1 | MODULE dynzdf_imp |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE dynzdf_imp *** |
---|
4 | !! Ocean dynamics: vertical component(s) of the momentum mixing trend, implicit scheme |
---|
5 | !!====================================================================== |
---|
6 | !! History : OPA ! 1990-10 (B. Blanke) Original code |
---|
7 | !! 8.0 ! 1997-05 (G. Madec) vertical component of isopycnal |
---|
8 | !! NEMO 0.5 ! 2002-08 (G. Madec) F90: Free form and module |
---|
9 | !! 3.3 ! 2010-04 (M. Leclair, G. Madec) Forcing averaged over 2 time steps |
---|
10 | !! 3.4 ! 2012-01 (H. Liu) Semi-implicit bottom friction |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! dyn_zdf_imp : compute the vertical diffusion using a implicit scheme |
---|
15 | !! together with the Leap-Frog time integration. |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE oce ! ocean dynamics and tracers |
---|
18 | USE phycst ! physical constants |
---|
19 | USE dom_oce ! ocean space and time domain |
---|
20 | USE domvvl ! variable volume |
---|
21 | USE sbc_oce ! surface boundary condition: ocean |
---|
22 | USE dynadv , ONLY: ln_dynadv_vec ! Momentum advection form |
---|
23 | USE zdf_oce ! ocean vertical physics |
---|
24 | USE zdfbfr ! Bottom friction setup |
---|
25 | ! |
---|
26 | USE in_out_manager ! I/O manager |
---|
27 | USE lib_mpp ! MPP library |
---|
28 | USE wrk_nemo ! Memory Allocation |
---|
29 | USE timing ! Timing |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | PRIVATE |
---|
33 | |
---|
34 | PUBLIC dyn_zdf_imp ! called by step.F90 |
---|
35 | |
---|
36 | REAL(wp) :: r_vvl ! non-linear free surface indicator: =0 if ln_linssh=T, =1 otherwise |
---|
37 | |
---|
38 | !! * Substitutions |
---|
39 | # include "vectopt_loop_substitute.h90" |
---|
40 | !!---------------------------------------------------------------------- |
---|
41 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
42 | !! $Id$ |
---|
43 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
44 | !!---------------------------------------------------------------------- |
---|
45 | CONTAINS |
---|
46 | |
---|
47 | SUBROUTINE dyn_zdf_imp( kt, p2dt ) |
---|
48 | !!---------------------------------------------------------------------- |
---|
49 | !! *** ROUTINE dyn_zdf_imp *** |
---|
50 | !! |
---|
51 | !! ** Purpose : Compute the trend due to the vert. momentum diffusion |
---|
52 | !! together with the Leap-Frog time stepping using an |
---|
53 | !! implicit scheme. |
---|
54 | !! |
---|
55 | !! ** Method : - Leap-Frog time stepping on all trends but the vertical mixing |
---|
56 | !! ua = ub + 2*dt * ua vector form or linear free surf. |
---|
57 | !! ua = ( e3u_b*ub + 2*dt * e3u_n*ua ) / e3u_a otherwise |
---|
58 | !! - update the after velocity with the implicit vertical mixing. |
---|
59 | !! This requires to solver the following system: |
---|
60 | !! ua = ua + 1/e3u_a dk+1[ avmu / e3uw_a dk[ua] ] |
---|
61 | !! with the following surface/top/bottom boundary condition: |
---|
62 | !! surface: wind stress input (averaged over kt-1/2 & kt+1/2) |
---|
63 | !! top & bottom : top stress (iceshelf-ocean) & bottom stress (cf zdfbfr.F) |
---|
64 | !! |
---|
65 | !! ** Action : (ua,va) after velocity |
---|
66 | !!--------------------------------------------------------------------- |
---|
67 | INTEGER , INTENT(in) :: kt ! ocean time-step index |
---|
68 | REAL(wp), INTENT(in) :: p2dt ! vertical profile of tracer time-step |
---|
69 | ! |
---|
70 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
71 | INTEGER :: ikbu, ikbv ! local integers |
---|
72 | REAL(wp) :: zzwi, ze3ua ! local scalars |
---|
73 | REAL(wp) :: zzws, ze3va ! - - |
---|
74 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zwi, zwd, zws |
---|
75 | !!---------------------------------------------------------------------- |
---|
76 | ! |
---|
77 | IF( nn_timing == 1 ) CALL timing_start('dyn_zdf_imp') |
---|
78 | ! |
---|
79 | CALL wrk_alloc( jpi,jpj,jpk, zwi, zwd, zws ) |
---|
80 | ! |
---|
81 | IF( kt == nit000 ) THEN |
---|
82 | IF(lwp) WRITE(numout,*) |
---|
83 | IF(lwp) WRITE(numout,*) 'dyn_zdf_imp : vertical momentum diffusion implicit operator' |
---|
84 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ ' |
---|
85 | ! |
---|
86 | If( ln_linssh ) THEN ; r_vvl = 0._wp ! non-linear free surface indicator |
---|
87 | ELSE ; r_vvl = 1._wp |
---|
88 | ENDIF |
---|
89 | ENDIF |
---|
90 | ! |
---|
91 | ! !== Time step dynamics ==! |
---|
92 | ! |
---|
93 | IF( ln_dynadv_vec .OR. ln_linssh ) THEN ! applied on velocity |
---|
94 | DO jk = 1, jpkm1 |
---|
95 | ua(:,:,jk) = ( ub(:,:,jk) + p2dt * ua(:,:,jk) ) * umask(:,:,jk) |
---|
96 | va(:,:,jk) = ( vb(:,:,jk) + p2dt * va(:,:,jk) ) * vmask(:,:,jk) |
---|
97 | END DO |
---|
98 | ELSE ! applied on thickness weighted velocity |
---|
99 | DO jk = 1, jpkm1 |
---|
100 | ua(:,:,jk) = ( e3u_b(:,:,jk) * ub(:,:,jk) & |
---|
101 | & + p2dt * e3u_n(:,:,jk) * ua(:,:,jk) ) / e3u_a(:,:,jk) * umask(:,:,jk) |
---|
102 | va(:,:,jk) = ( e3v_b(:,:,jk) * vb(:,:,jk) & |
---|
103 | & + p2dt * e3v_n(:,:,jk) * va(:,:,jk) ) / e3v_a(:,:,jk) * vmask(:,:,jk) |
---|
104 | END DO |
---|
105 | ENDIF |
---|
106 | ! |
---|
107 | ! !== Apply semi-implicit bottom friction ==! |
---|
108 | ! |
---|
109 | ! Only needed for semi-implicit bottom friction setup. The explicit |
---|
110 | ! bottom friction has been included in "u(v)a" which act as the R.H.S |
---|
111 | ! column vector of the tri-diagonal matrix equation |
---|
112 | ! |
---|
113 | IF( ln_bfrimp ) THEN |
---|
114 | DO jj = 2, jpjm1 |
---|
115 | DO ji = 2, jpim1 |
---|
116 | ikbu = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
117 | ikbv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
118 | avmu(ji,jj,ikbu+1) = -bfrua(ji,jj) * e3uw_n(ji,jj,ikbu+1) |
---|
119 | avmv(ji,jj,ikbv+1) = -bfrva(ji,jj) * e3vw_n(ji,jj,ikbv+1) |
---|
120 | END DO |
---|
121 | END DO |
---|
122 | IF ( ln_isfcav ) THEN |
---|
123 | DO jj = 2, jpjm1 |
---|
124 | DO ji = 2, jpim1 |
---|
125 | ikbu = miku(ji,jj) ! ocean top level at u- and v-points |
---|
126 | ikbv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
127 | IF( ikbu >= 2 ) avmu(ji,jj,ikbu) = -tfrua(ji,jj) * e3uw_n(ji,jj,ikbu) |
---|
128 | IF( ikbv >= 2 ) avmv(ji,jj,ikbv) = -tfrva(ji,jj) * e3vw_n(ji,jj,ikbv) |
---|
129 | END DO |
---|
130 | END DO |
---|
131 | END IF |
---|
132 | ENDIF |
---|
133 | ! |
---|
134 | ! With split-explicit free surface, barotropic stress is treated explicitly |
---|
135 | ! Update velocities at the bottom. |
---|
136 | ! J. Chanut: The bottom stress is computed considering after barotropic velocities, which does |
---|
137 | ! not lead to the effective stress seen over the whole barotropic loop. |
---|
138 | ! G. Madec : in linear free surface, e3u_a = e3u_n = e3u_0, so systematic use of e3u_a |
---|
139 | IF( ln_bfrimp .AND. ln_dynspg_ts ) THEN |
---|
140 | DO jk = 1, jpkm1 ! remove barotropic velocities |
---|
141 | ua(:,:,jk) = ( ua(:,:,jk) - ua_b(:,:) ) * umask(:,:,jk) |
---|
142 | va(:,:,jk) = ( va(:,:,jk) - va_b(:,:) ) * vmask(:,:,jk) |
---|
143 | END DO |
---|
144 | DO jj = 2, jpjm1 ! Add bottom/top stress due to barotropic component only |
---|
145 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
146 | ikbu = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
147 | ikbv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
148 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,ikbu) + r_vvl * e3u_a(ji,jj,ikbu) |
---|
149 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikbv) + r_vvl * e3v_a(ji,jj,ikbv) |
---|
150 | ua(ji,jj,ikbu) = ua(ji,jj,ikbu) + p2dt * bfrua(ji,jj) * ua_b(ji,jj) / ze3ua |
---|
151 | va(ji,jj,ikbv) = va(ji,jj,ikbv) + p2dt * bfrva(ji,jj) * va_b(ji,jj) / ze3va |
---|
152 | END DO |
---|
153 | END DO |
---|
154 | IF( ln_isfcav ) THEN ! Ocean cavities (ISF) |
---|
155 | DO jj = 2, jpjm1 |
---|
156 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
157 | ikbu = miku(ji,jj) ! top ocean level at u- and v-points |
---|
158 | ikbv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
159 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,ikbu) + r_vvl * e3u_a(ji,jj,ikbu) |
---|
160 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,ikbv) + r_vvl * e3v_a(ji,jj,ikbv) |
---|
161 | ua(ji,jj,ikbu) = ua(ji,jj,ikbu) + p2dt * tfrua(ji,jj) * ua_b(ji,jj) / ze3ua |
---|
162 | va(ji,jj,ikbv) = va(ji,jj,ikbv) + p2dt * tfrva(ji,jj) * va_b(ji,jj) / ze3va |
---|
163 | END DO |
---|
164 | END DO |
---|
165 | END IF |
---|
166 | ENDIF |
---|
167 | ! |
---|
168 | ! !== Vertical diffusion on u ==! |
---|
169 | ! |
---|
170 | ! Matrix and second member construction |
---|
171 | ! bottom boundary condition: both zwi and zws must be masked as avmu can take |
---|
172 | ! non zero value at the ocean bottom depending on the bottom friction used. |
---|
173 | ! |
---|
174 | DO jk = 1, jpkm1 ! Matrix |
---|
175 | DO jj = 2, jpjm1 |
---|
176 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
177 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,jk) + r_vvl * e3u_a(ji,jj,jk) ! after scale factor at T-point |
---|
178 | zzwi = - p2dt * avmu(ji,jj,jk ) / ( ze3ua * e3uw_n(ji,jj,jk ) ) |
---|
179 | zzws = - p2dt * avmu(ji,jj,jk+1) / ( ze3ua * e3uw_n(ji,jj,jk+1) ) |
---|
180 | zwi(ji,jj,jk) = zzwi * wumask(ji,jj,jk ) |
---|
181 | zws(ji,jj,jk) = zzws * wumask(ji,jj,jk+1) |
---|
182 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | DO jj = 2, jpjm1 ! Surface boundary conditions |
---|
187 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
188 | zwi(ji,jj,1) = 0._wp |
---|
189 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
190 | END DO |
---|
191 | END DO |
---|
192 | |
---|
193 | ! Matrix inversion starting from the first level |
---|
194 | !----------------------------------------------------------------------- |
---|
195 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
196 | ! |
---|
197 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
198 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
199 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
200 | ! ( ... )( ... ) ( ... ) |
---|
201 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
202 | ! |
---|
203 | ! m is decomposed in the product of an upper and a lower triangular matrix |
---|
204 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
205 | ! The solution (the after velocity) is in ua |
---|
206 | !----------------------------------------------------------------------- |
---|
207 | ! |
---|
208 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
209 | DO jj = 2, jpjm1 |
---|
210 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
211 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
212 | END DO |
---|
213 | END DO |
---|
214 | END DO |
---|
215 | ! |
---|
216 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 ==! |
---|
217 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
218 | ze3ua = ( 1._wp - r_vvl ) * e3u_n(ji,jj,1) + r_vvl * e3u_a(ji,jj,1) |
---|
219 | ua(ji,jj,1) = ua(ji,jj,1) + p2dt * 0.5_wp * ( utau_b(ji,jj) + utau(ji,jj) ) & |
---|
220 | & / ( ze3ua * rau0 ) * umask(ji,jj,1) |
---|
221 | END DO |
---|
222 | END DO |
---|
223 | DO jk = 2, jpkm1 |
---|
224 | DO jj = 2, jpjm1 |
---|
225 | DO ji = fs_2, fs_jpim1 |
---|
226 | ua(ji,jj,jk) = ua(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * ua(ji,jj,jk-1) |
---|
227 | END DO |
---|
228 | END DO |
---|
229 | END DO |
---|
230 | ! |
---|
231 | DO jj = 2, jpjm1 !== thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk ==! |
---|
232 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
233 | ua(ji,jj,jpkm1) = ua(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
234 | END DO |
---|
235 | END DO |
---|
236 | DO jk = jpk-2, 1, -1 |
---|
237 | DO jj = 2, jpjm1 |
---|
238 | DO ji = fs_2, fs_jpim1 |
---|
239 | ua(ji,jj,jk) = ( ua(ji,jj,jk) - zws(ji,jj,jk) * ua(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | ! |
---|
244 | ! !== Vertical diffusion on v ==! |
---|
245 | ! |
---|
246 | ! Matrix and second member construction |
---|
247 | ! bottom boundary condition: both zwi and zws must be masked as avmv can take |
---|
248 | ! non zero value at the ocean bottom depending on the bottom friction used |
---|
249 | ! |
---|
250 | DO jk = 1, jpkm1 ! Matrix |
---|
251 | DO jj = 2, jpjm1 |
---|
252 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
253 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,jk) + r_vvl * e3v_a(ji,jj,jk) ! after scale factor at T-point |
---|
254 | zzwi = - p2dt * avmv (ji,jj,jk ) / ( ze3va * e3vw_n(ji,jj,jk ) ) |
---|
255 | zzws = - p2dt * avmv (ji,jj,jk+1) / ( ze3va * e3vw_n(ji,jj,jk+1) ) |
---|
256 | zwi(ji,jj,jk) = zzwi * wvmask(ji,jj,jk ) |
---|
257 | zws(ji,jj,jk) = zzws * wvmask(ji,jj,jk+1) |
---|
258 | zwd(ji,jj,jk) = 1._wp - zzwi - zzws |
---|
259 | END DO |
---|
260 | END DO |
---|
261 | END DO |
---|
262 | DO jj = 2, jpjm1 ! Surface boundary conditions |
---|
263 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
264 | zwi(ji,jj,1) = 0._wp |
---|
265 | zwd(ji,jj,1) = 1._wp - zws(ji,jj,1) |
---|
266 | END DO |
---|
267 | END DO |
---|
268 | |
---|
269 | ! Matrix inversion |
---|
270 | !----------------------------------------------------------------------- |
---|
271 | ! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk ) |
---|
272 | ! |
---|
273 | ! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 ) |
---|
274 | ! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 ) |
---|
275 | ! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 ) |
---|
276 | ! ( ... )( ... ) ( ... ) |
---|
277 | ! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk ) |
---|
278 | ! |
---|
279 | ! m is decomposed in the product of an upper and lower triangular matrix |
---|
280 | ! The 3 diagonal terms are in 2d arrays: zwd, zws, zwi |
---|
281 | ! The solution (after velocity) is in 2d array va |
---|
282 | !----------------------------------------------------------------------- |
---|
283 | ! |
---|
284 | DO jk = 2, jpkm1 !== First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1 (increasing k) == |
---|
285 | DO jj = 2, jpjm1 |
---|
286 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
287 | zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1) |
---|
288 | END DO |
---|
289 | END DO |
---|
290 | END DO |
---|
291 | ! |
---|
292 | DO jj = 2, jpjm1 !== second recurrence: SOLk = RHSk - Lk / Dk-1 Lk-1 ==! |
---|
293 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
294 | ze3va = ( 1._wp - r_vvl ) * e3v_n(ji,jj,1) + r_vvl * e3v_a(ji,jj,1) |
---|
295 | va(ji,jj,1) = va(ji,jj,1) + p2dt * 0.5_wp * ( vtau_b(ji,jj) + vtau(ji,jj) ) & |
---|
296 | & / ( ze3va * rau0 ) * vmask(ji,jj,1) |
---|
297 | END DO |
---|
298 | END DO |
---|
299 | DO jk = 2, jpkm1 |
---|
300 | DO jj = 2, jpjm1 |
---|
301 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
302 | va(ji,jj,jk) = va(ji,jj,jk) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * va(ji,jj,jk-1) |
---|
303 | END DO |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | ! |
---|
307 | DO jj = 2, jpjm1 !== third recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk ==! |
---|
308 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
309 | va(ji,jj,jpkm1) = va(ji,jj,jpkm1) / zwd(ji,jj,jpkm1) |
---|
310 | END DO |
---|
311 | END DO |
---|
312 | DO jk = jpk-2, 1, -1 |
---|
313 | DO jj = 2, jpjm1 |
---|
314 | DO ji = fs_2, fs_jpim1 |
---|
315 | va(ji,jj,jk) = ( va(ji,jj,jk) - zws(ji,jj,jk) * va(ji,jj,jk+1) ) / zwd(ji,jj,jk) |
---|
316 | END DO |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | |
---|
320 | ! J. Chanut: Lines below are useless ? |
---|
321 | !! restore bottom layer avmu(v) |
---|
322 | !!gm I almost sure it is !!!! |
---|
323 | IF( ln_bfrimp ) THEN |
---|
324 | DO jj = 2, jpjm1 |
---|
325 | DO ji = 2, jpim1 |
---|
326 | ikbu = mbku(ji,jj) ! ocean bottom level at u- and v-points |
---|
327 | ikbv = mbkv(ji,jj) ! (deepest ocean u- and v-points) |
---|
328 | avmu(ji,jj,ikbu+1) = 0._wp |
---|
329 | avmv(ji,jj,ikbv+1) = 0._wp |
---|
330 | END DO |
---|
331 | END DO |
---|
332 | IF (ln_isfcav) THEN |
---|
333 | DO jj = 2, jpjm1 |
---|
334 | DO ji = 2, jpim1 |
---|
335 | ikbu = miku(ji,jj) ! ocean top level at u- and v-points |
---|
336 | ikbv = mikv(ji,jj) ! (first wet ocean u- and v-points) |
---|
337 | IF( ikbu > 1 ) avmu(ji,jj,ikbu) = 0._wp |
---|
338 | IF( ikbv > 1 ) avmv(ji,jj,ikbv) = 0._wp |
---|
339 | END DO |
---|
340 | END DO |
---|
341 | ENDIF |
---|
342 | ENDIF |
---|
343 | ! |
---|
344 | CALL wrk_dealloc( jpi,jpj,jpk, zwi, zwd, zws) |
---|
345 | ! |
---|
346 | IF( nn_timing == 1 ) CALL timing_stop('dyn_zdf_imp') |
---|
347 | ! |
---|
348 | END SUBROUTINE dyn_zdf_imp |
---|
349 | |
---|
350 | !!============================================================================== |
---|
351 | END MODULE dynzdf_imp |
---|