1 | MODULE limthd_lac |
---|
2 | #if defined key_ice_lim |
---|
3 | !!====================================================================== |
---|
4 | !! *** MODULE limthd_lac *** |
---|
5 | !! lateral thermodynamic growth of the ice |
---|
6 | !!====================================================================== |
---|
7 | |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | !! lim_lat_acr : lateral accretion of ice |
---|
10 | !! * Modules used |
---|
11 | USE par_oce ! ocean parameters |
---|
12 | USE phycst |
---|
13 | USE ice_oce ! ice variables |
---|
14 | USE thd_ice |
---|
15 | USE iceini |
---|
16 | USE limistate |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | PRIVATE |
---|
20 | |
---|
21 | !! * Routine accessibility |
---|
22 | PUBLIC lim_thd_lac ! called by lim_thd |
---|
23 | |
---|
24 | !! * Module variables |
---|
25 | REAL(wp) :: & ! constant values |
---|
26 | epsi20 = 1e-20 , & |
---|
27 | epsi13 = 1e-13 , & |
---|
28 | zzero = 0.0 , & |
---|
29 | zone = 1.0 |
---|
30 | !!---------------------------------------------------------------------- |
---|
31 | !! LIM 2.0 , UCL-LODYC-IPSL (2003) |
---|
32 | !!---------------------------------------------------------------------- |
---|
33 | CONTAINS |
---|
34 | |
---|
35 | SUBROUTINE lim_thd_lac( kideb, kiut ) |
---|
36 | !!------------------------------------------------------------------- |
---|
37 | !! *** ROUTINE lim_thd_lac *** |
---|
38 | !! |
---|
39 | !! ** Purpose : Computation of the evolution of the ice thickness and |
---|
40 | !! concentration as a function of the heat balance in the leads. |
---|
41 | !! It is only used for lateral accretion |
---|
42 | !! |
---|
43 | !! ** Method : Ice is formed in the open water when ocean lose heat |
---|
44 | !! (heat budget of open water Bl is negative) . |
---|
45 | !! Computation of the increase of 1-A (ice concentration) fol- |
---|
46 | !! lowing the law : |
---|
47 | !! (dA/dt)acc = F[ (1-A)/(1-a) ] * [ Bl / (Li*h0) ] |
---|
48 | !! where - h0 is the thickness of ice created in the lead |
---|
49 | !! - a is a minimum fraction for leads |
---|
50 | !! - F is a monotonic non-increasing function defined as: |
---|
51 | !! F(X)=( 1 - X**exld )**(1.0/exld) |
---|
52 | !! - exld is the exponent closure rate (=2 default val.) |
---|
53 | !! |
---|
54 | !! ** Action : - Adjustment of snow and ice thicknesses and heat |
---|
55 | !! content in brine pockets |
---|
56 | !! - Updating ice internal temperature |
---|
57 | !! - Computation of variation of ice volume and mass |
---|
58 | !! - Computation of frldb after lateral accretion and |
---|
59 | !! update h_snow_1d, h_ice_1d and tbif_1d(:,:) |
---|
60 | !! |
---|
61 | !! ** References : |
---|
62 | !! M. Maqueda, 1995, PhD Thesis, Univesidad Complutense Madrid |
---|
63 | !! Fichefet T. and M. Maqueda 1997, J. Geo. Res., 102(C6), |
---|
64 | !! 12609 -12646 |
---|
65 | !! |
---|
66 | !! History : |
---|
67 | !! 1.0 ! 01-04 (LIM) original code |
---|
68 | !! 2.0 ! 02-08 (C. Ethe, G. Madec) F90, mpp |
---|
69 | !!------------------------------------------------------------------- |
---|
70 | !! * Arguments |
---|
71 | INTEGER , INTENT(IN):: & |
---|
72 | kideb , & ! start point on which the the computation is applied |
---|
73 | kiut ! end point on which the the computation is applied |
---|
74 | |
---|
75 | !! * Local variables |
---|
76 | INTEGER :: & |
---|
77 | ji , & ! dummy loop indices |
---|
78 | iicefr , & ! 1 = existing ice ; 0 = no ice |
---|
79 | iiceform , & ! 1 = ice formed ; 0 = no ice formed |
---|
80 | ihemis ! dummy indice |
---|
81 | REAL(wp), DIMENSION(jpij) :: & |
---|
82 | zqbgow , & ! heat budget of the open water (negative) |
---|
83 | zfrl_old , & ! previous sea/ice fraction |
---|
84 | zhice_old , & ! previous ice thickness |
---|
85 | zhice0 , & ! thickness of newly formed ice in leads |
---|
86 | zfrlmin , & ! minimum fraction for leads |
---|
87 | zdhicbot ! part of thickness of newly formed ice in leads which |
---|
88 | ! has been already used in transport for example |
---|
89 | REAL(wp) :: & |
---|
90 | zhemis , & ! hemisphere (0 = North, 1 = South) |
---|
91 | zhicenew , & ! new ice thickness |
---|
92 | zholds2 , & ! ratio of previous ice thickness and 2 |
---|
93 | zhnews2 , & ! ratio of new ice thickness and 2 |
---|
94 | zfrlnew , & ! new sea/ice fraction |
---|
95 | zfrld , & ! ratio of sea/ice fraction and minimum fraction for leads |
---|
96 | zfrrate , & ! leads-closure rate |
---|
97 | zdfrl ! sea-ice fraction increment |
---|
98 | REAL(wp) :: & |
---|
99 | zdh1 , zdh2 , zdh3 , zdh4, zdh5 , & ! tempory scalars |
---|
100 | ztint , zta1 , zta2 , zta3 , zta4 , & |
---|
101 | zah, zalpha , zbeta |
---|
102 | !!--------------------------------------------------------------------- |
---|
103 | |
---|
104 | !-------------------------------------------------------------- |
---|
105 | ! Computation of the heat budget of the open water (negative) |
---|
106 | !-------------------------------------------------------------- |
---|
107 | |
---|
108 | DO ji = kideb , kiut |
---|
109 | zqbgow(ji) = qldif_1d(ji) - qcmif_1d(ji) |
---|
110 | END DO |
---|
111 | |
---|
112 | !----------------------------------------------------------------- |
---|
113 | ! Taking the appropriate values for the corresponding hemisphere |
---|
114 | !----------------------------------------------------------------- |
---|
115 | DO ji = kideb , kiut |
---|
116 | zhemis = MAX( zzero , SIGN( zone , frld_1d(ji) - 2.0 ) ) |
---|
117 | ihemis = INT( 1 + zhemis ) |
---|
118 | zhice0 (ji) = hiccrit( ihemis ) |
---|
119 | zfrlmin (ji) = acrit ( ihemis ) |
---|
120 | frld_1d (ji) = frld_1d(ji) - 2.0 * zhemis |
---|
121 | zfrl_old(ji) = frld_1d(ji) |
---|
122 | END DO |
---|
123 | |
---|
124 | !------------------------------------------------------------------- |
---|
125 | ! Lateral Accretion (modification of the fraction of open water) |
---|
126 | ! The ice formed in the leads has always a thickness zhice0, but |
---|
127 | ! only a fraction zfrrate of the ice formed contributes to the |
---|
128 | ! increase of the ice fraction. The remaining part (1-zfrrate) |
---|
129 | ! is rather assumed to lead to an increase in the thickness of the |
---|
130 | ! pre-existing ice (transport for example). |
---|
131 | ! Morales Maqueda, 1995 - Fichefet and Morales Maqueda, 1997 |
---|
132 | !--------------------------------------------------------------------- |
---|
133 | |
---|
134 | !CDIR NOVERRCHK |
---|
135 | DO ji = kideb , kiut |
---|
136 | iicefr = 1 - MAX( 0, INT( SIGN( 1.5 * zone , zfrl_old(ji) - 1.0 + epsi13 ) ) ) |
---|
137 | !---computation of the leads-closure rate |
---|
138 | zfrld = MIN( zone , ( 1.0 - frld_1d(ji) ) / ( 1.0 - zfrlmin(ji) ) ) |
---|
139 | zfrrate = ( 1.0 - zfrld**exld )**( 1.0 / exld ) |
---|
140 | !--computation of the sea-ice fraction increment and the new fraction |
---|
141 | zdfrl = ( zfrrate / zhice0(ji) ) * ( zqbgow(ji) / xlic ) |
---|
142 | zfrlnew = zfrl_old(ji) + zdfrl |
---|
143 | !--update the sea-ice fraction |
---|
144 | frld_1d (ji) = MAX( zfrlnew , zfrlmin(ji) ) |
---|
145 | !--computation of the remaining part of ice thickness which has been already used |
---|
146 | zdhicbot(ji) = ( frld_1d(ji) - zfrlnew ) * zhice0(ji) / ( 1.0 - zfrlmin(ji) ) & |
---|
147 | - ( ( 1.0 - zfrrate ) / ( 1.0 - frld_1d(ji) ) ) * ( zqbgow(ji) / xlic ) |
---|
148 | END DO |
---|
149 | |
---|
150 | !---------------------------------------------------------------------------------------- |
---|
151 | ! Ajustement of snow and ice thicknesses and updating the total heat stored in brine pockets |
---|
152 | ! The thickness of newly formed ice is averaged with that of the pre-existing |
---|
153 | ! (1-Anew) * hinew = (1-Aold) * hiold + ((1-Anew)-(1-Aold)) * h0 |
---|
154 | ! Snow is distributed over the new ice-covered area |
---|
155 | ! (1-Anew) * hsnew = (1-Aold) * hsold |
---|
156 | !-------------------------------------------------------------------------------------------- |
---|
157 | |
---|
158 | DO ji = kideb , kiut |
---|
159 | iicefr = 1 - MAX( 0, INT( SIGN( 1.5 * zone , zfrl_old(ji) - 1.0 + epsi13 ) ) ) |
---|
160 | zhice_old(ji) = h_ice_1d(ji) |
---|
161 | zhicenew = iicefr * zhice_old(ji) + ( 1 - iicefr ) * zhice0(ji) |
---|
162 | zalpha = ( 1. - zfrl_old(ji) ) / ( 1.- frld_1d(ji) ) |
---|
163 | h_snow_1d(ji) = zalpha * h_snow_1d(ji) |
---|
164 | h_ice_1d (ji) = zalpha * zhicenew + ( 1.0 - zalpha ) * zhice0(ji) |
---|
165 | qstbif_1d(ji) = zalpha * qstbif_1d(ji) |
---|
166 | END DO |
---|
167 | |
---|
168 | !------------------------------------------------------- |
---|
169 | ! Ajustement of ice internal temperatures |
---|
170 | !------------------------------------------------------- |
---|
171 | |
---|
172 | DO ji = kideb , kiut |
---|
173 | iicefr = 1 - MAX( 0, INT( SIGN( 1.5 * zone , zfrl_old(ji) - 1.0 + epsi13 ) ) ) |
---|
174 | iiceform = 1 - MAX( 0 ,INT( SIGN( 1.5 * zone , zhice0(ji) - h_ice_1d(ji) ) ) ) |
---|
175 | zholds2 = zhice_old(ji)/ 2. |
---|
176 | zhnews2 = h_ice_1d(ji) / 2. |
---|
177 | zdh1 = MAX( zzero , zhice_old(ji) - zhnews2 ) |
---|
178 | zdh2 = MAX( zzero , -zhice_old(ji) + zhnews2 ) |
---|
179 | zdh3 = MAX( zzero , h_ice_1d(ji) - zholds2 ) |
---|
180 | zdh4 = MAX( zzero , -h_ice_1d(ji) + zholds2 ) |
---|
181 | zdh5 = MAX( zzero , zhice0(ji) - zholds2 ) |
---|
182 | ztint = iiceform * ( ( zholds2 - zdh3 ) * tbif_1d(ji,3) + zdh4 * tbif_1d(ji,2) ) & |
---|
183 | & / MAX( epsi20 , h_ice_1d(ji) - zhice0(ji) ) & |
---|
184 | & + ( 1 - iiceform ) * tfu_1d(ji) |
---|
185 | zta1 = iicefr * ( 1. - zfrl_old(ji) ) * tbif_1d(ji,2) |
---|
186 | zta2 = iicefr * ( 1. - zfrl_old(ji) ) * tbif_1d(ji,3) |
---|
187 | zta3 = iicefr * ( 1. - zfrl_old(ji) ) * ztint |
---|
188 | zta4 = ( zfrl_old(ji) - frld_1d (ji) ) * tfu_1d(ji) |
---|
189 | zah = ( 1. - frld_1d(ji) ) * zhnews2 |
---|
190 | |
---|
191 | tbif_1d(ji,2) = ( MIN( zhnews2 , zholds2 ) * zta1 & |
---|
192 | & + ( 1 - iiceform ) * ( zholds2 - zdh1 ) * zta2 & |
---|
193 | & + ( iiceform * ( zhnews2 - zhice0(ji) + zdh5 ) + ( 1 - iiceform ) * zdh2 ) * zta3 & |
---|
194 | & + MIN ( zhnews2 , zhice0(ji) ) * zta4 & |
---|
195 | & ) / zah |
---|
196 | |
---|
197 | tbif_1d(ji,3) = ( iiceform * ( zhnews2 - zdh3 ) * zta1 & |
---|
198 | & + ( iiceform * zdh3 + ( 1 - iiceform ) * zdh1 ) * zta2 & |
---|
199 | & + ( iiceform * ( zhnews2 - zdh5 ) + ( 1 - iiceform ) * ( zhnews2 - zdh1 ) ) * zta3 & |
---|
200 | & + ( iiceform * zdh5 + ( 1 - iiceform ) * zhnews2 ) * zta4 & |
---|
201 | & ) / zah |
---|
202 | !---removing the remaining part of ice formed which has been already used |
---|
203 | zbeta = h_ice_1d(ji) / ( h_ice_1d(ji) + zdhicbot(ji) ) |
---|
204 | h_ice_1d(ji) = h_ice_1d(ji) + zdhicbot(ji) |
---|
205 | tbif_1d (ji,2)= zbeta * tbif_1d(ji,2) + ( 1.0 - zbeta ) * tbif_1d(ji,3) |
---|
206 | tbif_1d (ji,3)= ( 2. * zbeta - 1.0 ) * tbif_1d(ji,3) + ( 2. * zdhicbot(ji) / h_ice_1d(ji) ) * tfu_1d(ji) |
---|
207 | |
---|
208 | END DO |
---|
209 | |
---|
210 | !------------------------------------------------------------- |
---|
211 | ! Computation of variation of ice volume and ice mass |
---|
212 | ! Vold = (1-Aold) * hiold ; Vnew = (1-Anew) * hinew |
---|
213 | ! dV = Vnew - Vold |
---|
214 | !------------------------------------------------------------- |
---|
215 | |
---|
216 | DO ji = kideb , kiut |
---|
217 | dvlbq_1d (ji) = ( 1. - frld_1d(ji) ) * h_ice_1d(ji) - ( 1. - zfrl_old(ji) ) * zhice_old(ji) |
---|
218 | rdmicif_1d(ji) = rdmicif_1d(ji) + rhoic * dvlbq_1d(ji) |
---|
219 | END DO |
---|
220 | |
---|
221 | END SUBROUTINE lim_thd_lac |
---|
222 | #else |
---|
223 | !!====================================================================== |
---|
224 | !! *** MODULE limthd_lac *** |
---|
225 | !! no sea ice model |
---|
226 | !!====================================================================== |
---|
227 | CONTAINS |
---|
228 | SUBROUTINE lim_thd_lac ! Empty routine |
---|
229 | END SUBROUTINE lim_thd_lac |
---|
230 | #endif |
---|
231 | END MODULE limthd_lac |
---|