1 | MODULE limitd_me |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE limitd_me *** |
---|
4 | !! LIM-3 : Mechanical impact on ice thickness distribution |
---|
5 | !!====================================================================== |
---|
6 | !! History : LIM ! 2006-02 (M. Vancoppenolle) Original code |
---|
7 | !! 3.2 ! 2009-07 (M. Vancoppenolle, Y. Aksenov, G. Madec) bug correction in smsw & sfx_dyn |
---|
8 | !! 4.0 ! 2011-02 (G. Madec) dynamical allocation |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_lim3 |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_lim3' LIM-3 sea-ice model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | USE par_oce ! ocean parameters |
---|
15 | USE dom_oce ! ocean domain |
---|
16 | USE phycst ! physical constants (ocean directory) |
---|
17 | USE sbc_oce ! surface boundary condition: ocean fields |
---|
18 | USE thd_ice ! LIM thermodynamics |
---|
19 | USE ice ! LIM variables |
---|
20 | USE dom_ice ! LIM domain |
---|
21 | USE limvar ! LIM |
---|
22 | USE lbclnk ! lateral boundary condition - MPP exchanges |
---|
23 | USE lib_mpp ! MPP library |
---|
24 | USE wrk_nemo ! work arrays |
---|
25 | USE prtctl ! Print control |
---|
26 | |
---|
27 | USE in_out_manager ! I/O manager |
---|
28 | USE iom ! I/O manager |
---|
29 | USE lib_fortran ! glob_sum |
---|
30 | USE limdiahsb |
---|
31 | USE timing ! Timing |
---|
32 | USE limcons ! conservation tests |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | PRIVATE |
---|
36 | |
---|
37 | PUBLIC lim_itd_me ! called by ice_stp |
---|
38 | PUBLIC lim_itd_me_icestrength |
---|
39 | PUBLIC lim_itd_me_init |
---|
40 | PUBLIC lim_itd_me_alloc ! called by sbc_lim_init |
---|
41 | |
---|
42 | !----------------------------------------------------------------------- |
---|
43 | ! Variables shared among ridging subroutines |
---|
44 | !----------------------------------------------------------------------- |
---|
45 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: asum ! sum of total ice and open water area |
---|
46 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: aksum ! ratio of area removed to area ridged |
---|
47 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: athorn ! participation function; fraction of ridging/ |
---|
48 | ! ! closing associated w/ category n |
---|
49 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hrmin ! minimum ridge thickness |
---|
50 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hrmax ! maximum ridge thickness |
---|
51 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: hraft ! thickness of rafted ice |
---|
52 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: krdg ! mean ridge thickness/thickness of ridging ice |
---|
53 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: aridge ! participating ice ridging |
---|
54 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: araft ! participating ice rafting |
---|
55 | |
---|
56 | REAL(wp), PARAMETER :: krdgmin = 1.1_wp ! min ridge thickness multiplier |
---|
57 | REAL(wp), PARAMETER :: kraft = 2.0_wp ! rafting multipliyer |
---|
58 | REAL(wp), PARAMETER :: kamax = 1.0_wp ! max of ice area authorized (clem: scheme is not stable if kamax <= 0.99) |
---|
59 | |
---|
60 | REAL(wp) :: Cp ! |
---|
61 | ! |
---|
62 | !----------------------------------------------------------------------- |
---|
63 | ! Ridging diagnostic arrays for history files |
---|
64 | !----------------------------------------------------------------------- |
---|
65 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dardg1dt ! rate of fractional area loss by ridging ice (1/s) |
---|
66 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dardg2dt ! rate of fractional area gain by new ridges (1/s) |
---|
67 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dvirdgdt ! rate of ice volume ridged (m/s) |
---|
68 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: opening ! rate of opening due to divergence/shear (1/s) |
---|
69 | ! |
---|
70 | !!---------------------------------------------------------------------- |
---|
71 | !! NEMO/LIM3 3.3 , UCL - NEMO Consortium (2010) |
---|
72 | !! $Id$ |
---|
73 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
74 | !!---------------------------------------------------------------------- |
---|
75 | CONTAINS |
---|
76 | |
---|
77 | INTEGER FUNCTION lim_itd_me_alloc() |
---|
78 | !!---------------------------------------------------------------------! |
---|
79 | !! *** ROUTINE lim_itd_me_alloc *** |
---|
80 | !!---------------------------------------------------------------------! |
---|
81 | ALLOCATE( & |
---|
82 | !* Variables shared among ridging subroutines |
---|
83 | & asum (jpi,jpj) , athorn(jpi,jpj,0:jpl) , & |
---|
84 | & aksum(jpi,jpj) , & |
---|
85 | ! |
---|
86 | & hrmin(jpi,jpj,jpl) , hraft(jpi,jpj,jpl) , aridge(jpi,jpj,jpl) , & |
---|
87 | & hrmax(jpi,jpj,jpl) , krdg (jpi,jpj,jpl) , araft (jpi,jpj,jpl) , & |
---|
88 | ! |
---|
89 | !* Ridging diagnostic arrays for history files |
---|
90 | & dardg1dt(jpi,jpj) , dardg2dt(jpi,jpj) , & |
---|
91 | & dvirdgdt(jpi,jpj) , opening(jpi,jpj) , STAT=lim_itd_me_alloc ) |
---|
92 | ! |
---|
93 | IF( lim_itd_me_alloc /= 0 ) CALL ctl_warn( 'lim_itd_me_alloc: failed to allocate arrays' ) |
---|
94 | ! |
---|
95 | END FUNCTION lim_itd_me_alloc |
---|
96 | |
---|
97 | |
---|
98 | SUBROUTINE lim_itd_me |
---|
99 | !!---------------------------------------------------------------------! |
---|
100 | !! *** ROUTINE lim_itd_me *** |
---|
101 | !! |
---|
102 | !! ** Purpose : computes the mechanical redistribution of ice thickness |
---|
103 | !! |
---|
104 | !! ** Method : Steps : |
---|
105 | !! 1) Thickness categories boundaries, ice / o.w. concentrations |
---|
106 | !! Ridge preparation |
---|
107 | !! 2) Dynamical inputs (closing rate, divu_adv, opning) |
---|
108 | !! 3) Ridging iteration |
---|
109 | !! 4) Ridging diagnostics |
---|
110 | !! 5) Heat, salt and freshwater fluxes |
---|
111 | !! 6) Compute increments of tate variables and come back to old values |
---|
112 | !! |
---|
113 | !! References : Flato, G. M., and W. D. Hibler III, 1995, JGR, 100, 18,611-18,626. |
---|
114 | !! Hibler, W. D. III, 1980, MWR, 108, 1943-1973, 1980. |
---|
115 | !! Rothrock, D. A., 1975: JGR, 80, 4514-4519. |
---|
116 | !! Thorndike et al., 1975, JGR, 80, 4501-4513. |
---|
117 | !! Bitz et al., JGR, 2001 |
---|
118 | !! Amundrud and Melling, JGR 2005 |
---|
119 | !! Babko et al., JGR 2002 |
---|
120 | !! |
---|
121 | !! This routine is based on CICE code and authors William H. Lipscomb, |
---|
122 | !! and Elizabeth C. Hunke, LANL are gratefully acknowledged |
---|
123 | !!--------------------------------------------------------------------! |
---|
124 | INTEGER :: ji, jj, jk, jl ! dummy loop index |
---|
125 | INTEGER :: niter ! local integer |
---|
126 | INTEGER :: iterate_ridging ! if true, repeat the ridging |
---|
127 | REAL(wp) :: za, zfac ! local scalar |
---|
128 | CHARACTER (len = 15) :: fieldid |
---|
129 | REAL(wp), POINTER, DIMENSION(:,:) :: closing_net ! net rate at which area is removed (1/s) |
---|
130 | ! (ridging ice area - area of new ridges) / dt |
---|
131 | REAL(wp), POINTER, DIMENSION(:,:) :: divu_adv ! divu as implied by transport scheme (1/s) |
---|
132 | REAL(wp), POINTER, DIMENSION(:,:) :: opning ! rate of opening due to divergence/shear |
---|
133 | REAL(wp), POINTER, DIMENSION(:,:) :: closing_gross ! rate at which area removed, not counting area of new ridges |
---|
134 | REAL(wp), POINTER, DIMENSION(:,:) :: msnow_mlt ! mass of snow added to ocean (kg m-2) |
---|
135 | REAL(wp), POINTER, DIMENSION(:,:) :: esnow_mlt ! energy needed to melt snow in ocean (J m-2) |
---|
136 | REAL(wp), POINTER, DIMENSION(:,:) :: vt_i_init, vt_i_final ! ice volume summed over categories |
---|
137 | ! |
---|
138 | INTEGER, PARAMETER :: nitermax = 20 |
---|
139 | ! |
---|
140 | REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b |
---|
141 | !!----------------------------------------------------------------------------- |
---|
142 | IF( nn_timing == 1 ) CALL timing_start('limitd_me') |
---|
143 | |
---|
144 | CALL wrk_alloc( jpi,jpj, closing_net, divu_adv, opning, closing_gross, msnow_mlt, esnow_mlt, vt_i_init, vt_i_final ) |
---|
145 | |
---|
146 | IF(ln_ctl) THEN |
---|
147 | CALL prt_ctl(tab2d_1=ato_i , clinfo1=' lim_itd_me: ato_i : ', tab2d_2=at_i , clinfo2=' at_i : ') |
---|
148 | CALL prt_ctl(tab2d_1=divu_i, clinfo1=' lim_itd_me: divu_i : ', tab2d_2=delta_i, clinfo2=' delta_i : ') |
---|
149 | ENDIF |
---|
150 | |
---|
151 | IF( ln_limdyn ) THEN ! Start ridging and rafting ! |
---|
152 | |
---|
153 | ! conservation test |
---|
154 | IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limitd_me', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
155 | |
---|
156 | CALL lim_var_zapsmall |
---|
157 | CALL lim_var_glo2eqv ! equivalent variables, requested for rafting |
---|
158 | |
---|
159 | !-----------------------------------------------------------------------------! |
---|
160 | ! 1) Thickness categories boundaries, ice / o.w. concentrations, init_ons |
---|
161 | !-----------------------------------------------------------------------------! |
---|
162 | Cp = 0.5 * grav * (rau0-rhoic) * rhoic * r1_rau0 ! proport const for PE |
---|
163 | ! |
---|
164 | CALL lim_itd_me_ridgeprep ! prepare ridging |
---|
165 | ! |
---|
166 | IF( con_i) CALL lim_column_sum( jpl, v_i, vt_i_init ) ! conservation check |
---|
167 | |
---|
168 | DO jj = 1, jpj ! Initialize arrays. |
---|
169 | DO ji = 1, jpi |
---|
170 | msnow_mlt(ji,jj) = 0._wp |
---|
171 | esnow_mlt(ji,jj) = 0._wp |
---|
172 | dardg1dt (ji,jj) = 0._wp |
---|
173 | dardg2dt (ji,jj) = 0._wp |
---|
174 | dvirdgdt (ji,jj) = 0._wp |
---|
175 | opening (ji,jj) = 0._wp |
---|
176 | |
---|
177 | !-----------------------------------------------------------------------------! |
---|
178 | ! 2) Dynamical inputs (closing rate, divu_adv, opning) |
---|
179 | !-----------------------------------------------------------------------------! |
---|
180 | ! |
---|
181 | ! 2.1 closing_net |
---|
182 | !----------------- |
---|
183 | ! Compute the net rate of closing due to convergence |
---|
184 | ! and shear, based on Flato and Hibler (1995). |
---|
185 | ! |
---|
186 | ! The energy dissipation rate is equal to the net closing rate |
---|
187 | ! times the ice strength. |
---|
188 | ! |
---|
189 | ! NOTE: The NET closing rate is equal to the rate that open water |
---|
190 | ! area is removed, plus the rate at which ice area is removed by |
---|
191 | ! ridging, minus the rate at which area is added in new ridges. |
---|
192 | ! The GROSS closing rate is equal to the first two terms (open |
---|
193 | ! water closing and thin ice ridging) without the third term |
---|
194 | ! (thick, newly ridged ice). |
---|
195 | |
---|
196 | closing_net(ji,jj) = rn_cs * 0.5 * ( delta_i(ji,jj) - ABS( divu_i(ji,jj) ) ) - MIN( divu_i(ji,jj), 0._wp ) |
---|
197 | |
---|
198 | ! 2.2 divu_adv |
---|
199 | !-------------- |
---|
200 | ! Compute divu_adv, the divergence rate given by the transport/ |
---|
201 | ! advection scheme, which may not be equal to divu as computed |
---|
202 | ! from the velocity field. |
---|
203 | ! |
---|
204 | ! If divu_adv < 0, make sure the closing rate is large enough |
---|
205 | ! to give asum = 1.0 after ridging. |
---|
206 | |
---|
207 | divu_adv(ji,jj) = ( kamax - asum(ji,jj) ) * r1_rdtice ! asum found in ridgeprep |
---|
208 | |
---|
209 | IF( divu_adv(ji,jj) < 0._wp ) closing_net(ji,jj) = MAX( closing_net(ji,jj), -divu_adv(ji,jj) ) |
---|
210 | |
---|
211 | ! 2.3 opning |
---|
212 | !------------ |
---|
213 | ! Compute the (non-negative) opening rate that will give asum = 1.0 after ridging. |
---|
214 | opning(ji,jj) = closing_net(ji,jj) + divu_adv(ji,jj) |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | |
---|
218 | !-----------------------------------------------------------------------------! |
---|
219 | ! 3) Ridging iteration |
---|
220 | !-----------------------------------------------------------------------------! |
---|
221 | niter = 1 ! iteration counter |
---|
222 | iterate_ridging = 1 |
---|
223 | |
---|
224 | DO WHILE ( iterate_ridging > 0 .AND. niter < nitermax ) |
---|
225 | |
---|
226 | DO jj = 1, jpj |
---|
227 | DO ji = 1, jpi |
---|
228 | |
---|
229 | ! 3.2 closing_gross |
---|
230 | !-----------------------------------------------------------------------------! |
---|
231 | ! Based on the ITD of ridging and ridged ice, convert the net |
---|
232 | ! closing rate to a gross closing rate. |
---|
233 | ! NOTE: 0 < aksum <= 1 |
---|
234 | closing_gross(ji,jj) = closing_net(ji,jj) / aksum(ji,jj) |
---|
235 | |
---|
236 | ! correction to closing rate and opening if closing rate is excessive |
---|
237 | !--------------------------------------------------------------------- |
---|
238 | ! Reduce the closing rate if more than 100% of the open water |
---|
239 | ! would be removed. Reduce the opening rate proportionately. |
---|
240 | za = athorn(ji,jj,0) * closing_gross(ji,jj) * rdt_ice |
---|
241 | IF( za > epsi20 ) THEN |
---|
242 | zfac = MIN( 1._wp, ato_i(ji,jj) / za ) |
---|
243 | closing_gross(ji,jj) = closing_gross(ji,jj) * zfac |
---|
244 | opning (ji,jj) = opning (ji,jj) * zfac |
---|
245 | ENDIF |
---|
246 | |
---|
247 | END DO |
---|
248 | END DO |
---|
249 | |
---|
250 | ! correction to closing rate / opening if excessive ice removal |
---|
251 | !--------------------------------------------------------------- |
---|
252 | ! Reduce the closing rate if more than 100% of any ice category |
---|
253 | ! would be removed. Reduce the opening rate proportionately. |
---|
254 | DO jl = 1, jpl |
---|
255 | DO jj = 1, jpj |
---|
256 | DO ji = 1, jpi |
---|
257 | za = athorn(ji,jj,jl) * closing_gross(ji,jj) * rdt_ice |
---|
258 | IF( za > epsi20 ) THEN |
---|
259 | zfac = MIN( 1._wp, a_i(ji,jj,jl) / za ) |
---|
260 | closing_gross(ji,jj) = closing_gross(ji,jj) * zfac |
---|
261 | opning (ji,jj) = opning (ji,jj) * zfac |
---|
262 | ENDIF |
---|
263 | END DO |
---|
264 | END DO |
---|
265 | END DO |
---|
266 | |
---|
267 | ! 3.3 Redistribute area, volume, and energy. |
---|
268 | !-----------------------------------------------------------------------------! |
---|
269 | |
---|
270 | CALL lim_itd_me_ridgeshift( opning, closing_gross, msnow_mlt, esnow_mlt ) |
---|
271 | |
---|
272 | ! 3.4 Compute total area of ice plus open water after ridging. |
---|
273 | !-----------------------------------------------------------------------------! |
---|
274 | ! This is in general not equal to one because of divergence during transport |
---|
275 | asum(:,:) = ato_i(:,:) |
---|
276 | DO jl = 1, jpl |
---|
277 | asum(:,:) = asum(:,:) + a_i(:,:,jl) |
---|
278 | END DO |
---|
279 | |
---|
280 | ! 3.5 Do we keep on iterating ??? |
---|
281 | !-----------------------------------------------------------------------------! |
---|
282 | ! Check whether asum = 1. If not (because the closing and opening |
---|
283 | ! rates were reduced above), ridge again with new rates. |
---|
284 | |
---|
285 | iterate_ridging = 0 |
---|
286 | |
---|
287 | DO jj = 1, jpj |
---|
288 | DO ji = 1, jpi |
---|
289 | IF (ABS(asum(ji,jj) - kamax ) < epsi10) THEN |
---|
290 | closing_net(ji,jj) = 0._wp |
---|
291 | opning (ji,jj) = 0._wp |
---|
292 | ELSE |
---|
293 | iterate_ridging = 1 |
---|
294 | divu_adv (ji,jj) = ( kamax - asum(ji,jj) ) * r1_rdtice |
---|
295 | closing_net(ji,jj) = MAX( 0._wp, -divu_adv(ji,jj) ) |
---|
296 | opning (ji,jj) = MAX( 0._wp, divu_adv(ji,jj) ) |
---|
297 | ENDIF |
---|
298 | END DO |
---|
299 | END DO |
---|
300 | |
---|
301 | IF( lk_mpp ) CALL mpp_max( iterate_ridging ) |
---|
302 | |
---|
303 | ! Repeat if necessary. |
---|
304 | ! NOTE: If strength smoothing is turned on, the ridging must be |
---|
305 | ! iterated globally because of the boundary update in the |
---|
306 | ! smoothing. |
---|
307 | |
---|
308 | niter = niter + 1 |
---|
309 | |
---|
310 | IF( iterate_ridging == 1 ) THEN |
---|
311 | IF( niter > nitermax ) THEN |
---|
312 | WRITE(numout,*) ' ALERTE : non-converging ridging scheme ' |
---|
313 | WRITE(numout,*) ' niter, iterate_ridging ', niter, iterate_ridging |
---|
314 | ENDIF |
---|
315 | CALL lim_itd_me_ridgeprep |
---|
316 | ENDIF |
---|
317 | |
---|
318 | END DO !! on the do while over iter |
---|
319 | |
---|
320 | !-----------------------------------------------------------------------------! |
---|
321 | ! 4) Ridging diagnostics |
---|
322 | !-----------------------------------------------------------------------------! |
---|
323 | ! Convert ridging rate diagnostics to correct units. |
---|
324 | ! Update fresh water and heat fluxes due to snow melt. |
---|
325 | DO jj = 1, jpj |
---|
326 | DO ji = 1, jpi |
---|
327 | |
---|
328 | dardg1dt(ji,jj) = dardg1dt(ji,jj) * r1_rdtice |
---|
329 | dardg2dt(ji,jj) = dardg2dt(ji,jj) * r1_rdtice |
---|
330 | dvirdgdt(ji,jj) = dvirdgdt(ji,jj) * r1_rdtice |
---|
331 | opening (ji,jj) = opening (ji,jj) * r1_rdtice |
---|
332 | |
---|
333 | !-----------------------------------------------------------------------------! |
---|
334 | ! 5) Heat, salt and freshwater fluxes |
---|
335 | !-----------------------------------------------------------------------------! |
---|
336 | wfx_snw(ji,jj) = wfx_snw(ji,jj) + msnow_mlt(ji,jj) * r1_rdtice ! fresh water source for ocean |
---|
337 | hfx_dyn(ji,jj) = hfx_dyn(ji,jj) + esnow_mlt(ji,jj) * r1_rdtice ! heat sink for ocean (<0, W.m-2) |
---|
338 | |
---|
339 | END DO |
---|
340 | END DO |
---|
341 | |
---|
342 | ! Check if there is a ridging error |
---|
343 | IF( lwp ) THEN |
---|
344 | DO jj = 1, jpj |
---|
345 | DO ji = 1, jpi |
---|
346 | IF( ABS( asum(ji,jj) - kamax) > epsi10 ) THEN ! there is a bug |
---|
347 | WRITE(numout,*) ' ' |
---|
348 | WRITE(numout,*) ' ALERTE : Ridging error: total area = ', asum(ji,jj) |
---|
349 | WRITE(numout,*) ' limitd_me ' |
---|
350 | WRITE(numout,*) ' POINT : ', ji, jj |
---|
351 | WRITE(numout,*) ' jpl, a_i, athorn ' |
---|
352 | WRITE(numout,*) 0, ato_i(ji,jj), athorn(ji,jj,0) |
---|
353 | DO jl = 1, jpl |
---|
354 | WRITE(numout,*) jl, a_i(ji,jj,jl), athorn(ji,jj,jl) |
---|
355 | END DO |
---|
356 | ENDIF |
---|
357 | END DO |
---|
358 | END DO |
---|
359 | END IF |
---|
360 | |
---|
361 | ! Conservation check |
---|
362 | IF ( con_i ) THEN |
---|
363 | CALL lim_column_sum (jpl, v_i, vt_i_final) |
---|
364 | fieldid = ' v_i : limitd_me ' |
---|
365 | CALL lim_cons_check (vt_i_init, vt_i_final, 1.0e-6, fieldid) |
---|
366 | ENDIF |
---|
367 | |
---|
368 | CALL lim_var_agg( 1 ) |
---|
369 | |
---|
370 | !-----------------------------------------------------------------------------! |
---|
371 | ! control prints |
---|
372 | !-----------------------------------------------------------------------------! |
---|
373 | IF(ln_ctl) THEN |
---|
374 | CALL lim_var_glo2eqv |
---|
375 | |
---|
376 | CALL prt_ctl_info(' ') |
---|
377 | CALL prt_ctl_info(' - Cell values : ') |
---|
378 | CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') |
---|
379 | CALL prt_ctl(tab2d_1=e1e2t, clinfo1=' lim_itd_me : cell area :') |
---|
380 | CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_itd_me : at_i :') |
---|
381 | CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_itd_me : vt_i :') |
---|
382 | CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_itd_me : vt_s :') |
---|
383 | DO jl = 1, jpl |
---|
384 | CALL prt_ctl_info(' ') |
---|
385 | CALL prt_ctl_info(' - Category : ', ivar1=jl) |
---|
386 | CALL prt_ctl_info(' ~~~~~~~~~~') |
---|
387 | CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_itd_me : a_i : ') |
---|
388 | CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_itd_me : ht_i : ') |
---|
389 | CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_itd_me : ht_s : ') |
---|
390 | CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_itd_me : v_i : ') |
---|
391 | CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_itd_me : v_s : ') |
---|
392 | CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_itd_me : e_s : ') |
---|
393 | CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_itd_me : t_su : ') |
---|
394 | CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_itd_me : t_snow : ') |
---|
395 | CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_itd_me : sm_i : ') |
---|
396 | CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_itd_me : smv_i : ') |
---|
397 | DO jk = 1, nlay_i |
---|
398 | CALL prt_ctl_info(' ') |
---|
399 | CALL prt_ctl_info(' - Layer : ', ivar1=jk) |
---|
400 | CALL prt_ctl_info(' ~~~~~~~') |
---|
401 | CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' lim_itd_me : t_i : ') |
---|
402 | CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' lim_itd_me : e_i : ') |
---|
403 | END DO |
---|
404 | END DO |
---|
405 | ENDIF |
---|
406 | |
---|
407 | ! conservation test |
---|
408 | IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limitd_me', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) |
---|
409 | |
---|
410 | ENDIF ! ln_limdyn=.true. |
---|
411 | ! |
---|
412 | CALL wrk_dealloc( jpi, jpj, closing_net, divu_adv, opning, closing_gross, msnow_mlt, esnow_mlt, vt_i_init, vt_i_final ) |
---|
413 | ! |
---|
414 | IF( nn_timing == 1 ) CALL timing_stop('limitd_me') |
---|
415 | END SUBROUTINE lim_itd_me |
---|
416 | |
---|
417 | |
---|
418 | SUBROUTINE lim_itd_me_icestrength( kstrngth ) |
---|
419 | !!---------------------------------------------------------------------- |
---|
420 | !! *** ROUTINE lim_itd_me_icestrength *** |
---|
421 | !! |
---|
422 | !! ** Purpose : computes ice strength used in dynamics routines of ice thickness |
---|
423 | !! |
---|
424 | !! ** Method : Compute the strength of the ice pack, defined as the energy (J m-2) |
---|
425 | !! dissipated per unit area removed from the ice pack under compression, |
---|
426 | !! and assumed proportional to the change in potential energy caused |
---|
427 | !! by ridging. Note that only Hibler's formulation is stable and that |
---|
428 | !! ice strength has to be smoothed |
---|
429 | !! |
---|
430 | !! ** Inputs / Ouputs : kstrngth (what kind of ice strength we are using) |
---|
431 | !!---------------------------------------------------------------------- |
---|
432 | INTEGER, INTENT(in) :: kstrngth ! = 1 for Rothrock formulation, 0 for Hibler (1979) |
---|
433 | INTEGER :: ji,jj, jl ! dummy loop indices |
---|
434 | INTEGER :: ksmooth ! smoothing the resistance to deformation |
---|
435 | INTEGER :: numts_rm ! number of time steps for the P smoothing |
---|
436 | REAL(wp) :: zhi, zp, z1_3 ! local scalars |
---|
437 | REAL(wp), POINTER, DIMENSION(:,:) :: zworka ! temporary array used here |
---|
438 | !!---------------------------------------------------------------------- |
---|
439 | |
---|
440 | CALL wrk_alloc( jpi, jpj, zworka ) |
---|
441 | |
---|
442 | !------------------------------------------------------------------------------! |
---|
443 | ! 1) Initialize |
---|
444 | !------------------------------------------------------------------------------! |
---|
445 | strength(:,:) = 0._wp |
---|
446 | |
---|
447 | !------------------------------------------------------------------------------! |
---|
448 | ! 2) Compute thickness distribution of ridging and ridged ice |
---|
449 | !------------------------------------------------------------------------------! |
---|
450 | CALL lim_itd_me_ridgeprep |
---|
451 | |
---|
452 | !------------------------------------------------------------------------------! |
---|
453 | ! 3) Rothrock(1975)'s method |
---|
454 | !------------------------------------------------------------------------------! |
---|
455 | IF( kstrngth == 1 ) THEN |
---|
456 | z1_3 = 1._wp / 3._wp |
---|
457 | DO jl = 1, jpl |
---|
458 | DO jj= 1, jpj |
---|
459 | DO ji = 1, jpi |
---|
460 | ! |
---|
461 | IF( a_i(ji,jj,jl) > epsi10 .AND. athorn(ji,jj,jl) > 0._wp ) THEN |
---|
462 | zhi = v_i(ji,jj,jl) / a_i(ji,jj,jl) |
---|
463 | !---------------------------- |
---|
464 | ! PE loss from deforming ice |
---|
465 | !---------------------------- |
---|
466 | strength(ji,jj) = strength(ji,jj) - athorn(ji,jj,jl) * zhi * zhi |
---|
467 | |
---|
468 | !-------------------------- |
---|
469 | ! PE gain from rafting ice |
---|
470 | !-------------------------- |
---|
471 | strength(ji,jj) = strength(ji,jj) + 2._wp * araft(ji,jj,jl) * zhi * zhi |
---|
472 | |
---|
473 | !---------------------------- |
---|
474 | ! PE gain from ridging ice |
---|
475 | !---------------------------- |
---|
476 | strength(ji,jj) = strength(ji,jj) + aridge(ji,jj,jl) / krdg(ji,jj,jl) & |
---|
477 | * z1_3 * ( hrmax(ji,jj,jl)**2 + hrmin(ji,jj,jl)**2 + hrmax(ji,jj,jl) * hrmin(ji,jj,jl) ) |
---|
478 | !!(a**3-b**3)/(a-b) = a*a+ab+b*b |
---|
479 | ENDIF |
---|
480 | ! |
---|
481 | END DO |
---|
482 | END DO |
---|
483 | END DO |
---|
484 | |
---|
485 | strength(:,:) = rn_pe_rdg * Cp * strength(:,:) / aksum(:,:) |
---|
486 | ! where Cp = (g/2)*(rhow-rhoi)*(rhoi/rhow) and rn_pe_rdg accounts for frictional dissipation |
---|
487 | ksmooth = 1 |
---|
488 | |
---|
489 | !------------------------------------------------------------------------------! |
---|
490 | ! 4) Hibler (1979)' method |
---|
491 | !------------------------------------------------------------------------------! |
---|
492 | ELSE ! kstrngth ne 1: Hibler (1979) form |
---|
493 | ! |
---|
494 | strength(:,:) = rn_pstar * vt_i(:,:) * EXP( - rn_crhg * ( 1._wp - at_i(:,:) ) ) |
---|
495 | ! |
---|
496 | ksmooth = 1 |
---|
497 | ! |
---|
498 | ENDIF ! kstrngth |
---|
499 | |
---|
500 | ! |
---|
501 | !------------------------------------------------------------------------------! |
---|
502 | ! 5) Impact of brine volume |
---|
503 | !------------------------------------------------------------------------------! |
---|
504 | ! CAN BE REMOVED |
---|
505 | ! |
---|
506 | IF( ln_icestr_bvf ) THEN |
---|
507 | |
---|
508 | DO jj = 1, jpj |
---|
509 | DO ji = 1, jpi |
---|
510 | strength(ji,jj) = strength(ji,jj) * exp(-5.88*SQRT(MAX(bv_i(ji,jj),0.0))) |
---|
511 | END DO |
---|
512 | END DO |
---|
513 | |
---|
514 | ENDIF |
---|
515 | |
---|
516 | ! |
---|
517 | !------------------------------------------------------------------------------! |
---|
518 | ! 6) Smoothing ice strength |
---|
519 | !------------------------------------------------------------------------------! |
---|
520 | ! |
---|
521 | !------------------- |
---|
522 | ! Spatial smoothing |
---|
523 | !------------------- |
---|
524 | IF ( ksmooth == 1 ) THEN |
---|
525 | |
---|
526 | CALL lbc_lnk( strength, 'T', 1. ) |
---|
527 | |
---|
528 | DO jj = 2, jpjm1 |
---|
529 | DO ji = 2, jpim1 |
---|
530 | IF ( ( asum(ji,jj) - ato_i(ji,jj) ) > 0._wp) THEN |
---|
531 | zworka(ji,jj) = ( 4.0 * strength(ji,jj) & |
---|
532 | & + strength(ji-1,jj) * tmask(ji-1,jj,1) + strength(ji+1,jj) * tmask(ji+1,jj,1) & |
---|
533 | & + strength(ji,jj-1) * tmask(ji,jj-1,1) + strength(ji,jj+1) * tmask(ji,jj+1,1) & |
---|
534 | & ) / ( 4.0 + tmask(ji-1,jj,1) + tmask(ji+1,jj,1) + tmask(ji,jj-1,1) + tmask(ji,jj+1,1) ) |
---|
535 | ELSE |
---|
536 | zworka(ji,jj) = 0._wp |
---|
537 | ENDIF |
---|
538 | END DO |
---|
539 | END DO |
---|
540 | |
---|
541 | DO jj = 2, jpjm1 |
---|
542 | DO ji = 2, jpim1 |
---|
543 | strength(ji,jj) = zworka(ji,jj) |
---|
544 | END DO |
---|
545 | END DO |
---|
546 | CALL lbc_lnk( strength, 'T', 1. ) |
---|
547 | |
---|
548 | ENDIF |
---|
549 | |
---|
550 | !-------------------- |
---|
551 | ! Temporal smoothing |
---|
552 | !-------------------- |
---|
553 | IF ( numit == nit000 + nn_fsbc - 1 ) THEN |
---|
554 | strp1(:,:) = 0.0 |
---|
555 | strp2(:,:) = 0.0 |
---|
556 | ENDIF |
---|
557 | |
---|
558 | IF ( ksmooth == 2 ) THEN |
---|
559 | |
---|
560 | |
---|
561 | CALL lbc_lnk( strength, 'T', 1. ) |
---|
562 | |
---|
563 | DO jj = 1, jpj - 1 |
---|
564 | DO ji = 1, jpi - 1 |
---|
565 | IF ( ( asum(ji,jj) - ato_i(ji,jj) ) > 0._wp) THEN |
---|
566 | numts_rm = 1 ! number of time steps for the running mean |
---|
567 | IF ( strp1(ji,jj) > 0.0 ) numts_rm = numts_rm + 1 |
---|
568 | IF ( strp2(ji,jj) > 0.0 ) numts_rm = numts_rm + 1 |
---|
569 | zp = ( strength(ji,jj) + strp1(ji,jj) + strp2(ji,jj) ) / numts_rm |
---|
570 | strp2(ji,jj) = strp1(ji,jj) |
---|
571 | strp1(ji,jj) = strength(ji,jj) |
---|
572 | strength(ji,jj) = zp |
---|
573 | |
---|
574 | ENDIF |
---|
575 | END DO |
---|
576 | END DO |
---|
577 | |
---|
578 | ENDIF ! ksmooth |
---|
579 | |
---|
580 | CALL lbc_lnk( strength, 'T', 1. ) ! Boundary conditions |
---|
581 | |
---|
582 | CALL wrk_dealloc( jpi, jpj, zworka ) |
---|
583 | ! |
---|
584 | END SUBROUTINE lim_itd_me_icestrength |
---|
585 | |
---|
586 | |
---|
587 | SUBROUTINE lim_itd_me_ridgeprep |
---|
588 | !!---------------------------------------------------------------------! |
---|
589 | !! *** ROUTINE lim_itd_me_ridgeprep *** |
---|
590 | !! |
---|
591 | !! ** Purpose : preparation for ridging and strength calculations |
---|
592 | !! |
---|
593 | !! ** Method : Compute the thickness distribution of the ice and open water |
---|
594 | !! participating in ridging and of the resulting ridges. |
---|
595 | !!---------------------------------------------------------------------! |
---|
596 | INTEGER :: ji,jj, jl ! dummy loop indices |
---|
597 | REAL(wp) :: Gstari, astari, zhi, hrmean, zdummy ! local scalar |
---|
598 | REAL(wp), POINTER, DIMENSION(:,:) :: zworka ! temporary array used here |
---|
599 | REAL(wp), POINTER, DIMENSION(:,:,:) :: Gsum ! Gsum(n) = sum of areas in categories 0 to n |
---|
600 | !------------------------------------------------------------------------------! |
---|
601 | |
---|
602 | CALL wrk_alloc( jpi,jpj, zworka ) |
---|
603 | CALL wrk_alloc( jpi,jpj,jpl+2, Gsum, kkstart = -1 ) |
---|
604 | |
---|
605 | Gstari = 1.0/rn_gstar |
---|
606 | astari = 1.0/rn_astar |
---|
607 | aksum(:,:) = 0.0 |
---|
608 | athorn(:,:,:) = 0.0 |
---|
609 | aridge(:,:,:) = 0.0 |
---|
610 | araft (:,:,:) = 0.0 |
---|
611 | hrmin(:,:,:) = 0.0 |
---|
612 | hrmax(:,:,:) = 0.0 |
---|
613 | hraft(:,:,:) = 0.0 |
---|
614 | krdg (:,:,:) = 1.0 |
---|
615 | |
---|
616 | ! ! Zero out categories with very small areas |
---|
617 | CALL lim_var_zapsmall |
---|
618 | |
---|
619 | !------------------------------------------------------------------------------! |
---|
620 | ! 1) Participation function |
---|
621 | !------------------------------------------------------------------------------! |
---|
622 | |
---|
623 | ! Compute total area of ice plus open water. |
---|
624 | ! This is in general not equal to one because of divergence during transport |
---|
625 | asum(:,:) = ato_i(:,:) |
---|
626 | DO jl = 1, jpl |
---|
627 | asum(:,:) = asum(:,:) + a_i(:,:,jl) |
---|
628 | END DO |
---|
629 | |
---|
630 | ! Compute cumulative thickness distribution function |
---|
631 | ! Compute the cumulative thickness distribution function Gsum, |
---|
632 | ! where Gsum(n) is the fractional area in categories 0 to n. |
---|
633 | ! initial value (in h = 0) equals open water area |
---|
634 | |
---|
635 | Gsum(:,:,-1) = 0._wp |
---|
636 | Gsum(:,:,0 ) = ato_i(:,:) |
---|
637 | |
---|
638 | ! for each value of h, you have to add ice concentration then |
---|
639 | DO jl = 1, jpl |
---|
640 | Gsum(:,:,jl) = Gsum(:,:,jl-1) + a_i(:,:,jl) |
---|
641 | END DO |
---|
642 | |
---|
643 | ! Normalize the cumulative distribution to 1 |
---|
644 | zworka(:,:) = 1._wp / Gsum(:,:,jpl) |
---|
645 | DO jl = 0, jpl |
---|
646 | Gsum(:,:,jl) = Gsum(:,:,jl) * zworka(:,:) |
---|
647 | END DO |
---|
648 | |
---|
649 | ! 1.3 Compute participation function a(h) = b(h).g(h) (athorn) |
---|
650 | !-------------------------------------------------------------------------------------------------- |
---|
651 | ! Compute the participation function athorn; this is analogous to |
---|
652 | ! a(h) = b(h)g(h) as defined in Thorndike et al. (1975). |
---|
653 | ! area lost from category n due to ridging/closing |
---|
654 | ! athorn(n) = total area lost due to ridging/closing |
---|
655 | ! assume b(h) = (2/Gstar) * (1 - G(h)/Gstar). |
---|
656 | ! |
---|
657 | ! The expressions for athorn are found by integrating b(h)g(h) between |
---|
658 | ! the category boundaries. |
---|
659 | !----------------------------------------------------------------- |
---|
660 | |
---|
661 | IF( nn_partfun == 0 ) THEN !--- Linear formulation (Thorndike et al., 1975) |
---|
662 | DO jl = 0, jpl |
---|
663 | DO jj = 1, jpj |
---|
664 | DO ji = 1, jpi |
---|
665 | IF( Gsum(ji,jj,jl) < rn_gstar) THEN |
---|
666 | athorn(ji,jj,jl) = Gstari * ( Gsum(ji,jj,jl) - Gsum(ji,jj,jl-1) ) * & |
---|
667 | & ( 2.0 - (Gsum(ji,jj,jl-1) + Gsum(ji,jj,jl) ) * Gstari ) |
---|
668 | ELSEIF (Gsum(ji,jj,jl-1) < rn_gstar) THEN |
---|
669 | athorn(ji,jj,jl) = Gstari * ( rn_gstar - Gsum(ji,jj,jl-1) ) * & |
---|
670 | & ( 2.0 - ( Gsum(ji,jj,jl-1) + rn_gstar ) * Gstari ) |
---|
671 | ELSE |
---|
672 | athorn(ji,jj,jl) = 0.0 |
---|
673 | ENDIF |
---|
674 | END DO |
---|
675 | END DO |
---|
676 | END DO |
---|
677 | |
---|
678 | ELSE !--- Exponential, more stable formulation (Lipscomb et al, 2007) |
---|
679 | ! |
---|
680 | zdummy = 1._wp / ( 1._wp - EXP(-astari) ) ! precompute exponential terms using Gsum as a work array |
---|
681 | DO jl = -1, jpl |
---|
682 | Gsum(:,:,jl) = EXP( -Gsum(:,:,jl) * astari ) * zdummy |
---|
683 | END DO |
---|
684 | DO jl = 0, jpl |
---|
685 | athorn(:,:,jl) = Gsum(:,:,jl-1) - Gsum(:,:,jl) |
---|
686 | END DO |
---|
687 | ! |
---|
688 | ENDIF |
---|
689 | |
---|
690 | IF( ln_rafting ) THEN ! Ridging and rafting ice participation functions |
---|
691 | ! |
---|
692 | DO jl = 1, jpl |
---|
693 | DO jj = 1, jpj |
---|
694 | DO ji = 1, jpi |
---|
695 | IF ( athorn(ji,jj,jl) > 0._wp ) THEN |
---|
696 | !!gm TANH( -X ) = - TANH( X ) so can be computed only 1 time.... |
---|
697 | aridge(ji,jj,jl) = ( TANH ( rn_craft * ( ht_i(ji,jj,jl) - rn_hraft ) ) + 1.0 ) * 0.5 * athorn(ji,jj,jl) |
---|
698 | araft (ji,jj,jl) = ( TANH ( -rn_craft * ( ht_i(ji,jj,jl) - rn_hraft ) ) + 1.0 ) * 0.5 * athorn(ji,jj,jl) |
---|
699 | IF ( araft(ji,jj,jl) < epsi06 ) araft(ji,jj,jl) = 0._wp |
---|
700 | aridge(ji,jj,jl) = MAX( athorn(ji,jj,jl) - araft(ji,jj,jl), 0.0 ) |
---|
701 | ENDIF |
---|
702 | END DO |
---|
703 | END DO |
---|
704 | END DO |
---|
705 | |
---|
706 | ELSE |
---|
707 | ! |
---|
708 | DO jl = 1, jpl |
---|
709 | aridge(:,:,jl) = athorn(:,:,jl) |
---|
710 | END DO |
---|
711 | ! |
---|
712 | ENDIF |
---|
713 | |
---|
714 | IF( ln_rafting ) THEN |
---|
715 | |
---|
716 | IF( MAXVAL(aridge + araft - athorn(:,:,1:jpl)) > epsi10 .AND. lwp ) THEN |
---|
717 | DO jl = 1, jpl |
---|
718 | DO jj = 1, jpj |
---|
719 | DO ji = 1, jpi |
---|
720 | IF ( aridge(ji,jj,jl) + araft(ji,jj,jl) - athorn(ji,jj,jl) > epsi10 ) THEN |
---|
721 | WRITE(numout,*) ' ALERTE 96 : wrong participation function ... ' |
---|
722 | WRITE(numout,*) ' ji, jj, jl : ', ji, jj, jl |
---|
723 | WRITE(numout,*) ' lat, lon : ', gphit(ji,jj), glamt(ji,jj) |
---|
724 | WRITE(numout,*) ' aridge : ', aridge(ji,jj,1:jpl) |
---|
725 | WRITE(numout,*) ' araft : ', araft(ji,jj,1:jpl) |
---|
726 | WRITE(numout,*) ' athorn : ', athorn(ji,jj,1:jpl) |
---|
727 | ENDIF |
---|
728 | END DO |
---|
729 | END DO |
---|
730 | END DO |
---|
731 | ENDIF |
---|
732 | |
---|
733 | ENDIF |
---|
734 | |
---|
735 | !----------------------------------------------------------------- |
---|
736 | ! 2) Transfer function |
---|
737 | !----------------------------------------------------------------- |
---|
738 | ! Compute max and min ridged ice thickness for each ridging category. |
---|
739 | ! Assume ridged ice is uniformly distributed between hrmin and hrmax. |
---|
740 | ! |
---|
741 | ! This parameterization is a modified version of Hibler (1980). |
---|
742 | ! The mean ridging thickness, hrmean, is proportional to hi^(0.5) |
---|
743 | ! and for very thick ridging ice must be >= krdgmin*hi |
---|
744 | ! |
---|
745 | ! The minimum ridging thickness, hrmin, is equal to 2*hi |
---|
746 | ! (i.e., rafting) and for very thick ridging ice is |
---|
747 | ! constrained by hrmin <= (hrmean + hi)/2. |
---|
748 | ! |
---|
749 | ! The maximum ridging thickness, hrmax, is determined by |
---|
750 | ! hrmean and hrmin. |
---|
751 | ! |
---|
752 | ! These modifications have the effect of reducing the ice strength |
---|
753 | ! (relative to the Hibler formulation) when very thick ice is |
---|
754 | ! ridging. |
---|
755 | ! |
---|
756 | ! aksum = net area removed/ total area removed |
---|
757 | ! where total area removed = area of ice that ridges |
---|
758 | ! net area removed = total area removed - area of new ridges |
---|
759 | !----------------------------------------------------------------- |
---|
760 | |
---|
761 | ! Transfer function |
---|
762 | DO jl = 1, jpl !all categories have a specific transfer function |
---|
763 | DO jj = 1, jpj |
---|
764 | DO ji = 1, jpi |
---|
765 | |
---|
766 | IF (a_i(ji,jj,jl) > epsi10 .AND. athorn(ji,jj,jl) > 0.0 ) THEN |
---|
767 | zhi = v_i(ji,jj,jl) / a_i(ji,jj,jl) |
---|
768 | hrmean = MAX(SQRT(rn_hstar*zhi), zhi*krdgmin) |
---|
769 | hrmin(ji,jj,jl) = MIN(2.0*zhi, 0.5*(hrmean + zhi)) |
---|
770 | hrmax(ji,jj,jl) = 2.0*hrmean - hrmin(ji,jj,jl) |
---|
771 | hraft(ji,jj,jl) = kraft*zhi |
---|
772 | krdg(ji,jj,jl) = hrmean / zhi |
---|
773 | ELSE |
---|
774 | hraft(ji,jj,jl) = 0.0 |
---|
775 | hrmin(ji,jj,jl) = 0.0 |
---|
776 | hrmax(ji,jj,jl) = 0.0 |
---|
777 | krdg (ji,jj,jl) = 1.0 |
---|
778 | ENDIF |
---|
779 | |
---|
780 | END DO |
---|
781 | END DO |
---|
782 | END DO |
---|
783 | |
---|
784 | ! Normalization factor : aksum, ensures mass conservation |
---|
785 | aksum(:,:) = athorn(:,:,0) |
---|
786 | DO jl = 1, jpl |
---|
787 | aksum(:,:) = aksum(:,:) + aridge(:,:,jl) * ( 1._wp - 1._wp / krdg(:,:,jl) ) & |
---|
788 | & + araft (:,:,jl) * ( 1._wp - 1._wp / kraft ) |
---|
789 | END DO |
---|
790 | ! |
---|
791 | CALL wrk_dealloc( jpi,jpj, zworka ) |
---|
792 | CALL wrk_dealloc( jpi,jpj,jpl+2, Gsum, kkstart = -1 ) |
---|
793 | ! |
---|
794 | END SUBROUTINE lim_itd_me_ridgeprep |
---|
795 | |
---|
796 | |
---|
797 | SUBROUTINE lim_itd_me_ridgeshift( opning, closing_gross, msnow_mlt, esnow_mlt ) |
---|
798 | !!---------------------------------------------------------------------- |
---|
799 | !! *** ROUTINE lim_itd_me_icestrength *** |
---|
800 | !! |
---|
801 | !! ** Purpose : shift ridging ice among thickness categories of ice thickness |
---|
802 | !! |
---|
803 | !! ** Method : Remove area, volume, and energy from each ridging category |
---|
804 | !! and add to thicker ice categories. |
---|
805 | !!---------------------------------------------------------------------- |
---|
806 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: opning ! rate of opening due to divergence/shear |
---|
807 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: closing_gross ! rate at which area removed, excluding area of new ridges |
---|
808 | REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: msnow_mlt ! mass of snow added to ocean (kg m-2) |
---|
809 | REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: esnow_mlt ! energy needed to melt snow in ocean (J m-2) |
---|
810 | ! |
---|
811 | CHARACTER (len=80) :: fieldid ! field identifier |
---|
812 | LOGICAL, PARAMETER :: l_conservation_check = .true. ! if true, check conservation (useful for debugging) |
---|
813 | ! |
---|
814 | INTEGER :: ji, jj, jl, jl1, jl2, jk ! dummy loop indices |
---|
815 | INTEGER :: ij ! horizontal index, combines i and j loops |
---|
816 | INTEGER :: icells ! number of cells with aicen > puny |
---|
817 | REAL(wp) :: hL, hR, farea, ztmelts ! left and right limits of integration |
---|
818 | |
---|
819 | INTEGER , POINTER, DIMENSION(:) :: indxi, indxj ! compressed indices |
---|
820 | |
---|
821 | REAL(wp), POINTER, DIMENSION(:,:) :: vice_init, vice_final ! ice volume summed over categories |
---|
822 | REAL(wp), POINTER, DIMENSION(:,:) :: eice_init, eice_final ! ice energy summed over layers |
---|
823 | |
---|
824 | REAL(wp), POINTER, DIMENSION(:,:,:) :: aicen_init, vicen_init ! ice area & volume before ridging |
---|
825 | REAL(wp), POINTER, DIMENSION(:,:,:) :: vsnwn_init, esnwn_init ! snow volume & energy before ridging |
---|
826 | REAL(wp), POINTER, DIMENSION(:,:,:) :: smv_i_init, oa_i_init ! ice salinity & age before ridging |
---|
827 | |
---|
828 | REAL(wp), POINTER, DIMENSION(:,:,:,:) :: eicen_init ! ice energy before ridging |
---|
829 | |
---|
830 | REAL(wp), POINTER, DIMENSION(:,:) :: afrac , fvol ! fraction of category area ridged & new ridge volume going to n2 |
---|
831 | REAL(wp), POINTER, DIMENSION(:,:) :: ardg1 , ardg2 ! area of ice ridged & new ridges |
---|
832 | REAL(wp), POINTER, DIMENSION(:,:) :: vsrdg , esrdg ! snow volume & energy of ridging ice |
---|
833 | REAL(wp), POINTER, DIMENSION(:,:) :: dhr , dhr2 ! hrmax - hrmin & hrmax^2 - hrmin^2 |
---|
834 | |
---|
835 | REAL(wp), POINTER, DIMENSION(:,:) :: vrdg1 ! volume of ice ridged |
---|
836 | REAL(wp), POINTER, DIMENSION(:,:) :: vrdg2 ! volume of new ridges |
---|
837 | REAL(wp), POINTER, DIMENSION(:,:) :: vsw ! volume of seawater trapped into ridges |
---|
838 | REAL(wp), POINTER, DIMENSION(:,:) :: srdg1 ! sal*volume of ice ridged |
---|
839 | REAL(wp), POINTER, DIMENSION(:,:) :: srdg2 ! sal*volume of new ridges |
---|
840 | REAL(wp), POINTER, DIMENSION(:,:) :: smsw ! sal*volume of water trapped into ridges |
---|
841 | REAL(wp), POINTER, DIMENSION(:,:) :: oirdg1, oirdg2 ! ice age of ice ridged |
---|
842 | |
---|
843 | REAL(wp), POINTER, DIMENSION(:,:) :: afrft ! fraction of category area rafted |
---|
844 | REAL(wp), POINTER, DIMENSION(:,:) :: arft1 , arft2 ! area of ice rafted and new rafted zone |
---|
845 | REAL(wp), POINTER, DIMENSION(:,:) :: virft , vsrft ! ice & snow volume of rafting ice |
---|
846 | REAL(wp), POINTER, DIMENSION(:,:) :: esrft , smrft ! snow energy & salinity of rafting ice |
---|
847 | REAL(wp), POINTER, DIMENSION(:,:) :: oirft1, oirft2 ! ice age of ice rafted |
---|
848 | |
---|
849 | REAL(wp), POINTER, DIMENSION(:,:,:) :: eirft ! ice energy of rafting ice |
---|
850 | REAL(wp), POINTER, DIMENSION(:,:,:) :: erdg1 ! enth*volume of ice ridged |
---|
851 | REAL(wp), POINTER, DIMENSION(:,:,:) :: erdg2 ! enth*volume of new ridges |
---|
852 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ersw ! enth of water trapped into ridges |
---|
853 | !!---------------------------------------------------------------------- |
---|
854 | |
---|
855 | CALL wrk_alloc( (jpi+1)*(jpj+1), indxi, indxj ) |
---|
856 | CALL wrk_alloc( jpi, jpj, vice_init, vice_final, eice_init, eice_final ) |
---|
857 | CALL wrk_alloc( jpi, jpj, afrac, fvol , ardg1, ardg2, vsrdg, esrdg, dhr, dhr2 ) |
---|
858 | CALL wrk_alloc( jpi, jpj, vrdg1, vrdg2, vsw , srdg1, srdg2, smsw, oirdg1, oirdg2 ) |
---|
859 | CALL wrk_alloc( jpi, jpj, afrft, arft1, arft2, virft, vsrft, esrft, smrft, oirft1, oirft2 ) |
---|
860 | CALL wrk_alloc( jpi, jpj, jpl, aicen_init, vicen_init, vsnwn_init, esnwn_init, smv_i_init, oa_i_init ) |
---|
861 | CALL wrk_alloc( jpi, jpj, nlay_i, eirft, erdg1, erdg2, ersw ) |
---|
862 | CALL wrk_alloc( jpi, jpj, nlay_i, jpl, eicen_init ) |
---|
863 | |
---|
864 | ! Conservation check |
---|
865 | eice_init(:,:) = 0._wp |
---|
866 | |
---|
867 | IF( con_i ) THEN |
---|
868 | CALL lim_column_sum (jpl, v_i, vice_init ) |
---|
869 | CALL lim_column_sum_energy (jpl, nlay_i, e_i, eice_init ) |
---|
870 | DO ji = mi0(iiceprt), mi1(iiceprt) |
---|
871 | DO jj = mj0(jiceprt), mj1(jiceprt) |
---|
872 | WRITE(numout,*) ' vice_init : ', vice_init(ji,jj) |
---|
873 | WRITE(numout,*) ' eice_init : ', eice_init(ji,jj) |
---|
874 | END DO |
---|
875 | END DO |
---|
876 | ENDIF |
---|
877 | |
---|
878 | !------------------------------------------------------------------------------- |
---|
879 | ! 1) Compute change in open water area due to closing and opening. |
---|
880 | !------------------------------------------------------------------------------- |
---|
881 | DO jj = 1, jpj |
---|
882 | DO ji = 1, jpi |
---|
883 | ato_i(ji,jj) = ato_i(ji,jj) - athorn(ji,jj,0) * closing_gross(ji,jj) * rdt_ice & |
---|
884 | & + opning(ji,jj) * rdt_ice |
---|
885 | IF ( ato_i(ji,jj) < -epsi10 ) THEN ! there is a bug |
---|
886 | IF(lwp) WRITE(numout,*) 'Ridging error: ato_i < 0 -- ato_i : ',ato_i(ji,jj) |
---|
887 | ELSEIF( ato_i(ji,jj) < 0._wp ) THEN ! roundoff error |
---|
888 | ato_i(ji,jj) = 0._wp |
---|
889 | ENDIF |
---|
890 | END DO |
---|
891 | END DO |
---|
892 | |
---|
893 | !----------------------------------------------------------------- |
---|
894 | ! 2) Save initial state variables |
---|
895 | !----------------------------------------------------------------- |
---|
896 | aicen_init(:,:,:) = a_i (:,:,:) |
---|
897 | vicen_init(:,:,:) = v_i (:,:,:) |
---|
898 | vsnwn_init(:,:,:) = v_s (:,:,:) |
---|
899 | smv_i_init(:,:,:) = smv_i(:,:,:) |
---|
900 | esnwn_init(:,:,:) = e_s (:,:,1,:) |
---|
901 | eicen_init(:,:,:,:) = e_i (:,:,:,:) |
---|
902 | oa_i_init (:,:,:) = oa_i (:,:,:) |
---|
903 | |
---|
904 | ! |
---|
905 | !----------------------------------------------------------------- |
---|
906 | ! 3) Pump everything from ice which is being ridged / rafted |
---|
907 | !----------------------------------------------------------------- |
---|
908 | ! Compute the area, volume, and energy of ice ridging in each |
---|
909 | ! category, along with the area of the resulting ridge. |
---|
910 | |
---|
911 | DO jl1 = 1, jpl !jl1 describes the ridging category |
---|
912 | |
---|
913 | !------------------------------------------------ |
---|
914 | ! 3.1) Identify grid cells with nonzero ridging |
---|
915 | !------------------------------------------------ |
---|
916 | |
---|
917 | icells = 0 |
---|
918 | DO jj = 1, jpj |
---|
919 | DO ji = 1, jpi |
---|
920 | IF( aicen_init(ji,jj,jl1) > epsi10 .AND. athorn(ji,jj,jl1) > 0._wp & |
---|
921 | & .AND. closing_gross(ji,jj) > 0._wp ) THEN |
---|
922 | icells = icells + 1 |
---|
923 | indxi(icells) = ji |
---|
924 | indxj(icells) = jj |
---|
925 | ENDIF |
---|
926 | END DO |
---|
927 | END DO |
---|
928 | |
---|
929 | DO ij = 1, icells |
---|
930 | ji = indxi(ij) |
---|
931 | jj = indxj(ij) |
---|
932 | |
---|
933 | !-------------------------------------------------------------------- |
---|
934 | ! 3.2) Compute area of ridging ice (ardg1) and of new ridge (ardg2) |
---|
935 | !-------------------------------------------------------------------- |
---|
936 | |
---|
937 | ardg1(ji,jj) = aridge(ji,jj,jl1)*closing_gross(ji,jj)*rdt_ice |
---|
938 | arft1(ji,jj) = araft (ji,jj,jl1)*closing_gross(ji,jj)*rdt_ice |
---|
939 | ardg2(ji,jj) = ardg1(ji,jj) / krdg(ji,jj,jl1) |
---|
940 | arft2(ji,jj) = arft1(ji,jj) / kraft |
---|
941 | |
---|
942 | !--------------------------------------------------------------- |
---|
943 | ! 3.3) Compute ridging /rafting fractions, make sure afrac <=1 |
---|
944 | !--------------------------------------------------------------- |
---|
945 | |
---|
946 | afrac(ji,jj) = ardg1(ji,jj) / aicen_init(ji,jj,jl1) !ridging |
---|
947 | afrft(ji,jj) = arft1(ji,jj) / aicen_init(ji,jj,jl1) !rafting |
---|
948 | |
---|
949 | IF( afrac(ji,jj) > kamax + epsi10 ) THEN ! there is a bug |
---|
950 | IF(lwp) WRITE(numout,*) ' ardg > a_i -- ardg, aicen_init : ', ardg1(ji,jj), aicen_init(ji,jj,jl1) |
---|
951 | ELSEIF( afrac(ji,jj) > kamax ) THEN ! roundoff error |
---|
952 | afrac(ji,jj) = kamax |
---|
953 | ENDIF |
---|
954 | |
---|
955 | IF( afrft(ji,jj) > kamax + epsi10 ) THEN ! there is a bug |
---|
956 | IF(lwp) WRITE(numout,*) ' arft > a_i -- arft, aicen_init : ', arft1(ji,jj), aicen_init(ji,jj,jl1) |
---|
957 | ELSEIF( afrft(ji,jj) > kamax) THEN ! roundoff error |
---|
958 | afrft(ji,jj) = kamax |
---|
959 | ENDIF |
---|
960 | |
---|
961 | !-------------------------------------------------------------------------- |
---|
962 | ! 3.4) Subtract area, volume, and energy from ridging |
---|
963 | ! / rafting category n1. |
---|
964 | !-------------------------------------------------------------------------- |
---|
965 | vrdg1(ji,jj) = vicen_init(ji,jj,jl1) * afrac(ji,jj) |
---|
966 | vrdg2(ji,jj) = vrdg1(ji,jj) * ( 1. + rn_por_rdg ) |
---|
967 | vsw (ji,jj) = vrdg1(ji,jj) * rn_por_rdg |
---|
968 | |
---|
969 | vsrdg (ji,jj) = vsnwn_init(ji,jj,jl1) * afrac(ji,jj) |
---|
970 | esrdg (ji,jj) = esnwn_init(ji,jj,jl1) * afrac(ji,jj) |
---|
971 | srdg1 (ji,jj) = smv_i_init(ji,jj,jl1) * afrac(ji,jj) |
---|
972 | oirdg1(ji,jj) = oa_i_init (ji,jj,jl1) * afrac(ji,jj) |
---|
973 | oirdg2(ji,jj) = oa_i_init (ji,jj,jl1) * afrac(ji,jj) / krdg(ji,jj,jl1) |
---|
974 | |
---|
975 | ! rafting volumes, heat contents ... |
---|
976 | virft (ji,jj) = vicen_init(ji,jj,jl1) * afrft(ji,jj) |
---|
977 | vsrft (ji,jj) = vsnwn_init(ji,jj,jl1) * afrft(ji,jj) |
---|
978 | esrft (ji,jj) = esnwn_init(ji,jj,jl1) * afrft(ji,jj) |
---|
979 | smrft (ji,jj) = smv_i_init(ji,jj,jl1) * afrft(ji,jj) |
---|
980 | oirft1(ji,jj) = oa_i_init (ji,jj,jl1) * afrft(ji,jj) |
---|
981 | oirft2(ji,jj) = oa_i_init (ji,jj,jl1) * afrft(ji,jj) / kraft |
---|
982 | |
---|
983 | ! substract everything |
---|
984 | a_i(ji,jj,jl1) = a_i(ji,jj,jl1) - ardg1 (ji,jj) - arft1 (ji,jj) |
---|
985 | v_i(ji,jj,jl1) = v_i(ji,jj,jl1) - vrdg1 (ji,jj) - virft (ji,jj) |
---|
986 | v_s(ji,jj,jl1) = v_s(ji,jj,jl1) - vsrdg (ji,jj) - vsrft (ji,jj) |
---|
987 | e_s(ji,jj,1,jl1) = e_s(ji,jj,1,jl1) - esrdg (ji,jj) - esrft (ji,jj) |
---|
988 | smv_i(ji,jj,jl1) = smv_i(ji,jj,jl1) - srdg1 (ji,jj) - smrft (ji,jj) |
---|
989 | oa_i(ji,jj,jl1) = oa_i(ji,jj,jl1) - oirdg1(ji,jj) - oirft1(ji,jj) |
---|
990 | |
---|
991 | !----------------------------------------------------------------- |
---|
992 | ! 3.5) Compute properties of new ridges |
---|
993 | !----------------------------------------------------------------- |
---|
994 | !--------- |
---|
995 | ! Salinity |
---|
996 | !--------- |
---|
997 | smsw(ji,jj) = vsw(ji,jj) * sss_m(ji,jj) ! salt content of seawater frozen in voids !! MV HC2014 |
---|
998 | srdg2(ji,jj) = srdg1(ji,jj) + smsw(ji,jj) ! salt content of new ridge |
---|
999 | |
---|
1000 | !srdg2(ji,jj) = MIN( rn_simax * vrdg2(ji,jj) , zsrdg2 ) ! impose a maximum salinity |
---|
1001 | |
---|
1002 | sfx_dyn(ji,jj) = sfx_dyn(ji,jj) - smsw(ji,jj) * rhoic * r1_rdtice |
---|
1003 | wfx_dyn(ji,jj) = wfx_dyn(ji,jj) - vsw (ji,jj) * rhoic * r1_rdtice ! increase in ice volume du to seawater frozen in voids |
---|
1004 | |
---|
1005 | !------------------------------------ |
---|
1006 | ! 3.6 Increment ridging diagnostics |
---|
1007 | !------------------------------------ |
---|
1008 | |
---|
1009 | ! jl1 looping 1-jpl |
---|
1010 | ! ij looping 1-icells |
---|
1011 | |
---|
1012 | dardg1dt (ji,jj) = dardg1dt(ji,jj) + ardg1(ji,jj) + arft1(ji,jj) |
---|
1013 | dardg2dt (ji,jj) = dardg2dt(ji,jj) + ardg2(ji,jj) + arft2(ji,jj) |
---|
1014 | opening (ji,jj) = opening (ji,jj) + opning(ji,jj) * rdt_ice |
---|
1015 | |
---|
1016 | IF( con_i ) vice_init(ji,jj) = vice_init(ji,jj) + vrdg2(ji,jj) - vrdg1(ji,jj) |
---|
1017 | |
---|
1018 | !------------------------------------------ |
---|
1019 | ! 3.7 Put the snow somewhere in the ocean |
---|
1020 | !------------------------------------------ |
---|
1021 | ! Place part of the snow lost by ridging into the ocean. |
---|
1022 | ! Note that esnow_mlt < 0; the ocean must cool to melt snow. |
---|
1023 | ! If the ocean temp = Tf already, new ice must grow. |
---|
1024 | ! During the next time step, thermo_rates will determine whether |
---|
1025 | ! the ocean cools or new ice grows. |
---|
1026 | ! jl1 looping 1-jpl |
---|
1027 | ! ij looping 1-icells |
---|
1028 | |
---|
1029 | msnow_mlt(ji,jj) = msnow_mlt(ji,jj) + rhosn*vsrdg(ji,jj)*(1.0-rn_fsnowrdg) & ! rafting included |
---|
1030 | & + rhosn*vsrft(ji,jj)*(1.0-rn_fsnowrft) |
---|
1031 | |
---|
1032 | ! in J/m2 (same as e_s) |
---|
1033 | esnow_mlt(ji,jj) = esnow_mlt(ji,jj) - esrdg(ji,jj)*(1.0-rn_fsnowrdg) & !rafting included |
---|
1034 | & - esrft(ji,jj)*(1.0-rn_fsnowrft) |
---|
1035 | |
---|
1036 | !----------------------------------------------------------------- |
---|
1037 | ! 3.8 Compute quantities used to apportion ice among categories |
---|
1038 | ! in the n2 loop below |
---|
1039 | !----------------------------------------------------------------- |
---|
1040 | |
---|
1041 | ! jl1 looping 1-jpl |
---|
1042 | ! ij looping 1-icells |
---|
1043 | |
---|
1044 | dhr (ji,jj) = hrmax(ji,jj,jl1) - hrmin(ji,jj,jl1) |
---|
1045 | dhr2(ji,jj) = hrmax(ji,jj,jl1) * hrmax(ji,jj,jl1) - hrmin(ji,jj,jl1) * hrmin(ji,jj,jl1) |
---|
1046 | |
---|
1047 | END DO |
---|
1048 | |
---|
1049 | !-------------------------------------------------------------------- |
---|
1050 | ! 3.9 Compute ridging ice enthalpy, remove it from ridging ice and |
---|
1051 | ! compute ridged ice enthalpy |
---|
1052 | !-------------------------------------------------------------------- |
---|
1053 | DO jk = 1, nlay_i |
---|
1054 | DO ij = 1, icells |
---|
1055 | ji = indxi(ij) |
---|
1056 | jj = indxj(ij) |
---|
1057 | ! heat content of ridged ice |
---|
1058 | erdg1(ji,jj,jk) = eicen_init(ji,jj,jk,jl1) * afrac(ji,jj) |
---|
1059 | eirft(ji,jj,jk) = eicen_init(ji,jj,jk,jl1) * afrft(ji,jj) |
---|
1060 | e_i (ji,jj,jk,jl1) = e_i(ji,jj,jk,jl1) - erdg1(ji,jj,jk) - eirft(ji,jj,jk) |
---|
1061 | |
---|
1062 | |
---|
1063 | ! enthalpy of the trapped seawater (J/m2, >0) |
---|
1064 | ! clem: if sst>0, then ersw <0 (is that possible?) |
---|
1065 | ersw(ji,jj,jk) = - rhoic * vsw(ji,jj) * rcp * sst_m(ji,jj) * r1_nlay_i |
---|
1066 | |
---|
1067 | ! heat flux to the ocean |
---|
1068 | hfx_dyn(ji,jj) = hfx_dyn(ji,jj) + ersw(ji,jj,jk) * r1_rdtice ! > 0 [W.m-2] ocean->ice flux |
---|
1069 | |
---|
1070 | ! it is added to sea ice because the sign convention is the opposite of the sign convention for the ocean |
---|
1071 | erdg2(ji,jj,jk) = erdg1(ji,jj,jk) + ersw(ji,jj,jk) |
---|
1072 | |
---|
1073 | END DO |
---|
1074 | END DO |
---|
1075 | |
---|
1076 | |
---|
1077 | IF( con_i ) THEN |
---|
1078 | DO jk = 1, nlay_i |
---|
1079 | DO ij = 1, icells |
---|
1080 | ji = indxi(ij) |
---|
1081 | jj = indxj(ij) |
---|
1082 | eice_init(ji,jj) = eice_init(ji,jj) + erdg2(ji,jj,jk) - erdg1(ji,jj,jk) |
---|
1083 | END DO |
---|
1084 | END DO |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | !------------------------------------------------------------------------------- |
---|
1088 | ! 4) Add area, volume, and energy of new ridge to each category jl2 |
---|
1089 | !------------------------------------------------------------------------------- |
---|
1090 | ! jl1 looping 1-jpl |
---|
1091 | DO jl2 = 1, jpl |
---|
1092 | ! over categories to which ridged ice is transferred |
---|
1093 | DO ij = 1, icells |
---|
1094 | ji = indxi(ij) |
---|
1095 | jj = indxj(ij) |
---|
1096 | |
---|
1097 | ! Compute the fraction of ridged ice area and volume going to |
---|
1098 | ! thickness category jl2. |
---|
1099 | ! Transfer area, volume, and energy accordingly. |
---|
1100 | |
---|
1101 | IF( hrmin(ji,jj,jl1) >= hi_max(jl2) .OR. hrmax(ji,jj,jl1) <= hi_max(jl2-1) ) THEN |
---|
1102 | hL = 0._wp |
---|
1103 | hR = 0._wp |
---|
1104 | ELSE |
---|
1105 | hL = MAX( hrmin(ji,jj,jl1), hi_max(jl2-1) ) |
---|
1106 | hR = MIN( hrmax(ji,jj,jl1), hi_max(jl2) ) |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | ! fraction of ridged ice area and volume going to n2 |
---|
1110 | farea = ( hR - hL ) / dhr(ji,jj) |
---|
1111 | fvol(ji,jj) = ( hR*hR - hL*hL ) / dhr2(ji,jj) |
---|
1112 | |
---|
1113 | a_i (ji,jj ,jl2) = a_i (ji,jj ,jl2) + ardg2 (ji,jj) * farea |
---|
1114 | v_i (ji,jj ,jl2) = v_i (ji,jj ,jl2) + vrdg2 (ji,jj) * fvol(ji,jj) |
---|
1115 | v_s (ji,jj ,jl2) = v_s (ji,jj ,jl2) + vsrdg (ji,jj) * fvol(ji,jj) * rn_fsnowrdg |
---|
1116 | e_s (ji,jj,1,jl2) = e_s (ji,jj,1,jl2) + esrdg (ji,jj) * fvol(ji,jj) * rn_fsnowrdg |
---|
1117 | smv_i(ji,jj ,jl2) = smv_i(ji,jj ,jl2) + srdg2 (ji,jj) * fvol(ji,jj) |
---|
1118 | oa_i (ji,jj ,jl2) = oa_i (ji,jj ,jl2) + oirdg2(ji,jj) * farea |
---|
1119 | |
---|
1120 | END DO |
---|
1121 | |
---|
1122 | ! Transfer ice energy to category jl2 by ridging |
---|
1123 | DO jk = 1, nlay_i |
---|
1124 | DO ij = 1, icells |
---|
1125 | ji = indxi(ij) |
---|
1126 | jj = indxj(ij) |
---|
1127 | e_i(ji,jj,jk,jl2) = e_i(ji,jj,jk,jl2) + fvol(ji,jj) * erdg2(ji,jj,jk) |
---|
1128 | END DO |
---|
1129 | END DO |
---|
1130 | ! |
---|
1131 | END DO ! jl2 (new ridges) |
---|
1132 | |
---|
1133 | DO jl2 = 1, jpl |
---|
1134 | |
---|
1135 | DO ij = 1, icells |
---|
1136 | ji = indxi(ij) |
---|
1137 | jj = indxj(ij) |
---|
1138 | ! Compute the fraction of rafted ice area and volume going to |
---|
1139 | ! thickness category jl2, transfer area, volume, and energy accordingly. |
---|
1140 | ! |
---|
1141 | IF( hraft(ji,jj,jl1) <= hi_max(jl2) .AND. hraft(ji,jj,jl1) > hi_max(jl2-1) ) THEN |
---|
1142 | a_i (ji,jj ,jl2) = a_i (ji,jj ,jl2) + arft2 (ji,jj) |
---|
1143 | v_i (ji,jj ,jl2) = v_i (ji,jj ,jl2) + virft (ji,jj) |
---|
1144 | v_s (ji,jj ,jl2) = v_s (ji,jj ,jl2) + vsrft (ji,jj) * rn_fsnowrft |
---|
1145 | e_s (ji,jj,1,jl2) = e_s (ji,jj,1,jl2) + esrft (ji,jj) * rn_fsnowrft |
---|
1146 | smv_i(ji,jj ,jl2) = smv_i(ji,jj ,jl2) + smrft (ji,jj) |
---|
1147 | oa_i (ji,jj ,jl2) = oa_i (ji,jj ,jl2) + oirft2(ji,jj) |
---|
1148 | ENDIF |
---|
1149 | ! |
---|
1150 | END DO |
---|
1151 | |
---|
1152 | ! Transfer rafted ice energy to category jl2 |
---|
1153 | DO jk = 1, nlay_i |
---|
1154 | DO ij = 1, icells |
---|
1155 | ji = indxi(ij) |
---|
1156 | jj = indxj(ij) |
---|
1157 | IF( hraft(ji,jj,jl1) <= hi_max(jl2) .AND. hraft(ji,jj,jl1) > hi_max(jl2-1) ) THEN |
---|
1158 | e_i(ji,jj,jk,jl2) = e_i(ji,jj,jk,jl2) + eirft(ji,jj,jk) |
---|
1159 | ENDIF |
---|
1160 | END DO |
---|
1161 | END DO |
---|
1162 | |
---|
1163 | END DO |
---|
1164 | |
---|
1165 | END DO ! jl1 (deforming categories) |
---|
1166 | |
---|
1167 | ! Conservation check |
---|
1168 | IF ( con_i ) THEN |
---|
1169 | CALL lim_column_sum (jpl, v_i, vice_final) |
---|
1170 | fieldid = ' v_i : limitd_me ' |
---|
1171 | CALL lim_cons_check (vice_init, vice_final, 1.0e-6, fieldid) |
---|
1172 | |
---|
1173 | CALL lim_column_sum_energy (jpl, nlay_i, e_i, eice_final ) |
---|
1174 | fieldid = ' e_i : limitd_me ' |
---|
1175 | CALL lim_cons_check (eice_init, eice_final, 1.0e-2, fieldid) |
---|
1176 | |
---|
1177 | DO ji = mi0(iiceprt), mi1(iiceprt) |
---|
1178 | DO jj = mj0(jiceprt), mj1(jiceprt) |
---|
1179 | WRITE(numout,*) ' vice_init : ', vice_init (ji,jj) |
---|
1180 | WRITE(numout,*) ' vice_final : ', vice_final(ji,jj) |
---|
1181 | WRITE(numout,*) ' eice_init : ', eice_init (ji,jj) |
---|
1182 | WRITE(numout,*) ' eice_final : ', eice_final(ji,jj) |
---|
1183 | END DO |
---|
1184 | END DO |
---|
1185 | ENDIF |
---|
1186 | ! |
---|
1187 | CALL wrk_dealloc( (jpi+1)*(jpj+1), indxi, indxj ) |
---|
1188 | CALL wrk_dealloc( jpi, jpj, vice_init, vice_final, eice_init, eice_final ) |
---|
1189 | CALL wrk_dealloc( jpi, jpj, afrac, fvol , ardg1, ardg2, vsrdg, esrdg, dhr, dhr2 ) |
---|
1190 | CALL wrk_dealloc( jpi, jpj, vrdg1, vrdg2, vsw , srdg1, srdg2, smsw, oirdg1, oirdg2 ) |
---|
1191 | CALL wrk_dealloc( jpi, jpj, afrft, arft1, arft2, virft, vsrft, esrft, smrft, oirft1, oirft2 ) |
---|
1192 | CALL wrk_dealloc( jpi, jpj, jpl, aicen_init, vicen_init, vsnwn_init, esnwn_init, smv_i_init, oa_i_init ) |
---|
1193 | CALL wrk_dealloc( jpi, jpj, nlay_i, eirft, erdg1, erdg2, ersw ) |
---|
1194 | CALL wrk_dealloc( jpi, jpj, nlay_i, jpl, eicen_init ) |
---|
1195 | ! |
---|
1196 | END SUBROUTINE lim_itd_me_ridgeshift |
---|
1197 | |
---|
1198 | SUBROUTINE lim_itd_me_init |
---|
1199 | !!------------------------------------------------------------------- |
---|
1200 | !! *** ROUTINE lim_itd_me_init *** |
---|
1201 | !! |
---|
1202 | !! ** Purpose : Physical constants and parameters linked |
---|
1203 | !! to the mechanical ice redistribution |
---|
1204 | !! |
---|
1205 | !! ** Method : Read the namiceitdme namelist |
---|
1206 | !! and check the parameters values |
---|
1207 | !! called at the first timestep (nit000) |
---|
1208 | !! |
---|
1209 | !! ** input : Namelist namiceitdme |
---|
1210 | !!------------------------------------------------------------------- |
---|
1211 | INTEGER :: ios ! Local integer output status for namelist read |
---|
1212 | NAMELIST/namiceitdme/ rn_cs, rn_fsnowrdg, rn_fsnowrft, & |
---|
1213 | & rn_gstar, rn_astar, rn_hstar, ln_rafting, rn_hraft, rn_craft, rn_por_rdg, & |
---|
1214 | & nn_partfun |
---|
1215 | !!------------------------------------------------------------------- |
---|
1216 | ! |
---|
1217 | REWIND( numnam_ice_ref ) ! Namelist namicetdme in reference namelist : Ice mechanical ice redistribution |
---|
1218 | READ ( numnam_ice_ref, namiceitdme, IOSTAT = ios, ERR = 901) |
---|
1219 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceitdme in reference namelist', lwp ) |
---|
1220 | |
---|
1221 | REWIND( numnam_ice_cfg ) ! Namelist namiceitdme in configuration namelist : Ice mechanical ice redistribution |
---|
1222 | READ ( numnam_ice_cfg, namiceitdme, IOSTAT = ios, ERR = 902 ) |
---|
1223 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namiceitdme in configuration namelist', lwp ) |
---|
1224 | IF(lwm) WRITE ( numoni, namiceitdme ) |
---|
1225 | ! |
---|
1226 | IF (lwp) THEN ! control print |
---|
1227 | WRITE(numout,*) |
---|
1228 | WRITE(numout,*)' lim_itd_me_init : ice parameters for mechanical ice redistribution ' |
---|
1229 | WRITE(numout,*)' ~~~~~~~~~~~~~~~' |
---|
1230 | WRITE(numout,*)' Fraction of shear energy contributing to ridging rn_cs = ', rn_cs |
---|
1231 | WRITE(numout,*)' Fraction of snow volume conserved during ridging rn_fsnowrdg = ', rn_fsnowrdg |
---|
1232 | WRITE(numout,*)' Fraction of snow volume conserved during ridging rn_fsnowrft = ', rn_fsnowrft |
---|
1233 | WRITE(numout,*)' Fraction of total ice coverage contributing to ridging rn_gstar = ', rn_gstar |
---|
1234 | WRITE(numout,*)' Equivalent to G* for an exponential part function rn_astar = ', rn_astar |
---|
1235 | WRITE(numout,*)' Quantity playing a role in max ridged ice thickness rn_hstar = ', rn_hstar |
---|
1236 | WRITE(numout,*)' Rafting of ice sheets or not ln_rafting = ', ln_rafting |
---|
1237 | WRITE(numout,*)' Parmeter thickness (threshold between ridge-raft) rn_hraft = ', rn_hraft |
---|
1238 | WRITE(numout,*)' Rafting hyperbolic tangent coefficient rn_craft = ', rn_craft |
---|
1239 | WRITE(numout,*)' Initial porosity of ridges rn_por_rdg = ', rn_por_rdg |
---|
1240 | WRITE(numout,*)' Switch for part. function (0) linear (1) exponential nn_partfun = ', nn_partfun |
---|
1241 | ENDIF |
---|
1242 | ! |
---|
1243 | END SUBROUTINE lim_itd_me_init |
---|
1244 | |
---|
1245 | #else |
---|
1246 | !!---------------------------------------------------------------------- |
---|
1247 | !! Default option Empty module NO LIM-3 sea-ice model |
---|
1248 | !!---------------------------------------------------------------------- |
---|
1249 | CONTAINS |
---|
1250 | SUBROUTINE lim_itd_me ! Empty routines |
---|
1251 | END SUBROUTINE lim_itd_me |
---|
1252 | SUBROUTINE lim_itd_me_icestrength |
---|
1253 | END SUBROUTINE lim_itd_me_icestrength |
---|
1254 | SUBROUTINE lim_itd_me_init |
---|
1255 | END SUBROUTINE lim_itd_me_init |
---|
1256 | #endif |
---|
1257 | !!====================================================================== |
---|
1258 | END MODULE limitd_me |
---|