |
---|
1708 | zqns_tot(:,: ) = frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1709 | CASE( 'conservative' ) ! the required fields are directly provided |
---|
1710 | zqns_tot(:,: ) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1711 | IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN |
---|
1712 | zqns_ice(:,:,1:jpl) = frcv(jpr_qnsice)%z3(:,:,1:jpl) |
---|
1713 | ELSE |
---|
1714 | ! Set all category values equal for the moment |
---|
1715 | DO jl=1,jpl |
---|
1716 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) |
---|
1717 | ENDDO |
---|
1718 | ENDIF |
---|
1719 | CASE( 'oce and ice' ) ! the total flux is computed from ocean and ice fluxes |
---|
1720 | zqns_tot(:,: ) = p_frld(:,:) * frcv(jpr_qnsoce)%z3(:,:,1) |
---|
1721 | IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN |
---|
1722 | DO jl=1,jpl |
---|
1723 | zqns_tot(:,: ) = zqns_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qnsice)%z3(:,:,jl) |
---|
1724 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,jl) |
---|
1725 | ENDDO |
---|
1726 | ELSE |
---|
1727 | qns_tot(:,: ) = qns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1) |
---|
1728 | DO jl=1,jpl |
---|
1729 | zqns_tot(:,: ) = zqns_tot(:,:) + zicefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1) |
---|
1730 | zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) |
---|
1731 | ENDDO |
---|
1732 | ENDIF |
---|
1733 | CASE( 'mixed oce-ice' ) ! the ice flux is cumputed from the total flux, the SST and ice informations |
---|
1734 | ! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED ** |
---|
1735 | zqns_tot(:,: ) = frcv(jpr_qnsmix)%z3(:,:,1) |
---|
1736 | zqns_ice(:,:,1) = frcv(jpr_qnsmix)%z3(:,:,1) & |
---|
1737 | & + frcv(jpr_dqnsdt)%z3(:,:,1) * ( pist(:,:,1) - ( (rt0 + psst(:,: ) ) * p_frld(:,:) & |
---|
1738 | & + pist(:,:,1) * zicefr(:,:) ) ) |
---|
1739 | END SELECT |
---|
1740 | !!gm |
---|
1741 | !! currently it is taken into account in leads budget but not in the zqns_tot, and thus not in |
---|
1742 | !! the flux that enter the ocean.... |
---|
1743 | !! moreover 1 - it is not diagnose anywhere.... |
---|
1744 | !! 2 - it is unclear for me whether this heat lost is taken into account in the atmosphere or not... |
---|
1745 | !! |
---|
1746 | !! similar job should be done for snow and precipitation temperature |
---|
1747 | ! |
---|
1748 | IF( srcv(jpr_cal)%laction ) THEN ! Iceberg melting |
---|
1749 | ztmp(:,:) = frcv(jpr_cal)%z3(:,:,1) * lfus ! add the latent heat of iceberg melting |
---|
1750 | zqns_tot(:,:) = zqns_tot(:,:) - ztmp(:,:) |
---|
1751 | IF( iom_use('hflx_cal_cea') ) & |
---|
1752 | CALL iom_put( 'hflx_cal_cea', ztmp + frcv(jpr_cal)%z3(:,:,1) * zcptn(:,:) ) ! heat flux from calving |
---|
1753 | ENDIF |
---|
1754 | |
---|
1755 | ztmp(:,:) = p_frld(:,:) * zsprecip(:,:) * lfus |
---|
1756 | IF( iom_use('hflx_snow_cea') ) CALL iom_put( 'hflx_snow_cea', ztmp + sprecip(:,:) * zcptn(:,:) ) ! heat flux from snow (cell average) |
---|
1757 | |
---|
1758 | #if defined key_lim3 |
---|
1759 | CALL wrk_alloc( jpi,jpj, zevap, zsnw, zqns_oce, zqprec_ice, zqemp_oce ) |
---|
1760 | |
---|
1761 | ! --- evaporation --- ! |
---|
1762 | ! clem: evap_ice is set to 0 for LIM3 since we still do not know what to do with sublimation |
---|
1763 | ! the problem is: the atm. imposes both mass evaporation and heat removed from the snow/ice |
---|
1764 | ! but it is incoherent WITH the ice model |
---|
1765 | DO jl=1,jpl |
---|
1766 | evap_ice(:,:,jl) = 0._wp ! should be: frcv(jpr_ievp)%z3(:,:,1) |
---|
1767 | ENDDO |
---|
1768 | zevap(:,:) = zemp_tot(:,:) + ztprecip(:,:) ! evaporation over ocean |
---|
1769 | |
---|
1770 | ! --- evaporation minus precipitation --- ! |
---|
1771 | emp_oce(:,:) = emp_tot(:,:) - emp_ice(:,:) |
---|
1772 | |
---|
1773 | ! --- non solar flux over ocean --- ! |
---|
1774 | ! note: p_frld cannot be = 0 since we limit the ice concentration to amax |
---|
1775 | zqns_oce = 0._wp |
---|
1776 | WHERE( p_frld /= 0._wp ) zqns_oce(:,:) = ( zqns_tot(:,:) - SUM( a_i * zqns_ice, dim=3 ) ) / p_frld(:,:) |
---|
1777 | |
---|
1778 | ! --- heat flux associated with emp --- ! |
---|
1779 | zsnw(:,:) = 0._wp |
---|
1780 | CALL lim_thd_snwblow( p_frld, zsnw ) ! snow distribution over ice after wind blowing |
---|
1781 | zqemp_oce(:,:) = - zevap(:,:) * p_frld(:,:) * zcptn(:,:) & ! evap |
---|
1782 | & + ( ztprecip(:,:) - zsprecip(:,:) ) * zcptn(:,:) & ! liquid precip |
---|
1783 | & + zsprecip(:,:) * ( 1._wp - zsnw ) * ( zcptn(:,:) - lfus ) ! solid precip over ocean |
---|
1784 | qemp_ice(:,:) = - frcv(jpr_ievp)%z3(:,:,1) * zicefr(:,:) * zcptn(:,:) & ! ice evap |
---|
1785 | & + zsprecip(:,:) * zsnw * ( zcptn(:,:) - lfus ) ! solid precip over ice |
---|
1786 | |
---|
1787 | ! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- ! |
---|
1788 | zqprec_ice(:,:) = rhosn * ( zcptn(:,:) - lfus ) |
---|
1789 | |
---|
1790 | ! --- total non solar flux --- ! |
---|
1791 | zqns_tot(:,:) = zqns_tot(:,:) + qemp_ice(:,:) + zqemp_oce(:,:) |
---|
1792 | |
---|
1793 | ! --- in case both coupled/forced are active, we must mix values --- ! |
---|
1794 | IF( ln_mixcpl ) THEN |
---|
1795 | qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:) |
---|
1796 | qns_oce(:,:) = qns_oce(:,:) * xcplmask(:,:,0) + zqns_oce(:,:)* zmsk(:,:) |
---|
1797 | DO jl=1,jpl |
---|
1798 | qns_ice(:,:,jl) = qns_ice(:,:,jl) * xcplmask(:,:,0) + zqns_ice(:,:,jl)* zmsk(:,:) |
---|
1799 | ENDDO |
---|
1800 | qprec_ice(:,:) = qprec_ice(:,:) * xcplmask(:,:,0) + zqprec_ice(:,:)* zmsk(:,:) |
---|
1801 | qemp_oce (:,:) = qemp_oce(:,:) * xcplmask(:,:,0) + zqemp_oce(:,:)* zmsk(:,:) |
---|
1802 | !!clem evap_ice(:,:) = evap_ice(:,:) * xcplmask(:,:,0) |
---|
1803 | ELSE |
---|
1804 | qns_tot (:,: ) = zqns_tot (:,: ) |
---|
1805 | qns_oce (:,: ) = zqns_oce (:,: ) |
---|
1806 | qns_ice (:,:,:) = zqns_ice (:,:,:) |
---|
1807 | qprec_ice(:,:) = zqprec_ice(:,:) |
---|
1808 | qemp_oce (:,:) = zqemp_oce (:,:) |
---|
1809 | ENDIF |
---|
1810 | |
---|
1811 | CALL wrk_dealloc( jpi,jpj, zevap, zsnw, zqns_oce, zqprec_ice, zqemp_oce ) |
---|
1812 | #else |
---|
1813 | |
---|
1814 | ! clem: this formulation is certainly wrong... but better than it was... |
---|
1815 | zqns_tot(:,:) = zqns_tot(:,:) & ! zqns_tot update over free ocean with: |
---|
1816 | & - ztmp(:,:) & ! remove the latent heat flux of solid precip. melting |
---|
1817 | & - ( zemp_tot(:,:) & ! remove the heat content of mass flux (assumed to be at SST) |
---|
1818 | & - zemp_ice(:,:) * zicefr(:,:) ) * zcptn(:,:) |
---|
1819 | |
---|
1820 | IF( ln_mixcpl ) THEN |
---|
1821 | qns_tot(:,:) = qns(:,:) * p_frld(:,:) + SUM( qns_ice(:,:,:) * a_i(:,:,:), dim=3 ) ! total flux from blk |
---|
1822 | qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:) |
---|
1823 | DO jl=1,jpl |
---|
1824 | qns_ice(:,:,jl) = qns_ice(:,:,jl) * xcplmask(:,:,0) + zqns_ice(:,:,jl)* zmsk(:,:) |
---|
1825 | ENDDO |
---|
1826 | ELSE |
---|
1827 | qns_tot(:,: ) = zqns_tot(:,: ) |
---|
1828 | qns_ice(:,:,:) = zqns_ice(:,:,:) |
---|
1829 | ENDIF |
---|
1830 | |
---|
1831 | #endif |
---|
1832 | |
---|
1833 | ! ! ========================= ! |
---|
1834 | SELECT CASE( TRIM( sn_rcv_qsr%cldes ) ) ! solar heat fluxes ! (qsr) |
---|
1835 | ! ! ========================= ! |
---|
1836 | CASE( 'oce only' ) |
---|
1837 | zqsr_tot(:,: ) = MAX( 0._wp , frcv(jpr_qsroce)%z3(:,:,1) ) |
---|
1838 | CASE( 'conservative' ) |
---|
1839 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1840 | IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN |
---|
1841 | zqsr_ice(:,:,1:jpl) = frcv(jpr_qsrice)%z3(:,:,1:jpl) |
---|
1842 | ELSE |
---|
1843 | ! Set all category values equal for the moment |
---|
1844 | DO jl=1,jpl |
---|
1845 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
1846 | ENDDO |
---|
1847 | ENDIF |
---|
1848 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1849 | zqsr_ice(:,:,1) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
1850 | CASE( 'oce and ice' ) |
---|
1851 | zqsr_tot(:,: ) = p_frld(:,:) * frcv(jpr_qsroce)%z3(:,:,1) |
---|
1852 | IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN |
---|
1853 | DO jl=1,jpl |
---|
1854 | zqsr_tot(:,: ) = zqsr_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qsrice)%z3(:,:,jl) |
---|
1855 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,jl) |
---|
1856 | ENDDO |
---|
1857 | ELSE |
---|
1858 | qsr_tot(:,: ) = qsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1) |
---|
1859 | DO jl=1,jpl |
---|
1860 | zqsr_tot(:,: ) = zqsr_tot(:,:) + zicefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1) |
---|
1861 | zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1) |
---|
1862 | ENDDO |
---|
1863 | ENDIF |
---|
1864 | CASE( 'mixed oce-ice' ) |
---|
1865 | zqsr_tot(:,: ) = frcv(jpr_qsrmix)%z3(:,:,1) |
---|
1866 | ! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED ** |
---|
1867 | ! Create solar heat flux over ice using incoming solar heat flux and albedos |
---|
1868 | ! ( see OASIS3 user guide, 5th edition, p39 ) |
---|
1869 | zqsr_ice(:,:,1) = frcv(jpr_qsrmix)%z3(:,:,1) * ( 1.- palbi(:,:,1) ) & |
---|
1870 | & / ( 1.- ( albedo_oce_mix(:,: ) * p_frld(:,:) & |
---|
1871 | & + palbi (:,:,1) * zicefr(:,:) ) ) |
---|
1872 | END SELECT |
---|
1873 | IF( ln_dm2dc .AND. ln_cpl ) THEN ! modify qsr to include the diurnal cycle |
---|
1874 | zqsr_tot(:,: ) = sbc_dcy( zqsr_tot(:,: ) ) |
---|
1875 | DO jl=1,jpl |
---|
1876 | zqsr_ice(:,:,jl) = sbc_dcy( zqsr_ice(:,:,jl) ) |
---|
1877 | ENDDO |
---|
1878 | ENDIF |
---|
1879 | |
---|
1880 | #if defined key_lim3 |
---|
1881 | CALL wrk_alloc( jpi,jpj, zqsr_oce ) |
---|
1882 | ! --- solar flux over ocean --- ! |
---|
1883 | ! note: p_frld cannot be = 0 since we limit the ice concentration to amax |
---|
1884 | zqsr_oce = 0._wp |
---|
1885 | WHERE( p_frld /= 0._wp ) zqsr_oce(:,:) = ( zqsr_tot(:,:) - SUM( a_i * zqsr_ice, dim=3 ) ) / p_frld(:,:) |
---|
1886 | |
---|
1887 | IF( ln_mixcpl ) THEN ; qsr_oce(:,:) = qsr_oce(:,:) * xcplmask(:,:,0) + zqsr_oce(:,:)* zmsk(:,:) |
---|
1888 | ELSE ; qsr_oce(:,:) = zqsr_oce(:,:) ; ENDIF |
---|
1889 | |
---|
1890 | CALL wrk_dealloc( jpi,jpj, zqsr_oce ) |
---|
1891 | #endif |
---|
1892 | |
---|
1893 | IF( ln_mixcpl ) THEN |
---|
1894 | qsr_tot(:,:) = qsr(:,:) * p_frld(:,:) + SUM( qsr_ice(:,:,:) * a_i(:,:,:), dim=3 ) ! total flux from blk |
---|
1895 | qsr_tot(:,:) = qsr_tot(:,:) * xcplmask(:,:,0) + zqsr_tot(:,:)* zmsk(:,:) |
---|
1896 | DO jl=1,jpl |
---|
1897 | qsr_ice(:,:,jl) = qsr_ice(:,:,jl) * xcplmask(:,:,0) + zqsr_ice(:,:,jl)* zmsk(:,:) |
---|
1898 | ENDDO |
---|
1899 | ELSE |
---|
1900 | qsr_tot(:,: ) = zqsr_tot(:,: ) |
---|
1901 | qsr_ice(:,:,:) = zqsr_ice(:,:,:) |
---|
1902 | ENDIF |
---|
1903 | |
---|
1904 | ! ! ========================= ! |
---|
1905 | SELECT CASE( TRIM( sn_rcv_dqnsdt%cldes ) ) ! d(qns)/dt ! |
---|
1906 | ! ! ========================= ! |
---|
1907 | CASE ('coupled') |
---|
1908 | IF ( TRIM(sn_rcv_dqnsdt%clcat) == 'yes' ) THEN |
---|
1909 | zdqns_ice(:,:,1:jpl) = frcv(jpr_dqnsdt)%z3(:,:,1:jpl) |
---|
1910 | ELSE |
---|
1911 | ! Set all category values equal for the moment |
---|
1912 | DO jl=1,jpl |
---|
1913 | zdqns_ice(:,:,jl) = frcv(jpr_dqnsdt)%z3(:,:,1) |
---|
1914 | ENDDO |
---|
1915 | ENDIF |
---|
1916 | END SELECT |
---|
1917 | |
---|
1918 | IF( ln_mixcpl ) THEN |
---|
1919 | DO jl=1,jpl |
---|
1920 | dqns_ice(:,:,jl) = dqns_ice(:,:,jl) * xcplmask(:,:,0) + zdqns_ice(:,:,jl) * zmsk(:,:) |
---|
1921 | ENDDO |
---|
1922 | ELSE |
---|
1923 | dqns_ice(:,:,:) = zdqns_ice(:,:,:) |
---|
1924 | ENDIF |
---|
1925 | |
---|
1926 | ! ! ========================= ! |
---|
1927 | SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) ) ! topmelt and botmelt ! |
---|
1928 | ! ! ========================= ! |
---|
1929 | CASE ('coupled') |
---|
1930 | topmelt(:,:,:)=frcv(jpr_topm)%z3(:,:,:) |
---|
1931 | botmelt(:,:,:)=frcv(jpr_botm)%z3(:,:,:) |
---|
1932 | END SELECT |
---|
1933 | |
---|
1934 | ! Surface transimission parameter io (Maykut Untersteiner , 1971 ; Ebert and Curry, 1993 ) |
---|
1935 | ! Used for LIM2 and LIM3 |
---|
1936 | ! Coupled case: since cloud cover is not received from atmosphere |
---|
1937 | ! ===> used prescribed cloud fraction representative for polar oceans in summer (0.81) |
---|
1938 | fr1_i0(:,:) = ( 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice ) |
---|
1939 | fr2_i0(:,:) = ( 0.82 * ( 1.0 - cldf_ice ) + 0.65 * cldf_ice ) |
---|
1940 | |
---|
1941 | CALL wrk_dealloc( jpi,jpj, zcptn, ztmp, zicefr, zmsk, zemp_tot, zemp_ice, zsprecip, ztprecip, zqns_tot, zqsr_tot ) |
---|
1942 | CALL wrk_dealloc( jpi,jpj,jpl, zqns_ice, zqsr_ice, zdqns_ice ) |
---|
1943 | ! |
---|
1944 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_ice_flx') |
---|
1945 | ! |
---|
1946 | END SUBROUTINE sbc_cpl_ice_flx |
---|
1947 | |
---|
1948 | |
---|
1949 | SUBROUTINE sbc_cpl_snd( kt ) |
---|
1950 | !!---------------------------------------------------------------------- |
---|
1951 | !! *** ROUTINE sbc_cpl_snd *** |
---|
1952 | !! |
---|
1953 | !! ** Purpose : provide the ocean-ice informations to the atmosphere |
---|
1954 | !! |
---|
1955 | !! ** Method : send to the atmosphere through a call to cpl_snd |
---|
1956 | !! all the needed fields (as defined in sbc_cpl_init) |
---|
1957 | !!---------------------------------------------------------------------- |
---|
1958 | INTEGER, INTENT(in) :: kt |
---|
1959 | ! |
---|
1960 | INTEGER :: ji, jj, jl ! dummy loop indices |
---|
1961 | INTEGER :: isec, info ! local integer |
---|
1962 | REAL(wp) :: zumax, zvmax |
---|
1963 | REAL(wp), POINTER, DIMENSION(:,:) :: zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 |
---|
1964 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ztmp3, ztmp4 |
---|
1965 | !!---------------------------------------------------------------------- |
---|
1966 | ! |
---|
1967 | IF( nn_timing == 1 ) CALL timing_start('sbc_cpl_snd') |
---|
1968 | ! |
---|
1969 | CALL wrk_alloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 ) |
---|
1970 | CALL wrk_alloc( jpi,jpj,jpl, ztmp3, ztmp4 ) |
---|
1971 | |
---|
1972 | isec = ( kt - nit000 ) * NINT(rdttra(1)) ! date of exchanges |
---|
1973 | |
---|
1974 | zfr_l(:,:) = 1.- fr_i(:,:) |
---|
1975 | ! ! ------------------------- ! |
---|
1976 | ! ! Surface temperature ! in Kelvin |
---|
1977 | ! ! ------------------------- ! |
---|
1978 | IF( ssnd(jps_toce)%laction .OR. ssnd(jps_tice)%laction .OR. ssnd(jps_tmix)%laction ) THEN |
---|
1979 | |
---|
1980 | IF ( nn_components == jp_iam_opa ) THEN |
---|
1981 | ztmp1(:,:) = tsn(:,:,1,jp_tem) ! send temperature as it is (potential or conservative) -> use of ln_useCT on the received part |
---|
1982 | ELSE |
---|
1983 | ! we must send the surface potential temperature |
---|
1984 | IF( ln_useCT ) THEN ; ztmp1(:,:) = eos_pt_from_ct( tsn(:,:,1,jp_tem), tsn(:,:,1,jp_sal) ) |
---|
1985 | ELSE ; ztmp1(:,:) = tsn(:,:,1,jp_tem) |
---|
1986 | ENDIF |
---|
1987 | ! |
---|
1988 | SELECT CASE( sn_snd_temp%cldes) |
---|
1989 | CASE( 'oce only' ) ; ztmp1(:,:) = ztmp1(:,:) + rt0 |
---|
1990 | CASE( 'oce and ice' ) ; ztmp1(:,:) = ztmp1(:,:) + rt0 |
---|
1991 | SELECT CASE( sn_snd_temp%clcat ) |
---|
1992 | CASE( 'yes' ) |
---|
1993 | ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) |
---|
1994 | CASE( 'no' ) |
---|
1995 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
1996 | ztmp3(:,:,1) = SUM( tn_ice * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
1997 | ELSEWHERE |
---|
1998 | ztmp3(:,:,1) = rt0 |
---|
1999 | END WHERE |
---|
2000 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) |
---|
2001 | END SELECT |
---|
2002 | CASE( 'weighted oce and ice' ) ; ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) |
---|
2003 | SELECT CASE( sn_snd_temp%clcat ) |
---|
2004 | CASE( 'yes' ) |
---|
2005 | ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2006 | CASE( 'no' ) |
---|
2007 | ztmp3(:,:,:) = 0.0 |
---|
2008 | DO jl=1,jpl |
---|
2009 | ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2010 | ENDDO |
---|
2011 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) |
---|
2012 | END SELECT |
---|
2013 | CASE( 'mixed oce-ice' ) |
---|
2014 | ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) |
---|
2015 | DO jl=1,jpl |
---|
2016 | ztmp1(:,:) = ztmp1(:,:) + tn_ice(:,:,jl) * a_i(:,:,jl) |
---|
2017 | ENDDO |
---|
2018 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%cldes' ) |
---|
2019 | END SELECT |
---|
2020 | ENDIF |
---|
2021 | IF( ssnd(jps_toce)%laction ) CALL cpl_snd( jps_toce, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2022 | IF( ssnd(jps_tice)%laction ) CALL cpl_snd( jps_tice, isec, ztmp3, info ) |
---|
2023 | IF( ssnd(jps_tmix)%laction ) CALL cpl_snd( jps_tmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2024 | ENDIF |
---|
2025 | ! ! ------------------------- ! |
---|
2026 | ! ! Albedo ! |
---|
2027 | ! ! ------------------------- ! |
---|
2028 | IF( ssnd(jps_albice)%laction ) THEN ! ice |
---|
2029 | SELECT CASE( sn_snd_alb%cldes ) |
---|
2030 | CASE( 'ice' ) |
---|
2031 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2032 | CASE( 'yes' ) |
---|
2033 | ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl) |
---|
2034 | CASE( 'no' ) |
---|
2035 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
2036 | ztmp1(:,:) = SUM( alb_ice (:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) / SUM( a_i(:,:,1:jpl), dim=3 ) |
---|
2037 | ELSEWHERE |
---|
2038 | ztmp1(:,:) = albedo_oce_mix(:,:) |
---|
2039 | END WHERE |
---|
2040 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%clcat' ) |
---|
2041 | END SELECT |
---|
2042 | CASE( 'weighted ice' ) ; |
---|
2043 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2044 | CASE( 'yes' ) |
---|
2045 | ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2046 | CASE( 'no' ) |
---|
2047 | WHERE( fr_i (:,:) > 0. ) |
---|
2048 | ztmp1(:,:) = SUM ( alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) |
---|
2049 | ELSEWHERE |
---|
2050 | ztmp1(:,:) = 0. |
---|
2051 | END WHERE |
---|
2052 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_ice%clcat' ) |
---|
2053 | END SELECT |
---|
2054 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%cldes' ) |
---|
2055 | END SELECT |
---|
2056 | |
---|
2057 | SELECT CASE( sn_snd_alb%clcat ) |
---|
2058 | CASE( 'yes' ) |
---|
2059 | CALL cpl_snd( jps_albice, isec, ztmp3, info ) !-> MV this has never been checked in coupled mode |
---|
2060 | CASE( 'no' ) |
---|
2061 | CALL cpl_snd( jps_albice, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2062 | END SELECT |
---|
2063 | ENDIF |
---|
2064 | |
---|
2065 | IF( ssnd(jps_albmix)%laction ) THEN ! mixed ice-ocean |
---|
2066 | ztmp1(:,:) = albedo_oce_mix(:,:) * zfr_l(:,:) |
---|
2067 | DO jl=1,jpl |
---|
2068 | ztmp1(:,:) = ztmp1(:,:) + alb_ice(:,:,jl) * a_i(:,:,jl) |
---|
2069 | ENDDO |
---|
2070 | CALL cpl_snd( jps_albmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2071 | ENDIF |
---|
2072 | ! ! ------------------------- ! |
---|
2073 | ! ! Ice fraction & Thickness ! |
---|
2074 | ! ! ------------------------- ! |
---|
2075 | ! Send ice fraction field to atmosphere |
---|
2076 | IF( ssnd(jps_fice)%laction ) THEN |
---|
2077 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2078 | CASE( 'yes' ) ; ztmp3(:,:,1:jpl) = a_i(:,:,1:jpl) |
---|
2079 | CASE( 'no' ) ; ztmp3(:,:,1 ) = fr_i(:,: ) |
---|
2080 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2081 | END SELECT |
---|
2082 | IF( ssnd(jps_fice)%laction ) CALL cpl_snd( jps_fice, isec, ztmp3, info ) |
---|
2083 | ENDIF |
---|
2084 | |
---|
2085 | ! Send ice fraction field to OPA (sent by SAS in SAS-OPA coupling) |
---|
2086 | IF( ssnd(jps_fice2)%laction ) THEN |
---|
2087 | ztmp3(:,:,1) = fr_i(:,:) |
---|
2088 | IF( ssnd(jps_fice2)%laction ) CALL cpl_snd( jps_fice2, isec, ztmp3, info ) |
---|
2089 | ENDIF |
---|
2090 | |
---|
2091 | ! Send ice and snow thickness field |
---|
2092 | IF( ssnd(jps_hice)%laction .OR. ssnd(jps_hsnw)%laction ) THEN |
---|
2093 | SELECT CASE( sn_snd_thick%cldes) |
---|
2094 | CASE( 'none' ) ! nothing to do |
---|
2095 | CASE( 'weighted ice and snow' ) |
---|
2096 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2097 | CASE( 'yes' ) |
---|
2098 | ztmp3(:,:,1:jpl) = ht_i(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2099 | ztmp4(:,:,1:jpl) = ht_s(:,:,1:jpl) * a_i(:,:,1:jpl) |
---|
2100 | CASE( 'no' ) |
---|
2101 | ztmp3(:,:,:) = 0.0 ; ztmp4(:,:,:) = 0.0 |
---|
2102 | DO jl=1,jpl |
---|
2103 | ztmp3(:,:,1) = ztmp3(:,:,1) + ht_i(:,:,jl) * a_i(:,:,jl) |
---|
2104 | ztmp4(:,:,1) = ztmp4(:,:,1) + ht_s(:,:,jl) * a_i(:,:,jl) |
---|
2105 | ENDDO |
---|
2106 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2107 | END SELECT |
---|
2108 | CASE( 'ice and snow' ) |
---|
2109 | SELECT CASE( sn_snd_thick%clcat ) |
---|
2110 | CASE( 'yes' ) |
---|
2111 | ztmp3(:,:,1:jpl) = ht_i(:,:,1:jpl) |
---|
2112 | ztmp4(:,:,1:jpl) = ht_s(:,:,1:jpl) |
---|
2113 | CASE( 'no' ) |
---|
2114 | WHERE( SUM( a_i, dim=3 ) /= 0. ) |
---|
2115 | ztmp3(:,:,1) = SUM( ht_i * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
2116 | ztmp4(:,:,1) = SUM( ht_s * a_i, dim=3 ) / SUM( a_i, dim=3 ) |
---|
2117 | ELSEWHERE |
---|
2118 | ztmp3(:,:,1) = 0. |
---|
2119 | ztmp4(:,:,1) = 0. |
---|
2120 | END WHERE |
---|
2121 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' ) |
---|
2122 | END SELECT |
---|
2123 | CASE default ; CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%cldes' ) |
---|
2124 | END SELECT |
---|
2125 | IF( ssnd(jps_hice)%laction ) CALL cpl_snd( jps_hice, isec, ztmp3, info ) |
---|
2126 | IF( ssnd(jps_hsnw)%laction ) CALL cpl_snd( jps_hsnw, isec, ztmp4, info ) |
---|
2127 | ENDIF |
---|
2128 | ! |
---|
2129 | #if defined key_cpl_carbon_cycle |
---|
2130 | ! ! ------------------------- ! |
---|
2131 | ! ! CO2 flux from PISCES ! |
---|
2132 | ! ! ------------------------- ! |
---|
2133 | IF( ssnd(jps_co2)%laction ) CALL cpl_snd( jps_co2, isec, RESHAPE ( oce_co2, (/jpi,jpj,1/) ) , info ) |
---|
2134 | ! |
---|
2135 | #endif |
---|
2136 | ! ! ------------------------- ! |
---|
2137 | IF( ssnd(jps_ocx1)%laction ) THEN ! Surface current ! |
---|
2138 | ! ! ------------------------- ! |
---|
2139 | ! |
---|
2140 | ! j+1 j -----V---F |
---|
2141 | ! surface velocity always sent from T point ! | |
---|
2142 | ! j | T U |
---|
2143 | ! | | |
---|
2144 | ! j j-1 -I-------| |
---|
2145 | ! (for I) | | |
---|
2146 | ! i-1 i i |
---|
2147 | ! i i+1 (for I) |
---|
2148 | IF( nn_components == jp_iam_opa ) THEN |
---|
2149 | zotx1(:,:) = un(:,:,1) |
---|
2150 | zoty1(:,:) = vn(:,:,1) |
---|
2151 | ELSE |
---|
2152 | SELECT CASE( TRIM( sn_snd_crt%cldes ) ) |
---|
2153 | CASE( 'oce only' ) ! C-grid ==> T |
---|
2154 | DO jj = 2, jpjm1 |
---|
2155 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2156 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) |
---|
2157 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) |
---|
2158 | END DO |
---|
2159 | END DO |
---|
2160 | CASE( 'weighted oce and ice' ) |
---|
2161 | SELECT CASE ( cp_ice_msh ) |
---|
2162 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2163 | DO jj = 2, jpjm1 |
---|
2164 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2165 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2166 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2167 | zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2168 | zity1(ji,jj) = 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2169 | END DO |
---|
2170 | END DO |
---|
2171 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2172 | DO jj = 2, jpjm1 |
---|
2173 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2174 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2175 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2176 | zitx1(ji,jj) = 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2177 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2178 | zity1(ji,jj) = 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2179 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2180 | END DO |
---|
2181 | END DO |
---|
2182 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2183 | DO jj = 2, jpjm1 |
---|
2184 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2185 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2186 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2187 | zitx1(ji,jj) = 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2188 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2189 | zity1(ji,jj) = 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2190 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2191 | END DO |
---|
2192 | END DO |
---|
2193 | END SELECT |
---|
2194 | CALL lbc_lnk( zitx1, 'T', -1. ) ; CALL lbc_lnk( zity1, 'T', -1. ) |
---|
2195 | CASE( 'mixed oce-ice' ) |
---|
2196 | SELECT CASE ( cp_ice_msh ) |
---|
2197 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2198 | DO jj = 2, jpjm1 |
---|
2199 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2200 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2201 | & + 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2202 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2203 | & + 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2204 | END DO |
---|
2205 | END DO |
---|
2206 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2207 | DO jj = 2, jpjm1 |
---|
2208 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2209 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2210 | & + 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2211 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2212 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2213 | & + 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2214 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2215 | END DO |
---|
2216 | END DO |
---|
2217 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2218 | DO jj = 2, jpjm1 |
---|
2219 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2220 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2221 | & + 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2222 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2223 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2224 | & + 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2225 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2226 | END DO |
---|
2227 | END DO |
---|
2228 | END SELECT |
---|
2229 | END SELECT |
---|
2230 | CALL lbc_lnk( zotx1, ssnd(jps_ocx1)%clgrid, -1. ) ; CALL lbc_lnk( zoty1, ssnd(jps_ocy1)%clgrid, -1. ) |
---|
2231 | ! |
---|
2232 | ENDIF |
---|
2233 | ! |
---|
2234 | ! |
---|
2235 | IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) THEN ! Rotation of the components |
---|
2236 | ! ! Ocean component |
---|
2237 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2238 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2239 | zotx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2240 | zoty1(:,:) = ztmp2(:,:) |
---|
2241 | IF( ssnd(jps_ivx1)%laction ) THEN ! Ice component |
---|
2242 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2243 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2244 | zitx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2245 | zity1(:,:) = ztmp2(:,:) |
---|
2246 | ENDIF |
---|
2247 | ENDIF |
---|
2248 | ! |
---|
2249 | ! spherical coordinates to cartesian -> 2 components to 3 components |
---|
2250 | IF( TRIM( sn_snd_crt%clvref ) == 'cartesian' ) THEN |
---|
2251 | ztmp1(:,:) = zotx1(:,:) ! ocean currents |
---|
2252 | ztmp2(:,:) = zoty1(:,:) |
---|
2253 | CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 ) |
---|
2254 | ! |
---|
2255 | IF( ssnd(jps_ivx1)%laction ) THEN ! ice velocities |
---|
2256 | ztmp1(:,:) = zitx1(:,:) |
---|
2257 | ztmp1(:,:) = zity1(:,:) |
---|
2258 | CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 ) |
---|
2259 | ENDIF |
---|
2260 | ENDIF |
---|
2261 | ! |
---|
2262 | IF( ssnd(jps_ocx1)%laction ) CALL cpl_snd( jps_ocx1, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info ) ! ocean x current 1st grid |
---|
2263 | IF( ssnd(jps_ocy1)%laction ) CALL cpl_snd( jps_ocy1, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info ) ! ocean y current 1st grid |
---|
2264 | IF( ssnd(jps_ocz1)%laction ) CALL cpl_snd( jps_ocz1, isec, RESHAPE ( zotz1, (/jpi,jpj,1/) ), info ) ! ocean z current 1st grid |
---|
2265 | ! |
---|
2266 | IF( ssnd(jps_ivx1)%laction ) CALL cpl_snd( jps_ivx1, isec, RESHAPE ( zitx1, (/jpi,jpj,1/) ), info ) ! ice x current 1st grid |
---|
2267 | IF( ssnd(jps_ivy1)%laction ) CALL cpl_snd( jps_ivy1, isec, RESHAPE ( zity1, (/jpi,jpj,1/) ), info ) ! ice y current 1st grid |
---|
2268 | IF( ssnd(jps_ivz1)%laction ) CALL cpl_snd( jps_ivz1, isec, RESHAPE ( zitz1, (/jpi,jpj,1/) ), info ) ! ice z current 1st grid |
---|
2269 | ! |
---|
2270 | ENDIF |
---|
2271 | ! |
---|
2272 | ! ! ------------------------- ! |
---|
2273 | ! ! Surface current to waves ! |
---|
2274 | ! ! ------------------------- ! |
---|
2275 | IF( ssnd(jps_ocxw)%laction .OR. ssnd(jps_ocyw)%laction ) THEN |
---|
2276 | ! |
---|
2277 | ! j+1 j -----V---F |
---|
2278 | ! surface velocity always sent from T point ! | |
---|
2279 | ! j | T U |
---|
2280 | ! | | |
---|
2281 | ! j j-1 -I-------| |
---|
2282 | ! (for I) | | |
---|
2283 | ! i-1 i i |
---|
2284 | ! i i+1 (for I) |
---|
2285 | SELECT CASE( TRIM( sn_snd_crtw%cldes ) ) |
---|
2286 | CASE( 'oce only' ) ! C-grid ==> T |
---|
2287 | DO jj = 2, jpjm1 |
---|
2288 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2289 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) |
---|
2290 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji , jj-1,1) ) |
---|
2291 | END DO |
---|
2292 | END DO |
---|
2293 | CASE( 'weighted oce and ice' ) |
---|
2294 | SELECT CASE ( cp_ice_msh ) |
---|
2295 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2296 | DO jj = 2, jpjm1 |
---|
2297 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2298 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un (ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2299 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn (ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2300 | zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2301 | zity1(ji,jj) = 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2302 | END DO |
---|
2303 | END DO |
---|
2304 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2305 | DO jj = 2, jpjm1 |
---|
2306 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2307 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2308 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2309 | zitx1(ji,jj) = 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2310 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2311 | zity1(ji,jj) = 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2312 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2313 | END DO |
---|
2314 | END DO |
---|
2315 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2316 | DO jj = 2, jpjm1 |
---|
2317 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2318 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) |
---|
2319 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) |
---|
2320 | zitx1(ji,jj) = 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2321 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2322 | zity1(ji,jj) = 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2323 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2324 | END DO |
---|
2325 | END DO |
---|
2326 | END SELECT |
---|
2327 | CALL lbc_lnk( zitx1, 'T', -1. ) ; CALL lbc_lnk( zity1, 'T', -1. ) |
---|
2328 | CASE( 'mixed oce-ice' ) |
---|
2329 | SELECT CASE ( cp_ice_msh ) |
---|
2330 | CASE( 'C' ) ! Ocean and Ice on C-grid ==> T |
---|
2331 | DO jj = 2, jpjm1 |
---|
2332 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
2333 | zotx1(ji,jj) = 0.5 * ( un (ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2334 | & + 0.5 * ( u_ice(ji,jj ) + u_ice(ji-1,jj ) ) * fr_i(ji,jj) |
---|
2335 | zoty1(ji,jj) = 0.5 * ( vn (ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2336 | & + 0.5 * ( v_ice(ji,jj ) + v_ice(ji ,jj-1 ) ) * fr_i(ji,jj) |
---|
2337 | END DO |
---|
2338 | END DO |
---|
2339 | CASE( 'I' ) ! Ocean on C grid, Ice on I-point (B-grid) ==> T |
---|
2340 | DO jj = 2, jpjm1 |
---|
2341 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2342 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2343 | & + 0.25 * ( u_ice(ji+1,jj+1) + u_ice(ji,jj+1) & |
---|
2344 | & + u_ice(ji+1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2345 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2346 | & + 0.25 * ( v_ice(ji+1,jj+1) + v_ice(ji,jj+1) & |
---|
2347 | & + v_ice(ji+1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2348 | END DO |
---|
2349 | END DO |
---|
2350 | CASE( 'F' ) ! Ocean on C grid, Ice on F-point (B-grid) ==> T |
---|
2351 | DO jj = 2, jpjm1 |
---|
2352 | DO ji = 2, jpim1 ! NO vector opt. |
---|
2353 | zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj ,1) ) * zfr_l(ji,jj) & |
---|
2354 | & + 0.25 * ( u_ice(ji-1,jj-1) + u_ice(ji,jj-1) & |
---|
2355 | & + u_ice(ji-1,jj ) + u_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2356 | zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji ,jj-1,1) ) * zfr_l(ji,jj) & |
---|
2357 | & + 0.25 * ( v_ice(ji-1,jj-1) + v_ice(ji,jj-1) & |
---|
2358 | & + v_ice(ji-1,jj ) + v_ice(ji,jj ) ) * fr_i(ji,jj) |
---|
2359 | END DO |
---|
2360 | END DO |
---|
2361 | END SELECT |
---|
2362 | END SELECT |
---|
2363 | CALL lbc_lnk( zotx1, ssnd(jps_ocxw)%clgrid, -1. ) ; CALL lbc_lnk( zoty1, ssnd(jps_ocyw)%clgrid, -1. ) |
---|
2364 | ! |
---|
2365 | ! |
---|
2366 | IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) THEN ! Rotation of the components |
---|
2367 | ! ! Ocean component |
---|
2368 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocxw)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2369 | CALL rot_rep( zotx1, zoty1, ssnd(jps_ocxw)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2370 | zotx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2371 | zoty1(:,:) = ztmp2(:,:) |
---|
2372 | IF( ssnd(jps_ivx1)%laction ) THEN ! Ice component |
---|
2373 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 ) ! 1st component |
---|
2374 | CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 ) ! 2nd component |
---|
2375 | zitx1(:,:) = ztmp1(:,:) ! overwrite the components |
---|
2376 | zity1(:,:) = ztmp2(:,:) |
---|
2377 | ENDIF |
---|
2378 | ENDIF |
---|
2379 | ! |
---|
2380 | ! ! spherical coordinates to cartesian -> 2 components to 3 components |
---|
2381 | ! IF( TRIM( sn_snd_crtw%clvref ) == 'cartesian' ) THEN |
---|
2382 | ! ztmp1(:,:) = zotx1(:,:) ! ocean currents |
---|
2383 | ! ztmp2(:,:) = zoty1(:,:) |
---|
2384 | ! CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 ) |
---|
2385 | ! ! |
---|
2386 | ! IF( ssnd(jps_ivx1)%laction ) THEN ! ice velocities |
---|
2387 | ! ztmp1(:,:) = zitx1(:,:) |
---|
2388 | ! ztmp1(:,:) = zity1(:,:) |
---|
2389 | ! CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 ) |
---|
2390 | ! ENDIF |
---|
2391 | ! ENDIF |
---|
2392 | ! |
---|
2393 | IF( ssnd(jps_ocxw)%laction ) CALL cpl_snd( jps_ocxw, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info ) ! ocean x current 1st grid |
---|
2394 | IF( ssnd(jps_ocyw)%laction ) CALL cpl_snd( jps_ocyw, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info ) ! ocean y current 1st grid |
---|
2395 | ! |
---|
2396 | ENDIF |
---|
2397 | ! |
---|
2398 | IF( ssnd(jps_ficet)%laction ) THEN |
---|
2399 | CALL cpl_snd( jps_ficet, isec, RESHAPE ( fr_i, (/jpi,jpj,1/) ), info ) |
---|
2400 | END IF |
---|
2401 | ! ! ------------------------- ! |
---|
2402 | ! ! Water levels to waves ! |
---|
2403 | ! ! ------------------------- ! |
---|
2404 | IF( ssnd(jps_wlev)%laction ) THEN |
---|
2405 | IF( ln_apr_dyn ) THEN |
---|
2406 | IF( kt /= nit000 ) THEN |
---|
2407 | ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) |
---|
2408 | ELSE |
---|
2409 | ztmp1(:,:) = sshb(:,:) |
---|
2410 | ENDIF |
---|
2411 | ELSE |
---|
2412 | ztmp1(:,:) = sshn(:,:) |
---|
2413 | ENDIF |
---|
2414 | CALL cpl_snd( jps_wlev , isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) |
---|
2415 | END IF |
---|
2416 | ! |
---|
2417 | ! Fields sent by OPA to SAS when doing OPA<->SAS coupling |
---|
2418 | ! ! SSH |
---|
2419 | IF( ssnd(jps_ssh )%laction ) THEN |
---|
2420 | ! ! removed inverse barometer ssh when Patm |
---|
2421 | ! forcing is used (for sea-ice dynamics) |
---|
2422 | IF( ln_apr_dyn ) THEN ; ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) |
---|
2423 | ELSE ; ztmp1(:,:) = sshn(:,:) |
---|
2424 | ENDIF |
---|
2425 | CALL cpl_snd( jps_ssh , isec, RESHAPE ( ztmp1 , (/jpi,jpj,1/) ), info ) |
---|
2426 | |
---|
2427 | ENDIF |
---|
2428 | ! ! SSS |
---|
2429 | IF( ssnd(jps_soce )%laction ) THEN |
---|
2430 | CALL cpl_snd( jps_soce , isec, RESHAPE ( tsn(:,:,1,jp_sal), (/jpi,jpj,1/) ), info ) |
---|
2431 | ENDIF |
---|
2432 | ! ! first T level thickness |
---|
2433 | IF( ssnd(jps_e3t1st )%laction ) THEN |
---|
2434 | CALL cpl_snd( jps_e3t1st, isec, RESHAPE ( fse3t_n(:,:,1) , (/jpi,jpj,1/) ), info ) |
---|
2435 | ENDIF |
---|
2436 | ! ! Qsr fraction |
---|
2437 | IF( ssnd(jps_fraqsr)%laction ) THEN |
---|
2438 | CALL cpl_snd( jps_fraqsr, isec, RESHAPE ( fraqsr_1lev(:,:) , (/jpi,jpj,1/) ), info ) |
---|
2439 | ENDIF |
---|
2440 | ! |
---|
2441 | ! Fields sent by SAS to OPA when OASIS coupling |
---|
2442 | ! ! Solar heat flux |
---|
2443 | IF( ssnd(jps_qsroce)%laction ) CALL cpl_snd( jps_qsroce, isec, RESHAPE ( qsr , (/jpi,jpj,1/) ), info ) |
---|
2444 | IF( ssnd(jps_qnsoce)%laction ) CALL cpl_snd( jps_qnsoce, isec, RESHAPE ( qns , (/jpi,jpj,1/) ), info ) |
---|
2445 | IF( ssnd(jps_oemp )%laction ) CALL cpl_snd( jps_oemp , isec, RESHAPE ( emp , (/jpi,jpj,1/) ), info ) |
---|
2446 | IF( ssnd(jps_sflx )%laction ) CALL cpl_snd( jps_sflx , isec, RESHAPE ( sfx , (/jpi,jpj,1/) ), info ) |
---|
2447 | IF( ssnd(jps_otx1 )%laction ) CALL cpl_snd( jps_otx1 , isec, RESHAPE ( utau, (/jpi,jpj,1/) ), info ) |
---|
2448 | IF( ssnd(jps_oty1 )%laction ) CALL cpl_snd( jps_oty1 , isec, RESHAPE ( vtau, (/jpi,jpj,1/) ), info ) |
---|
2449 | IF( ssnd(jps_rnf )%laction ) CALL cpl_snd( jps_rnf , isec, RESHAPE ( rnf , (/jpi,jpj,1/) ), info ) |
---|
2450 | IF( ssnd(jps_taum )%laction ) CALL cpl_snd( jps_taum , isec, RESHAPE ( taum, (/jpi,jpj,1/) ), info ) |
---|
2451 | |
---|
2452 | CALL wrk_dealloc( jpi,jpj, zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1 ) |
---|
2453 | CALL wrk_dealloc( jpi,jpj,jpl, ztmp3, ztmp4 ) |
---|
2454 | ! |
---|
2455 | IF( nn_timing == 1 ) CALL timing_stop('sbc_cpl_snd') |
---|
2456 | ! |
---|
2457 | END SUBROUTINE sbc_cpl_snd |
---|
2458 | |
---|
2459 | !!====================================================================== |
---|
2460 | END MODULE sbccpl |
---|