1 | MODULE fldread |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE fldread *** |
---|
4 | !! Ocean forcing: read input field for surface boundary condition |
---|
5 | !!===================================================================== |
---|
6 | !! History : 2.0 ! 2006-06 (S. Masson, G. Madec) Original code |
---|
7 | !! 3.0 ! 2008-05 (S. Alderson) Modified for Interpolation in memory from input grid to model grid |
---|
8 | !! 3.4 ! 2013-10 (D. Delrosso, P. Oddo) suppression of land point prior to interpolation |
---|
9 | !! ! 12-2015 (J. Harle) Adding BDY on-the-fly interpolation |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! fld_read : read input fields used for the computation of the surface boundary condition |
---|
14 | !! fld_init : initialization of field read |
---|
15 | !! fld_rec : determined the record(s) to be read |
---|
16 | !! fld_get : read the data |
---|
17 | !! fld_map : read global data from file and map onto local data using a general mapping (use for open boundaries) |
---|
18 | !! fld_rot : rotate the vector fields onto the local grid direction |
---|
19 | !! fld_clopn : update the data file name and close/open the files |
---|
20 | !! fld_fill : fill the data structure with the associated information read in namelist |
---|
21 | !! wgt_list : manage the weights used for interpolation |
---|
22 | !! wgt_print : print the list of known weights |
---|
23 | !! fld_weight : create a WGT structure and fill in data from file, restructuring as required |
---|
24 | !! apply_seaoverland : fill land with ocean values |
---|
25 | !! seaoverland : create shifted matrices for seaoverland application |
---|
26 | !! fld_interp : apply weights to input gridded data to create data on model grid |
---|
27 | !! ksec_week : function returning the first 3 letters of the first day of the weekly file |
---|
28 | !!---------------------------------------------------------------------- |
---|
29 | USE oce ! ocean dynamics and tracers |
---|
30 | USE dom_oce ! ocean space and time domain |
---|
31 | USE phycst ! physical constant |
---|
32 | USE sbc_oce ! surface boundary conditions : fields |
---|
33 | USE geo2ocean ! for vector rotation on to model grid |
---|
34 | ! |
---|
35 | USE in_out_manager ! I/O manager |
---|
36 | USE iom ! I/O manager library |
---|
37 | USE ioipsl , ONLY : ymds2ju, ju2ymds ! for calendar |
---|
38 | USE lib_mpp ! MPP library |
---|
39 | USE wrk_nemo ! work arrays |
---|
40 | USE lbclnk ! ocean lateral boundary conditions (C1D case) |
---|
41 | |
---|
42 | IMPLICIT NONE |
---|
43 | PRIVATE |
---|
44 | |
---|
45 | PUBLIC fld_map ! routine called by tides_init |
---|
46 | PUBLIC fld_read, fld_fill ! called by sbc... modules |
---|
47 | PUBLIC fld_clopn |
---|
48 | |
---|
49 | TYPE, PUBLIC :: FLD_N !: Namelist field informations |
---|
50 | CHARACTER(len = 256) :: clname ! generic name of the NetCDF flux file |
---|
51 | REAL(wp) :: nfreqh ! frequency of each flux file |
---|
52 | CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file |
---|
53 | LOGICAL :: ln_tint ! time interpolation or not (T/F) |
---|
54 | LOGICAL :: ln_clim ! climatology or not (T/F) |
---|
55 | CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly' |
---|
56 | CHARACTER(len = 256) :: wname ! generic name of a NetCDF weights file to be used, blank if not |
---|
57 | CHARACTER(len = 34) :: vcomp ! symbolic component name if a vector that needs rotation |
---|
58 | ! ! a string starting with "U" or "V" for each component |
---|
59 | ! ! chars 2 onwards identify which components go together |
---|
60 | CHARACTER(len = 34) :: lname ! generic name of a NetCDF land/sea mask file to be used, blank if not |
---|
61 | ! ! 0=sea 1=land |
---|
62 | END TYPE FLD_N |
---|
63 | |
---|
64 | TYPE, PUBLIC :: FLD !: Input field related variables |
---|
65 | CHARACTER(len = 256) :: clrootname ! generic name of the NetCDF file |
---|
66 | CHARACTER(len = 256) :: clname ! current name of the NetCDF file |
---|
67 | REAL(wp) :: nfreqh ! frequency of each flux file |
---|
68 | CHARACTER(len = 34) :: clvar ! generic name of the variable in the NetCDF flux file |
---|
69 | LOGICAL :: ln_tint ! time interpolation or not (T/F) |
---|
70 | LOGICAL :: ln_clim ! climatology or not (T/F) |
---|
71 | CHARACTER(len = 8) :: cltype ! type of data file 'daily', 'monthly' or yearly' |
---|
72 | INTEGER :: num ! iom id of the jpfld files to be read |
---|
73 | INTEGER , DIMENSION(2) :: nrec_b ! before record (1: index, 2: second since Jan. 1st 00h of nit000 year) |
---|
74 | INTEGER , DIMENSION(2) :: nrec_a ! after record (1: index, 2: second since Jan. 1st 00h of nit000 year) |
---|
75 | REAL(wp) , ALLOCATABLE, DIMENSION(:,:,: ) :: fnow ! input fields interpolated to now time step |
---|
76 | REAL(wp) , ALLOCATABLE, DIMENSION(:,:,:,:) :: fdta ! 2 consecutive record of input fields |
---|
77 | CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file acting as a key |
---|
78 | ! ! into the WGTLIST structure |
---|
79 | CHARACTER(len = 34) :: vcomp ! symbolic name for a vector component that needs rotation |
---|
80 | LOGICAL, DIMENSION(2) :: rotn ! flag to indicate whether before/after field has been rotated |
---|
81 | INTEGER :: nreclast ! last record to be read in the current file |
---|
82 | CHARACTER(len = 256) :: lsmname ! current name of the NetCDF mask file acting as a key |
---|
83 | INTEGER :: igrd ! grid type for bdy data |
---|
84 | INTEGER :: ibdy ! bdy set id number |
---|
85 | END TYPE FLD |
---|
86 | |
---|
87 | TYPE, PUBLIC :: MAP_POINTER !: Map from input data file to local domain |
---|
88 | INTEGER, POINTER, DIMENSION(:) :: ptr ! Array of integer pointers to 1D arrays |
---|
89 | LOGICAL :: ll_unstruc ! Unstructured (T) or structured (F) boundary data file |
---|
90 | END TYPE MAP_POINTER |
---|
91 | |
---|
92 | !$AGRIF_DO_NOT_TREAT |
---|
93 | |
---|
94 | !! keep list of all weights variables so they're only read in once |
---|
95 | !! need to add AGRIF directives not to process this structure |
---|
96 | !! also need to force wgtname to include AGRIF nest number |
---|
97 | TYPE :: WGT !: Input weights related variables |
---|
98 | CHARACTER(len = 256) :: wgtname ! current name of the NetCDF weight file |
---|
99 | INTEGER , DIMENSION(2) :: ddims ! shape of input grid |
---|
100 | INTEGER , DIMENSION(2) :: botleft ! top left corner of box in input grid containing |
---|
101 | ! ! current processor grid |
---|
102 | INTEGER , DIMENSION(2) :: topright ! top right corner of box |
---|
103 | INTEGER :: jpiwgt ! width of box on input grid |
---|
104 | INTEGER :: jpjwgt ! height of box on input grid |
---|
105 | INTEGER :: numwgt ! number of weights (4=bilinear, 16=bicubic) |
---|
106 | INTEGER :: nestid ! for agrif, keep track of nest we're in |
---|
107 | INTEGER :: overlap ! =0 when cyclic grid has no overlapping EW columns |
---|
108 | ! ! =>1 when they have one or more overlapping columns |
---|
109 | ! ! =-1 not cyclic |
---|
110 | LOGICAL :: cyclic ! east-west cyclic or not |
---|
111 | INTEGER, DIMENSION(:,:,:), POINTER :: data_jpi ! array of source integers |
---|
112 | INTEGER, DIMENSION(:,:,:), POINTER :: data_jpj ! array of source integers |
---|
113 | REAL(wp), DIMENSION(:,:,:), POINTER :: data_wgt ! array of weights on model grid |
---|
114 | REAL(wp), DIMENSION(:,:,:), POINTER :: fly_dta ! array of values on input grid |
---|
115 | REAL(wp), DIMENSION(:,:,:), POINTER :: col ! temporary array for reading in columns |
---|
116 | END TYPE WGT |
---|
117 | |
---|
118 | INTEGER, PARAMETER :: tot_wgts = 10 |
---|
119 | TYPE( WGT ), DIMENSION(tot_wgts) :: ref_wgts ! array of wgts |
---|
120 | INTEGER :: nxt_wgt = 1 ! point to next available space in ref_wgts array |
---|
121 | REAL(wp), PARAMETER :: undeff_lsm = -999.00_wp |
---|
122 | |
---|
123 | !$AGRIF_END_DO_NOT_TREAT |
---|
124 | |
---|
125 | !!---------------------------------------------------------------------- |
---|
126 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
127 | !! $Id$ |
---|
128 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
129 | !!---------------------------------------------------------------------- |
---|
130 | CONTAINS |
---|
131 | |
---|
132 | SUBROUTINE fld_read( kt, kn_fsbc, sd, map, kit, kt_offset, jpk_bdy, fvl ) |
---|
133 | !!--------------------------------------------------------------------- |
---|
134 | !! *** ROUTINE fld_read *** |
---|
135 | !! |
---|
136 | !! ** Purpose : provide at each time step the surface ocean fluxes |
---|
137 | !! (momentum, heat, freshwater and runoff) |
---|
138 | !! |
---|
139 | !! ** Method : READ each input fields in NetCDF files using IOM |
---|
140 | !! and intepolate it to the model time-step. |
---|
141 | !! Several assumptions are made on the input file: |
---|
142 | !! blahblahblah.... |
---|
143 | !!---------------------------------------------------------------------- |
---|
144 | INTEGER , INTENT(in ) :: kt ! ocean time step |
---|
145 | INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) |
---|
146 | TYPE(FLD), INTENT(inout), DIMENSION(:) :: sd ! input field related variables |
---|
147 | TYPE(MAP_POINTER),INTENT(in), OPTIONAL, DIMENSION(:) :: map ! global-to-local mapping indices |
---|
148 | INTEGER , INTENT(in ), OPTIONAL :: kit ! subcycle timestep for timesplitting option |
---|
149 | INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! provide fields at time other than "now" |
---|
150 | ! ! kt_offset = -1 => fields at "before" time level |
---|
151 | ! ! kt_offset = +1 => fields at "after" time level |
---|
152 | ! ! etc. |
---|
153 | INTEGER , INTENT(in ), OPTIONAL :: jpk_bdy ! number of vertical levels in the BDY data |
---|
154 | LOGICAL , INTENT(in ), OPTIONAL :: fvl ! number of vertical levels in the BDY data |
---|
155 | !! |
---|
156 | INTEGER :: itmp ! local variable |
---|
157 | INTEGER :: imf ! size of the structure sd |
---|
158 | INTEGER :: jf ! dummy indices |
---|
159 | INTEGER :: isecend ! number of second since Jan. 1st 00h of nit000 year at nitend |
---|
160 | INTEGER :: isecsbc ! number of seconds between Jan. 1st 00h of nit000 year and the middle of sbc time step |
---|
161 | INTEGER :: it_offset ! local time offset variable |
---|
162 | LOGICAL :: llnxtyr ! open next year file? |
---|
163 | LOGICAL :: llnxtmth ! open next month file? |
---|
164 | LOGICAL :: llstop ! stop is the file does not exist |
---|
165 | LOGICAL :: ll_firstcall ! true if this is the first call to fld_read for this set of fields |
---|
166 | REAL(wp) :: ztinta ! ratio applied to after records when doing time interpolation |
---|
167 | REAL(wp) :: ztintb ! ratio applied to before records when doing time interpolation |
---|
168 | CHARACTER(LEN=1000) :: clfmt ! write format |
---|
169 | TYPE(MAP_POINTER) :: imap ! global-to-local mapping indices |
---|
170 | !!--------------------------------------------------------------------- |
---|
171 | ll_firstcall = kt == nit000 |
---|
172 | IF( PRESENT(kit) ) ll_firstcall = ll_firstcall .and. kit == 1 |
---|
173 | |
---|
174 | IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc |
---|
175 | ELSE ; it_offset = 0 |
---|
176 | ENDIF |
---|
177 | IF( PRESENT(kt_offset) ) it_offset = kt_offset |
---|
178 | |
---|
179 | imap%ptr => NULL() |
---|
180 | |
---|
181 | ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar |
---|
182 | IF( present(kit) ) THEN ! ignore kn_fsbc in this case |
---|
183 | isecsbc = nsec_year + nsec1jan000 + (kit+it_offset)*NINT( rdt/REAL(nn_baro,wp) ) |
---|
184 | ELSE ! middle of sbc time step |
---|
185 | isecsbc = nsec_year + nsec1jan000 + NINT(0.5 * REAL(kn_fsbc - 1,wp) * rdt) + it_offset * NINT(rdt) |
---|
186 | ENDIF |
---|
187 | imf = SIZE( sd ) |
---|
188 | ! |
---|
189 | IF( ll_firstcall ) THEN ! initialization |
---|
190 | DO jf = 1, imf |
---|
191 | IF( PRESENT(map) ) imap = map(jf) |
---|
192 | IF( PRESENT(jpk_bdy) ) THEN |
---|
193 | CALL fld_init( kn_fsbc, sd(jf), imap, jpk_bdy, fvl ) ! read each before field (put them in after as they will be swapped) |
---|
194 | ELSE |
---|
195 | CALL fld_init( kn_fsbc, sd(jf), imap ) ! read each before field (put them in after as they will be swapped) |
---|
196 | ENDIF |
---|
197 | END DO |
---|
198 | IF( lwp ) CALL wgt_print() ! control print |
---|
199 | ENDIF |
---|
200 | ! ! ====================================== ! |
---|
201 | IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! update field at each kn_fsbc time-step ! |
---|
202 | ! ! ====================================== ! |
---|
203 | ! |
---|
204 | DO jf = 1, imf ! --- loop over field --- ! |
---|
205 | |
---|
206 | IF( isecsbc > sd(jf)%nrec_a(2) .OR. ll_firstcall ) THEN ! read/update the after data? |
---|
207 | |
---|
208 | IF( PRESENT(map) ) imap = map(jf) ! temporary definition of map |
---|
209 | |
---|
210 | sd(jf)%nrec_b(:) = sd(jf)%nrec_a(:) ! swap before record informations |
---|
211 | sd(jf)%rotn(1) = sd(jf)%rotn(2) ! swap before rotate informations |
---|
212 | IF( sd(jf)%ln_tint ) sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! swap before record field |
---|
213 | |
---|
214 | CALL fld_rec( kn_fsbc, sd(jf), kt_offset = it_offset, kit = kit ) ! update after record informations |
---|
215 | |
---|
216 | ! if kn_fsbc*rdt is larger than nfreqh (which is kind of odd), |
---|
217 | ! it is possible that the before value is no more the good one... we have to re-read it |
---|
218 | ! if before is not the last record of the file currently opened and after is the first record to be read |
---|
219 | ! in a new file which means after = 1 (the file to be opened corresponds to the current time) |
---|
220 | ! or after = nreclast + 1 (the file to be opened corresponds to a future time step) |
---|
221 | IF( .NOT. ll_firstcall .AND. sd(jf)%ln_tint .AND. sd(jf)%nrec_b(1) /= sd(jf)%nreclast & |
---|
222 | & .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) == 1 ) THEN |
---|
223 | itmp = sd(jf)%nrec_a(1) ! temporary storage |
---|
224 | sd(jf)%nrec_a(1) = sd(jf)%nreclast ! read the last record of the file currently opened |
---|
225 | CALL fld_get( sd(jf), imap ) ! read after data |
---|
226 | sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field |
---|
227 | sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations |
---|
228 | sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%nfreqh * 3600 ) ! assume freq to be in hours in this case |
---|
229 | sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations |
---|
230 | sd(jf)%nrec_a(1) = itmp ! move back to after record |
---|
231 | ENDIF |
---|
232 | |
---|
233 | CALL fld_clopn( sd(jf) ) ! Do we need to open a new year/month/week/day file? |
---|
234 | |
---|
235 | IF( sd(jf)%ln_tint ) THEN |
---|
236 | |
---|
237 | ! if kn_fsbc*rdt is larger than nfreqh (which is kind of odd), |
---|
238 | ! it is possible that the before value is no more the good one... we have to re-read it |
---|
239 | ! if before record is not just just before the after record... |
---|
240 | IF( .NOT. ll_firstcall .AND. MOD( sd(jf)%nrec_a(1), sd(jf)%nreclast ) /= 1 & |
---|
241 | & .AND. sd(jf)%nrec_b(1) /= sd(jf)%nrec_a(1) - 1 ) THEN |
---|
242 | sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - 1 ! move back to before record |
---|
243 | CALL fld_get( sd(jf), imap ) ! read after data |
---|
244 | sd(jf)%fdta(:,:,:,1) = sd(jf)%fdta(:,:,:,2) ! re-swap before record field |
---|
245 | sd(jf)%nrec_b(1) = sd(jf)%nrec_a(1) ! update before record informations |
---|
246 | sd(jf)%nrec_b(2) = sd(jf)%nrec_a(2) - NINT( sd(jf)%nfreqh * 3600 ) ! assume freq to be in hours in this case |
---|
247 | sd(jf)%rotn(1) = sd(jf)%rotn(2) ! update before rotate informations |
---|
248 | sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) + 1 ! move back to after record |
---|
249 | ENDIF |
---|
250 | |
---|
251 | ! do we have to change the year/month/week/day of the forcing field?? |
---|
252 | ! if we do time interpolation we will need to open next year/month/week/day file before the end of the current |
---|
253 | ! one. If so, we are still before the end of the year/month/week/day when calling fld_rec so sd(jf)%nrec_a(1) |
---|
254 | ! will be larger than the record number that should be read for current year/month/week/day |
---|
255 | ! do we need next file data? |
---|
256 | IF( sd(jf)%nrec_a(1) > sd(jf)%nreclast ) THEN |
---|
257 | |
---|
258 | sd(jf)%nrec_a(1) = sd(jf)%nrec_a(1) - sd(jf)%nreclast ! |
---|
259 | |
---|
260 | IF( .NOT. ( sd(jf)%ln_clim .AND. sd(jf)%cltype == 'yearly' ) ) THEN ! close/open the current/new file |
---|
261 | |
---|
262 | llnxtmth = sd(jf)%cltype == 'monthly' .OR. nday == nmonth_len(nmonth) ! open next month file? |
---|
263 | llnxtyr = sd(jf)%cltype == 'yearly' .OR. (nmonth == 12 .AND. llnxtmth) ! open next year file? |
---|
264 | |
---|
265 | ! if the run finishes at the end of the current year/month/week/day, we will allow next |
---|
266 | ! year/month/week/day file to be not present. If the run continue further than the current |
---|
267 | ! year/month/week/day, next year/month/week/day file must exist |
---|
268 | isecend = nsec_year + nsec1jan000 + (nitend - kt) * NINT(rdt) ! second at the end of the run |
---|
269 | llstop = isecend > sd(jf)%nrec_a(2) ! read more than 1 record of next year |
---|
270 | ! we suppose that the date of next file is next day (should be ok even for weekly files...) |
---|
271 | CALL fld_clopn( sd(jf), nyear + COUNT((/llnxtyr /)) , & |
---|
272 | & nmonth + COUNT((/llnxtmth/)) - 12 * COUNT((/llnxtyr /)), & |
---|
273 | & nday + 1 - nmonth_len(nmonth) * COUNT((/llnxtmth/)), llstop ) |
---|
274 | |
---|
275 | IF( sd(jf)%num <= 0 .AND. .NOT. llstop ) THEN ! next year file does not exist |
---|
276 | CALL ctl_warn('next year/month/week/day file: '//TRIM(sd(jf)%clname)// & |
---|
277 | & ' not present -> back to current year/month/day') |
---|
278 | CALL fld_clopn( sd(jf) ) ! back to the current year/month/day |
---|
279 | sd(jf)%nrec_a(1) = sd(jf)%nreclast ! force to read the last record in the current year file |
---|
280 | ENDIF |
---|
281 | |
---|
282 | ENDIF |
---|
283 | ENDIF ! open need next file? |
---|
284 | |
---|
285 | ENDIF ! temporal interpolation? |
---|
286 | |
---|
287 | ! read after data |
---|
288 | IF( PRESENT(jpk_bdy) ) THEN |
---|
289 | CALL fld_get( sd(jf), imap, jpk_bdy, fvl) |
---|
290 | ELSE |
---|
291 | CALL fld_get( sd(jf), imap ) |
---|
292 | ENDIF |
---|
293 | ENDIF ! read new data? |
---|
294 | END DO ! --- end loop over field --- ! |
---|
295 | |
---|
296 | CALL fld_rot( kt, sd ) ! rotate vector before/now/after fields if needed |
---|
297 | |
---|
298 | DO jf = 1, imf ! --- loop over field --- ! |
---|
299 | ! |
---|
300 | IF( sd(jf)%ln_tint ) THEN ! temporal interpolation |
---|
301 | IF(lwp .AND. kt - nit000 <= 100 ) THEN |
---|
302 | clfmt = "(' fld_read: var ', a, ' kt = ', i8, ' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // & |
---|
303 | & "', records b/a: ', i6.4, '/', i6.4, ' (days ', f9.4,'/', f9.4, ')')" |
---|
304 | WRITE(numout, clfmt) TRIM( sd(jf)%clvar ), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, & |
---|
305 | & sd(jf)%nrec_b(1), sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday |
---|
306 | WRITE(numout, *) ' it_offset is : ',it_offset |
---|
307 | ENDIF |
---|
308 | ! temporal interpolation weights |
---|
309 | ztinta = REAL( isecsbc - sd(jf)%nrec_b(2), wp ) / REAL( sd(jf)%nrec_a(2) - sd(jf)%nrec_b(2), wp ) |
---|
310 | ztintb = 1. - ztinta |
---|
311 | sd(jf)%fnow(:,:,:) = ztintb * sd(jf)%fdta(:,:,:,1) + ztinta * sd(jf)%fdta(:,:,:,2) |
---|
312 | ELSE ! nothing to do... |
---|
313 | IF(lwp .AND. kt - nit000 <= 100 ) THEN |
---|
314 | clfmt = "(' fld_read: var ', a, ' kt = ', i8,' (', f9.4,' days), Y/M/D = ', i4.4,'/', i2.2,'/', i2.2," // & |
---|
315 | & "', record: ', i6.4, ' (days ', f9.4, ' <-> ', f9.4, ')')" |
---|
316 | WRITE(numout, clfmt) TRIM(sd(jf)%clvar), kt, REAL(isecsbc,wp)/rday, nyear, nmonth, nday, & |
---|
317 | & sd(jf)%nrec_a(1), REAL(sd(jf)%nrec_b(2),wp)/rday, REAL(sd(jf)%nrec_a(2),wp)/rday |
---|
318 | ENDIF |
---|
319 | ENDIF |
---|
320 | ! |
---|
321 | IF( kt == nitend - kn_fsbc + 1 ) CALL iom_close( sd(jf)%num ) ! Close the input files |
---|
322 | |
---|
323 | END DO ! --- end loop over field --- ! |
---|
324 | ! |
---|
325 | ENDIF |
---|
326 | ! |
---|
327 | END SUBROUTINE fld_read |
---|
328 | |
---|
329 | |
---|
330 | SUBROUTINE fld_init( kn_fsbc, sdjf, map , jpk_bdy, fvl) |
---|
331 | !!--------------------------------------------------------------------- |
---|
332 | !! *** ROUTINE fld_init *** |
---|
333 | !! |
---|
334 | !! ** Purpose : - first call to fld_rec to define before values |
---|
335 | !! - if time interpolation, read before data |
---|
336 | !!---------------------------------------------------------------------- |
---|
337 | INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) |
---|
338 | TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables |
---|
339 | TYPE(MAP_POINTER),INTENT(in) :: map ! global-to-local mapping indices |
---|
340 | INTEGER , INTENT(in), OPTIONAL :: jpk_bdy ! number of vertical levels in the BDY data |
---|
341 | LOGICAL , INTENT(in), OPTIONAL :: fvl ! number of vertical levels in the BDY data |
---|
342 | !! |
---|
343 | LOGICAL :: llprevyr ! are we reading previous year file? |
---|
344 | LOGICAL :: llprevmth ! are we reading previous month file? |
---|
345 | LOGICAL :: llprevweek ! are we reading previous week file? |
---|
346 | LOGICAL :: llprevday ! are we reading previous day file? |
---|
347 | LOGICAL :: llprev ! llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday |
---|
348 | INTEGER :: idvar ! variable id |
---|
349 | INTEGER :: inrec ! number of record existing for this variable |
---|
350 | INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd |
---|
351 | INTEGER :: isec_week ! number of seconds since start of the weekly file |
---|
352 | CHARACTER(LEN=1000) :: clfmt ! write format |
---|
353 | !!--------------------------------------------------------------------- |
---|
354 | llprevyr = .FALSE. |
---|
355 | llprevmth = .FALSE. |
---|
356 | llprevweek = .FALSE. |
---|
357 | llprevday = .FALSE. |
---|
358 | isec_week = 0 |
---|
359 | ! |
---|
360 | ! define record informations |
---|
361 | CALL fld_rec( kn_fsbc, sdjf, ldbefore = .TRUE. ) ! return before values in sdjf%nrec_a (as we will swap it later) |
---|
362 | ! |
---|
363 | ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar |
---|
364 | ! |
---|
365 | IF( sdjf%ln_tint ) THEN ! we need to read the previous record and we will put it in the current record structure |
---|
366 | ! |
---|
367 | IF( sdjf%nrec_a(1) == 0 ) THEN ! we redefine record sdjf%nrec_a(1) with the last record of previous year file |
---|
368 | IF ( sdjf%nfreqh == -12 ) THEN ! yearly mean |
---|
369 | IF( sdjf%cltype == 'yearly' ) THEN ! yearly file |
---|
370 | sdjf%nrec_a(1) = 1 ! force to read the unique record |
---|
371 | llprevyr = .NOT. sdjf%ln_clim ! use previous year file? |
---|
372 | ELSE |
---|
373 | CALL ctl_stop( "fld_init: yearly mean file must be in a yearly type of file: "//TRIM(sdjf%clrootname) ) |
---|
374 | ENDIF |
---|
375 | ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean |
---|
376 | IF( sdjf%cltype == 'monthly' ) THEN ! monthly file |
---|
377 | sdjf%nrec_a(1) = 1 ! force to read the unique record |
---|
378 | llprevmth = .TRUE. ! use previous month file? |
---|
379 | llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? |
---|
380 | ELSE ! yearly file |
---|
381 | sdjf%nrec_a(1) = 12 ! force to read december mean |
---|
382 | llprevyr = .NOT. sdjf%ln_clim ! use previous year file? |
---|
383 | ENDIF |
---|
384 | ELSE ! higher frequency mean (in hours) |
---|
385 | IF ( sdjf%cltype == 'monthly' ) THEN ! monthly file |
---|
386 | sdjf%nrec_a(1) = NINT( 24 * nmonth_len(nmonth-1) / sdjf%nfreqh ) ! last record of previous month |
---|
387 | llprevmth = .TRUE. ! use previous month file? |
---|
388 | llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? |
---|
389 | ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ! weekly file |
---|
390 | llprevweek = .TRUE. ! use previous week file? |
---|
391 | sdjf%nrec_a(1) = NINT( 24 * 7 / sdjf%nfreqh ) ! last record of previous week |
---|
392 | isec_week = NINT(rday) * 7 ! add a shift toward previous week |
---|
393 | ELSEIF( sdjf%cltype == 'daily' ) THEN ! daily file |
---|
394 | sdjf%nrec_a(1) = NINT( 24 / sdjf%nfreqh ) ! last record of previous day |
---|
395 | llprevday = .TRUE. ! use previous day file? |
---|
396 | llprevmth = llprevday .AND. nday == 1 ! use previous month file? |
---|
397 | llprevyr = llprevmth .AND. nmonth == 1 ! use previous year file? |
---|
398 | ELSE ! yearly file |
---|
399 | sdjf%nrec_a(1) = NINT( 24 * nyear_len(0) / sdjf%nfreqh ) ! last record of previous year |
---|
400 | llprevyr = .NOT. sdjf%ln_clim ! use previous year file? |
---|
401 | ENDIF |
---|
402 | ENDIF |
---|
403 | ENDIF |
---|
404 | ! |
---|
405 | IF ( sdjf%cltype(1:4) == 'week' ) THEN |
---|
406 | isec_week = isec_week + ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week |
---|
407 | llprevmth = isec_week > nsec_month ! longer time since the beginning of the week than the month |
---|
408 | llprevyr = llprevmth .AND. nmonth == 1 |
---|
409 | ENDIF |
---|
410 | llprev = llprevyr .OR. llprevmth .OR. llprevweek .OR. llprevday |
---|
411 | ! |
---|
412 | iyear = nyear - COUNT((/llprevyr /)) |
---|
413 | imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) |
---|
414 | iday = nday - COUNT((/llprevday/)) + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) |
---|
415 | ! |
---|
416 | CALL fld_clopn( sdjf, iyear, imonth, iday, .NOT. llprev ) |
---|
417 | ! |
---|
418 | ! if previous year/month/day file does not exist, we switch to the current year/month/day |
---|
419 | IF( llprev .AND. sdjf%num <= 0 ) THEN |
---|
420 | CALL ctl_warn( 'previous year/month/week/day file: '//TRIM(sdjf%clrootname)// & |
---|
421 | & ' not present -> back to current year/month/week/day' ) |
---|
422 | ! we force to read the first record of the current year/month/day instead of last record of previous year/month/day |
---|
423 | llprev = .FALSE. |
---|
424 | sdjf%nrec_a(1) = 1 |
---|
425 | CALL fld_clopn( sdjf ) |
---|
426 | ENDIF |
---|
427 | ! |
---|
428 | IF( llprev ) THEN ! check if the record sdjf%nrec_a(1) exists in the file |
---|
429 | idvar = iom_varid( sdjf%num, sdjf%clvar ) ! id of the variable sdjf%clvar |
---|
430 | IF( idvar <= 0 ) RETURN |
---|
431 | inrec = iom_file( sdjf%num )%dimsz( iom_file( sdjf%num )%ndims(idvar), idvar ) ! size of the last dim of idvar |
---|
432 | sdjf%nrec_a(1) = MIN( sdjf%nrec_a(1), inrec ) ! make sure we select an existing record |
---|
433 | ENDIF |
---|
434 | ! |
---|
435 | ! read before data in after arrays(as we will swap it later) |
---|
436 | IF( PRESENT(jpk_bdy) ) THEN |
---|
437 | CALL fld_get( sdjf, map, jpk_bdy, fvl ) |
---|
438 | ELSE |
---|
439 | CALL fld_get( sdjf, map ) |
---|
440 | ENDIF |
---|
441 | ! |
---|
442 | clfmt = "(' fld_init : time-interpolation for ', a, ' read previous record = ', i6, ' at time = ', f7.2, ' days')" |
---|
443 | IF(lwp) WRITE(numout, clfmt) TRIM(sdjf%clvar), sdjf%nrec_a(1), REAL(sdjf%nrec_a(2),wp)/rday |
---|
444 | ! |
---|
445 | ENDIF |
---|
446 | ! |
---|
447 | END SUBROUTINE fld_init |
---|
448 | |
---|
449 | |
---|
450 | SUBROUTINE fld_rec( kn_fsbc, sdjf, ldbefore, kit, kt_offset ) |
---|
451 | !!--------------------------------------------------------------------- |
---|
452 | !! *** ROUTINE fld_rec *** |
---|
453 | !! |
---|
454 | !! ** Purpose : Compute |
---|
455 | !! if sdjf%ln_tint = .TRUE. |
---|
456 | !! nrec_a: record number and its time (nrec_b is obtained from nrec_a when swapping) |
---|
457 | !! if sdjf%ln_tint = .FALSE. |
---|
458 | !! nrec_a(1): record number |
---|
459 | !! nrec_b(2) and nrec_a(2): time of the beginning and end of the record (for print only) |
---|
460 | !!---------------------------------------------------------------------- |
---|
461 | INTEGER , INTENT(in ) :: kn_fsbc ! sbc computation period (in time step) |
---|
462 | TYPE(FLD), INTENT(inout) :: sdjf ! input field related variables |
---|
463 | LOGICAL , INTENT(in ), OPTIONAL :: ldbefore ! sent back before record values (default = .FALSE.) |
---|
464 | INTEGER , INTENT(in ), OPTIONAL :: kit ! index of barotropic subcycle |
---|
465 | ! ! used only if sdjf%ln_tint = .TRUE. |
---|
466 | INTEGER , INTENT(in ), OPTIONAL :: kt_offset ! Offset of required time level compared to "now" |
---|
467 | ! ! time level in units of time steps. |
---|
468 | ! |
---|
469 | LOGICAL :: llbefore ! local definition of ldbefore |
---|
470 | INTEGER :: iendrec ! end of this record (in seconds) |
---|
471 | INTEGER :: imth ! month number |
---|
472 | INTEGER :: ifreq_sec ! frequency mean (in seconds) |
---|
473 | INTEGER :: isec_week ! number of seconds since the start of the weekly file |
---|
474 | INTEGER :: it_offset ! local time offset variable |
---|
475 | REAL(wp) :: ztmp ! temporary variable |
---|
476 | !!---------------------------------------------------------------------- |
---|
477 | ! |
---|
478 | ! Note that shifting time to be centrered in the middle of sbc time step impacts only nsec_* variables of the calendar |
---|
479 | ! |
---|
480 | IF( PRESENT(ldbefore) ) THEN ; llbefore = ldbefore .AND. sdjf%ln_tint ! needed only if sdjf%ln_tint = .TRUE. |
---|
481 | ELSE ; llbefore = .FALSE. |
---|
482 | ENDIF |
---|
483 | ! |
---|
484 | IF ( nn_components == jp_iam_sas ) THEN ; it_offset = nn_fsbc |
---|
485 | ELSE ; it_offset = 0 |
---|
486 | ENDIF |
---|
487 | IF( PRESENT(kt_offset) ) it_offset = kt_offset |
---|
488 | IF( PRESENT(kit) ) THEN ; it_offset = ( kit + it_offset ) * NINT( rdt/REAL(nn_baro,wp) ) |
---|
489 | ELSE ; it_offset = it_offset * NINT( rdt ) |
---|
490 | ENDIF |
---|
491 | ! |
---|
492 | ! ! =========== ! |
---|
493 | IF ( sdjf%nfreqh == -12 ) THEN ! yearly mean |
---|
494 | ! ! =========== ! |
---|
495 | ! |
---|
496 | IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record |
---|
497 | ! |
---|
498 | ! INT( ztmp ) |
---|
499 | ! /|\ |
---|
500 | ! 1 | *---- |
---|
501 | ! 0 |----( |
---|
502 | ! |----+----|--> time |
---|
503 | ! 0 /|\ 1 (nday/nyear_len(1)) |
---|
504 | ! | |
---|
505 | ! | |
---|
506 | ! forcing record : 1 |
---|
507 | ! |
---|
508 | ztmp = REAL( nsec_year, wp ) / ( REAL( nyear_len(1), wp ) * rday ) + 0.5 & |
---|
509 | & + REAL( it_offset, wp ) / ( REAL( nyear_len(1), wp ) * rday ) |
---|
510 | sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) |
---|
511 | ! swap at the middle of the year |
---|
512 | IF( llbefore ) THEN ; sdjf%nrec_a(2) = nsec1jan000 - (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(0) + & |
---|
513 | & INT(ztmp) * NINT( 0.5 * rday) * nyear_len(1) |
---|
514 | ELSE ; sdjf%nrec_a(2) = nsec1jan000 + (1 - INT(ztmp)) * NINT(0.5 * rday) * nyear_len(1) + & |
---|
515 | & INT(ztmp) * INT(rday) * nyear_len(1) + INT(ztmp) * NINT( 0.5 * rday) * nyear_len(2) |
---|
516 | ENDIF |
---|
517 | ELSE ! no time interpolation |
---|
518 | sdjf%nrec_a(1) = 1 |
---|
519 | sdjf%nrec_a(2) = NINT(rday) * nyear_len(1) + nsec1jan000 ! swap at the end of the year |
---|
520 | sdjf%nrec_b(2) = nsec1jan000 ! beginning of the year (only for print) |
---|
521 | ENDIF |
---|
522 | ! |
---|
523 | ! ! ============ ! |
---|
524 | ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean ! |
---|
525 | ! ! ============ ! |
---|
526 | ! |
---|
527 | IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record |
---|
528 | ! |
---|
529 | ! INT( ztmp ) |
---|
530 | ! /|\ |
---|
531 | ! 1 | *---- |
---|
532 | ! 0 |----( |
---|
533 | ! |----+----|--> time |
---|
534 | ! 0 /|\ 1 (nday/nmonth_len(nmonth)) |
---|
535 | ! | |
---|
536 | ! | |
---|
537 | ! forcing record : nmonth |
---|
538 | ! |
---|
539 | ztmp = REAL( nsec_month, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday ) + 0.5 & |
---|
540 | & + REAL( it_offset, wp ) / ( REAL( nmonth_len(nmonth), wp ) * rday ) |
---|
541 | imth = nmonth + INT( ztmp ) - COUNT((/llbefore/)) |
---|
542 | IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) |
---|
543 | ELSE ; sdjf%nrec_a(1) = imth |
---|
544 | ENDIF |
---|
545 | sdjf%nrec_a(2) = nmonth_half( imth ) + nsec1jan000 ! swap at the middle of the month |
---|
546 | ELSE ! no time interpolation |
---|
547 | IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nrec_a(1) = 1 |
---|
548 | ELSE ; sdjf%nrec_a(1) = nmonth |
---|
549 | ENDIF |
---|
550 | sdjf%nrec_a(2) = nmonth_end(nmonth ) + nsec1jan000 ! swap at the end of the month |
---|
551 | sdjf%nrec_b(2) = nmonth_end(nmonth-1) + nsec1jan000 ! beginning of the month (only for print) |
---|
552 | ENDIF |
---|
553 | ! |
---|
554 | ! ! ================================ ! |
---|
555 | ELSE ! higher frequency mean (in hours) |
---|
556 | ! ! ================================ ! |
---|
557 | ! |
---|
558 | ifreq_sec = NINT( sdjf%nfreqh * 3600 ) ! frequency mean (in seconds) |
---|
559 | IF( sdjf%cltype(1:4) == 'week' ) isec_week = ksec_week( sdjf%cltype(6:8) ) ! since the first day of the current week |
---|
560 | ! number of second since the beginning of the file |
---|
561 | IF( sdjf%cltype == 'monthly' ) THEN ; ztmp = REAL(nsec_month,wp) ! since the first day of the current month |
---|
562 | ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; ztmp = REAL(isec_week ,wp) ! since the first day of the current week |
---|
563 | ELSEIF( sdjf%cltype == 'daily' ) THEN ; ztmp = REAL(nsec_day ,wp) ! since 00h of the current day |
---|
564 | ELSE ; ztmp = REAL(nsec_year ,wp) ! since 00h on Jan 1 of the current year |
---|
565 | ENDIF |
---|
566 | ztmp = ztmp + 0.5 * REAL(kn_fsbc - 1, wp) * rdt + REAL( it_offset, wp ) ! centrered in the middle of sbc time step |
---|
567 | ztmp = ztmp + 0.01 * rdt ! avoid truncation error |
---|
568 | IF( sdjf%ln_tint ) THEN ! time interpolation, shift by 1/2 record |
---|
569 | ! |
---|
570 | ! INT( ztmp/ifreq_sec + 0.5 ) |
---|
571 | ! /|\ |
---|
572 | ! 2 | *-----( |
---|
573 | ! 1 | *-----( |
---|
574 | ! 0 |--( |
---|
575 | ! |--+--|--+--|--+--|--> time |
---|
576 | ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec) |
---|
577 | ! | | | |
---|
578 | ! | | | |
---|
579 | ! forcing record : 1 2 3 |
---|
580 | ! |
---|
581 | ztmp= ztmp / REAL(ifreq_sec, wp) + 0.5 |
---|
582 | ELSE ! no time interpolation |
---|
583 | ! |
---|
584 | ! INT( ztmp/ifreq_sec ) |
---|
585 | ! /|\ |
---|
586 | ! 2 | *-----( |
---|
587 | ! 1 | *-----( |
---|
588 | ! 0 |-----( |
---|
589 | ! |--+--|--+--|--+--|--> time |
---|
590 | ! 0 /|\ 1 /|\ 2 /|\ 3 (ztmp/ifreq_sec) |
---|
591 | ! | | | |
---|
592 | ! | | | |
---|
593 | ! forcing record : 1 2 3 |
---|
594 | ! |
---|
595 | ztmp= ztmp / REAL(ifreq_sec, wp) |
---|
596 | ENDIF |
---|
597 | sdjf%nrec_a(1) = 1 + INT( ztmp ) - COUNT((/llbefore/)) ! record number to be read |
---|
598 | |
---|
599 | iendrec = ifreq_sec * sdjf%nrec_a(1) + nsec1jan000 ! end of this record (in second) |
---|
600 | ! add the number of seconds between 00h Jan 1 and the end of previous month/week/day (ok if nmonth=1) |
---|
601 | IF( sdjf%cltype == 'monthly' ) iendrec = iendrec + NINT(rday) * SUM(nmonth_len(1:nmonth -1)) |
---|
602 | IF( sdjf%cltype(1:4) == 'week' ) iendrec = iendrec + ( nsec_year - isec_week ) |
---|
603 | IF( sdjf%cltype == 'daily' ) iendrec = iendrec + NINT(rday) * ( nday_year - 1 ) |
---|
604 | IF( sdjf%ln_tint ) THEN |
---|
605 | sdjf%nrec_a(2) = iendrec - ifreq_sec / 2 ! swap at the middle of the record |
---|
606 | ELSE |
---|
607 | sdjf%nrec_a(2) = iendrec ! swap at the end of the record |
---|
608 | sdjf%nrec_b(2) = iendrec - ifreq_sec ! beginning of the record (only for print) |
---|
609 | ENDIF |
---|
610 | ! |
---|
611 | ENDIF |
---|
612 | ! |
---|
613 | END SUBROUTINE fld_rec |
---|
614 | |
---|
615 | |
---|
616 | SUBROUTINE fld_get( sdjf, map, jpk_bdy, fvl ) |
---|
617 | !!--------------------------------------------------------------------- |
---|
618 | !! *** ROUTINE fld_get *** |
---|
619 | !! |
---|
620 | !! ** Purpose : read the data |
---|
621 | !!---------------------------------------------------------------------- |
---|
622 | TYPE(FLD) , INTENT(inout) :: sdjf ! input field related variables |
---|
623 | TYPE(MAP_POINTER), INTENT(in ) :: map ! global-to-local mapping indices |
---|
624 | INTEGER , INTENT(in), OPTIONAL :: jpk_bdy ! number of vertical levels in the bdy data |
---|
625 | LOGICAL , INTENT(in), OPTIONAL :: fvl ! number of vertical levels in the bdy data |
---|
626 | ! |
---|
627 | INTEGER :: ipk ! number of vertical levels of sdjf%fdta ( 2D: ipk=1 ; 3D: ipk=jpk ) |
---|
628 | INTEGER :: iw ! index into wgts array |
---|
629 | INTEGER :: ipdom ! index of the domain |
---|
630 | INTEGER :: idvar ! variable ID |
---|
631 | INTEGER :: idmspc ! number of spatial dimensions |
---|
632 | LOGICAL :: lmoor ! C1D case: point data |
---|
633 | !!--------------------------------------------------------------------- |
---|
634 | ! |
---|
635 | ipk = SIZE( sdjf%fnow, 3 ) |
---|
636 | ! |
---|
637 | IF( ASSOCIATED(map%ptr) ) THEN |
---|
638 | IF( PRESENT(jpk_bdy) ) THEN |
---|
639 | IF( sdjf%ln_tint ) THEN ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fdta(:,:,:,2), & |
---|
640 | sdjf%nrec_a(1), map, sdjf%igrd, sdjf%ibdy, jpk_bdy, fvl ) |
---|
641 | ELSE ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fnow(:,:,: ), & |
---|
642 | sdjf%nrec_a(1), map, sdjf%igrd, sdjf%ibdy, jpk_bdy, fvl ) |
---|
643 | ENDIF |
---|
644 | ELSE |
---|
645 | IF( sdjf%ln_tint ) THEN ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1), map ) |
---|
646 | ELSE ; CALL fld_map( sdjf%num, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1), map ) |
---|
647 | ENDIF |
---|
648 | ENDIF |
---|
649 | ELSE IF( LEN(TRIM(sdjf%wgtname)) > 0 ) THEN |
---|
650 | CALL wgt_list( sdjf, iw ) |
---|
651 | IF( sdjf%ln_tint ) THEN ; CALL fld_interp( sdjf%num, sdjf%clvar, iw, ipk, sdjf%fdta(:,:,:,2), & |
---|
652 | & sdjf%nrec_a(1), sdjf%lsmname ) |
---|
653 | ELSE ; CALL fld_interp( sdjf%num, sdjf%clvar, iw, ipk, sdjf%fnow(:,:,: ), & |
---|
654 | & sdjf%nrec_a(1), sdjf%lsmname ) |
---|
655 | ENDIF |
---|
656 | ELSE |
---|
657 | IF( SIZE(sdjf%fnow, 1) == jpi ) THEN ; ipdom = jpdom_data |
---|
658 | ELSE ; ipdom = jpdom_unknown |
---|
659 | ENDIF |
---|
660 | ! C1D case: If product of spatial dimensions == ipk, then x,y are of |
---|
661 | ! size 1 (point/mooring data): this must be read onto the central grid point |
---|
662 | idvar = iom_varid( sdjf%num, sdjf%clvar ) |
---|
663 | idmspc = iom_file ( sdjf%num )%ndims( idvar ) |
---|
664 | IF( iom_file( sdjf%num )%luld( idvar ) ) idmspc = idmspc - 1 |
---|
665 | lmoor = ( idmspc == 0 .OR. PRODUCT( iom_file( sdjf%num )%dimsz( 1:MAX(idmspc,1) ,idvar ) ) == ipk ) |
---|
666 | ! |
---|
667 | SELECT CASE( ipk ) |
---|
668 | CASE(1) |
---|
669 | IF( lk_c1d .AND. lmoor ) THEN |
---|
670 | IF( sdjf%ln_tint ) THEN |
---|
671 | CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fdta(2,2,1,2), sdjf%nrec_a(1) ) |
---|
672 | CALL lbc_lnk( sdjf%fdta(:,:,1,2),'Z',1. ) |
---|
673 | ELSE |
---|
674 | CALL iom_get( sdjf%num, sdjf%clvar, sdjf%fnow(2,2,1 ), sdjf%nrec_a(1) ) |
---|
675 | CALL lbc_lnk( sdjf%fnow(:,:,1 ),'Z',1. ) |
---|
676 | ENDIF |
---|
677 | ELSE |
---|
678 | IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,1,2), sdjf%nrec_a(1) ) |
---|
679 | ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,1 ), sdjf%nrec_a(1) ) |
---|
680 | ENDIF |
---|
681 | ENDIF |
---|
682 | CASE DEFAULT |
---|
683 | IF (lk_c1d .AND. lmoor ) THEN |
---|
684 | IF( sdjf%ln_tint ) THEN |
---|
685 | CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fdta(2,2,:,2), sdjf%nrec_a(1) ) |
---|
686 | CALL lbc_lnk( sdjf%fdta(:,:,:,2),'Z',1. ) |
---|
687 | ELSE |
---|
688 | CALL iom_get( sdjf%num, jpdom_unknown, sdjf%clvar, sdjf%fnow(2,2,: ), sdjf%nrec_a(1) ) |
---|
689 | CALL lbc_lnk( sdjf%fnow(:,:,: ),'Z',1. ) |
---|
690 | ENDIF |
---|
691 | ELSE |
---|
692 | IF( sdjf%ln_tint ) THEN ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fdta(:,:,:,2), sdjf%nrec_a(1) ) |
---|
693 | ELSE ; CALL iom_get( sdjf%num, ipdom, sdjf%clvar, sdjf%fnow(:,:,: ), sdjf%nrec_a(1) ) |
---|
694 | ENDIF |
---|
695 | ENDIF |
---|
696 | END SELECT |
---|
697 | ENDIF |
---|
698 | ! |
---|
699 | sdjf%rotn(2) = .false. ! vector not yet rotated |
---|
700 | ! |
---|
701 | END SUBROUTINE fld_get |
---|
702 | |
---|
703 | SUBROUTINE fld_map( num, clvar, dta, nrec, map, igrd, ibdy, jpk_bdy, fvl ) |
---|
704 | !!--------------------------------------------------------------------- |
---|
705 | !! *** ROUTINE fld_map *** |
---|
706 | !! |
---|
707 | !! ** Purpose : read global data from file and map onto local data |
---|
708 | !! using a general mapping (for open boundaries) |
---|
709 | !!---------------------------------------------------------------------- |
---|
710 | |
---|
711 | USE bdy_oce, ONLY: ln_bdy, idx_bdy, dta_global, dta_global_z, dta_global_dz, dta_global2, dta_global2_z, dta_global2_dz ! workspace to read in global data arrays |
---|
712 | |
---|
713 | INTEGER , INTENT(in ) :: num ! stream number |
---|
714 | CHARACTER(LEN=*) , INTENT(in ) :: clvar ! variable name |
---|
715 | REAL(wp), DIMENSION(:,:,:), INTENT(out) :: dta ! output field on model grid (2 dimensional) |
---|
716 | INTEGER , INTENT(in ) :: nrec ! record number to read (ie time slice) |
---|
717 | TYPE(MAP_POINTER) , INTENT(in ) :: map ! global-to-local mapping indices |
---|
718 | INTEGER , INTENT(in), OPTIONAL :: igrd, ibdy, jpk_bdy ! grid type, set number and number of vertical levels in the bdy data |
---|
719 | LOGICAL , INTENT(in), OPTIONAL :: fvl ! grid type, set number and number of vertical levels in the bdy data |
---|
720 | INTEGER :: jpkm1_bdy! number of vertical levels in the bdy data minus 1 |
---|
721 | !! |
---|
722 | INTEGER :: ipi ! length of boundary data on local process |
---|
723 | INTEGER :: ipj ! length of dummy dimension ( = 1 ) |
---|
724 | INTEGER :: ipk ! number of vertical levels of dta ( 2D: ipk=1 ; 3D: ipk=jpk ) |
---|
725 | INTEGER :: ilendta ! length of data in file |
---|
726 | INTEGER :: idvar ! variable ID |
---|
727 | INTEGER :: ib, ik, ji, jj ! loop counters |
---|
728 | INTEGER :: ierr |
---|
729 | REAL(wp) :: fv ! fillvalue |
---|
730 | REAL(wp), POINTER, DIMENSION(:,:,:) :: dta_read ! work space for global data |
---|
731 | REAL(wp), POINTER, DIMENSION(:,:,:) :: dta_read_z ! work space for global data |
---|
732 | REAL(wp), POINTER, DIMENSION(:,:,:) :: dta_read_dz ! work space for global data |
---|
733 | !!--------------------------------------------------------------------- |
---|
734 | ! |
---|
735 | ipi = SIZE( dta, 1 ) |
---|
736 | ipj = 1 |
---|
737 | ipk = SIZE( dta, 3 ) |
---|
738 | ! |
---|
739 | idvar = iom_varid( num, clvar ) |
---|
740 | ilendta = iom_file(num)%dimsz(1,idvar) |
---|
741 | |
---|
742 | IF ( ln_bdy ) THEN |
---|
743 | ipj = iom_file(num)%dimsz(2,idvar) |
---|
744 | IF( map%ll_unstruc) THEN ! unstructured open boundary data file |
---|
745 | dta_read => dta_global |
---|
746 | IF( PRESENT(jpk_bdy) ) THEN |
---|
747 | IF( jpk_bdy>0 ) THEN |
---|
748 | dta_read_z => dta_global_z |
---|
749 | dta_read_dz => dta_global_dz |
---|
750 | jpkm1_bdy = jpk_bdy-1 |
---|
751 | ENDIF |
---|
752 | ENDIF |
---|
753 | ELSE ! structured open boundary file |
---|
754 | dta_read => dta_global2 |
---|
755 | IF( PRESENT(jpk_bdy) ) THEN |
---|
756 | IF( jpk_bdy>0 ) THEN |
---|
757 | dta_read_z => dta_global2_z |
---|
758 | dta_read_dz => dta_global2_dz |
---|
759 | jpkm1_bdy = jpk_bdy-1 |
---|
760 | ENDIF |
---|
761 | ENDIF |
---|
762 | ENDIF |
---|
763 | ENDIF |
---|
764 | |
---|
765 | IF(lwp) WRITE(numout,*) 'Dim size for ', TRIM(clvar),' is ', ilendta |
---|
766 | IF(lwp) WRITE(numout,*) 'Number of levels for ',TRIM(clvar),' is ', ipk |
---|
767 | ! |
---|
768 | SELECT CASE( ipk ) |
---|
769 | CASE(1) ; |
---|
770 | CALL iom_get ( num, jpdom_unknown, clvar, dta_read(1:ilendta,1:ipj,1 ), nrec ) |
---|
771 | IF ( map%ll_unstruc) THEN ! unstructured open boundary data file |
---|
772 | DO ib = 1, ipi |
---|
773 | DO ik = 1, ipk |
---|
774 | dta(ib,1,ik) = dta_read(map%ptr(ib),1,ik) |
---|
775 | END DO |
---|
776 | END DO |
---|
777 | ELSE ! we assume that this is a structured open boundary file |
---|
778 | DO ib = 1, ipi |
---|
779 | jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
780 | ji=map%ptr(ib)-(jj-1)*ilendta |
---|
781 | DO ik = 1, ipk |
---|
782 | dta(ib,1,ik) = dta_read(ji,jj,ik) |
---|
783 | END DO |
---|
784 | END DO |
---|
785 | ENDIF |
---|
786 | |
---|
787 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
788 | ! Do we include something here to adjust barotropic velocities ! |
---|
789 | ! in case of a depth difference between bdy files and ! |
---|
790 | ! bathymetry in the case ln_full_vel = .false. and jpk_bdy>0? ! |
---|
791 | ! [as the enveloping and parital cells could change H] ! |
---|
792 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
793 | |
---|
794 | CASE DEFAULT ; |
---|
795 | |
---|
796 | IF( PRESENT(jpk_bdy) .AND. jpk_bdy>0 ) THEN ! boundary data not on model grid: vertical interpolation |
---|
797 | CALL iom_getatt(num, '_FillValue', fv, cdvar=clvar ) |
---|
798 | dta_read(:,:,:) = -ABS(fv) |
---|
799 | dta_read_z(:,:,:) = 0._wp |
---|
800 | dta_read_dz(:,:,:) = 0._wp |
---|
801 | CALL iom_get ( num, jpdom_unknown, clvar, dta_read(1:ilendta,1:ipj,1:jpk_bdy), nrec ) |
---|
802 | SELECT CASE( igrd ) |
---|
803 | CASE(1) |
---|
804 | CALL iom_get ( num, jpdom_unknown, 'gdept', dta_read_z(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
805 | CALL iom_get ( num, jpdom_unknown, 'e3t', dta_read_dz(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
806 | CASE(2) |
---|
807 | CALL iom_get ( num, jpdom_unknown, 'gdepu', dta_read_z(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
808 | CALL iom_get ( num, jpdom_unknown, 'e3u', dta_read_dz(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
809 | CASE(3) |
---|
810 | CALL iom_get ( num, jpdom_unknown, 'gdepv', dta_read_z(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
811 | CALL iom_get ( num, jpdom_unknown, 'e3v', dta_read_dz(1:ilendta,1:ipj,1:jpk_bdy) ) |
---|
812 | END SELECT |
---|
813 | |
---|
814 | IF ( ln_bdy ) & |
---|
815 | CALL fld_bdy_interp(dta_read, dta_read_z, dta_read_dz, map, jpk_bdy, igrd, ibdy, fv, dta, fvl, ilendta) |
---|
816 | |
---|
817 | ELSE ! boundary data assumed to be on model grid |
---|
818 | |
---|
819 | CALL iom_get ( num, jpdom_unknown, clvar, dta_read(1:ilendta,1:ipj,1:ipk), nrec ) |
---|
820 | IF ( map%ll_unstruc) THEN ! unstructured open boundary data file |
---|
821 | DO ib = 1, ipi |
---|
822 | DO ik = 1, ipk |
---|
823 | dta(ib,1,ik) = dta_read(map%ptr(ib),1,ik) |
---|
824 | END DO |
---|
825 | END DO |
---|
826 | ELSE ! we assume that this is a structured open boundary file |
---|
827 | DO ib = 1, ipi |
---|
828 | jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
829 | ji=map%ptr(ib)-(jj-1)*ilendta |
---|
830 | DO ik = 1, ipk |
---|
831 | dta(ib,1,ik) = dta_read(ji,jj,ik) |
---|
832 | END DO |
---|
833 | END DO |
---|
834 | ENDIF |
---|
835 | ENDIF ! PRESENT(jpk_bdy) |
---|
836 | END SELECT |
---|
837 | |
---|
838 | END SUBROUTINE fld_map |
---|
839 | |
---|
840 | SUBROUTINE fld_bdy_interp(dta_read, dta_read_z, dta_read_dz, map, jpk_bdy, igrd, ibdy, fv, dta, fvl, ilendta) |
---|
841 | |
---|
842 | !!--------------------------------------------------------------------- |
---|
843 | !! *** ROUTINE fld_bdy_interp *** |
---|
844 | !! |
---|
845 | !! ** Purpose : on the fly vertical interpolation to allow the use of |
---|
846 | !! boundary data from non-native vertical grid |
---|
847 | !!---------------------------------------------------------------------- |
---|
848 | USE bdy_oce, ONLY: idx_bdy ! indexing for map <-> ij transformation |
---|
849 | |
---|
850 | REAL(wp), POINTER, DIMENSION(:,:,:), INTENT(in ) :: dta_read ! work space for global data |
---|
851 | REAL(wp), POINTER, DIMENSION(:,:,:), INTENT(in ) :: dta_read_z ! work space for global data |
---|
852 | REAL(wp), POINTER, DIMENSION(:,:,:), INTENT(in ) :: dta_read_dz ! work space for global data |
---|
853 | REAL(wp) , INTENT(in) :: fv ! fillvalue and alternative -ABS(fv) |
---|
854 | REAL(wp), DIMENSION(:,:,:), INTENT(out) :: dta ! output field on model grid (2 dimensional) |
---|
855 | TYPE(MAP_POINTER) , INTENT(in ) :: map ! global-to-local mapping indices |
---|
856 | LOGICAL , INTENT(in), OPTIONAL :: fvl ! grid type, set number and number of vertical levels in the bdy data |
---|
857 | INTEGER , INTENT(in) :: igrd, ibdy, jpk_bdy ! number of levels in bdy data |
---|
858 | INTEGER , INTENT(in) :: ilendta ! length of data in file |
---|
859 | !! |
---|
860 | INTEGER :: ipi ! length of boundary data on local process |
---|
861 | INTEGER :: ipj ! length of dummy dimension ( = 1 ) |
---|
862 | INTEGER :: ipk ! number of vertical levels of dta ( 2D: ipk=1 ; 3D: ipk=jpk ) |
---|
863 | INTEGER :: jpkm1_bdy ! number of levels in bdy data minus 1 |
---|
864 | INTEGER :: ib, ik, ikk ! loop counters |
---|
865 | INTEGER :: ji, jj, zij, zjj ! temporary indices |
---|
866 | REAL(wp) :: zl, zi, zh ! tmp variable for current depth and interpolation factor |
---|
867 | REAL(wp) :: fv_alt, ztrans, ztrans_new ! fillvalue and alternative -ABS(fv) |
---|
868 | CHARACTER (LEN=10) :: ibstr |
---|
869 | !!--------------------------------------------------------------------- |
---|
870 | |
---|
871 | |
---|
872 | ipi = SIZE( dta, 1 ) |
---|
873 | ipj = SIZE( dta_read, 2 ) |
---|
874 | ipk = SIZE( dta, 3 ) |
---|
875 | jpkm1_bdy = jpk_bdy-1 |
---|
876 | |
---|
877 | fv_alt = -ABS(fv) ! set _FillValue < 0 as we make use of MAXVAL and MAXLOC later |
---|
878 | DO ib = 1, ipi |
---|
879 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
880 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
881 | IF(narea==2) WRITE(*,*) 'MAPI', ib, igrd, map%ptr(ib), narea-1, zij, zjj |
---|
882 | ENDDO |
---|
883 | ! |
---|
884 | IF ( map%ll_unstruc ) THEN ! unstructured open boundary data file |
---|
885 | |
---|
886 | DO ib = 1, ipi |
---|
887 | DO ik = 1, jpk_bdy |
---|
888 | IF( ( dta_read(map%ptr(ib),1,ik) == fv ) ) THEN |
---|
889 | dta_read_z(map%ptr(ib),1,ik) = fv_alt ! safety: put fillvalue into external depth field so consistent with data |
---|
890 | dta_read_dz(map%ptr(ib),1,ik) = 0._wp ! safety: put 0._wp into external thickness factors to ensure transport is correct |
---|
891 | ENDIF |
---|
892 | ENDDO |
---|
893 | ENDDO |
---|
894 | |
---|
895 | DO ib = 1, ipi |
---|
896 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
897 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
898 | zh = SUM(dta_read_dz(map%ptr(ib),1,:) ) |
---|
899 | ! Warnings to flag differences in the input and model topgraphy - is this useful/necessary? |
---|
900 | SELECT CASE( igrd ) |
---|
901 | CASE(1) |
---|
902 | IF( ABS( (zh - ht_n(zij,zjj)) / ht_n(zij,zjj)) * tmask(zij,zjj,1) > 0.01_wp ) THEN |
---|
903 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
904 | CALL ctl_warn('fld_bdy_interp: T depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
905 | ! IF(lwp) WRITE(*,*) 'DEPTHT', zh, sum(e3t_n(zij,zjj,:), mask=tmask(zij,zjj,:)==1), ht_n(zij,zjj), map%ptr(ib), ib, zij, zjj |
---|
906 | ENDIF |
---|
907 | CASE(2) |
---|
908 | IF( ABS( (zh - hu_n(zij,zjj)) * r1_hu_n(zij,zjj)) * umask(zij,zjj,1) > 0.01_wp ) THEN |
---|
909 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
910 | CALL ctl_warn('fld_bdy_interp: U depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
911 | IF(lwp) WRITE(*,*) 'DEPTHU', zh, sum(e3u_n(zij,zjj,:), mask=umask(zij,zjj,:)==1), sum(umask(zij,zjj,:)), & |
---|
912 | & hu_n(zij,zjj), map%ptr(ib), ib, zij, zjj, narea-1 , & |
---|
913 | & dta_read(map%ptr(ib),1,:) |
---|
914 | ENDIF |
---|
915 | CASE(3) |
---|
916 | IF( ABS( (zh - hv_n(zij,zjj)) * r1_hv_n(zij,zjj)) * vmask(zij,zjj,1) > 0.01_wp ) THEN |
---|
917 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
918 | CALL ctl_warn('fld_bdy_interp: V depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
919 | ENDIF |
---|
920 | END SELECT |
---|
921 | DO ik = 1, ipk |
---|
922 | SELECT CASE( igrd ) |
---|
923 | CASE(1) |
---|
924 | zl = gdept_n(zij,zjj,ik) ! if using in step could use fsdept instead of gdept_n? |
---|
925 | CASE(2) |
---|
926 | IF(ln_sco) THEN |
---|
927 | zl = ( gdept_n(zij,zjj,ik) + gdept_n(zij+1,zjj,ik) ) * 0.5_wp ! if using in step could use fsdept instead of gdept_n? |
---|
928 | ELSE |
---|
929 | zl = MIN( gdept_n(zij,zjj,ik), gdept_n(zij+1,zjj,ik) ) |
---|
930 | ENDIF |
---|
931 | CASE(3) |
---|
932 | IF(ln_sco) THEN |
---|
933 | zl = ( gdept_n(zij,zjj,ik) + gdept_n(zij,zjj+1,ik) ) * 0.5_wp ! if using in step could use fsdept instead of gdept_n? |
---|
934 | ELSE |
---|
935 | zl = MIN( gdept_n(zij,zjj,ik), gdept_n(zij,zjj+1,ik) ) |
---|
936 | ENDIF |
---|
937 | END SELECT |
---|
938 | IF( zl < dta_read_z(map%ptr(ib),1,1) ) THEN ! above the first level of external data |
---|
939 | dta(ib,1,ik) = dta_read(map%ptr(ib),1,1) |
---|
940 | ELSEIF( zl > MAXVAL(dta_read_z(map%ptr(ib),1,:),1) ) THEN ! below the last level of external data |
---|
941 | dta(ib,1,ik) = dta_read(map%ptr(ib),1,MAXLOC(dta_read_z(map%ptr(ib),1,:),1)) |
---|
942 | ELSE ! inbetween : vertical interpolation between ikk & ikk+1 |
---|
943 | DO ikk = 1, jpkm1_bdy ! when gdept_n(ikk) < zl < gdept_n(ikk+1) |
---|
944 | IF( ( (zl-dta_read_z(map%ptr(ib),1,ikk)) * (zl-dta_read_z(map%ptr(ib),1,ikk+1)) <= 0._wp) & |
---|
945 | & .AND. (dta_read_z(map%ptr(ib),1,ikk+1) /= fv_alt)) THEN |
---|
946 | zi = ( zl - dta_read_z(map%ptr(ib),1,ikk) ) / & |
---|
947 | & ( dta_read_z(map%ptr(ib),1,ikk+1) - dta_read_z(map%ptr(ib),1,ikk) ) |
---|
948 | dta(ib,1,ik) = dta_read(map%ptr(ib),1,ikk) + & |
---|
949 | & ( dta_read(map%ptr(ib),1,ikk+1) - dta_read(map%ptr(ib),1,ikk) ) * zi |
---|
950 | ENDIF |
---|
951 | END DO |
---|
952 | ENDIF |
---|
953 | END DO |
---|
954 | END DO |
---|
955 | |
---|
956 | IF(igrd == 2) THEN ! do we need to adjust the transport term? |
---|
957 | DO ib = 1, ipi |
---|
958 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
959 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
960 | zh = SUM(dta_read_dz(map%ptr(ib),1,:) ) |
---|
961 | ztrans = 0._wp |
---|
962 | ztrans_new = 0._wp |
---|
963 | DO ik = 1, jpk_bdy ! calculate transport on input grid |
---|
964 | ztrans = ztrans + dta_read(map%ptr(ib),1,ik) * dta_read_dz(map%ptr(ib),1,ik) |
---|
965 | ENDDO |
---|
966 | DO ik = 1, ipk ! calculate transport on model grid |
---|
967 | ztrans_new = ztrans_new + dta(ib,1,ik) * e3u_n(zij,zjj,ik) * umask(zij,zjj,ik) |
---|
968 | ENDDO |
---|
969 | DO ik = 1, ipk ! make transport correction |
---|
970 | IF(fvl) THEN ! bdy data are total velocity so adjust bt transport term to match input data |
---|
971 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( ztrans - ztrans_new ) * r1_hu_n(zij,zjj) ) * umask(zij,zjj,ik) |
---|
972 | ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero |
---|
973 | IF( ABS(ztrans * r1_hu_n(zij,zjj)) > 0.01_wp ) & |
---|
974 | & CALL ctl_warn('fld_bdy_interp: barotropic component of > 0.01 ms-1 found in baroclinic velocities at') |
---|
975 | dta(ib,1,ik) = dta(ib,1,ik) + ( 0._wp - ztrans_new ) * r1_hu_n(zij,zjj) * umask(zij,zjj,ik) |
---|
976 | ENDIF |
---|
977 | ENDDO |
---|
978 | ENDDO |
---|
979 | ENDIF |
---|
980 | |
---|
981 | IF(igrd == 3) THEN ! do we need to adjust the transport term? |
---|
982 | DO ib = 1, ipi |
---|
983 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
984 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
985 | zh = SUM(dta_read_dz(map%ptr(ib),1,:) ) |
---|
986 | ztrans = 0._wp |
---|
987 | ztrans_new = 0._wp |
---|
988 | DO ik = 1, jpk_bdy ! calculate transport on input grid |
---|
989 | ztrans = ztrans + dta_read(map%ptr(ib),1,ik) * dta_read_dz(map%ptr(ib),1,ik) |
---|
990 | ENDDO |
---|
991 | DO ik = 1, ipk ! calculate transport on model grid |
---|
992 | ztrans_new = ztrans_new + dta(ib,1,ik) * e3v_n(zij,zjj,ik) * vmask(zij,zjj,ik) |
---|
993 | ENDDO |
---|
994 | DO ik = 1, ipk ! make transport correction |
---|
995 | IF(fvl) THEN ! bdy data are total velocity so adjust bt transport term to match input data |
---|
996 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( ztrans - ztrans_new ) * r1_hv_n(zij,zjj) ) * vmask(zij,zjj,ik) |
---|
997 | ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero |
---|
998 | dta(ib,1,ik) = dta(ib,1,ik) + ( 0._wp - ztrans_new ) * r1_hv_n(zij,zjj) * vmask(zij,zjj,ik) |
---|
999 | ENDIF |
---|
1000 | ENDDO |
---|
1001 | ENDDO |
---|
1002 | ENDIF |
---|
1003 | |
---|
1004 | ELSE ! structured open boundary file |
---|
1005 | |
---|
1006 | DO ib = 1, ipi |
---|
1007 | jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
1008 | ji=map%ptr(ib)-(jj-1)*ilendta |
---|
1009 | DO ik = 1, jpk_bdy |
---|
1010 | IF( ( dta_read(ji,jj,ik) == fv ) ) THEN |
---|
1011 | dta_read_z(ji,jj,ik) = fv_alt ! safety: put fillvalue into external depth field so consistent with data |
---|
1012 | dta_read_dz(ji,jj,ik) = 0._wp ! safety: put 0._wp into external thickness factors to ensure transport is correct |
---|
1013 | ENDIF |
---|
1014 | ENDDO |
---|
1015 | ENDDO |
---|
1016 | |
---|
1017 | |
---|
1018 | DO ib = 1, ipi |
---|
1019 | jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
1020 | ji=map%ptr(ib)-(jj-1)*ilendta |
---|
1021 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
1022 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
1023 | zh = SUM(dta_read_dz(ji,jj,:) ) |
---|
1024 | ! Warnings to flag differences in the input and model topgraphy - is this useful/necessary? |
---|
1025 | SELECT CASE( igrd ) |
---|
1026 | CASE(1) |
---|
1027 | IF( ABS( (zh - ht_n(zij,zjj)) / ht_n(zij,zjj)) * tmask(zij,zjj,1) > 0.01_wp ) THEN |
---|
1028 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
1029 | CALL ctl_warn('fld_bdy_interp: T depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
1030 | ! IF(lwp) WRITE(*,*) 'DEPTHT', zh, sum(e3t_n(zij,zjj,:), mask=tmask(zij,zjj,:)==1), ht_n(zij,zjj), map%ptr(ib), ib, zij, zjj |
---|
1031 | ENDIF |
---|
1032 | CASE(2) |
---|
1033 | IF( ABS( (zh - hu_n(zij,zjj)) * r1_hu_n(zij,zjj)) * umask(zij,zjj,1) > 0.01_wp ) THEN |
---|
1034 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
1035 | CALL ctl_warn('fld_bdy_interp: U depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
1036 | ENDIF |
---|
1037 | CASE(3) |
---|
1038 | IF( ABS( (zh - hv_n(zij,zjj)) * r1_hv_n(zij,zjj)) * vmask(zij,zjj,1) > 0.01_wp ) THEN |
---|
1039 | WRITE(ibstr,"(I10.10)") map%ptr(ib) |
---|
1040 | CALL ctl_warn('fld_bdy_interp: V depths differ between grids at BDY point '//TRIM(ibstr)//' by more than 1%') |
---|
1041 | ENDIF |
---|
1042 | END SELECT |
---|
1043 | DO ik = 1, ipk |
---|
1044 | SELECT CASE( igrd ) ! coded for sco - need zco and zps option using min |
---|
1045 | CASE(1) |
---|
1046 | zl = gdept_n(zij,zjj,ik) ! if using in step could use fsdept instead of gdept_n? |
---|
1047 | CASE(2) |
---|
1048 | IF(ln_sco) THEN |
---|
1049 | zl = ( gdept_n(zij,zjj,ik) + gdept_n(zij+1,zjj,ik) ) * 0.5_wp ! if using in step could use fsdept instead of gdept_n? |
---|
1050 | ELSE |
---|
1051 | zl = MIN( gdept_n(zij,zjj,ik), gdept_n(zij+1,zjj,ik) ) |
---|
1052 | ENDIF |
---|
1053 | CASE(3) |
---|
1054 | IF(ln_sco) THEN |
---|
1055 | zl = ( gdept_n(zij,zjj,ik) + gdept_n(zij,zjj+1,ik) ) * 0.5_wp ! if using in step could use fsdept instead of gdept_n? |
---|
1056 | ELSE |
---|
1057 | zl = MIN( gdept_n(zij,zjj,ik), gdept_n(zij,zjj+1,ik) ) |
---|
1058 | ENDIF |
---|
1059 | END SELECT |
---|
1060 | IF( zl < dta_read_z(ji,jj,1) ) THEN ! above the first level of external data |
---|
1061 | dta(ib,1,ik) = dta_read(ji,jj,1) |
---|
1062 | ELSEIF( zl > MAXVAL(dta_read_z(ji,jj,:),1) ) THEN ! below the last level of external data |
---|
1063 | dta(ib,1,ik) = dta_read(ji,jj,MAXLOC(dta_read_z(ji,jj,:),1)) |
---|
1064 | ELSE ! inbetween : vertical interpolation between ikk & ikk+1 |
---|
1065 | DO ikk = 1, jpkm1_bdy ! when gdept_n(ikk) < zl < gdept_n(ikk+1) |
---|
1066 | IF( ( (zl-dta_read_z(ji,jj,ikk)) * (zl-dta_read_z(ji,jj,ikk+1)) <= 0._wp) & |
---|
1067 | & .AND. (dta_read_z(ji,jj,ikk+1) /= fv_alt)) THEN |
---|
1068 | zi = ( zl - dta_read_z(ji,jj,ikk) ) / & |
---|
1069 | & ( dta_read_z(ji,jj,ikk+1) - dta_read_z(ji,jj,ikk) ) |
---|
1070 | dta(ib,1,ik) = dta_read(ji,jj,ikk) + & |
---|
1071 | & ( dta_read(ji,jj,ikk+1) - dta_read(ji,jj,ikk) ) * zi |
---|
1072 | ENDIF |
---|
1073 | END DO |
---|
1074 | ENDIF |
---|
1075 | END DO |
---|
1076 | END DO |
---|
1077 | |
---|
1078 | IF(igrd == 2) THEN ! do we need to adjust the transport term? |
---|
1079 | DO ib = 1, ipi |
---|
1080 | jj=1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
1081 | ji=map%ptr(ib)-(jj-1)*ilendta |
---|
1082 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
1083 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
1084 | zh = SUM(dta_read_dz(ji,jj,:) ) |
---|
1085 | ztrans = 0._wp |
---|
1086 | ztrans_new = 0._wp |
---|
1087 | DO ik = 1, jpk_bdy ! calculate transport on input grid |
---|
1088 | ztrans = ztrans + dta_read(ji,jj,ik) * dta_read_dz(ji,jj,ik) |
---|
1089 | ENDDO |
---|
1090 | DO ik = 1, ipk ! calculate transport on model grid |
---|
1091 | ztrans_new = ztrans_new + dta(ib,1,ik) * e3u_n(zij,zjj,ik) * umask(zij,zjj,ik) |
---|
1092 | ENDDO |
---|
1093 | DO ik = 1, ipk ! make transport correction |
---|
1094 | IF(fvl) THEN ! bdy data are total velocity so adjust bt transport term to match input data |
---|
1095 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( ztrans - ztrans_new ) * r1_hu_n(zij,zjj) ) * umask(zij,zjj,ik) |
---|
1096 | ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero |
---|
1097 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( 0._wp - ztrans_new ) * r1_hu_n(zij,zjj) ) * umask(zij,zjj,ik) |
---|
1098 | ENDIF |
---|
1099 | ENDDO |
---|
1100 | ENDDO |
---|
1101 | ENDIF |
---|
1102 | |
---|
1103 | IF(igrd == 3) THEN ! do we need to adjust the transport term? |
---|
1104 | DO ib = 1, ipi |
---|
1105 | jj = 1+floor(REAL(map%ptr(ib)-1)/REAL(ilendta)) |
---|
1106 | ji = map%ptr(ib)-(jj-1)*ilendta |
---|
1107 | zij = idx_bdy(ibdy)%nbi(ib,igrd) |
---|
1108 | zjj = idx_bdy(ibdy)%nbj(ib,igrd) |
---|
1109 | zh = SUM(dta_read_dz(ji,jj,:) ) |
---|
1110 | ztrans = 0._wp |
---|
1111 | ztrans_new = 0._wp |
---|
1112 | DO ik = 1, jpk_bdy ! calculate transport on input grid |
---|
1113 | ztrans = ztrans + dta_read(ji,jj,ik) * dta_read_dz(ji,jj,ik) |
---|
1114 | ENDDO |
---|
1115 | DO ik = 1, ipk ! calculate transport on model grid |
---|
1116 | ztrans_new = ztrans_new + dta(ib,1,ik) * e3v_n(zij,zjj,ik) * vmask(zij,zjj,ik) |
---|
1117 | ENDDO |
---|
1118 | DO ik = 1, ipk ! make transport correction |
---|
1119 | IF(fvl) THEN ! bdy data are total velocity so adjust bt transport term to match input data |
---|
1120 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( ztrans - ztrans_new ) * r1_hv_n(zij,zjj) ) * vmask(zij,zjj,ik) |
---|
1121 | ELSE ! we're just dealing with bc velocity so bt transport term should sum to zero |
---|
1122 | dta(ib,1,ik) = ( dta(ib,1,ik) + ( 0._wp - ztrans_new ) * r1_hv_n(zij,zjj) ) * vmask(zij,zjj,ik) |
---|
1123 | ENDIF |
---|
1124 | ENDDO |
---|
1125 | ENDDO |
---|
1126 | ENDIF |
---|
1127 | |
---|
1128 | ENDIF ! endif unstructured or structured |
---|
1129 | |
---|
1130 | END SUBROUTINE fld_bdy_interp |
---|
1131 | |
---|
1132 | |
---|
1133 | SUBROUTINE fld_rot( kt, sd ) |
---|
1134 | !!--------------------------------------------------------------------- |
---|
1135 | !! *** ROUTINE fld_rot *** |
---|
1136 | !! |
---|
1137 | !! ** Purpose : Vector fields may need to be rotated onto the local grid direction |
---|
1138 | !!---------------------------------------------------------------------- |
---|
1139 | INTEGER , INTENT(in ) :: kt ! ocean time step |
---|
1140 | TYPE(FLD), DIMENSION(:), INTENT(inout) :: sd ! input field related variables |
---|
1141 | ! |
---|
1142 | INTEGER :: ju, jv, jk, jn ! loop indices |
---|
1143 | INTEGER :: imf ! size of the structure sd |
---|
1144 | INTEGER :: ill ! character length |
---|
1145 | INTEGER :: iv ! indice of V component |
---|
1146 | CHARACTER (LEN=100) :: clcomp ! dummy weight name |
---|
1147 | REAL(wp), POINTER, DIMENSION(:,:) :: utmp, vtmp ! temporary arrays for vector rotation |
---|
1148 | !!--------------------------------------------------------------------- |
---|
1149 | ! |
---|
1150 | CALL wrk_alloc( jpi,jpj, utmp, vtmp ) |
---|
1151 | ! |
---|
1152 | !! (sga: following code should be modified so that pairs arent searched for each time |
---|
1153 | ! |
---|
1154 | imf = SIZE( sd ) |
---|
1155 | DO ju = 1, imf |
---|
1156 | ill = LEN_TRIM( sd(ju)%vcomp ) |
---|
1157 | DO jn = 2-COUNT((/sd(ju)%ln_tint/)), 2 |
---|
1158 | IF( ill > 0 .AND. .NOT. sd(ju)%rotn(jn) ) THEN ! find vector rotations required |
---|
1159 | IF( sd(ju)%vcomp(1:1) == 'U' ) THEN ! east-west component has symbolic name starting with 'U' |
---|
1160 | ! look for the north-south component which has same symbolic name but with 'U' replaced with 'V' |
---|
1161 | clcomp = 'V' // sd(ju)%vcomp(2:ill) ! works even if ill == 1 |
---|
1162 | iv = -1 |
---|
1163 | DO jv = 1, imf |
---|
1164 | IF( TRIM(sd(jv)%vcomp) == TRIM(clcomp) ) iv = jv |
---|
1165 | END DO |
---|
1166 | IF( iv > 0 ) THEN ! fields ju and iv are two components which need to be rotated together |
---|
1167 | DO jk = 1, SIZE( sd(ju)%fnow, 3 ) |
---|
1168 | IF( sd(ju)%ln_tint )THEN |
---|
1169 | CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->i', utmp(:,:) ) |
---|
1170 | CALL rot_rep( sd(ju)%fdta(:,:,jk,jn), sd(iv)%fdta(:,:,jk,jn), 'T', 'en->j', vtmp(:,:) ) |
---|
1171 | sd(ju)%fdta(:,:,jk,jn) = utmp(:,:) ; sd(iv)%fdta(:,:,jk,jn) = vtmp(:,:) |
---|
1172 | ELSE |
---|
1173 | CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->i', utmp(:,:) ) |
---|
1174 | CALL rot_rep( sd(ju)%fnow(:,:,jk ), sd(iv)%fnow(:,:,jk ), 'T', 'en->j', vtmp(:,:) ) |
---|
1175 | sd(ju)%fnow(:,:,jk ) = utmp(:,:) ; sd(iv)%fnow(:,:,jk ) = vtmp(:,:) |
---|
1176 | ENDIF |
---|
1177 | END DO |
---|
1178 | sd(ju)%rotn(jn) = .TRUE. ! vector was rotated |
---|
1179 | IF( lwp .AND. kt == nit000 ) WRITE(numout,*) & |
---|
1180 | & 'fld_read: vector pair ('//TRIM(sd(ju)%clvar)//', '//TRIM(sd(iv)%clvar)//') rotated on to model grid' |
---|
1181 | ENDIF |
---|
1182 | ENDIF |
---|
1183 | ENDIF |
---|
1184 | END DO |
---|
1185 | END DO |
---|
1186 | ! |
---|
1187 | CALL wrk_dealloc( jpi,jpj, utmp, vtmp ) |
---|
1188 | ! |
---|
1189 | END SUBROUTINE fld_rot |
---|
1190 | |
---|
1191 | |
---|
1192 | SUBROUTINE fld_clopn( sdjf, kyear, kmonth, kday, ldstop ) |
---|
1193 | !!--------------------------------------------------------------------- |
---|
1194 | !! *** ROUTINE fld_clopn *** |
---|
1195 | !! |
---|
1196 | !! ** Purpose : update the file name and close/open the files |
---|
1197 | !!---------------------------------------------------------------------- |
---|
1198 | TYPE(FLD) , INTENT(inout) :: sdjf ! input field related variables |
---|
1199 | INTEGER, OPTIONAL, INTENT(in ) :: kyear ! year value |
---|
1200 | INTEGER, OPTIONAL, INTENT(in ) :: kmonth ! month value |
---|
1201 | INTEGER, OPTIONAL, INTENT(in ) :: kday ! day value |
---|
1202 | LOGICAL, OPTIONAL, INTENT(in ) :: ldstop ! stop if open to read a non-existing file (default = .TRUE.) |
---|
1203 | ! |
---|
1204 | LOGICAL :: llprevyr ! are we reading previous year file? |
---|
1205 | LOGICAL :: llprevmth ! are we reading previous month file? |
---|
1206 | INTEGER :: iyear, imonth, iday ! first day of the current file in yyyy mm dd |
---|
1207 | INTEGER :: isec_week ! number of seconds since start of the weekly file |
---|
1208 | INTEGER :: indexyr ! year undex (O/1/2: previous/current/next) |
---|
1209 | INTEGER :: iyear_len, imonth_len ! length (days) of iyear and imonth ! |
---|
1210 | CHARACTER(len = 256):: clname ! temporary file name |
---|
1211 | !!---------------------------------------------------------------------- |
---|
1212 | IF( PRESENT(kyear) ) THEN ! use given values |
---|
1213 | iyear = kyear |
---|
1214 | imonth = kmonth |
---|
1215 | iday = kday |
---|
1216 | IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week |
---|
1217 | isec_week = ksec_week( sdjf%cltype(6:8) )- (86400 * 8 ) |
---|
1218 | llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month |
---|
1219 | llprevyr = llprevmth .AND. nmonth == 1 |
---|
1220 | iyear = nyear - COUNT((/llprevyr /)) |
---|
1221 | imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) |
---|
1222 | iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) |
---|
1223 | ENDIF |
---|
1224 | ELSE ! use current day values |
---|
1225 | IF ( sdjf%cltype(1:4) == 'week' ) THEN ! find the day of the beginning of the week |
---|
1226 | isec_week = ksec_week( sdjf%cltype(6:8) ) ! second since the beginning of the week |
---|
1227 | llprevmth = isec_week > nsec_month ! longer time since beginning of the week than the month |
---|
1228 | llprevyr = llprevmth .AND. nmonth == 1 |
---|
1229 | ELSE |
---|
1230 | isec_week = 0 |
---|
1231 | llprevmth = .FALSE. |
---|
1232 | llprevyr = .FALSE. |
---|
1233 | ENDIF |
---|
1234 | iyear = nyear - COUNT((/llprevyr /)) |
---|
1235 | imonth = nmonth - COUNT((/llprevmth/)) + 12 * COUNT((/llprevyr /)) |
---|
1236 | iday = nday + nmonth_len(nmonth-1) * COUNT((/llprevmth/)) - isec_week / NINT(rday) |
---|
1237 | ENDIF |
---|
1238 | |
---|
1239 | ! build the new filename if not climatological data |
---|
1240 | clname=TRIM(sdjf%clrootname) |
---|
1241 | ! |
---|
1242 | ! note that sdjf%ln_clim is is only acting on the presence of the year in the file name |
---|
1243 | IF( .NOT. sdjf%ln_clim ) THEN |
---|
1244 | WRITE(clname, '(a,"_y",i4.4)' ) TRIM( sdjf%clrootname ), iyear ! add year |
---|
1245 | IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"m" ,i2.2)' ) TRIM( clname ), imonth ! add month |
---|
1246 | ELSE |
---|
1247 | ! build the new filename if climatological data |
---|
1248 | IF( sdjf%cltype /= 'yearly' ) WRITE(clname, '(a,"_m",i2.2)' ) TRIM( sdjf%clrootname ), imonth ! add month |
---|
1249 | ENDIF |
---|
1250 | IF( sdjf%cltype == 'daily' .OR. sdjf%cltype(1:4) == 'week' ) & |
---|
1251 | & WRITE(clname, '(a,"d" ,i2.2)' ) TRIM( clname ), iday ! add day |
---|
1252 | ! |
---|
1253 | IF( TRIM(clname) /= TRIM(sdjf%clname) .OR. sdjf%num == 0 ) THEN ! new file to be open |
---|
1254 | ! |
---|
1255 | sdjf%clname = TRIM(clname) |
---|
1256 | IF( sdjf%num /= 0 ) CALL iom_close( sdjf%num ) ! close file if already open |
---|
1257 | CALL iom_open( sdjf%clname, sdjf%num, ldstop = ldstop, ldiof = LEN(TRIM(sdjf%wgtname)) > 0 ) |
---|
1258 | ! |
---|
1259 | ! find the last record to be read -> update sdjf%nreclast |
---|
1260 | indexyr = iyear - nyear + 1 |
---|
1261 | iyear_len = nyear_len( indexyr ) |
---|
1262 | SELECT CASE ( indexyr ) |
---|
1263 | CASE ( 0 ) ; imonth_len = 31 ! previous year -> imonth = 12 |
---|
1264 | CASE ( 1 ) ; imonth_len = nmonth_len(imonth) |
---|
1265 | CASE ( 2 ) ; imonth_len = 31 ! next year -> imonth = 1 |
---|
1266 | END SELECT |
---|
1267 | ! |
---|
1268 | ! last record to be read in the current file |
---|
1269 | IF ( sdjf%nfreqh == -12 ) THEN ; sdjf%nreclast = 1 ! yearly mean |
---|
1270 | ELSEIF( sdjf%nfreqh == -1 ) THEN ! monthly mean |
---|
1271 | IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = 1 |
---|
1272 | ELSE ; sdjf%nreclast = 12 |
---|
1273 | ENDIF |
---|
1274 | ELSE ! higher frequency mean (in hours) |
---|
1275 | IF( sdjf%cltype == 'monthly' ) THEN ; sdjf%nreclast = NINT( 24 * imonth_len / sdjf%nfreqh ) |
---|
1276 | ELSEIF( sdjf%cltype(1:4) == 'week' ) THEN ; sdjf%nreclast = NINT( 24 * 7 / sdjf%nfreqh ) |
---|
1277 | ELSEIF( sdjf%cltype == 'daily' ) THEN ; sdjf%nreclast = NINT( 24 / sdjf%nfreqh ) |
---|
1278 | ELSE ; sdjf%nreclast = NINT( 24 * iyear_len / sdjf%nfreqh ) |
---|
1279 | ENDIF |
---|
1280 | ENDIF |
---|
1281 | ! |
---|
1282 | ENDIF |
---|
1283 | ! |
---|
1284 | END SUBROUTINE fld_clopn |
---|
1285 | |
---|
1286 | |
---|
1287 | SUBROUTINE fld_fill( sdf, sdf_n, cdir, cdcaller, cdtitle, cdnam, knoprint ) |
---|
1288 | !!--------------------------------------------------------------------- |
---|
1289 | !! *** ROUTINE fld_fill *** |
---|
1290 | !! |
---|
1291 | !! ** Purpose : fill the data structure (sdf) with the associated information |
---|
1292 | !! read in namelist (sdf_n) and control print |
---|
1293 | !!---------------------------------------------------------------------- |
---|
1294 | TYPE(FLD) , DIMENSION(:) , INTENT(inout) :: sdf ! structure of input fields (file informations, fields read) |
---|
1295 | TYPE(FLD_N), DIMENSION(:) , INTENT(in ) :: sdf_n ! array of namelist information structures |
---|
1296 | CHARACTER(len=*) , INTENT(in ) :: cdir ! Root directory for location of flx files |
---|
1297 | CHARACTER(len=*) , INTENT(in ) :: cdcaller ! name of the calling routine |
---|
1298 | CHARACTER(len=*) , INTENT(in ) :: cdtitle ! description of the calling routine |
---|
1299 | CHARACTER(len=*) , INTENT(in ) :: cdnam ! name of the namelist from which sdf_n comes |
---|
1300 | INTEGER , OPTIONAL, INTENT(in ) :: knoprint ! no calling routine information printed |
---|
1301 | ! |
---|
1302 | INTEGER :: jf ! dummy indices |
---|
1303 | !!--------------------------------------------------------------------- |
---|
1304 | ! |
---|
1305 | DO jf = 1, SIZE(sdf) |
---|
1306 | sdf(jf)%clrootname = TRIM( cdir )//TRIM( sdf_n(jf)%clname ) |
---|
1307 | sdf(jf)%clname = "not yet defined" |
---|
1308 | sdf(jf)%nfreqh = sdf_n(jf)%nfreqh |
---|
1309 | sdf(jf)%clvar = sdf_n(jf)%clvar |
---|
1310 | sdf(jf)%ln_tint = sdf_n(jf)%ln_tint |
---|
1311 | sdf(jf)%ln_clim = sdf_n(jf)%ln_clim |
---|
1312 | sdf(jf)%cltype = sdf_n(jf)%cltype |
---|
1313 | sdf(jf)%num = -1 |
---|
1314 | sdf(jf)%wgtname = " " |
---|
1315 | IF( LEN( TRIM(sdf_n(jf)%wname) ) > 0 ) sdf(jf)%wgtname = TRIM( cdir )//TRIM( sdf_n(jf)%wname ) |
---|
1316 | sdf(jf)%lsmname = " " |
---|
1317 | IF( LEN( TRIM(sdf_n(jf)%lname) ) > 0 ) sdf(jf)%lsmname = TRIM( cdir )//TRIM( sdf_n(jf)%lname ) |
---|
1318 | sdf(jf)%vcomp = sdf_n(jf)%vcomp |
---|
1319 | sdf(jf)%rotn(:) = .TRUE. ! pretend to be rotated -> won't try to rotate data before the first call to fld_get |
---|
1320 | IF( sdf(jf)%cltype(1:4) == 'week' .AND. nn_leapy == 0 ) & |
---|
1321 | & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs nn_leapy = 1') |
---|
1322 | IF( sdf(jf)%cltype(1:4) == 'week' .AND. sdf(jf)%ln_clim ) & |
---|
1323 | & CALL ctl_stop('fld_clopn: weekly file ('//TRIM(sdf(jf)%clrootname)//') needs ln_clim = .FALSE.') |
---|
1324 | sdf(jf)%nreclast = -1 ! Set to non zero default value to avoid errors, is updated to meaningful value during fld_clopn |
---|
1325 | END DO |
---|
1326 | ! |
---|
1327 | IF(lwp) THEN ! control print |
---|
1328 | WRITE(numout,*) |
---|
1329 | IF( .NOT.PRESENT( knoprint) ) THEN |
---|
1330 | WRITE(numout,*) TRIM( cdcaller )//' : '//TRIM( cdtitle ) |
---|
1331 | WRITE(numout,*) (/ ('~', jf = 1, LEN_TRIM( cdcaller ) ) /) |
---|
1332 | ENDIF |
---|
1333 | WRITE(numout,*) ' fld_fill : fill data structure with information from namelist '//TRIM( cdnam ) |
---|
1334 | WRITE(numout,*) ' ~~~~~~~~' |
---|
1335 | WRITE(numout,*) ' list of files and frequency (>0: in hours ; <0 in months)' |
---|
1336 | DO jf = 1, SIZE(sdf) |
---|
1337 | WRITE(numout,*) ' root filename: ' , TRIM( sdf(jf)%clrootname ), ' variable name: ', TRIM( sdf(jf)%clvar ) |
---|
1338 | WRITE(numout,*) ' frequency: ' , sdf(jf)%nfreqh , & |
---|
1339 | & ' time interp: ' , sdf(jf)%ln_tint , & |
---|
1340 | & ' climatology: ' , sdf(jf)%ln_clim |
---|
1341 | WRITE(numout,*) ' weights: ' , TRIM( sdf(jf)%wgtname ), & |
---|
1342 | & ' pairing: ' , TRIM( sdf(jf)%vcomp ), & |
---|
1343 | & ' data type: ' , sdf(jf)%cltype , & |
---|
1344 | & ' land/sea mask:' , TRIM( sdf(jf)%lsmname ) |
---|
1345 | call flush(numout) |
---|
1346 | END DO |
---|
1347 | ENDIF |
---|
1348 | ! |
---|
1349 | END SUBROUTINE fld_fill |
---|
1350 | |
---|
1351 | |
---|
1352 | SUBROUTINE wgt_list( sd, kwgt ) |
---|
1353 | !!--------------------------------------------------------------------- |
---|
1354 | !! *** ROUTINE wgt_list *** |
---|
1355 | !! |
---|
1356 | !! ** Purpose : search array of WGTs and find a weights file entry, |
---|
1357 | !! or return a new one adding it to the end if new entry. |
---|
1358 | !! the weights data is read in and restructured (fld_weight) |
---|
1359 | !!---------------------------------------------------------------------- |
---|
1360 | TYPE( FLD ), INTENT(in ) :: sd ! field with name of weights file |
---|
1361 | INTEGER , INTENT(inout) :: kwgt ! index of weights |
---|
1362 | ! |
---|
1363 | INTEGER :: kw, nestid ! local integer |
---|
1364 | LOGICAL :: found ! local logical |
---|
1365 | !!---------------------------------------------------------------------- |
---|
1366 | ! |
---|
1367 | !! search down linked list |
---|
1368 | !! weights filename is either present or we hit the end of the list |
---|
1369 | found = .FALSE. |
---|
1370 | ! |
---|
1371 | !! because agrif nest part of filenames are now added in iom_open |
---|
1372 | !! to distinguish between weights files on the different grids, need to track |
---|
1373 | !! nest number explicitly |
---|
1374 | nestid = 0 |
---|
1375 | #if defined key_agrif |
---|
1376 | nestid = Agrif_Fixed() |
---|
1377 | #endif |
---|
1378 | DO kw = 1, nxt_wgt-1 |
---|
1379 | IF( TRIM(ref_wgts(kw)%wgtname) == TRIM(sd%wgtname) .AND. & |
---|
1380 | ref_wgts(kw)%nestid == nestid) THEN |
---|
1381 | kwgt = kw |
---|
1382 | found = .TRUE. |
---|
1383 | EXIT |
---|
1384 | ENDIF |
---|
1385 | END DO |
---|
1386 | IF( .NOT.found ) THEN |
---|
1387 | kwgt = nxt_wgt |
---|
1388 | CALL fld_weight( sd ) |
---|
1389 | ENDIF |
---|
1390 | ! |
---|
1391 | END SUBROUTINE wgt_list |
---|
1392 | |
---|
1393 | |
---|
1394 | SUBROUTINE wgt_print( ) |
---|
1395 | !!--------------------------------------------------------------------- |
---|
1396 | !! *** ROUTINE wgt_print *** |
---|
1397 | !! |
---|
1398 | !! ** Purpose : print the list of known weights |
---|
1399 | !!---------------------------------------------------------------------- |
---|
1400 | INTEGER :: kw ! |
---|
1401 | !!---------------------------------------------------------------------- |
---|
1402 | ! |
---|
1403 | DO kw = 1, nxt_wgt-1 |
---|
1404 | WRITE(numout,*) 'weight file: ',TRIM(ref_wgts(kw)%wgtname) |
---|
1405 | WRITE(numout,*) ' ddims: ',ref_wgts(kw)%ddims(1),ref_wgts(kw)%ddims(2) |
---|
1406 | WRITE(numout,*) ' numwgt: ',ref_wgts(kw)%numwgt |
---|
1407 | WRITE(numout,*) ' jpiwgt: ',ref_wgts(kw)%jpiwgt |
---|
1408 | WRITE(numout,*) ' jpjwgt: ',ref_wgts(kw)%jpjwgt |
---|
1409 | WRITE(numout,*) ' botleft: ',ref_wgts(kw)%botleft |
---|
1410 | WRITE(numout,*) ' topright: ',ref_wgts(kw)%topright |
---|
1411 | IF( ref_wgts(kw)%cyclic ) THEN |
---|
1412 | WRITE(numout,*) ' cyclical' |
---|
1413 | IF( ref_wgts(kw)%overlap > 0 ) WRITE(numout,*) ' with overlap of ', ref_wgts(kw)%overlap |
---|
1414 | ELSE |
---|
1415 | WRITE(numout,*) ' not cyclical' |
---|
1416 | ENDIF |
---|
1417 | IF( ASSOCIATED(ref_wgts(kw)%data_wgt) ) WRITE(numout,*) ' allocated' |
---|
1418 | END DO |
---|
1419 | ! |
---|
1420 | END SUBROUTINE wgt_print |
---|
1421 | |
---|
1422 | |
---|
1423 | SUBROUTINE fld_weight( sd ) |
---|
1424 | !!--------------------------------------------------------------------- |
---|
1425 | !! *** ROUTINE fld_weight *** |
---|
1426 | !! |
---|
1427 | !! ** Purpose : create a new WGT structure and fill in data from file, |
---|
1428 | !! restructuring as required |
---|
1429 | !!---------------------------------------------------------------------- |
---|
1430 | TYPE( FLD ), INTENT(in) :: sd ! field with name of weights file |
---|
1431 | !! |
---|
1432 | INTEGER :: jn ! dummy loop indices |
---|
1433 | INTEGER :: inum ! local logical unit |
---|
1434 | INTEGER :: id ! local variable id |
---|
1435 | INTEGER :: ipk ! local vertical dimension |
---|
1436 | INTEGER :: zwrap ! local integer |
---|
1437 | LOGICAL :: cyclical ! |
---|
1438 | CHARACTER (len=5) :: aname ! |
---|
1439 | INTEGER , DIMENSION(:), ALLOCATABLE :: ddims |
---|
1440 | INTEGER , POINTER, DIMENSION(:,:) :: data_src |
---|
1441 | REAL(wp), POINTER, DIMENSION(:,:) :: data_tmp |
---|
1442 | !!---------------------------------------------------------------------- |
---|
1443 | ! |
---|
1444 | CALL wrk_alloc( jpi,jpj, data_src ) ! integer |
---|
1445 | CALL wrk_alloc( jpi,jpj, data_tmp ) |
---|
1446 | ! |
---|
1447 | IF( nxt_wgt > tot_wgts ) THEN |
---|
1448 | CALL ctl_stop("fld_weight: weights array size exceeded, increase tot_wgts") |
---|
1449 | ENDIF |
---|
1450 | ! |
---|
1451 | !! new weights file entry, add in extra information |
---|
1452 | !! a weights file represents a 2D grid of a certain shape, so we assume that the current |
---|
1453 | !! input data file is representative of all other files to be opened and processed with the |
---|
1454 | !! current weights file |
---|
1455 | |
---|
1456 | !! open input data file (non-model grid) |
---|
1457 | CALL iom_open( sd%clname, inum, ldiof = LEN(TRIM(sd%wgtname)) > 0 ) |
---|
1458 | |
---|
1459 | !! get dimensions |
---|
1460 | IF ( SIZE(sd%fnow, 3) > 1 ) THEN |
---|
1461 | ALLOCATE( ddims(4) ) |
---|
1462 | ELSE |
---|
1463 | ALLOCATE( ddims(3) ) |
---|
1464 | ENDIF |
---|
1465 | id = iom_varid( inum, sd%clvar, ddims ) |
---|
1466 | |
---|
1467 | !! close it |
---|
1468 | CALL iom_close( inum ) |
---|
1469 | |
---|
1470 | !! now open the weights file |
---|
1471 | |
---|
1472 | CALL iom_open ( sd%wgtname, inum ) ! interpolation weights |
---|
1473 | IF ( inum > 0 ) THEN |
---|
1474 | |
---|
1475 | !! determine whether we have an east-west cyclic grid |
---|
1476 | !! from global attribute called "ew_wrap" in the weights file |
---|
1477 | !! note that if not found, iom_getatt returns -999 and cyclic with no overlap is assumed |
---|
1478 | !! since this is the most common forcing configuration |
---|
1479 | |
---|
1480 | CALL iom_getatt(inum, 'ew_wrap', zwrap) |
---|
1481 | IF( zwrap >= 0 ) THEN |
---|
1482 | cyclical = .TRUE. |
---|
1483 | ELSE IF( zwrap == -999 ) THEN |
---|
1484 | cyclical = .TRUE. |
---|
1485 | zwrap = 0 |
---|
1486 | ELSE |
---|
1487 | cyclical = .FALSE. |
---|
1488 | ENDIF |
---|
1489 | |
---|
1490 | ref_wgts(nxt_wgt)%ddims(1) = ddims(1) |
---|
1491 | ref_wgts(nxt_wgt)%ddims(2) = ddims(2) |
---|
1492 | ref_wgts(nxt_wgt)%wgtname = sd%wgtname |
---|
1493 | ref_wgts(nxt_wgt)%overlap = zwrap |
---|
1494 | ref_wgts(nxt_wgt)%cyclic = cyclical |
---|
1495 | ref_wgts(nxt_wgt)%nestid = 0 |
---|
1496 | #if defined key_agrif |
---|
1497 | ref_wgts(nxt_wgt)%nestid = Agrif_Fixed() |
---|
1498 | #endif |
---|
1499 | !! weights file is stored as a set of weights (wgt01->wgt04 or wgt01->wgt16) |
---|
1500 | !! for each weight wgtNN there is an integer array srcNN which gives the point in |
---|
1501 | !! the input data grid which is to be multiplied by the weight |
---|
1502 | !! they are both arrays on the model grid so the result of the multiplication is |
---|
1503 | !! added into an output array on the model grid as a running sum |
---|
1504 | |
---|
1505 | !! two possible cases: bilinear (4 weights) or bicubic (16 weights) |
---|
1506 | id = iom_varid(inum, 'src05', ldstop=.FALSE.) |
---|
1507 | IF( id <= 0) THEN |
---|
1508 | ref_wgts(nxt_wgt)%numwgt = 4 |
---|
1509 | ELSE |
---|
1510 | ref_wgts(nxt_wgt)%numwgt = 16 |
---|
1511 | ENDIF |
---|
1512 | |
---|
1513 | ALLOCATE( ref_wgts(nxt_wgt)%data_jpi(jpi,jpj,4) ) |
---|
1514 | ALLOCATE( ref_wgts(nxt_wgt)%data_jpj(jpi,jpj,4) ) |
---|
1515 | ALLOCATE( ref_wgts(nxt_wgt)%data_wgt(jpi,jpj,ref_wgts(nxt_wgt)%numwgt) ) |
---|
1516 | |
---|
1517 | DO jn = 1,4 |
---|
1518 | aname = ' ' |
---|
1519 | WRITE(aname,'(a3,i2.2)') 'src',jn |
---|
1520 | data_tmp(:,:) = 0 |
---|
1521 | CALL iom_get ( inum, jpdom_data, aname, data_tmp(:,:) ) |
---|
1522 | data_src(:,:) = INT(data_tmp(:,:)) |
---|
1523 | ref_wgts(nxt_wgt)%data_jpj(:,:,jn) = 1 + (data_src(:,:)-1) / ref_wgts(nxt_wgt)%ddims(1) |
---|
1524 | ref_wgts(nxt_wgt)%data_jpi(:,:,jn) = data_src(:,:) - ref_wgts(nxt_wgt)%ddims(1)*(ref_wgts(nxt_wgt)%data_jpj(:,:,jn)-1) |
---|
1525 | END DO |
---|
1526 | |
---|
1527 | DO jn = 1, ref_wgts(nxt_wgt)%numwgt |
---|
1528 | aname = ' ' |
---|
1529 | WRITE(aname,'(a3,i2.2)') 'wgt',jn |
---|
1530 | ref_wgts(nxt_wgt)%data_wgt(:,:,jn) = 0.0 |
---|
1531 | CALL iom_get ( inum, jpdom_data, aname, ref_wgts(nxt_wgt)%data_wgt(:,:,jn) ) |
---|
1532 | END DO |
---|
1533 | CALL iom_close (inum) |
---|
1534 | |
---|
1535 | ! find min and max indices in grid |
---|
1536 | ref_wgts(nxt_wgt)%botleft(1) = MINVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:)) |
---|
1537 | ref_wgts(nxt_wgt)%botleft(2) = MINVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:)) |
---|
1538 | ref_wgts(nxt_wgt)%topright(1) = MAXVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:)) |
---|
1539 | ref_wgts(nxt_wgt)%topright(2) = MAXVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:)) |
---|
1540 | |
---|
1541 | ! and therefore dimensions of the input box |
---|
1542 | ref_wgts(nxt_wgt)%jpiwgt = ref_wgts(nxt_wgt)%topright(1) - ref_wgts(nxt_wgt)%botleft(1) + 1 |
---|
1543 | ref_wgts(nxt_wgt)%jpjwgt = ref_wgts(nxt_wgt)%topright(2) - ref_wgts(nxt_wgt)%botleft(2) + 1 |
---|
1544 | |
---|
1545 | ! shift indexing of source grid |
---|
1546 | ref_wgts(nxt_wgt)%data_jpi(:,:,:) = ref_wgts(nxt_wgt)%data_jpi(:,:,:) - ref_wgts(nxt_wgt)%botleft(1) + 1 |
---|
1547 | ref_wgts(nxt_wgt)%data_jpj(:,:,:) = ref_wgts(nxt_wgt)%data_jpj(:,:,:) - ref_wgts(nxt_wgt)%botleft(2) + 1 |
---|
1548 | |
---|
1549 | ! create input grid, give it a halo to allow gradient calculations |
---|
1550 | ! SA: +3 stencil is a patch to avoid out-of-bound computation in some configuration. |
---|
1551 | ! a more robust solution will be given in next release |
---|
1552 | ipk = SIZE(sd%fnow, 3) |
---|
1553 | ALLOCATE( ref_wgts(nxt_wgt)%fly_dta(ref_wgts(nxt_wgt)%jpiwgt+3, ref_wgts(nxt_wgt)%jpjwgt+3 ,ipk) ) |
---|
1554 | IF( ref_wgts(nxt_wgt)%cyclic ) ALLOCATE( ref_wgts(nxt_wgt)%col(1,ref_wgts(nxt_wgt)%jpjwgt+3,ipk) ) |
---|
1555 | ! |
---|
1556 | nxt_wgt = nxt_wgt + 1 |
---|
1557 | ! |
---|
1558 | ELSE |
---|
1559 | CALL ctl_stop( ' fld_weight : unable to read the file ' ) |
---|
1560 | ENDIF |
---|
1561 | |
---|
1562 | DEALLOCATE (ddims ) |
---|
1563 | |
---|
1564 | CALL wrk_dealloc( jpi,jpj, data_src ) ! integer |
---|
1565 | CALL wrk_dealloc( jpi,jpj, data_tmp ) |
---|
1566 | ! |
---|
1567 | END SUBROUTINE fld_weight |
---|
1568 | |
---|
1569 | |
---|
1570 | SUBROUTINE apply_seaoverland( clmaskfile, zfieldo, jpi1_lsm, jpi2_lsm, jpj1_lsm, & |
---|
1571 | & jpj2_lsm, itmpi, itmpj, itmpz, rec1_lsm, recn_lsm ) |
---|
1572 | !!--------------------------------------------------------------------- |
---|
1573 | !! *** ROUTINE apply_seaoverland *** |
---|
1574 | !! |
---|
1575 | !! ** Purpose : avoid spurious fluxes in coastal or near-coastal areas |
---|
1576 | !! due to the wrong usage of "land" values from the coarse |
---|
1577 | !! atmospheric model when spatial interpolation is required |
---|
1578 | !! D. Delrosso INGV |
---|
1579 | !!---------------------------------------------------------------------- |
---|
1580 | INTEGER, INTENT(in ) :: itmpi,itmpj,itmpz ! lengths |
---|
1581 | INTEGER, INTENT(in ) :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices |
---|
1582 | INTEGER, DIMENSION(3), INTENT(in ) :: rec1_lsm,recn_lsm ! temporary arrays for start and length |
---|
1583 | REAL(wp),DIMENSION (:,:,:),INTENT(inout) :: zfieldo ! input/output array for seaoverland application |
---|
1584 | CHARACTER (len=100), INTENT(in ) :: clmaskfile ! land/sea mask file name |
---|
1585 | ! |
---|
1586 | INTEGER :: inum,jni,jnj,jnz,jc ! local indices |
---|
1587 | REAL(wp),DIMENSION (:,:,:),ALLOCATABLE :: zslmec1 ! local array for land point detection |
---|
1588 | REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfieldn ! array of forcing field with undeff for land points |
---|
1589 | REAL(wp),DIMENSION (:,:), ALLOCATABLE :: zfield ! array of forcing field |
---|
1590 | !!--------------------------------------------------------------------- |
---|
1591 | ! |
---|
1592 | ALLOCATE ( zslmec1(itmpi,itmpj,itmpz), zfieldn(itmpi,itmpj), zfield(itmpi,itmpj) ) |
---|
1593 | ! |
---|
1594 | ! Retrieve the land sea mask data |
---|
1595 | CALL iom_open( clmaskfile, inum ) |
---|
1596 | SELECT CASE( SIZE(zfieldo(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) ) |
---|
1597 | CASE(1) |
---|
1598 | CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), 1, rec1_lsm, recn_lsm) |
---|
1599 | CASE DEFAULT |
---|
1600 | CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), 1, rec1_lsm, recn_lsm) |
---|
1601 | END SELECT |
---|
1602 | CALL iom_close( inum ) |
---|
1603 | ! |
---|
1604 | DO jnz=1,rec1_lsm(3) !! Loop over k dimension |
---|
1605 | ! |
---|
1606 | DO jni = 1, itmpi !! copy the original field into a tmp array |
---|
1607 | DO jnj = 1, itmpj !! substituting undeff over land points |
---|
1608 | zfieldn(jni,jnj) = zfieldo(jni,jnj,jnz) |
---|
1609 | IF( zslmec1(jni,jnj,jnz) == 1. ) zfieldn(jni,jnj) = undeff_lsm |
---|
1610 | END DO |
---|
1611 | END DO |
---|
1612 | ! |
---|
1613 | CALL seaoverland( zfieldn, itmpi, itmpj, zfield ) |
---|
1614 | DO jc = 1, nn_lsm |
---|
1615 | CALL seaoverland( zfield, itmpi, itmpj, zfield ) |
---|
1616 | END DO |
---|
1617 | ! |
---|
1618 | ! Check for Undeff and substitute original values |
---|
1619 | IF( ANY(zfield==undeff_lsm) ) THEN |
---|
1620 | DO jni = 1, itmpi |
---|
1621 | DO jnj = 1, itmpj |
---|
1622 | IF( zfield(jni,jnj)==undeff_lsm ) zfield(jni,jnj) = zfieldo(jni,jnj,jnz) |
---|
1623 | END DO |
---|
1624 | END DO |
---|
1625 | ENDIF |
---|
1626 | ! |
---|
1627 | zfieldo(:,:,jnz) = zfield(:,:) |
---|
1628 | ! |
---|
1629 | END DO !! End Loop over k dimension |
---|
1630 | ! |
---|
1631 | DEALLOCATE ( zslmec1, zfieldn, zfield ) |
---|
1632 | ! |
---|
1633 | END SUBROUTINE apply_seaoverland |
---|
1634 | |
---|
1635 | |
---|
1636 | SUBROUTINE seaoverland( zfieldn, ileni, ilenj, zfield ) |
---|
1637 | !!--------------------------------------------------------------------- |
---|
1638 | !! *** ROUTINE seaoverland *** |
---|
1639 | !! |
---|
1640 | !! ** Purpose : create shifted matrices for seaoverland application |
---|
1641 | !! D. Delrosso INGV |
---|
1642 | !!---------------------------------------------------------------------- |
---|
1643 | INTEGER , INTENT(in ) :: ileni,ilenj ! lengths |
---|
1644 | REAL, DIMENSION (ileni,ilenj), INTENT(in ) :: zfieldn ! array of forcing field with undeff for land points |
---|
1645 | REAL, DIMENSION (ileni,ilenj), INTENT( out) :: zfield ! array of forcing field |
---|
1646 | ! |
---|
1647 | REAL , DIMENSION (ileni,ilenj) :: zmat1, zmat2, zmat3, zmat4 ! local arrays |
---|
1648 | REAL , DIMENSION (ileni,ilenj) :: zmat5, zmat6, zmat7, zmat8 ! - - |
---|
1649 | REAL , DIMENSION (ileni,ilenj) :: zlsm2d ! - - |
---|
1650 | REAL , DIMENSION (ileni,ilenj,8) :: zlsm3d ! - - |
---|
1651 | LOGICAL, DIMENSION (ileni,ilenj,8) :: ll_msknan3d ! logical mask for undeff detection |
---|
1652 | LOGICAL, DIMENSION (ileni,ilenj) :: ll_msknan2d ! logical mask for undeff detection |
---|
1653 | !!---------------------------------------------------------------------- |
---|
1654 | zmat8 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(:,1)/) , DIM=2 ) |
---|
1655 | zmat1 = eoshift( zmat8 , SHIFT=-1 , BOUNDARY = (/zmat8(1,:)/) , DIM=1 ) |
---|
1656 | zmat2 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(1,:)/) , DIM=1 ) |
---|
1657 | zmat4 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(:,ilenj)/) , DIM=2 ) |
---|
1658 | zmat3 = eoshift( zmat4 , SHIFT=-1 , BOUNDARY = (/zmat4(1,:)/) , DIM=1 ) |
---|
1659 | zmat5 = eoshift( zmat4 , SHIFT= 1 , BOUNDARY = (/zmat4(ileni,:)/) , DIM=1 ) |
---|
1660 | zmat6 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(ileni,:)/) , DIM=1 ) |
---|
1661 | zmat7 = eoshift( zmat8 , SHIFT= 1 , BOUNDARY = (/zmat8(ileni,:)/) , DIM=1 ) |
---|
1662 | ! |
---|
1663 | zlsm3d = RESHAPE( (/ zmat1, zmat2, zmat3, zmat4, zmat5, zmat6, zmat7, zmat8 /), (/ ileni, ilenj, 8 /)) |
---|
1664 | ll_msknan3d = .NOT.( zlsm3d == undeff_lsm ) |
---|
1665 | ll_msknan2d = .NOT.( zfieldn == undeff_lsm ) ! FALSE where is Undeff (land) |
---|
1666 | zlsm2d = SUM( zlsm3d, 3 , ll_msknan3d ) / MAX( 1 , COUNT( ll_msknan3d , 3 ) ) |
---|
1667 | WHERE( COUNT( ll_msknan3d , 3 ) == 0._wp ) zlsm2d = undeff_lsm |
---|
1668 | zfield = MERGE( zfieldn, zlsm2d, ll_msknan2d ) |
---|
1669 | ! |
---|
1670 | END SUBROUTINE seaoverland |
---|
1671 | |
---|
1672 | |
---|
1673 | SUBROUTINE fld_interp( num, clvar, kw, kk, dta, & |
---|
1674 | & nrec, lsmfile) |
---|
1675 | !!--------------------------------------------------------------------- |
---|
1676 | !! *** ROUTINE fld_interp *** |
---|
1677 | !! |
---|
1678 | !! ** Purpose : apply weights to input gridded data to create data |
---|
1679 | !! on model grid |
---|
1680 | !!---------------------------------------------------------------------- |
---|
1681 | INTEGER , INTENT(in ) :: num ! stream number |
---|
1682 | CHARACTER(LEN=*) , INTENT(in ) :: clvar ! variable name |
---|
1683 | INTEGER , INTENT(in ) :: kw ! weights number |
---|
1684 | INTEGER , INTENT(in ) :: kk ! vertical dimension of kk |
---|
1685 | REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: dta ! output field on model grid |
---|
1686 | INTEGER , INTENT(in ) :: nrec ! record number to read (ie time slice) |
---|
1687 | CHARACTER(LEN=*) , INTENT(in ) :: lsmfile ! land sea mask file name |
---|
1688 | ! |
---|
1689 | INTEGER, DIMENSION(3) :: rec1, recn ! temporary arrays for start and length |
---|
1690 | INTEGER, DIMENSION(3) :: rec1_lsm, recn_lsm ! temporary arrays for start and length in case of seaoverland |
---|
1691 | INTEGER :: ii_lsm1,ii_lsm2,ij_lsm1,ij_lsm2 ! temporary indices |
---|
1692 | INTEGER :: jk, jn, jm, jir, jjr ! loop counters |
---|
1693 | INTEGER :: ni, nj ! lengths |
---|
1694 | INTEGER :: jpimin,jpiwid ! temporary indices |
---|
1695 | INTEGER :: jpimin_lsm,jpiwid_lsm ! temporary indices |
---|
1696 | INTEGER :: jpjmin,jpjwid ! temporary indices |
---|
1697 | INTEGER :: jpjmin_lsm,jpjwid_lsm ! temporary indices |
---|
1698 | INTEGER :: jpi1,jpi2,jpj1,jpj2 ! temporary indices |
---|
1699 | INTEGER :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm ! temporary indices |
---|
1700 | INTEGER :: itmpi,itmpj,itmpz ! lengths |
---|
1701 | REAL(wp),DIMENSION(:,:,:), ALLOCATABLE :: ztmp_fly_dta ! local array of values on input grid |
---|
1702 | !!---------------------------------------------------------------------- |
---|
1703 | ! |
---|
1704 | !! for weighted interpolation we have weights at four corners of a box surrounding |
---|
1705 | !! a model grid point, each weight is multiplied by a grid value (bilinear case) |
---|
1706 | !! or by a grid value and gradients at the corner point (bicubic case) |
---|
1707 | !! so we need to have a 4 by 4 subgrid surrounding each model point to cover both cases |
---|
1708 | |
---|
1709 | !! sub grid from non-model input grid which encloses all grid points in this nemo process |
---|
1710 | jpimin = ref_wgts(kw)%botleft(1) |
---|
1711 | jpjmin = ref_wgts(kw)%botleft(2) |
---|
1712 | jpiwid = ref_wgts(kw)%jpiwgt |
---|
1713 | jpjwid = ref_wgts(kw)%jpjwgt |
---|
1714 | |
---|
1715 | !! when reading in, expand this sub-grid by one halo point all the way round for calculating gradients |
---|
1716 | rec1(1) = MAX( jpimin-1, 1 ) |
---|
1717 | rec1(2) = MAX( jpjmin-1, 1 ) |
---|
1718 | rec1(3) = 1 |
---|
1719 | recn(1) = MIN( jpiwid+2, ref_wgts(kw)%ddims(1)-rec1(1)+1 ) |
---|
1720 | recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 ) |
---|
1721 | recn(3) = kk |
---|
1722 | |
---|
1723 | !! where we need to put it in the non-nemo grid fly_dta |
---|
1724 | !! note that jpi1 and jpj1 only differ from 1 when jpimin and jpjmin are 1 |
---|
1725 | !! (ie at the extreme west or south of the whole input grid) and similarly for jpi2 and jpj2 |
---|
1726 | jpi1 = 2 + rec1(1) - jpimin |
---|
1727 | jpj1 = 2 + rec1(2) - jpjmin |
---|
1728 | jpi2 = jpi1 + recn(1) - 1 |
---|
1729 | jpj2 = jpj1 + recn(2) - 1 |
---|
1730 | |
---|
1731 | |
---|
1732 | IF( LEN( TRIM(lsmfile) ) > 0 ) THEN |
---|
1733 | !! indeces for ztmp_fly_dta |
---|
1734 | ! -------------------------- |
---|
1735 | rec1_lsm(1)=MAX(rec1(1)-nn_lsm,1) ! starting index for enlarged external data, x direction |
---|
1736 | rec1_lsm(2)=MAX(rec1(2)-nn_lsm,1) ! starting index for enlarged external data, y direction |
---|
1737 | rec1_lsm(3) = 1 ! vertical dimension |
---|
1738 | recn_lsm(1)=MIN(rec1(1)-rec1_lsm(1)+recn(1)+nn_lsm,ref_wgts(kw)%ddims(1)-rec1_lsm(1)) ! n points in x direction |
---|
1739 | recn_lsm(2)=MIN(rec1(2)-rec1_lsm(2)+recn(2)+nn_lsm,ref_wgts(kw)%ddims(2)-rec1_lsm(2)) ! n points in y direction |
---|
1740 | recn_lsm(3) = kk ! number of vertical levels in the input file |
---|
1741 | |
---|
1742 | ! Avoid out of bound |
---|
1743 | jpimin_lsm = MAX( rec1_lsm(1)+1, 1 ) |
---|
1744 | jpjmin_lsm = MAX( rec1_lsm(2)+1, 1 ) |
---|
1745 | jpiwid_lsm = MIN( recn_lsm(1)-2,ref_wgts(kw)%ddims(1)-rec1(1)+1) |
---|
1746 | jpjwid_lsm = MIN( recn_lsm(2)-2,ref_wgts(kw)%ddims(2)-rec1(2)+1) |
---|
1747 | |
---|
1748 | jpi1_lsm = 2+rec1_lsm(1)-jpimin_lsm |
---|
1749 | jpj1_lsm = 2+rec1_lsm(2)-jpjmin_lsm |
---|
1750 | jpi2_lsm = jpi1_lsm + recn_lsm(1) - 1 |
---|
1751 | jpj2_lsm = jpj1_lsm + recn_lsm(2) - 1 |
---|
1752 | |
---|
1753 | |
---|
1754 | itmpi=jpi2_lsm-jpi1_lsm+1 |
---|
1755 | itmpj=jpj2_lsm-jpj1_lsm+1 |
---|
1756 | itmpz=kk |
---|
1757 | ALLOCATE(ztmp_fly_dta(itmpi,itmpj,itmpz)) |
---|
1758 | ztmp_fly_dta(:,:,:) = 0.0 |
---|
1759 | SELECT CASE( SIZE(ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) ) |
---|
1760 | CASE(1) |
---|
1761 | CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1), & |
---|
1762 | & nrec, rec1_lsm, recn_lsm) |
---|
1763 | CASE DEFAULT |
---|
1764 | CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), & |
---|
1765 | & nrec, rec1_lsm, recn_lsm) |
---|
1766 | END SELECT |
---|
1767 | CALL apply_seaoverland(lsmfile,ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:), & |
---|
1768 | & jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm, & |
---|
1769 | & itmpi,itmpj,itmpz,rec1_lsm,recn_lsm) |
---|
1770 | |
---|
1771 | |
---|
1772 | ! Relative indeces for remapping |
---|
1773 | ii_lsm1 = (rec1(1)-rec1_lsm(1))+1 |
---|
1774 | ii_lsm2 = (ii_lsm1+recn(1))-1 |
---|
1775 | ij_lsm1 = (rec1(2)-rec1_lsm(2))+1 |
---|
1776 | ij_lsm2 = (ij_lsm1+recn(2))-1 |
---|
1777 | |
---|
1778 | ref_wgts(kw)%fly_dta(:,:,:) = 0.0 |
---|
1779 | ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:) = ztmp_fly_dta(ii_lsm1:ii_lsm2,ij_lsm1:ij_lsm2,:) |
---|
1780 | DEALLOCATE(ztmp_fly_dta) |
---|
1781 | |
---|
1782 | ELSE |
---|
1783 | |
---|
1784 | ref_wgts(kw)%fly_dta(:,:,:) = 0.0 |
---|
1785 | SELECT CASE( SIZE(ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:),3) ) |
---|
1786 | CASE(1) |
---|
1787 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,1), nrec, rec1, recn) |
---|
1788 | CASE DEFAULT |
---|
1789 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:), nrec, rec1, recn) |
---|
1790 | END SELECT |
---|
1791 | ENDIF |
---|
1792 | |
---|
1793 | |
---|
1794 | !! first four weights common to both bilinear and bicubic |
---|
1795 | !! data_jpi, data_jpj have already been shifted to (1,1) corresponding to botleft |
---|
1796 | !! note that we have to offset by 1 into fly_dta array because of halo |
---|
1797 | dta(:,:,:) = 0.0 |
---|
1798 | DO jk = 1,4 |
---|
1799 | DO jn = 1, jpj |
---|
1800 | DO jm = 1,jpi |
---|
1801 | ni = ref_wgts(kw)%data_jpi(jm,jn,jk) |
---|
1802 | nj = ref_wgts(kw)%data_jpj(jm,jn,jk) |
---|
1803 | dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk) * ref_wgts(kw)%fly_dta(ni+1,nj+1,:) |
---|
1804 | END DO |
---|
1805 | END DO |
---|
1806 | END DO |
---|
1807 | |
---|
1808 | IF (ref_wgts(kw)%numwgt .EQ. 16) THEN |
---|
1809 | |
---|
1810 | !! fix up halo points that we couldnt read from file |
---|
1811 | IF( jpi1 == 2 ) THEN |
---|
1812 | ref_wgts(kw)%fly_dta(jpi1-1,:,:) = ref_wgts(kw)%fly_dta(jpi1,:,:) |
---|
1813 | ENDIF |
---|
1814 | IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN |
---|
1815 | ref_wgts(kw)%fly_dta(jpi2+1,:,:) = ref_wgts(kw)%fly_dta(jpi2,:,:) |
---|
1816 | ENDIF |
---|
1817 | IF( jpj1 == 2 ) THEN |
---|
1818 | ref_wgts(kw)%fly_dta(:,jpj1-1,:) = ref_wgts(kw)%fly_dta(:,jpj1,:) |
---|
1819 | ENDIF |
---|
1820 | IF( jpj2 + jpjmin - 1 == ref_wgts(kw)%ddims(2)+1 .AND. jpj2 .lt. jpjwid+2 ) THEN |
---|
1821 | ref_wgts(kw)%fly_dta(:,jpj2+1,:) = 2.0*ref_wgts(kw)%fly_dta(:,jpj2,:) - ref_wgts(kw)%fly_dta(:,jpj2-1,:) |
---|
1822 | ENDIF |
---|
1823 | |
---|
1824 | !! if data grid is cyclic we can do better on east-west edges |
---|
1825 | !! but have to allow for whether first and last columns are coincident |
---|
1826 | IF( ref_wgts(kw)%cyclic ) THEN |
---|
1827 | rec1(2) = MAX( jpjmin-1, 1 ) |
---|
1828 | recn(1) = 1 |
---|
1829 | recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 ) |
---|
1830 | jpj1 = 2 + rec1(2) - jpjmin |
---|
1831 | jpj2 = jpj1 + recn(2) - 1 |
---|
1832 | IF( jpi1 == 2 ) THEN |
---|
1833 | rec1(1) = ref_wgts(kw)%ddims(1) - ref_wgts(kw)%overlap |
---|
1834 | SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) ) |
---|
1835 | CASE(1) |
---|
1836 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn) |
---|
1837 | CASE DEFAULT |
---|
1838 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn) |
---|
1839 | END SELECT |
---|
1840 | ref_wgts(kw)%fly_dta(jpi1-1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:) |
---|
1841 | ENDIF |
---|
1842 | IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN |
---|
1843 | rec1(1) = 1 + ref_wgts(kw)%overlap |
---|
1844 | SELECT CASE( SIZE( ref_wgts(kw)%col(:,jpj1:jpj2,:),3) ) |
---|
1845 | CASE(1) |
---|
1846 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,1), nrec, rec1, recn) |
---|
1847 | CASE DEFAULT |
---|
1848 | CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, rec1, recn) |
---|
1849 | END SELECT |
---|
1850 | ref_wgts(kw)%fly_dta(jpi2+1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:) |
---|
1851 | ENDIF |
---|
1852 | ENDIF |
---|
1853 | |
---|
1854 | ! gradient in the i direction |
---|
1855 | DO jk = 1,4 |
---|
1856 | DO jn = 1, jpj |
---|
1857 | DO jm = 1,jpi |
---|
1858 | ni = ref_wgts(kw)%data_jpi(jm,jn,jk) |
---|
1859 | nj = ref_wgts(kw)%data_jpj(jm,jn,jk) |
---|
1860 | dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+4) * 0.5 * & |
---|
1861 | (ref_wgts(kw)%fly_dta(ni+2,nj+1,:) - ref_wgts(kw)%fly_dta(ni,nj+1,:)) |
---|
1862 | END DO |
---|
1863 | END DO |
---|
1864 | END DO |
---|
1865 | |
---|
1866 | ! gradient in the j direction |
---|
1867 | DO jk = 1,4 |
---|
1868 | DO jn = 1, jpj |
---|
1869 | DO jm = 1,jpi |
---|
1870 | ni = ref_wgts(kw)%data_jpi(jm,jn,jk) |
---|
1871 | nj = ref_wgts(kw)%data_jpj(jm,jn,jk) |
---|
1872 | dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+8) * 0.5 * & |
---|
1873 | (ref_wgts(kw)%fly_dta(ni+1,nj+2,:) - ref_wgts(kw)%fly_dta(ni+1,nj,:)) |
---|
1874 | END DO |
---|
1875 | END DO |
---|
1876 | END DO |
---|
1877 | |
---|
1878 | ! gradient in the ij direction |
---|
1879 | DO jk = 1,4 |
---|
1880 | DO jn = 1, jpj |
---|
1881 | DO jm = 1,jpi |
---|
1882 | ni = ref_wgts(kw)%data_jpi(jm,jn,jk) |
---|
1883 | nj = ref_wgts(kw)%data_jpj(jm,jn,jk) |
---|
1884 | dta(jm,jn,:) = dta(jm,jn,:) + ref_wgts(kw)%data_wgt(jm,jn,jk+12) * 0.25 * ( & |
---|
1885 | (ref_wgts(kw)%fly_dta(ni+2,nj+2,:) - ref_wgts(kw)%fly_dta(ni ,nj+2,:)) - & |
---|
1886 | (ref_wgts(kw)%fly_dta(ni+2,nj ,:) - ref_wgts(kw)%fly_dta(ni ,nj ,:))) |
---|
1887 | END DO |
---|
1888 | END DO |
---|
1889 | END DO |
---|
1890 | ! |
---|
1891 | END IF |
---|
1892 | ! |
---|
1893 | END SUBROUTINE fld_interp |
---|
1894 | |
---|
1895 | |
---|
1896 | FUNCTION ksec_week( cdday ) |
---|
1897 | !!--------------------------------------------------------------------- |
---|
1898 | !! *** FUNCTION kshift_week *** |
---|
1899 | !! |
---|
1900 | !! ** Purpose : return the first 3 letters of the first day of the weekly file |
---|
1901 | !!--------------------------------------------------------------------- |
---|
1902 | CHARACTER(len=*), INTENT(in) :: cdday ! first 3 letters of the first day of the weekly file |
---|
1903 | !! |
---|
1904 | INTEGER :: ksec_week ! output variable |
---|
1905 | INTEGER :: ijul, ishift ! local integer |
---|
1906 | CHARACTER(len=3),DIMENSION(7) :: cl_week |
---|
1907 | !!---------------------------------------------------------------------- |
---|
1908 | cl_week = (/"sun","sat","fri","thu","wed","tue","mon"/) |
---|
1909 | DO ijul = 1, 7 |
---|
1910 | IF( cl_week(ijul) == TRIM(cdday) ) EXIT |
---|
1911 | END DO |
---|
1912 | IF( ijul .GT. 7 ) CALL ctl_stop( 'ksec_week: wrong day for sdjf%cltype(6:8): '//TRIM(cdday) ) |
---|
1913 | ! |
---|
1914 | ishift = ijul * NINT(rday) |
---|
1915 | ! |
---|
1916 | ksec_week = nsec_week + ishift |
---|
1917 | ksec_week = MOD( ksec_week, 7*NINT(rday) ) |
---|
1918 | ! |
---|
1919 | END FUNCTION ksec_week |
---|
1920 | |
---|
1921 | !!====================================================================== |
---|
1922 | END MODULE fldread |
---|