1 | MODULE limdyn |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limdyn *** |
---|
4 | !! Sea-Ice dynamics : |
---|
5 | !!====================================================================== |
---|
6 | #if defined key_ice_lim |
---|
7 | !!---------------------------------------------------------------------- |
---|
8 | !! 'key_ice_lim' : LIM sea-ice model |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | !! lim_dyn : computes ice velocities |
---|
11 | !! lim_dyn_init : initialization and namelist read |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | !! * Modules used |
---|
14 | USE phycst |
---|
15 | USE in_out_manager ! I/O manager |
---|
16 | USE dom_ice |
---|
17 | USE dom_oce ! ocean space and time domain |
---|
18 | USE ice |
---|
19 | USE ice_oce |
---|
20 | USE iceini |
---|
21 | USE limistate |
---|
22 | USE limrhg ! ice rheology |
---|
23 | USE lbclnk |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | PRIVATE |
---|
27 | |
---|
28 | !! * Accessibility |
---|
29 | PUBLIC lim_dyn ! routine called by ice_step |
---|
30 | |
---|
31 | !! * Module variables |
---|
32 | REAL(wp) :: rone = 1.0 ! constant value |
---|
33 | |
---|
34 | !!---------------------------------------------------------------------- |
---|
35 | !! LIM 2.0 , UCL-LODYC-IPSL (2003) |
---|
36 | !!---------------------------------------------------------------------- |
---|
37 | |
---|
38 | CONTAINS |
---|
39 | |
---|
40 | SUBROUTINE lim_dyn |
---|
41 | !!------------------------------------------------------------------- |
---|
42 | !! *** ROUTINE lim_dyn *** |
---|
43 | !! |
---|
44 | !! ** Purpose : compute ice velocity and ocean-ice stress |
---|
45 | !! |
---|
46 | !! ** Method : |
---|
47 | !! |
---|
48 | !! ** Action : - Initialisation |
---|
49 | !! - Call of the dynamic routine for each hemisphere |
---|
50 | !! - computation of the stress at the ocean surface |
---|
51 | !! - treatment of the case if no ice dynamic |
---|
52 | !! History : |
---|
53 | !! 1.0 ! 01-04 (LIM) Original code |
---|
54 | !! 2.0 ! 02-08 (C. Ethe, G. Madec) F90, mpp |
---|
55 | !!--------------------------------------------------------------------- |
---|
56 | !! * Loal variables |
---|
57 | INTEGER :: ji, jj, & ! dummy loop indices |
---|
58 | jhemis ! jhemis = 1 (NH) ; jhemis = -1 (SH) |
---|
59 | REAL(wp) :: & |
---|
60 | ztairx, ztairy, & ! tempory scalars |
---|
61 | zsang , zmod, & |
---|
62 | ztglx , ztgly , & |
---|
63 | zt11, zt12, zt21, zt22 , & |
---|
64 | zustm, zsfrld, zsfrldm4, & |
---|
65 | zu_ice, zv_ice, ztair2 |
---|
66 | |
---|
67 | !!--------------------------------------------------------------------- |
---|
68 | |
---|
69 | |
---|
70 | IF( numit == nstart ) CALL lim_dyn_init ! Initialization (first time-step only) |
---|
71 | |
---|
72 | IF ( ldyn ) THEN |
---|
73 | |
---|
74 | ! Mean ice and snow thicknesses. |
---|
75 | hsnm(:,:) = ( 1.0 - frld(:,:) ) * hsnif(:,:) |
---|
76 | hicm(:,:) = ( 1.0 - frld(:,:) ) * hicif(:,:) |
---|
77 | |
---|
78 | u_oce(:,:) = u_io(:,:) * tmu(:,:) |
---|
79 | v_oce(:,:) = v_io(:,:) * tmu(:,:) |
---|
80 | |
---|
81 | ! ! Rheology (ice dynamics) |
---|
82 | !-- Northern hemisphere ! ======== |
---|
83 | jhemis = +1 |
---|
84 | CALL lim_rhg( jhemis ) |
---|
85 | |
---|
86 | !-- Southern hemisphere. |
---|
87 | jhemis = -1 |
---|
88 | CALL lim_rhg( jhemis ) |
---|
89 | |
---|
90 | u_ice(:,1) = 0.0 !ibug est-ce vraiment necessaire? |
---|
91 | v_ice(:,1) = 0.0 |
---|
92 | |
---|
93 | IF( l_ctl .AND. lwp ) THEN |
---|
94 | WRITE(numout,*) ' lim_dyn : u_oce ', SUM( u_oce ), ' v_oce ', SUM( v_oce ) |
---|
95 | WRITE(numout,*) ' lim_dyn : u_ice ', SUM( u_ice ), ' v_ice ', SUM( v_ice ) |
---|
96 | ENDIF |
---|
97 | |
---|
98 | ! ! Ice-Ocean stress |
---|
99 | ! ! ================ |
---|
100 | DO jj = 2, jpjm1 |
---|
101 | jhemis = SIGN(1, jj - jeq ) |
---|
102 | zsang = REAL(jhemis) * sangvg |
---|
103 | DO ji = 2, jpim1 |
---|
104 | ! computation of wind stress over ocean in X and Y direction |
---|
105 | #if defined key_coupled && defined key_lim_cp1 |
---|
106 | ztairx = frld(ji-1,jj ) * gtaux(ji-1,jj ) + frld(ji,jj ) * gtaux(ji,jj ) & |
---|
107 | & + frld(ji-1,jj-1) * gtaux(ji-1,jj-1) + frld(ji,jj-1) * gtaux(ji,jj-1) |
---|
108 | |
---|
109 | ztairy = frld(ji-1,jj ) * gtauy(ji-1,jj ) + frld(ji,jj ) * gtauy(ji,jj ) & |
---|
110 | & + frld(ji-1,jj-1) * gtauy(ji-1,jj-1) + frld(ji,jj-1) * gtauy(ji,jj-1) |
---|
111 | #else |
---|
112 | zsfrld = frld(ji,jj) + frld(ji-1,jj) + frld(ji-1,jj-1) + frld(ji,jj-1) |
---|
113 | ztairx = zsfrld * gtaux(ji,jj) |
---|
114 | ztairy = zsfrld * gtauy(ji,jj) |
---|
115 | #endif |
---|
116 | zsfrldm4 = 4 - frld(ji,jj) - frld(ji-1,jj) - frld(ji-1,jj-1) - frld(ji,jj-1) |
---|
117 | zu_ice = u_ice(ji,jj) - u_oce(ji,jj) |
---|
118 | zv_ice = v_ice(ji,jj) - v_oce(ji,jj) |
---|
119 | zmod = SQRT( zu_ice * zu_ice + zv_ice * zv_ice ) |
---|
120 | ztglx = zsfrldm4 * rhoco * zmod * ( cangvg * zu_ice - zsang * zv_ice ) |
---|
121 | ztgly = zsfrldm4 * rhoco * zmod * ( cangvg * zv_ice + zsang * zu_ice ) |
---|
122 | |
---|
123 | tio_u(ji,jj) = - ( ztairx + 1.0 * ztglx ) / ( 4 * rau0 ) |
---|
124 | tio_v(ji,jj) = - ( ztairy + 1.0 * ztgly ) / ( 4 * rau0 ) |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | |
---|
128 | ! computation of friction velocity |
---|
129 | DO jj = 2, jpjm1 |
---|
130 | DO ji = 2, jpim1 |
---|
131 | |
---|
132 | zu_ice = u_ice(ji-1,jj-1) - u_oce(ji-1,jj-1) |
---|
133 | zv_ice = v_ice(ji-1,jj-1) - v_oce(ji-1,jj-1) |
---|
134 | zt11 = rhoco * ( zu_ice * zu_ice + zv_ice * zv_ice ) |
---|
135 | |
---|
136 | zu_ice = u_ice(ji-1,jj) - u_oce(ji-1,jj) |
---|
137 | zv_ice = v_ice(ji-1,jj) - v_oce(ji-1,jj) |
---|
138 | zt12 = rhoco * ( zu_ice * zu_ice + zv_ice * zv_ice ) |
---|
139 | |
---|
140 | zu_ice = u_ice(ji,jj-1) - u_oce(ji,jj-1) |
---|
141 | zv_ice = v_ice(ji,jj-1) - v_oce(ji,jj-1) |
---|
142 | zt21 = rhoco * ( zu_ice * zu_ice + zv_ice * zv_ice ) |
---|
143 | |
---|
144 | zu_ice = u_ice(ji,jj) - u_oce(ji,jj) |
---|
145 | zv_ice = v_ice(ji,jj) - v_oce(ji,jj) |
---|
146 | zt22 = rhoco * ( zu_ice * zu_ice + zv_ice * zv_ice ) |
---|
147 | |
---|
148 | ztair2 = gtaux(ji,jj) * gtaux(ji,jj) + gtauy(ji,jj) * gtauy(ji,jj) |
---|
149 | |
---|
150 | zustm = ( 1 - frld(ji,jj) ) * 0.25 * ( zt11 + zt12 + zt21 + zt22 ) & |
---|
151 | & + frld(ji,jj) * SQRT( ztair2 ) |
---|
152 | |
---|
153 | ust2s(ji,jj) = ( zustm / rau0 ) * ( rone + sdvt(ji,jj) ) * tms(ji,jj) |
---|
154 | END DO |
---|
155 | END DO |
---|
156 | |
---|
157 | ELSE ! If no ice dynamics |
---|
158 | |
---|
159 | DO jj = 2, jpjm1 |
---|
160 | DO ji = 2, jpim1 |
---|
161 | #if defined key_coupled && defined key_lim_cp1 |
---|
162 | tio_u(ji,jj) = - ( gtaux(ji ,jj ) + gtaux(ji-1,jj ) & |
---|
163 | & + gtaux(ji-1,jj-1) + gtaux(ji ,jj-1) ) / ( 4 * rau0 ) |
---|
164 | |
---|
165 | tio_v(ji,jj) = - ( gtauy(ji ,jj ) + gtauy(ji-1,jj ) & |
---|
166 | & + gtauy(ji-1,jj-1) + gtauy(ji ,jj-1) ) / ( 4 * rau0 ) |
---|
167 | #else |
---|
168 | tio_u(ji,jj) = - gtaux(ji,jj) / rau0 |
---|
169 | tio_v(ji,jj) = - gtauy(ji,jj) / rau0 |
---|
170 | #endif |
---|
171 | ztair2 = gtaux(ji,jj) * gtaux(ji,jj) + gtauy(ji,jj) * gtauy(ji,jj) |
---|
172 | zustm = SQRT( ztair2 ) |
---|
173 | |
---|
174 | ust2s(ji,jj) = ( zustm / rau0 ) * ( rone + sdvt(ji,jj) ) * tms(ji,jj) |
---|
175 | END DO |
---|
176 | END DO |
---|
177 | |
---|
178 | ENDIF |
---|
179 | |
---|
180 | CALL lbc_lnk( ust2s, 'T', 1. ) ! T-point |
---|
181 | CALL lbc_lnk( tio_u, 'I', -1. ) ! I-point (i.e. ice U-V point) |
---|
182 | CALL lbc_lnk( tio_v, 'I', -1. ) ! I-point (i.e. ice U-V point) |
---|
183 | |
---|
184 | IF( l_ctl .AND. lwp ) THEN |
---|
185 | WRITE(numout,*) ' lim_dyn : tio_u ', SUM( tio_u ), ' tio_v ', SUM( tio_v ) |
---|
186 | WRITE(numout,*) ' lim_dyn : ust2s ', SUM( ust2s ) |
---|
187 | ENDIF |
---|
188 | |
---|
189 | END SUBROUTINE lim_dyn |
---|
190 | |
---|
191 | SUBROUTINE lim_dyn_init |
---|
192 | !!------------------------------------------------------------------- |
---|
193 | !! *** ROUTINE lim_dyn_init *** |
---|
194 | !! |
---|
195 | !! ** Purpose : Physical constants and parameters linked to the ice |
---|
196 | !! dynamics |
---|
197 | !! |
---|
198 | !! ** Method : Read the namicedyn namelist and check the ice-dynamic |
---|
199 | !! parameter values called at the first timestep (nit000) |
---|
200 | !! |
---|
201 | !! ** input : Namelist namicedyn |
---|
202 | !! |
---|
203 | !! history : |
---|
204 | !! 8.5 ! 03-08 (C. Ethe) original code |
---|
205 | !!------------------------------------------------------------------- |
---|
206 | NAMELIST/namicedyn/ epsd, alpha, & |
---|
207 | & dm, nbiter, nbitdr, om, resl, cw, angvg, pstar, & |
---|
208 | & c_rhg, etamn, creepl, ecc, ahi0 |
---|
209 | !!------------------------------------------------------------------- |
---|
210 | |
---|
211 | ! Define the initial parameters |
---|
212 | ! ------------------------- |
---|
213 | |
---|
214 | ! Read Namelist namicedyn |
---|
215 | REWIND ( numnam_ice ) |
---|
216 | READ ( numnam_ice , namicedyn ) |
---|
217 | IF(lwp) THEN |
---|
218 | WRITE(numout,*) |
---|
219 | WRITE(numout,*) 'lim_dyn_init : ice parameters for ice dynamics ' |
---|
220 | WRITE(numout,*) '~~~~~~~~~~~~' |
---|
221 | WRITE(numout,*) ' tolerance parameter epsd = ', epsd |
---|
222 | WRITE(numout,*) ' coefficient for semi-implicit coriolis alpha = ', alpha |
---|
223 | WRITE(numout,*) ' diffusion constant for dynamics dm = ', dm |
---|
224 | WRITE(numout,*) ' number of sub-time steps for relaxation nbiter = ', nbiter |
---|
225 | WRITE(numout,*) ' maximum number of iterations for relaxation nbitdr = ', nbitdr |
---|
226 | WRITE(numout,*) ' relaxation constant om = ', om |
---|
227 | WRITE(numout,*) ' maximum value for the residual of relaxation resl = ', resl |
---|
228 | WRITE(numout,*) ' drag coefficient for oceanic stress cw = ', cw |
---|
229 | WRITE(numout,*) ' turning angle for oceanic stress angvg = ', angvg |
---|
230 | WRITE(numout,*) ' first bulk-rheology parameter pstar = ', pstar |
---|
231 | WRITE(numout,*) ' second bulk-rhelogy parameter c_rhg = ', c_rhg |
---|
232 | WRITE(numout,*) ' minimun value for viscosity etamn = ', etamn |
---|
233 | WRITE(numout,*) ' creep limit creepl = ', creepl |
---|
234 | WRITE(numout,*) ' eccentricity of the elliptical yield curve ecc = ', ecc |
---|
235 | WRITE(numout,*) ' horizontal diffusivity coeff. for sea-ice ahi0 = ', ahi0 |
---|
236 | ENDIF |
---|
237 | |
---|
238 | usecc2 = 1.0 / ( ecc * ecc ) |
---|
239 | rhoco = rau0 * cw |
---|
240 | angvg = angvg * rad |
---|
241 | sangvg = SIN( angvg ) |
---|
242 | cangvg = COS( angvg ) |
---|
243 | pstarh = pstar / 2.0 |
---|
244 | |
---|
245 | ! Diffusion coefficients. |
---|
246 | ahiu(:,:) = ahi0 * umask(:,:,1) |
---|
247 | ahiv(:,:) = ahi0 * vmask(:,:,1) |
---|
248 | |
---|
249 | END SUBROUTINE lim_dyn_init |
---|
250 | |
---|
251 | #else |
---|
252 | !!---------------------------------------------------------------------- |
---|
253 | !! Default option Empty module NO LIM sea-ice model |
---|
254 | !!---------------------------------------------------------------------- |
---|
255 | CONTAINS |
---|
256 | SUBROUTINE lim_dyn ! Empty routine |
---|
257 | END SUBROUTINE lim_dyn |
---|
258 | #endif |
---|
259 | |
---|
260 | !!====================================================================== |
---|
261 | END MODULE limdyn |
---|