1 | MODULE dynzdf_imp |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE dynzdf_imp *** |
---|
4 | !! Ocean dynamics: vertical component(s) of the momentum mixing trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : OPA ! 1990-10 (B. Blanke) Original code |
---|
7 | !! 8.0 ! 1997-05 (G. Madec) vertical component of isopycnal |
---|
8 | !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module |
---|
9 | !! 3.3 ! 2010-04 (M. Leclair, G. Madec) Forcing averaged over 2 time steps |
---|
10 | !!---------------------------------------------------------------------- |
---|
11 | |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! dyn_zdf_imp : update the momentum trend with the vertical diffu- |
---|
14 | !! sion using a implicit time-stepping. |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | USE oce ! ocean dynamics and tracers |
---|
17 | USE dom_oce ! ocean space and time domain |
---|
18 | USE sbc_oce ! surface boundary condition: ocean |
---|
19 | USE zdf_oce ! ocean vertical physics |
---|
20 | USE phycst ! physical constants |
---|
21 | USE in_out_manager ! I/O manager |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC dyn_zdf_imp ! called by step.F90 |
---|
27 | |
---|
28 | !! * Substitutions |
---|
29 | # include "domzgr_substitute.h90" |
---|
30 | # include "vectopt_loop_substitute.h90" |
---|
31 | !!---------------------------------------------------------------------- |
---|
32 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
33 | !! $Id$ |
---|
34 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
35 | !!---------------------------------------------------------------------- |
---|
36 | CONTAINS |
---|
37 | |
---|
38 | SUBROUTINE dyn_zdf_imp( kt, p2dt ) |
---|
39 | !!---------------------------------------------------------------------- |
---|
40 | !! *** ROUTINE dyn_zdf_imp *** |
---|
41 | !! |
---|
42 | !! ** Purpose : Compute the trend due to the vert. momentum diffusion |
---|
43 | !! and the surface forcing, and add it to the general trend of |
---|
44 | !! the momentum equations. |
---|
45 | !! |
---|
46 | !! ** Method : The vertical momentum mixing trend is given by : |
---|
47 | !! dz( avmu dz(u) ) = 1/e3u dk+1( avmu/e3uw dk(ua) ) |
---|
48 | !! backward time stepping |
---|
49 | !! Surface boundary conditions: wind stress input (averaged over kt-1/2 & kt+1/2) |
---|
50 | !! Bottom boundary conditions : bottom stress (cf zdfbfr.F) |
---|
51 | !! Add this trend to the general trend ua : |
---|
52 | !! ua = ua + dz( avmu dz(u) ) |
---|
53 | !! |
---|
54 | !! ** Action : - Update (ua,va) arrays with the after vertical diffusive mixing trend. |
---|
55 | !!--------------------------------------------------------------------- |
---|
56 | USE oce, ONLY : zwd => ta ! use ta as workspace |
---|
57 | USE oce, ONLY : zws => sa ! use sa as workspace |
---|
58 | !! |
---|
59 | INTEGER , INTENT( in ) :: kt ! ocean time-step index |
---|
60 | REAL(wp), INTENT( in ) :: p2dt ! vertical profile of tracer time-step |
---|
61 | !! |
---|
62 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
63 | REAL(wp) :: z1_p2dt, zcoef ! temporary scalars |
---|
64 | REAL(wp) :: zzwi, zzws, zrhs ! temporary scalars |
---|
65 | REAL(wp), DIMENSION(jpi,jpj,jpk) :: zwi ! 3D workspace |
---|
66 | !!---------------------------------------------------------------------- |
---|
67 | |
---|
68 | IF( kt == nit000 ) THEN |
---|
69 | IF(lwp) WRITE(numout,*) |
---|
70 | IF(lwp) WRITE(numout,*) 'dyn_zdf_imp : vertical momentum diffusion implicit operator' |
---|
71 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ ' |
---|
72 | ENDIF |
---|
73 | |
---|
74 | ! 0. Local constant initialization |
---|
75 | ! -------------------------------- |
---|
76 | z1_p2dt = 1._wp / p2dt ! inverse of the timestep |
---|
77 | |
---|
78 | ! 1. Vertical diffusion on u |
---|
79 | ! --------------------------- |
---|
80 | ! Matrix and second member construction |
---|
81 | ! bottom boundary condition: both zwi and zws must be masked as avmu can take |
---|
82 | ! non zero value at the ocean bottom depending on the bottom friction |
---|
83 | ! used but the bottom velocities have already been updated with the bottom |
---|
84 | ! friction velocity in dyn_bfr using values from the previous timestep. There |
---|
85 | ! is no need to include these in the implicit calculation. |
---|
86 | ! |
---|
87 | DO jk = 1, jpkm1 ! Matrix |
---|
88 | DO jj = 2, jpjm1 |
---|
89 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
90 | zcoef = - p2dt / fse3u(ji,jj,jk) |
---|
91 | zzwi = zcoef * avmu (ji,jj,jk ) / fse3uw(ji,jj,jk ) |
---|
92 | zwi(ji,jj,jk) = zzwi * umask(ji,jj,jk) |
---|
93 | zzws = zcoef * avmu (ji,jj,jk+1) / fse3uw(ji,jj,jk+1) |
---|
94 | zws(ji,jj,jk) = zzws * umask(ji,jj,jk+1) |
---|
95 | zwd(ji,jj,jk) = 1._wp - zwi(ji,jj,jk) - zzws |
---|
96 | END DO |
---|
97 | END DO |
---|
98 | END DO |
---|
99 | DO jj = 2, jpjm1 ! Surface boudary conditions |
---|
100 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
101 | zwi(ji,jj,1) = 0._wp |
---|
102 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
103 | END DO |
---|
104 | END DO |
---|
105 | |
---|
106 | ! Matrix inversion starting from the first level |
---|
107 | !----------------------------------------------------------------------- |
---|
108 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
109 | ! |
---|
110 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
111 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
112 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
113 | ! ( ... )( ... ) ( ... ) |
---|
114 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
115 | ! |
---|
116 | ! m is decomposed in the product of an upper and a lower triangular matrix |
---|
117 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
118 | ! The solution (the after velocity) is in ua |
---|
119 | !----------------------------------------------------------------------- |
---|
120 | ! |
---|
121 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
122 | DO jj = 2, jpjm1 |
---|
123 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
124 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | END DO |
---|
128 | ! |
---|
129 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 == |
---|
130 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
131 | ua(ji,jj,1) = ub(ji,jj,1) + p2dt * ( ua(ji,jj,1) + 0.5_wp * ( utau_b(ji,jj) + utau(ji,jj) ) & |
---|
132 | & / ( fse3u(ji,jj,1) * rau0 ) ) |
---|
133 | END DO |
---|
134 | END DO |
---|
135 | DO jk = 2, jpkm1 |
---|
136 | DO jj = 2, jpjm1 |
---|
137 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
138 | zrhs = ub(ji,jj,jk) + p2dt * ua(ji,jj,jk) ! zrhs=right hand side |
---|
139 | ua(ji,jj,jk) = zrhs - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * ua(ji,jj,jk-1) |
---|
140 | END DO |
---|
141 | END DO |
---|
142 | END DO |
---|
143 | ! |
---|
144 | DO jj = 2, jpjm1 !== thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk == |
---|
145 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
146 | ua(ji,jj,jpkm1) = ua(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
147 | END DO |
---|
148 | END DO |
---|
149 | DO jk = jpk-2, 1, -1 |
---|
150 | DO jj = 2, jpjm1 |
---|
151 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
152 | ua(ji,jj,jk) = ( ua(ji,jj,jk) - zws(ji,jj,jk) * ua(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
153 | END DO |
---|
154 | END DO |
---|
155 | END DO |
---|
156 | |
---|
157 | ! Normalization to obtain the general momentum trend ua |
---|
158 | DO jk = 1, jpkm1 |
---|
159 | DO jj = 2, jpjm1 |
---|
160 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
161 | ua(ji,jj,jk) = ( ua(ji,jj,jk) - ub(ji,jj,jk) ) * z1_p2dt |
---|
162 | END DO |
---|
163 | END DO |
---|
164 | END DO |
---|
165 | |
---|
166 | |
---|
167 | ! 2. Vertical diffusion on v |
---|
168 | ! --------------------------- |
---|
169 | ! Matrix and second member construction |
---|
170 | ! bottom boundary condition: both zwi and zws must be masked as avmv can take |
---|
171 | ! non zero value at the ocean bottom depending on the bottom friction |
---|
172 | ! used but the bottom velocities have already been updated with the bottom |
---|
173 | ! friction velocity in dyn_bfr using values from the previous timestep. There |
---|
174 | ! is no need to include these in the implicit calculation. |
---|
175 | ! |
---|
176 | DO jk = 1, jpkm1 ! Matrix |
---|
177 | DO jj = 2, jpjm1 |
---|
178 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
179 | zcoef = -p2dt / fse3v(ji,jj,jk) |
---|
180 | zzwi = zcoef * avmv (ji,jj,jk ) / fse3vw(ji,jj,jk ) |
---|
181 | zwi(ji,jj,jk) = zzwi * vmask(ji,jj,jk) |
---|
182 | zzws = zcoef * avmv (ji,jj,jk+1) / fse3vw(ji,jj,jk+1) |
---|
183 | zws(ji,jj,jk) = zzws * vmask(ji,jj,jk+1) |
---|
184 | zwd(ji,jj,jk) = 1._wp - zwi(ji,jj,jk) - zzws |
---|
185 | END DO |
---|
186 | END DO |
---|
187 | END DO |
---|
188 | DO jj = 2, jpjm1 ! Surface boudary conditions |
---|
189 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
190 | zwi(ji,jj,1) = 0._wp |
---|
191 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | |
---|
195 | ! Matrix inversion |
---|
196 | !----------------------------------------------------------------------- |
---|
197 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
198 | ! |
---|
199 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
200 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
201 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
202 | ! ( ... )( ... ) ( ... ) |
---|
203 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
204 | ! |
---|
205 | ! m is decomposed in the product of an upper and lower triangular matrix |
---|
206 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
207 | ! The solution (after velocity) is in 2d array va |
---|
208 | !----------------------------------------------------------------------- |
---|
209 | ! |
---|
210 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
211 | DO jj = 2, jpjm1 |
---|
212 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
213 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
214 | END DO |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | ! |
---|
218 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 == |
---|
219 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
220 | va(ji,jj,1) = vb(ji,jj,1) + p2dt * ( va(ji,jj,1) + 0.5_wp * ( vtau_b(ji,jj) + vtau(ji,jj) ) & |
---|
221 | & / ( fse3v(ji,jj,1) * rau0 ) ) |
---|
222 | END DO |
---|
223 | END DO |
---|
224 | DO jk = 2, jpkm1 |
---|
225 | DO jj = 2, jpjm1 |
---|
226 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
227 | zrhs = vb(ji,jj,jk) + p2dt * va(ji,jj,jk) ! zrhs=right hand side |
---|
228 | va(ji,jj,jk) = zrhs - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * va(ji,jj,jk-1) |
---|
229 | END DO |
---|
230 | END DO |
---|
231 | END DO |
---|
232 | ! |
---|
233 | DO jj = 2, jpjm1 !== thrid recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk == |
---|
234 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
235 | va(ji,jj,jpkm1) = va(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
236 | END DO |
---|
237 | END DO |
---|
238 | DO jk = jpk-2, 1, -1 |
---|
239 | DO jj = 2, jpjm1 |
---|
240 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
241 | va(ji,jj,jk) = ( va(ji,jj,jk) - zws(ji,jj,jk) * va(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
242 | END DO |
---|
243 | END DO |
---|
244 | END DO |
---|
245 | |
---|
246 | ! Normalization to obtain the general momentum trend va |
---|
247 | DO jk = 1, jpkm1 |
---|
248 | DO jj = 2, jpjm1 |
---|
249 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
250 | va(ji,jj,jk) = ( va(ji,jj,jk) - vb(ji,jj,jk) ) * z1_p2dt |
---|
251 | END DO |
---|
252 | END DO |
---|
253 | END DO |
---|
254 | ! |
---|
255 | END SUBROUTINE dyn_zdf_imp |
---|
256 | |
---|
257 | !!============================================================================== |
---|
258 | END MODULE dynzdf_imp |
---|