1 | MODULE dynnxt |
---|
2 | !!========================================================================= |
---|
3 | !! *** MODULE dynnxt *** |
---|
4 | !! Ocean dynamics: time stepping |
---|
5 | !!========================================================================= |
---|
6 | !! History : OPA ! 1987-02 (P. Andrich, D. L Hostis) Original code |
---|
7 | !! ! 1990-10 (C. Levy, G. Madec) |
---|
8 | !! 7.0 ! 1993-03 (M. Guyon) symetrical conditions |
---|
9 | !! 8.0 ! 1997-02 (G. Madec & M. Imbard) opa, release 8.0 |
---|
10 | !! 8.2 ! 1997-04 (A. Weaver) Euler forward step |
---|
11 | !! - ! 1997-06 (G. Madec) lateral boudary cond., lbc routine |
---|
12 | !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module |
---|
13 | !! - ! 2002-10 (C. Talandier, A-M. Treguier) Open boundary cond. |
---|
14 | !! 2.0 ! 2005-11 (V. Garnier) Surface pressure gradient organization |
---|
15 | !! 2.3 ! 2007-07 (D. Storkey) Calls to BDY routines. |
---|
16 | !! 3.2 ! 2009-06 (G. Madec, R.Benshila) re-introduce the vvl option |
---|
17 | !! 3.3 ! 2010-09 (D. Storkey, E.O'Dea) Bug fix for BDY module |
---|
18 | !! 3.3 ! 2011-03 (P. Oddo) Bug fix for time-splitting+(BDY-OBC) and not VVL |
---|
19 | !! 3.5 ! 2013-07 (J. Chanut) Compliant with time splitting changes |
---|
20 | !! 3.6 ! 2014-04 (G. Madec) add the diagnostic of the time filter trends |
---|
21 | !! 3.7 ! 2015-11 (J. Chanut) Free surface simplification |
---|
22 | !!------------------------------------------------------------------------- |
---|
23 | |
---|
24 | !!------------------------------------------------------------------------- |
---|
25 | !! dyn_nxt : obtain the next (after) horizontal velocity |
---|
26 | !!------------------------------------------------------------------------- |
---|
27 | USE oce ! ocean dynamics and tracers |
---|
28 | USE dom_oce ! ocean space and time domain |
---|
29 | USE sbc_oce ! Surface boundary condition: ocean fields |
---|
30 | USE phycst ! physical constants |
---|
31 | USE dynadv ! dynamics: vector invariant versus flux form |
---|
32 | USE dynspg_ts ! surface pressure gradient: split-explicit scheme |
---|
33 | USE domvvl ! variable volume |
---|
34 | USE bdy_oce , ONLY: ln_bdy |
---|
35 | USE bdydta ! ocean open boundary conditions |
---|
36 | USE bdydyn ! ocean open boundary conditions |
---|
37 | USE bdyvol ! ocean open boundary condition (bdy_vol routines) |
---|
38 | USE trd_oce ! trends: ocean variables |
---|
39 | USE trddyn ! trend manager: dynamics |
---|
40 | USE trdken ! trend manager: kinetic energy |
---|
41 | ! |
---|
42 | USE in_out_manager ! I/O manager |
---|
43 | USE iom ! I/O manager library |
---|
44 | USE lbclnk ! lateral boundary condition (or mpp link) |
---|
45 | USE lib_mpp ! MPP library |
---|
46 | USE wrk_nemo ! Memory Allocation |
---|
47 | USE prtctl ! Print control |
---|
48 | USE timing ! Timing |
---|
49 | #if defined key_agrif |
---|
50 | USE agrif_opa_interp |
---|
51 | #endif |
---|
52 | |
---|
53 | IMPLICIT NONE |
---|
54 | PRIVATE |
---|
55 | |
---|
56 | PUBLIC dyn_nxt ! routine called by step.F90 |
---|
57 | |
---|
58 | !!---------------------------------------------------------------------- |
---|
59 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
60 | !! $Id$ |
---|
61 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
62 | !!---------------------------------------------------------------------- |
---|
63 | CONTAINS |
---|
64 | |
---|
65 | SUBROUTINE dyn_nxt ( kt ) |
---|
66 | !!---------------------------------------------------------------------- |
---|
67 | !! *** ROUTINE dyn_nxt *** |
---|
68 | !! |
---|
69 | !! ** Purpose : Finalize after horizontal velocity. Apply the boundary |
---|
70 | !! condition on the after velocity, achieve the time stepping |
---|
71 | !! by applying the Asselin filter on now fields and swapping |
---|
72 | !! the fields. |
---|
73 | !! |
---|
74 | !! ** Method : * Ensure after velocities transport matches time splitting |
---|
75 | !! estimate (ln_dynspg_ts=T) |
---|
76 | !! |
---|
77 | !! * Apply lateral boundary conditions on after velocity |
---|
78 | !! at the local domain boundaries through lbc_lnk call, |
---|
79 | !! at the one-way open boundaries (ln_bdy=T), |
---|
80 | !! at the AGRIF zoom boundaries (lk_agrif=T) |
---|
81 | !! |
---|
82 | !! * Apply the time filter applied and swap of the dynamics |
---|
83 | !! arrays to start the next time step: |
---|
84 | !! (ub,vb) = (un,vn) + atfp [ (ub,vb) + (ua,va) - 2 (un,vn) ] |
---|
85 | !! (un,vn) = (ua,va). |
---|
86 | !! Note that with flux form advection and non linear free surface, |
---|
87 | !! the time filter is applied on thickness weighted velocity. |
---|
88 | !! As a result, dyn_nxt MUST be called after tra_nxt. |
---|
89 | !! |
---|
90 | !! ** Action : ub,vb filtered before horizontal velocity of next time-step |
---|
91 | !! un,vn now horizontal velocity of next time-step |
---|
92 | !!---------------------------------------------------------------------- |
---|
93 | INTEGER, INTENT( in ) :: kt ! ocean time-step index |
---|
94 | ! |
---|
95 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
96 | INTEGER :: ikt ! local integers |
---|
97 | REAL(wp) :: zue3a, zue3n, zue3b, zuf, zcoef ! local scalars |
---|
98 | REAL(wp) :: zve3a, zve3n, zve3b, zvf, z1_2dt ! - - |
---|
99 | REAL(wp), POINTER, DIMENSION(:,:) :: zue, zve |
---|
100 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ze3u_f, ze3v_f, zua, zva |
---|
101 | !!---------------------------------------------------------------------- |
---|
102 | ! |
---|
103 | IF( nn_timing == 1 ) CALL timing_start('dyn_nxt') |
---|
104 | ! |
---|
105 | IF( ln_dynspg_ts ) CALL wrk_alloc( jpi,jpj, zue, zve) |
---|
106 | IF( l_trddyn ) CALL wrk_alloc( jpi,jpj,jpk, zua, zva) |
---|
107 | ! |
---|
108 | IF( kt == nit000 ) THEN |
---|
109 | IF(lwp) WRITE(numout,*) |
---|
110 | IF(lwp) WRITE(numout,*) 'dyn_nxt : time stepping' |
---|
111 | IF(lwp) WRITE(numout,*) '~~~~~~~' |
---|
112 | ENDIF |
---|
113 | |
---|
114 | IF ( ln_dynspg_ts ) THEN |
---|
115 | ! Ensure below that barotropic velocities match time splitting estimate |
---|
116 | ! Compute actual transport and replace it with ts estimate at "after" time step |
---|
117 | zue(:,:) = e3u_a(:,:,1) * ua(:,:,1) * umask(:,:,1) |
---|
118 | zve(:,:) = e3v_a(:,:,1) * va(:,:,1) * vmask(:,:,1) |
---|
119 | DO jk = 2, jpkm1 |
---|
120 | zue(:,:) = zue(:,:) + e3u_a(:,:,jk) * ua(:,:,jk) * umask(:,:,jk) |
---|
121 | zve(:,:) = zve(:,:) + e3v_a(:,:,jk) * va(:,:,jk) * vmask(:,:,jk) |
---|
122 | END DO |
---|
123 | DO jk = 1, jpkm1 |
---|
124 | ua(:,:,jk) = ( ua(:,:,jk) - zue(:,:) * r1_hu_a(:,:) + ua_b(:,:) ) * umask(:,:,jk) |
---|
125 | va(:,:,jk) = ( va(:,:,jk) - zve(:,:) * r1_hv_a(:,:) + va_b(:,:) ) * vmask(:,:,jk) |
---|
126 | END DO |
---|
127 | ! |
---|
128 | IF( .NOT.ln_bt_fw ) THEN |
---|
129 | ! Remove advective velocity from "now velocities" |
---|
130 | ! prior to asselin filtering |
---|
131 | ! In the forward case, this is done below after asselin filtering |
---|
132 | ! so that asselin contribution is removed at the same time |
---|
133 | DO jk = 1, jpkm1 |
---|
134 | un(:,:,jk) = ( un(:,:,jk) - un_adv(:,:) + un_b(:,:) )*umask(:,:,jk) |
---|
135 | vn(:,:,jk) = ( vn(:,:,jk) - vn_adv(:,:) + vn_b(:,:) )*vmask(:,:,jk) |
---|
136 | END DO |
---|
137 | ENDIF |
---|
138 | ENDIF |
---|
139 | |
---|
140 | ! Update after velocity on domain lateral boundaries |
---|
141 | ! -------------------------------------------------- |
---|
142 | # if defined key_agrif |
---|
143 | CALL Agrif_dyn( kt ) !* AGRIF zoom boundaries |
---|
144 | # endif |
---|
145 | ! |
---|
146 | CALL lbc_lnk( ua, 'U', -1. ) !* local domain boundaries |
---|
147 | CALL lbc_lnk( va, 'V', -1. ) |
---|
148 | ! |
---|
149 | ! !* BDY open boundaries |
---|
150 | IF( ln_bdy .AND. ln_dynspg_exp ) CALL bdy_dyn( kt ) |
---|
151 | IF( ln_bdy .AND. ln_dynspg_ts ) CALL bdy_dyn( kt, dyn3d_only=.true. ) |
---|
152 | |
---|
153 | !!$ Do we need a call to bdy_vol here?? |
---|
154 | ! |
---|
155 | IF( l_trddyn ) THEN ! prepare the atf trend computation + some diagnostics |
---|
156 | z1_2dt = 1._wp / (2. * rdt) ! Euler or leap-frog time step |
---|
157 | IF( neuler == 0 .AND. kt == nit000 ) z1_2dt = 1._wp / rdt |
---|
158 | ! |
---|
159 | ! ! Kinetic energy and Conversion |
---|
160 | IF( ln_KE_trd ) CALL trd_dyn( ua, va, jpdyn_ken, kt ) |
---|
161 | ! |
---|
162 | IF( ln_dyn_trd ) THEN ! 3D output: total momentum trends |
---|
163 | zua(:,:,:) = ( ua(:,:,:) - ub(:,:,:) ) * z1_2dt |
---|
164 | zva(:,:,:) = ( va(:,:,:) - vb(:,:,:) ) * z1_2dt |
---|
165 | CALL iom_put( "utrd_tot", zua ) ! total momentum trends, except the asselin time filter |
---|
166 | CALL iom_put( "vtrd_tot", zva ) |
---|
167 | ENDIF |
---|
168 | ! |
---|
169 | zua(:,:,:) = un(:,:,:) ! save the now velocity before the asselin filter |
---|
170 | zva(:,:,:) = vn(:,:,:) ! (caution: there will be a shift by 1 timestep in the |
---|
171 | ! ! computation of the asselin filter trends) |
---|
172 | ENDIF |
---|
173 | |
---|
174 | ! Time filter and swap of dynamics arrays |
---|
175 | ! ------------------------------------------ |
---|
176 | IF( neuler == 0 .AND. kt == nit000 ) THEN !* Euler at first time-step: only swap |
---|
177 | DO jk = 1, jpkm1 |
---|
178 | un(:,:,jk) = ua(:,:,jk) ! un <-- ua |
---|
179 | vn(:,:,jk) = va(:,:,jk) |
---|
180 | END DO |
---|
181 | IF(.NOT.ln_linssh ) THEN |
---|
182 | DO jk = 1, jpkm1 |
---|
183 | e3t_b(:,:,jk) = e3t_n(:,:,jk) |
---|
184 | e3u_b(:,:,jk) = e3u_n(:,:,jk) |
---|
185 | e3v_b(:,:,jk) = e3v_n(:,:,jk) |
---|
186 | END DO |
---|
187 | ENDIF |
---|
188 | ELSE !* Leap-Frog : Asselin filter and swap |
---|
189 | ! ! =============! |
---|
190 | IF( ln_linssh ) THEN ! Fixed volume ! |
---|
191 | ! ! =============! |
---|
192 | DO jk = 1, jpkm1 |
---|
193 | DO jj = 1, jpj |
---|
194 | DO ji = 1, jpi |
---|
195 | zuf = un(ji,jj,jk) + atfp * ( ub(ji,jj,jk) - 2._wp * un(ji,jj,jk) + ua(ji,jj,jk) ) |
---|
196 | zvf = vn(ji,jj,jk) + atfp * ( vb(ji,jj,jk) - 2._wp * vn(ji,jj,jk) + va(ji,jj,jk) ) |
---|
197 | ! |
---|
198 | ub(ji,jj,jk) = zuf ! ub <-- filtered velocity |
---|
199 | vb(ji,jj,jk) = zvf |
---|
200 | un(ji,jj,jk) = ua(ji,jj,jk) ! un <-- ua |
---|
201 | vn(ji,jj,jk) = va(ji,jj,jk) |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | ! ! ================! |
---|
206 | ELSE ! Variable volume ! |
---|
207 | ! ! ================! |
---|
208 | ! Before scale factor at t-points |
---|
209 | ! (used as a now filtered scale factor until the swap) |
---|
210 | ! ---------------------------------------------------- |
---|
211 | IF( ln_dynspg_ts .AND. ln_bt_fw ) THEN ! No asselin filtering on thicknesses if forward time splitting |
---|
212 | e3t_b(:,:,1:jpkm1) = e3t_n(:,:,1:jpkm1) |
---|
213 | ELSE |
---|
214 | DO jk = 1, jpkm1 |
---|
215 | e3t_b(:,:,jk) = e3t_n(:,:,jk) + atfp * ( e3t_b(:,:,jk) - 2._wp * e3t_n(:,:,jk) + e3t_a(:,:,jk) ) |
---|
216 | END DO |
---|
217 | ! Add volume filter correction: compatibility with tracer advection scheme |
---|
218 | ! => time filter + conservation correction (only at the first level) |
---|
219 | zcoef = atfp * rdt * r1_rau0 |
---|
220 | IF ( .NOT. ln_isf ) THEN ! if no ice shelf melting |
---|
221 | e3t_b(:,:,1) = e3t_b(:,:,1) - zcoef * ( emp_b(:,:) - emp(:,:) & |
---|
222 | & - rnf_b(:,:) + rnf(:,:) ) * tmask(:,:,1) |
---|
223 | ELSE ! if ice shelf melting |
---|
224 | DO jj = 1, jpj |
---|
225 | DO ji = 1, jpi |
---|
226 | ikt = mikt(ji,jj) |
---|
227 | e3t_b(ji,jj,ikt) = e3t_b(ji,jj,ikt) - zcoef * ( emp_b (ji,jj) - emp (ji,jj) & |
---|
228 | & - rnf_b (ji,jj) + rnf (ji,jj) & |
---|
229 | & + fwfisf_b(ji,jj) - fwfisf(ji,jj) ) * tmask(ji,jj,ikt) |
---|
230 | END DO |
---|
231 | END DO |
---|
232 | END IF |
---|
233 | ENDIF |
---|
234 | ! |
---|
235 | IF( ln_dynadv_vec ) THEN ! Asselin filter applied on velocity |
---|
236 | ! Before filtered scale factor at (u/v)-points |
---|
237 | CALL dom_vvl_interpol( e3t_b(:,:,:), e3u_b(:,:,:), 'U' ) |
---|
238 | CALL dom_vvl_interpol( e3t_b(:,:,:), e3v_b(:,:,:), 'V' ) |
---|
239 | DO jk = 1, jpkm1 |
---|
240 | DO jj = 1, jpj |
---|
241 | DO ji = 1, jpi |
---|
242 | zuf = un(ji,jj,jk) + atfp * ( ub(ji,jj,jk) - 2._wp * un(ji,jj,jk) + ua(ji,jj,jk) ) |
---|
243 | zvf = vn(ji,jj,jk) + atfp * ( vb(ji,jj,jk) - 2._wp * vn(ji,jj,jk) + va(ji,jj,jk) ) |
---|
244 | ! |
---|
245 | ub(ji,jj,jk) = zuf ! ub <-- filtered velocity |
---|
246 | vb(ji,jj,jk) = zvf |
---|
247 | un(ji,jj,jk) = ua(ji,jj,jk) ! un <-- ua |
---|
248 | vn(ji,jj,jk) = va(ji,jj,jk) |
---|
249 | END DO |
---|
250 | END DO |
---|
251 | END DO |
---|
252 | ! |
---|
253 | ELSE ! Asselin filter applied on thickness weighted velocity |
---|
254 | ! |
---|
255 | CALL wrk_alloc( jpi,jpj,jpk, ze3u_f, ze3v_f ) |
---|
256 | ! Before filtered scale factor at (u/v)-points stored in ze3u_f, ze3v_f |
---|
257 | CALL dom_vvl_interpol( e3t_b(:,:,:), ze3u_f, 'U' ) |
---|
258 | CALL dom_vvl_interpol( e3t_b(:,:,:), ze3v_f, 'V' ) |
---|
259 | DO jk = 1, jpkm1 |
---|
260 | DO jj = 1, jpj |
---|
261 | DO ji = 1, jpi |
---|
262 | zue3a = e3u_a(ji,jj,jk) * ua(ji,jj,jk) |
---|
263 | zve3a = e3v_a(ji,jj,jk) * va(ji,jj,jk) |
---|
264 | zue3n = e3u_n(ji,jj,jk) * un(ji,jj,jk) |
---|
265 | zve3n = e3v_n(ji,jj,jk) * vn(ji,jj,jk) |
---|
266 | zue3b = e3u_b(ji,jj,jk) * ub(ji,jj,jk) |
---|
267 | zve3b = e3v_b(ji,jj,jk) * vb(ji,jj,jk) |
---|
268 | ! |
---|
269 | zuf = ( zue3n + atfp * ( zue3b - 2._wp * zue3n + zue3a ) ) / ze3u_f(ji,jj,jk) |
---|
270 | zvf = ( zve3n + atfp * ( zve3b - 2._wp * zve3n + zve3a ) ) / ze3v_f(ji,jj,jk) |
---|
271 | ! |
---|
272 | ub(ji,jj,jk) = zuf ! ub <-- filtered velocity |
---|
273 | vb(ji,jj,jk) = zvf |
---|
274 | un(ji,jj,jk) = ua(ji,jj,jk) ! un <-- ua |
---|
275 | vn(ji,jj,jk) = va(ji,jj,jk) |
---|
276 | END DO |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | e3u_b(:,:,1:jpkm1) = ze3u_f(:,:,1:jpkm1) ! e3u_b <-- filtered scale factor |
---|
280 | e3v_b(:,:,1:jpkm1) = ze3v_f(:,:,1:jpkm1) |
---|
281 | ! |
---|
282 | CALL wrk_dealloc( jpi,jpj,jpk, ze3u_f, ze3v_f ) |
---|
283 | ENDIF |
---|
284 | ! |
---|
285 | ENDIF |
---|
286 | ! |
---|
287 | IF( ln_dynspg_ts .AND. ln_bt_fw ) THEN |
---|
288 | ! Revert "before" velocities to time split estimate |
---|
289 | ! Doing it here also means that asselin filter contribution is removed |
---|
290 | zue(:,:) = e3u_b(:,:,1) * ub(:,:,1) * umask(:,:,1) |
---|
291 | zve(:,:) = e3v_b(:,:,1) * vb(:,:,1) * vmask(:,:,1) |
---|
292 | DO jk = 2, jpkm1 |
---|
293 | zue(:,:) = zue(:,:) + e3u_b(:,:,jk) * ub(:,:,jk) * umask(:,:,jk) |
---|
294 | zve(:,:) = zve(:,:) + e3v_b(:,:,jk) * vb(:,:,jk) * vmask(:,:,jk) |
---|
295 | END DO |
---|
296 | DO jk = 1, jpkm1 |
---|
297 | ub(:,:,jk) = ub(:,:,jk) - (zue(:,:) * r1_hu_n(:,:) - un_b(:,:)) * umask(:,:,jk) |
---|
298 | vb(:,:,jk) = vb(:,:,jk) - (zve(:,:) * r1_hv_n(:,:) - vn_b(:,:)) * vmask(:,:,jk) |
---|
299 | END DO |
---|
300 | ENDIF |
---|
301 | ! |
---|
302 | ENDIF ! neuler =/0 |
---|
303 | ! |
---|
304 | ! Set "now" and "before" barotropic velocities for next time step: |
---|
305 | ! JC: Would be more clever to swap variables than to make a full vertical |
---|
306 | ! integration |
---|
307 | ! |
---|
308 | ! |
---|
309 | IF(.NOT.ln_linssh ) THEN |
---|
310 | hu_b(:,:) = e3u_b(:,:,1) * umask(:,:,1) |
---|
311 | hv_b(:,:) = e3v_b(:,:,1) * vmask(:,:,1) |
---|
312 | DO jk = 2, jpkm1 |
---|
313 | hu_b(:,:) = hu_b(:,:) + e3u_b(:,:,jk) * umask(:,:,jk) |
---|
314 | hv_b(:,:) = hv_b(:,:) + e3v_b(:,:,jk) * vmask(:,:,jk) |
---|
315 | END DO |
---|
316 | r1_hu_b(:,:) = ssumask(:,:) / ( hu_b(:,:) + 1._wp - ssumask(:,:) ) |
---|
317 | r1_hv_b(:,:) = ssvmask(:,:) / ( hv_b(:,:) + 1._wp - ssvmask(:,:) ) |
---|
318 | ENDIF |
---|
319 | ! |
---|
320 | un_b(:,:) = e3u_a(:,:,1) * un(:,:,1) * umask(:,:,1) |
---|
321 | ub_b(:,:) = e3u_b(:,:,1) * ub(:,:,1) * umask(:,:,1) |
---|
322 | vn_b(:,:) = e3v_a(:,:,1) * vn(:,:,1) * vmask(:,:,1) |
---|
323 | vb_b(:,:) = e3v_b(:,:,1) * vb(:,:,1) * vmask(:,:,1) |
---|
324 | DO jk = 2, jpkm1 |
---|
325 | un_b(:,:) = un_b(:,:) + e3u_a(:,:,jk) * un(:,:,jk) * umask(:,:,jk) |
---|
326 | ub_b(:,:) = ub_b(:,:) + e3u_b(:,:,jk) * ub(:,:,jk) * umask(:,:,jk) |
---|
327 | vn_b(:,:) = vn_b(:,:) + e3v_a(:,:,jk) * vn(:,:,jk) * vmask(:,:,jk) |
---|
328 | vb_b(:,:) = vb_b(:,:) + e3v_b(:,:,jk) * vb(:,:,jk) * vmask(:,:,jk) |
---|
329 | END DO |
---|
330 | un_b(:,:) = un_b(:,:) * r1_hu_a(:,:) |
---|
331 | vn_b(:,:) = vn_b(:,:) * r1_hv_a(:,:) |
---|
332 | ub_b(:,:) = ub_b(:,:) * r1_hu_b(:,:) |
---|
333 | vb_b(:,:) = vb_b(:,:) * r1_hv_b(:,:) |
---|
334 | ! |
---|
335 | IF( .NOT.ln_dynspg_ts ) THEN ! output the barotropic currents |
---|
336 | CALL iom_put( "ubar", un_b(:,:) ) |
---|
337 | CALL iom_put( "vbar", vn_b(:,:) ) |
---|
338 | ENDIF |
---|
339 | IF( l_trddyn ) THEN ! 3D output: asselin filter trends on momentum |
---|
340 | zua(:,:,:) = ( ub(:,:,:) - zua(:,:,:) ) * z1_2dt |
---|
341 | zva(:,:,:) = ( vb(:,:,:) - zva(:,:,:) ) * z1_2dt |
---|
342 | CALL trd_dyn( zua, zva, jpdyn_atf, kt ) |
---|
343 | ENDIF |
---|
344 | ! |
---|
345 | IF(ln_ctl) CALL prt_ctl( tab3d_1=un, clinfo1=' nxt - Un: ', mask1=umask, & |
---|
346 | & tab3d_2=vn, clinfo2=' Vn: ' , mask2=vmask ) |
---|
347 | ! |
---|
348 | IF( ln_dynspg_ts ) CALL wrk_dealloc( jpi,jpj, zue, zve ) |
---|
349 | IF( l_trddyn ) CALL wrk_dealloc( jpi,jpj,jpk, zua, zva ) |
---|
350 | ! |
---|
351 | IF( nn_timing == 1 ) CALL timing_stop('dyn_nxt') |
---|
352 | ! |
---|
353 | END SUBROUTINE dyn_nxt |
---|
354 | |
---|
355 | !!========================================================================= |
---|
356 | END MODULE dynnxt |
---|