1 | |
---|
2 | CCC $Header: /home/opalod/NEMOCVSROOT/NEMO/TOP_SRC/SMS/p4zsed.F,v 1.9 2007/10/12 09:35:04 opalod Exp $ |
---|
3 | CCC TOP 1.0 , LOCEAN-IPSL (2005) |
---|
4 | C This software is governed by CeCILL licence see modipsl/doc/NEMO_CeCILL.txt |
---|
5 | C --------------------------------------------------------------------------- |
---|
6 | CDIR$ LIST |
---|
7 | SUBROUTINE p4zsed |
---|
8 | #if defined key_passivetrc && defined key_trc_pisces |
---|
9 | CCC--------------------------------------------------------------------- |
---|
10 | CCC |
---|
11 | CCC ROUTINE p4zsed : PISCES MODEL |
---|
12 | CCC ***************************** |
---|
13 | CCC |
---|
14 | CCC PURPOSE : |
---|
15 | CCC --------- |
---|
16 | CCC Compute loss of organic matter in the sediments. This |
---|
17 | CCC is by no way a sediment model. The loss is simply |
---|
18 | CCC computed to balance the inout from rivers and dust |
---|
19 | CCC |
---|
20 | CC INPUT : |
---|
21 | CC ----- |
---|
22 | CC common |
---|
23 | CC all the common defined in opa |
---|
24 | CC |
---|
25 | CC |
---|
26 | CC OUTPUT : : no |
---|
27 | CC ------ |
---|
28 | CC |
---|
29 | CC EXTERNAL : |
---|
30 | CC -------- |
---|
31 | CC None |
---|
32 | CC |
---|
33 | CC MODIFICATIONS: |
---|
34 | CC -------------- |
---|
35 | CC original : 2004 - O. Aumont |
---|
36 | CC---------------------------------------------------------------------- |
---|
37 | CC parameters and commons |
---|
38 | CC ====================== |
---|
39 | CDIR$ NOLIST |
---|
40 | USE oce_trc |
---|
41 | USE trp_trc |
---|
42 | USE sms |
---|
43 | USE lib_mpp |
---|
44 | IMPLICIT NONE |
---|
45 | #include "domzgr_substitute.h90" |
---|
46 | CDIR$ LIST |
---|
47 | CC---------------------------------------------------------------------- |
---|
48 | CC local declarations |
---|
49 | CC ================== |
---|
50 | INTEGER ji, jj, jk, ikt |
---|
51 | REAL sumsedsi,sumsedpo4,sumsedcal |
---|
52 | REAL xconctmp,denitot,nitrpottot,nitrpot(jpi,jpj,jpk) |
---|
53 | REAL xlim,xconctmp2,zstep,zfact |
---|
54 | REAL irondep(jpi,jpj,jpk),sidep(jpi,jpj) |
---|
55 | REAL zvol |
---|
56 | CC |
---|
57 | C |
---|
58 | C Time step duration for the biology |
---|
59 | C ---------------------------------- |
---|
60 | C |
---|
61 | zstep=rfact2/rjjss |
---|
62 | C |
---|
63 | C |
---|
64 | C Initialisation of variables used to compute deposition |
---|
65 | C ------------------------------------------------------ |
---|
66 | C |
---|
67 | irondep = 0. |
---|
68 | sidep = 0. |
---|
69 | C |
---|
70 | C Iron and Si deposition at the surface |
---|
71 | C ------------------------------------- |
---|
72 | C |
---|
73 | do jj=1,jpj |
---|
74 | do ji=1,jpi |
---|
75 | irondep(ji,jj,1)=(0.014*dust(ji,jj)/(55.85*rmoss) |
---|
76 | & +3E-10/raass)*rfact2/fse3t(ji,jj,1) |
---|
77 | sidep(ji,jj)=8.8*0.075*dust(ji,jj)*rfact2 |
---|
78 | & /(fse3t(ji,jj,1)*28.1*rmoss) |
---|
79 | end do |
---|
80 | end do |
---|
81 | C |
---|
82 | C Iron solubilization of particles in the water column |
---|
83 | C ---------------------------------------------------- |
---|
84 | C |
---|
85 | do jk=2,jpk-1 |
---|
86 | do jj=1,jpj |
---|
87 | do ji=1,jpi |
---|
88 | irondep(ji,jj,jk)=dust(ji,jj)/(10.*55.85*rmoss)*rfact2 |
---|
89 | & *0.0001 |
---|
90 | end do |
---|
91 | end do |
---|
92 | end do |
---|
93 | C |
---|
94 | C Add the external input of nutrients, carbon and alkalinity |
---|
95 | C ---------------------------------------------------------- |
---|
96 | C |
---|
97 | DO jj = 1,jpj |
---|
98 | DO ji = 1,jpi |
---|
99 | trn(ji,jj,1,jppo4) = trn(ji,jj,1,jppo4) |
---|
100 | & +rivinp(ji,jj)*rfact2 |
---|
101 | trn(ji,jj,1,jpno3) = trn(ji,jj,1,jpno3) |
---|
102 | & +(rivinp(ji,jj)+nitdep(ji,jj))*rfact2 |
---|
103 | trn(ji,jj,1,jpfer) = trn(ji,jj,1,jpfer) |
---|
104 | & +rivinp(ji,jj)*3E-5*rfact2 |
---|
105 | trn(ji,jj,1,jpsil) = trn(ji,jj,1,jpsil) |
---|
106 | & +sidep(ji,jj)+cotdep(ji,jj)*rfact2/6. |
---|
107 | trn(ji,jj,1,jpdic) = trn(ji,jj,1,jpdic) |
---|
108 | & +rivinp(ji,jj)*rfact2*2.631 |
---|
109 | trn(ji,jj,1,jptal) = trn(ji,jj,1,jptal) |
---|
110 | & +(cotdep(ji,jj)-rno3*(rivinp(ji,jj) |
---|
111 | & +nitdep(ji,jj)))*rfact2 |
---|
112 | END DO |
---|
113 | END DO |
---|
114 | C |
---|
115 | |
---|
116 | C |
---|
117 | C Add the external input of iron which is 3D distributed |
---|
118 | C (dust, river and sediment mobilization) |
---|
119 | C ------------------------------------------------------ |
---|
120 | C |
---|
121 | DO jk=1,jpkm1 |
---|
122 | DO jj=1,jpj |
---|
123 | DO ji=1,jpi |
---|
124 | trn(ji,jj,jk,jpfer) = trn(ji,jj,jk,jpfer) |
---|
125 | & +irondep(ji,jj,jk)+ironsed(ji,jj,jk)*rfact2 |
---|
126 | END DO |
---|
127 | END DO |
---|
128 | END DO |
---|
129 | C |
---|
130 | C Initialisation of variables used to compute Sinking Speed |
---|
131 | C --------------------------------------------------------- |
---|
132 | C |
---|
133 | sumsedsi = 0. |
---|
134 | sumsedpo4 = 0. |
---|
135 | sumsedcal = 0. |
---|
136 | C |
---|
137 | C Loss of biogenic silicon, Caco3 organic carbon in the sediments. |
---|
138 | C First, the total loss is computed. |
---|
139 | C The factor for calcite comes from the alkalinity effect |
---|
140 | C ------------------------------------------------------------- |
---|
141 | C |
---|
142 | DO jj=1,jpj |
---|
143 | DO ji=1,jpi |
---|
144 | ikt=max(mbathy(ji,jj)-1,1) |
---|
145 | zfact=e1t(ji,jj)*e2t(ji,jj)/rjjss*tmask_i(ji,jj) |
---|
146 | sumsedsi=sumsedsi+zfact*trn(ji,jj,ikt,jpdsi) |
---|
147 | #if ! defined key_trc_kriest |
---|
148 | & *wsbio4(ji,jj,ikt) |
---|
149 | #else |
---|
150 | & *wscal(ji,jj,ikt) |
---|
151 | #endif |
---|
152 | sumsedcal=sumsedcal+trn(ji,jj,ikt,jpcal)*wscal(ji,jj,ikt) |
---|
153 | & *2.*zfact |
---|
154 | #if defined key_trc_kriest |
---|
155 | sumsedpo4=sumsedpo4+ |
---|
156 | & (trn(ji,jj,ikt,jppoc)*wsbio3(ji,jj,ikt))*zfact |
---|
157 | #else |
---|
158 | sumsedpo4=sumsedpo4+(trn(ji,jj,ikt,jpgoc)*wsbio4(ji,jj,ikt) |
---|
159 | & +trn(ji,jj,ikt,jppoc)*wsbio3(ji,jj,ikt))*zfact |
---|
160 | #endif |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | |
---|
164 | IF( lk_mpp ) THEN |
---|
165 | CALL mpp_sum( sumsedsi ) ! sums over the global domain |
---|
166 | CALL mpp_sum( sumsedcal ) ! sums over the global domain |
---|
167 | CALL mpp_sum( sumsedpo4 ) ! sums over the global domain |
---|
168 | ENDIF |
---|
169 | C |
---|
170 | C Then this loss is scaled at each bottom grid cell for |
---|
171 | C equilibrating the total budget of silica in the ocean. |
---|
172 | C Thus, the amount of silica lost in the sediments equal |
---|
173 | C the supply at the surface (dust+rivers) |
---|
174 | C ------------------------------------------------------ |
---|
175 | C |
---|
176 | DO jj=1,jpj |
---|
177 | DO ji=1,jpi |
---|
178 | ikt=max(mbathy(ji,jj)-1,1) |
---|
179 | xconctmp=trn(ji,jj,ikt,jpdsi)*zstep/fse3t(ji,jj,ikt) |
---|
180 | #if ! defined key_trc_kriest |
---|
181 | & *wsbio4(ji,jj,ikt) |
---|
182 | #else |
---|
183 | & *wscal(ji,jj,ikt) |
---|
184 | #endif |
---|
185 | trn(ji,jj,ikt,jpdsi)=trn(ji,jj,ikt,jpdsi)-xconctmp |
---|
186 | trn(ji,jj,ikt,jpsil)=trn(ji,jj,ikt,jpsil)+xconctmp |
---|
187 | & *(1.-(sumdepsi+rivalkinput/raass/6.)/sumsedsi) |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | |
---|
191 | DO jj=1,jpj |
---|
192 | DO ji=1,jpi |
---|
193 | ikt=max(mbathy(ji,jj)-1,1) |
---|
194 | xconctmp=trn(ji,jj,ikt,jpcal)*wscal(ji,jj,ikt)*zstep |
---|
195 | & /fse3t(ji,jj,ikt) |
---|
196 | trn(ji,jj,ikt,jpcal)=trn(ji,jj,ikt,jpcal)-xconctmp |
---|
197 | trn(ji,jj,ikt,jptal)=trn(ji,jj,ikt,jptal)+xconctmp |
---|
198 | & *(1.-(rivalkinput/raass)/sumsedcal)*2. |
---|
199 | trn(ji,jj,ikt,jpdic)=trn(ji,jj,ikt,jpdic)+xconctmp |
---|
200 | & *(1.-(rivalkinput/raass)/sumsedcal) |
---|
201 | END DO |
---|
202 | END DO |
---|
203 | |
---|
204 | DO jj=1,jpj |
---|
205 | DO ji=1,jpi |
---|
206 | ikt=max(mbathy(ji,jj)-1,1) |
---|
207 | #if ! defined key_trc_kriest |
---|
208 | xconctmp=trn(ji,jj,ikt,jpgoc) |
---|
209 | xconctmp2=trn(ji,jj,ikt,jppoc) |
---|
210 | trn(ji,jj,ikt,jpgoc)=trn(ji,jj,ikt,jpgoc) |
---|
211 | & -xconctmp*wsbio4(ji,jj,ikt)*zstep/fse3t(ji,jj,ikt) |
---|
212 | trn(ji,jj,ikt,jppoc)=trn(ji,jj,ikt,jppoc) |
---|
213 | & -xconctmp2*wsbio3(ji,jj,ikt)*zstep/fse3t(ji,jj,ikt) |
---|
214 | trn(ji,jj,ikt,jpdoc)=trn(ji,jj,ikt,jpdoc) |
---|
215 | & +(xconctmp*wsbio4(ji,jj,ikt)+xconctmp2*wsbio3(ji,jj,ikt) |
---|
216 | $ )*zstep/fse3t(ji,jj,ikt)*(1.-rivpo4input/(raass |
---|
217 | $ *sumsedpo4)) |
---|
218 | trn(ji,jj,ikt,jpbfe)=trn(ji,jj,ikt,jpbfe) |
---|
219 | & -trn(ji,jj,ikt,jpbfe)*wsbio4(ji,jj,ikt)*zstep |
---|
220 | & /fse3t(ji,jj,ikt) |
---|
221 | trn(ji,jj,ikt,jpsfe)=trn(ji,jj,ikt,jpsfe) |
---|
222 | & -trn(ji,jj,ikt,jpsfe)*wsbio3(ji,jj,ikt)*zstep |
---|
223 | & /fse3t(ji,jj,ikt) |
---|
224 | #else |
---|
225 | xconctmp=trn(ji,jj,ikt,jpnum) |
---|
226 | xconctmp2=trn(ji,jj,ikt,jppoc) |
---|
227 | trn(ji,jj,ikt,jpnum)=trn(ji,jj,ikt,jpnum) |
---|
228 | & -xconctmp*wsbio4(ji,jj,ikt)*zstep/fse3t(ji,jj,ikt) |
---|
229 | trn(ji,jj,ikt,jppoc)=trn(ji,jj,ikt,jppoc) |
---|
230 | & -xconctmp2*wsbio3(ji,jj,ikt)*zstep/fse3t(ji,jj,ikt) |
---|
231 | trn(ji,jj,ikt,jpdoc)=trn(ji,jj,ikt,jpdoc) |
---|
232 | & +(xconctmp2*wsbio3(ji,jj,ikt)) |
---|
233 | $ *zstep/fse3t(ji,jj,ikt)*(1.-rivpo4input/(raass |
---|
234 | $ *sumsedpo4)) |
---|
235 | trn(ji,jj,ikt,jpsfe)=trn(ji,jj,ikt,jpsfe) |
---|
236 | & -trn(ji,jj,ikt,jpsfe)*wsbio3(ji,jj,ikt)*zstep |
---|
237 | & /fse3t(ji,jj,ikt) |
---|
238 | |
---|
239 | #endif |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | C |
---|
243 | C Nitrogen fixation (simple parameterization). The total gain |
---|
244 | C from nitrogen fixation is scaled to balance the loss by |
---|
245 | C denitrification |
---|
246 | C ------------------------------------------------------------- |
---|
247 | C |
---|
248 | denitot=0. |
---|
249 | DO jk=1,jpk-1 |
---|
250 | DO jj=2,jpj-1 |
---|
251 | DO ji=2,jpi-1 |
---|
252 | denitot=denitot+denitr(ji,jj,jk)*rdenit*e1t(ji,jj)*e2t(ji,jj) |
---|
253 | & *fse3t(ji,jj,jk)*tmask(ji,jj,jk)*tmask_i(ji,jj) |
---|
254 | & *znegtr(ji,jj,jk) |
---|
255 | END DO |
---|
256 | END DO |
---|
257 | END DO |
---|
258 | |
---|
259 | IF( lk_mpp ) CALL mpp_sum( denitot ) ! sum over the global domain |
---|
260 | C |
---|
261 | C Potential nitrogen fication dependant on temperature |
---|
262 | C and iron |
---|
263 | C ---------------------------------------------------- |
---|
264 | C |
---|
265 | DO jk=1,jpk |
---|
266 | DO jj=1,jpj |
---|
267 | DO ji=1,jpi |
---|
268 | xlim=(1.-xnanono3(ji,jj,jk)-xnanonh4(ji,jj,jk)) |
---|
269 | if (xlim.le.0.2) xlim=0.01 |
---|
270 | nitrpot(ji,jj,jk)=max(0.,(0.6*tgfunc(ji,jj,jk)-2.15)/rjjss) |
---|
271 | #if defined key_off_degrad |
---|
272 | & *facvol(ji,jj,jk) |
---|
273 | #endif |
---|
274 | & *xlim*rfact2*trn(ji,jj,jk,jpfer)/(conc3 |
---|
275 | & +trn(ji,jj,jk,jpfer))*(1.-exp(-etot(ji,jj,jk)/50.)) |
---|
276 | END DO |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | C |
---|
280 | nitrpottot=0. |
---|
281 | DO jk=1,jpkm1 |
---|
282 | DO jj=1,jpj |
---|
283 | DO ji=1,jpi |
---|
284 | nitrpottot=nitrpottot+nitrpot(ji,jj,jk)*e1t(ji,jj) |
---|
285 | & *e2t(ji,jj)*tmask(ji,jj,jk)*tmask_i(ji,jj)*fse3t(ji,jj,jk) |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | END DO |
---|
289 | |
---|
290 | IF( lk_mpp ) CALL mpp_sum( nitrpottot ) ! sum over the global domain |
---|
291 | C |
---|
292 | C Nitrogen change due to nitrogen fixation |
---|
293 | C ---------------------------------------- |
---|
294 | C |
---|
295 | DO jk=1,jpk |
---|
296 | DO jj=1,jpj |
---|
297 | DO ji=1,jpi |
---|
298 | #if ! defined key_cfg_1d && ( defined key_orca_r4 || defined key_orca_r2 || defined key_orca_r05 || defined key_orca_r025 ) |
---|
299 | zfact=nitrpot(ji,jj,jk)*denitot/nitrpottot |
---|
300 | #else |
---|
301 | zfact=nitrpot(ji,jj,jk)*1.E-7 |
---|
302 | #endif |
---|
303 | trn(ji,jj,jk,jpnh4)=trn(ji,jj,jk,jpnh4)+zfact |
---|
304 | trn(ji,jj,jk,jpoxy)=trn(ji,jj,jk,jpoxy)+zfact*o2nit |
---|
305 | trn(ji,jj,jk,jppo4)=trn(ji,jj,jk,jppo4)+30./46.*zfact |
---|
306 | END DO |
---|
307 | END DO |
---|
308 | END DO |
---|
309 | C |
---|
310 | # if defined key_trc_diaadd |
---|
311 | DO jj = 1,jpj |
---|
312 | DO ji = 1,jpi |
---|
313 | trc2d(ji,jj,13) = nitrpot(ji,jj,1)*1E-7*fse3t(ji,jj,1)*1E3 |
---|
314 | & /rfact2 |
---|
315 | trc2d(ji,jj,12) = irondep(ji,jj,1)*1e3*rfact2r |
---|
316 | & *fse3t(ji,jj,1) |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | # endif |
---|
320 | C |
---|
321 | #endif |
---|
322 | RETURN |
---|
323 | END |
---|