1 | !!---------------------------------------------------------------------- |
---|
2 | !! *** ldfdyn_c2d.h90 *** |
---|
3 | !!---------------------------------------------------------------------- |
---|
4 | !! ldf_dyn_c2d : set the lateral viscosity coefficients |
---|
5 | !! ldf_dyn_c2d_orca : specific case for orca r2 and r4 |
---|
6 | !!---------------------------------------------------------------------- |
---|
7 | |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
10 | !! $Id$ |
---|
11 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
12 | !!---------------------------------------------------------------------- |
---|
13 | |
---|
14 | SUBROUTINE ldf_dyn_c2d( ld_print ) |
---|
15 | !!---------------------------------------------------------------------- |
---|
16 | !! *** ROUTINE ldf_dyn_c2d *** |
---|
17 | !! |
---|
18 | !! ** Purpose : initializations of the horizontal ocean physics |
---|
19 | !! |
---|
20 | !! ** Method : |
---|
21 | !! 2D eddy viscosity coefficients ( longitude, latitude ) |
---|
22 | !! |
---|
23 | !! harmonic operator : ahm1 is defined at t-point |
---|
24 | !! ahm2 is defined at f-point |
---|
25 | !! + isopycnal : ahm3 is defined at u-point |
---|
26 | !! or geopotential ahm4 is defined at v-point |
---|
27 | !! iso-model level : ahm3, ahm4 not used |
---|
28 | !! |
---|
29 | !! biharmonic operator : ahm3 is defined at u-point |
---|
30 | !! ahm4 is defined at v-point |
---|
31 | !! : ahm1, ahm2 not used |
---|
32 | !! |
---|
33 | !!---------------------------------------------------------------------- |
---|
34 | LOGICAL, INTENT (in) :: ld_print ! If true, output arrays on numout |
---|
35 | ! |
---|
36 | INTEGER :: ji, jj |
---|
37 | REAL(wp) :: za00, zd_max, zetmax, zeumax, zefmax, zevmax |
---|
38 | !!---------------------------------------------------------------------- |
---|
39 | |
---|
40 | IF(lwp) WRITE(numout,*) |
---|
41 | IF(lwp) WRITE(numout,*) 'ldf_dyn_c2d : 2d lateral eddy viscosity coefficient' |
---|
42 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
43 | |
---|
44 | ! harmonic operator (ahm1, ahm2) : ( T- and F- points) (used for laplacian operators |
---|
45 | ! =============================== whatever its orientation is) |
---|
46 | IF( ln_dynldf_lap ) THEN |
---|
47 | ! define ahm1 and ahm2 at the right grid point position |
---|
48 | ! (USER: modify ahm1 and ahm2 following your desiderata) |
---|
49 | |
---|
50 | zd_max = MAX( MAXVAL( e1t(:,:) ), MAXVAL( e2t(:,:) ) ) |
---|
51 | IF( lk_mpp ) CALL mpp_max( zd_max ) ! max over the global domain |
---|
52 | |
---|
53 | IF(lwp) WRITE(numout,*) ' laplacian operator: ahm proportional to e1' |
---|
54 | IF(lwp) WRITE(numout,*) ' maximum grid-spacing = ', zd_max, ' maximum value for ahm = ', ahm0 |
---|
55 | |
---|
56 | za00 = ahm0 / zd_max |
---|
57 | DO jj = 1, jpj |
---|
58 | DO ji = 1, jpi |
---|
59 | zetmax = MAX( e1t(ji,jj), e2t(ji,jj) ) |
---|
60 | zefmax = MAX( e1f(ji,jj), e2f(ji,jj) ) |
---|
61 | ahm1(ji,jj) = za00 * zetmax |
---|
62 | ahm2(ji,jj) = za00 * zefmax |
---|
63 | END DO |
---|
64 | END DO |
---|
65 | |
---|
66 | IF( ln_dynldf_iso ) THEN |
---|
67 | IF(lwp) WRITE(numout,*) ' Caution, as implemented now, the isopycnal part of momentum' |
---|
68 | IF(lwp) WRITE(numout,*) ' mixing use aht0 as eddy viscosity coefficient. Thus, it is' |
---|
69 | IF(lwp) WRITE(numout,*) ' uniform and you must be sure that your ahm is greater than' |
---|
70 | IF(lwp) WRITE(numout,*) ' aht0 everywhere in the model domain.' |
---|
71 | ENDIF |
---|
72 | |
---|
73 | ! Special case for ORCA R1, R2 and R4 configurations (overwrite the value of ahm1 ahm2) |
---|
74 | ! ============================================== |
---|
75 | IF( cp_cfg == "orca" .AND. ( jp_cfg == 2 .OR. jp_cfg == 4 ) ) CALL ldf_dyn_c2d_orca( ld_print ) |
---|
76 | IF( cp_cfg == "orca" .AND. jp_cfg == 1) CALL ldf_dyn_c2d_orca_R1( ld_print ) |
---|
77 | |
---|
78 | ! Control print |
---|
79 | IF( lwp .AND. ld_print ) THEN |
---|
80 | WRITE(numout,*) |
---|
81 | WRITE(numout,*) 'inildf: 2D ahm1 array' |
---|
82 | CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
83 | WRITE(numout,*) |
---|
84 | WRITE(numout,*) 'inildf: 2D ahm2 array' |
---|
85 | CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
86 | ENDIF |
---|
87 | ENDIF |
---|
88 | |
---|
89 | ! biharmonic operator (ahm3, ahm4) : at U- and V-points (used for bilaplacian operator |
---|
90 | ! ================================= whatever its orientation is) |
---|
91 | IF( ln_dynldf_bilap ) THEN |
---|
92 | ! (USER: modify ahm3 and ahm4 following your desiderata) |
---|
93 | ! Here: ahm is proportional to the cube of the maximum of the gridspacing |
---|
94 | ! in the to horizontal direction |
---|
95 | |
---|
96 | zd_max = MAX( MAXVAL( e1u(:,:) ), MAXVAL( e2u(:,:) ) ) |
---|
97 | IF( lk_mpp ) CALL mpp_max( zd_max ) ! max over the global domain |
---|
98 | |
---|
99 | IF(lwp) WRITE(numout,*) ' bi-laplacian operator: ahm proportional to e1**3 ' |
---|
100 | IF(lwp) WRITE(numout,*) ' maximum grid-spacing = ', zd_max, ' maximum value for ahm = ', ahm0 |
---|
101 | |
---|
102 | za00 = ahm0_blp / ( zd_max * zd_max * zd_max ) |
---|
103 | DO jj = 1, jpj |
---|
104 | DO ji = 1, jpi |
---|
105 | zeumax = MAX( e1u(ji,jj), e2u(ji,jj) ) |
---|
106 | zevmax = MAX( e1v(ji,jj), e2v(ji,jj) ) |
---|
107 | ahm3(ji,jj) = za00 * zeumax * zeumax * zeumax |
---|
108 | ahm4(ji,jj) = za00 * zevmax * zevmax * zevmax |
---|
109 | END DO |
---|
110 | END DO |
---|
111 | |
---|
112 | ! Control print |
---|
113 | IF( lwp .AND. ld_print ) THEN |
---|
114 | WRITE(numout,*) |
---|
115 | WRITE(numout,*) 'inildf: ahm3 array' |
---|
116 | CALL prihre(ahm3,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
117 | WRITE(numout,*) |
---|
118 | WRITE(numout,*) 'inildf: ahm4 array' |
---|
119 | CALL prihre(ahm4,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
120 | ENDIF |
---|
121 | ENDIF |
---|
122 | ! |
---|
123 | END SUBROUTINE ldf_dyn_c2d |
---|
124 | |
---|
125 | |
---|
126 | SUBROUTINE ldf_dyn_c2d_orca( ld_print ) |
---|
127 | !!---------------------------------------------------------------------- |
---|
128 | !! *** ROUTINE ldf_dyn_c2d *** |
---|
129 | !! |
---|
130 | !! **** W A R N I N G **** |
---|
131 | !! |
---|
132 | !! ORCA R2 and R4 configurations |
---|
133 | !! |
---|
134 | !! **** W A R N I N G **** |
---|
135 | !! |
---|
136 | !! ** Purpose : initializations of the lateral viscosity for orca R2 |
---|
137 | !! |
---|
138 | !! ** Method : blah blah blah... |
---|
139 | !! |
---|
140 | !!---------------------------------------------------------------------- |
---|
141 | USE ldftra_oce, ONLY: aht0 |
---|
142 | ! |
---|
143 | LOGICAL, INTENT (in) :: ld_print ! If true, output arrays on numout |
---|
144 | ! |
---|
145 | INTEGER :: ji, jj, jn ! dummy loop indices |
---|
146 | INTEGER :: inum, iim, ijm ! local integers |
---|
147 | INTEGER :: ifreq, il1, il2, ij, ii |
---|
148 | INTEGER :: ijpt0,ijpt1, ierror |
---|
149 | REAL(wp) :: zahmeq, zcoft, zcoff, zmsk |
---|
150 | CHARACTER (len=15) :: clexp |
---|
151 | INTEGER, POINTER, DIMENSION(:,:) :: icof |
---|
152 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: idata |
---|
153 | !!---------------------------------------------------------------------- |
---|
154 | ! |
---|
155 | CALL wrk_alloc( jpi , jpj , icof ) |
---|
156 | ! |
---|
157 | IF(lwp) WRITE(numout,*) |
---|
158 | IF(lwp) WRITE(numout,*) 'inildf: 2d eddy viscosity coefficient' |
---|
159 | IF(lwp) WRITE(numout,*) '~~~~~~ --' |
---|
160 | IF(lwp) WRITE(numout,*) ' orca ocean configuration' |
---|
161 | |
---|
162 | IF( cp_cfg == "orca" .AND. cp_cfz == "antarctic" ) THEN |
---|
163 | ! |
---|
164 | ! 1.2 Modify ahm |
---|
165 | ! -------------- |
---|
166 | IF(lwp)WRITE(numout,*) ' inildf: Antarctic ocean' |
---|
167 | IF(lwp)WRITE(numout,*) ' no tropics, no reduction of ahm' |
---|
168 | IF(lwp)WRITE(numout,*) ' north boundary increase' |
---|
169 | |
---|
170 | ahm1(:,:) = ahm0 |
---|
171 | ahm2(:,:) = ahm0 |
---|
172 | |
---|
173 | ijpt0=max(1,min(49 -njmpp+1,jpj)) |
---|
174 | ijpt1=max(0,min(49-njmpp+1,jpj-1)) |
---|
175 | DO jj=ijpt0,ijpt1 |
---|
176 | ahm2(:,jj)=ahm0*2. |
---|
177 | ahm1(:,jj)=ahm0*2. |
---|
178 | END DO |
---|
179 | ijpt0=max(1,min(48 -njmpp+1,jpj)) |
---|
180 | ijpt1=max(0,min(48-njmpp+1,jpj-1)) |
---|
181 | DO jj=ijpt0,ijpt1 |
---|
182 | ahm2(:,jj)=ahm0*1.9 |
---|
183 | ahm1(:,jj)=ahm0*1.75 |
---|
184 | END DO |
---|
185 | ijpt0=max(1,min(47 -njmpp+1,jpj)) |
---|
186 | ijpt1=max(0,min(47-njmpp+1,jpj-1)) |
---|
187 | DO jj=ijpt0,ijpt1 |
---|
188 | ahm2(:,jj)=ahm0*1.5 |
---|
189 | ahm1(:,jj)=ahm0*1.25 |
---|
190 | END DO |
---|
191 | ijpt0=max(1,min(46 -njmpp+1,jpj)) |
---|
192 | ijpt1=max(0,min(46-njmpp+1,jpj-1)) |
---|
193 | DO jj=ijpt0,ijpt1 |
---|
194 | ahm2(:,jj)=ahm0*1.1 |
---|
195 | END DO |
---|
196 | |
---|
197 | ELSE IF( cp_cfg == "orca" .AND. cp_cfz == "arctic" ) THEN |
---|
198 | ! 1.2 Modify ahm |
---|
199 | ! -------------- |
---|
200 | IF(lwp)WRITE(numout,*) ' inildf: Arctic ocean' |
---|
201 | IF(lwp)WRITE(numout,*) ' no tropics, no reduction of ahm' |
---|
202 | IF(lwp)WRITE(numout,*) ' south and west boundary increase' |
---|
203 | |
---|
204 | |
---|
205 | ahm1(:,:) = ahm0 |
---|
206 | ahm2(:,:) = ahm0 |
---|
207 | |
---|
208 | ijpt0=max(1,min(98-jpjzoom+1-njmpp+1,jpj)) |
---|
209 | ijpt1=max(0,min(98-jpjzoom+1-njmpp+1,jpj-1)) |
---|
210 | DO jj=ijpt0,ijpt1 |
---|
211 | ahm2(:,jj)=ahm0*2. |
---|
212 | ahm1(:,jj)=ahm0*2. |
---|
213 | END DO |
---|
214 | ijpt0=max(1,min(99-jpjzoom+1-njmpp+1,jpj)) |
---|
215 | ijpt1=max(0,min(99-jpjzoom+1-njmpp+1,jpj-1)) |
---|
216 | DO jj=ijpt0,ijpt1 |
---|
217 | ahm2(:,jj)=ahm0*1.9 |
---|
218 | ahm1(:,jj)=ahm0*1.75 |
---|
219 | END DO |
---|
220 | ijpt0=max(1,min(100-jpjzoom+1-njmpp+1,jpj)) |
---|
221 | ijpt1=max(0,min(100-jpjzoom+1-njmpp+1,jpj-1)) |
---|
222 | DO jj=ijpt0,ijpt1 |
---|
223 | ahm2(:,jj)=ahm0*1.5 |
---|
224 | ahm1(:,jj)=ahm0*1.25 |
---|
225 | END DO |
---|
226 | ijpt0=max(1,min(101-jpjzoom+1-njmpp+1,jpj)) |
---|
227 | ijpt1=max(0,min(101-jpjzoom+1-njmpp+1,jpj-1)) |
---|
228 | DO jj=ijpt0,ijpt1 |
---|
229 | ahm2(:,jj)=ahm0*1.1 |
---|
230 | END DO |
---|
231 | ELSE |
---|
232 | ! Read 2d integer array to specify western boundary increase in the |
---|
233 | ! ===================== equatorial strip (20N-20S) defined at t-points |
---|
234 | |
---|
235 | ALLOCATE( idata(jpidta,jpjdta), STAT=ierror ) |
---|
236 | IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'ldf_dyn_c2d_orca: unable to allocate idata array' ) |
---|
237 | ! |
---|
238 | CALL ctl_opn( inum, 'ahmcoef', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp ) |
---|
239 | READ(inum,9101) clexp, iim, ijm |
---|
240 | READ(inum,'(/)') |
---|
241 | ifreq = 40 |
---|
242 | il1 = 1 |
---|
243 | DO jn = 1, jpidta/ifreq+1 |
---|
244 | READ(inum,'(/)') |
---|
245 | il2 = MIN( jpidta, il1+ifreq-1 ) |
---|
246 | READ(inum,9201) ( ii, ji = il1, il2, 5 ) |
---|
247 | READ(inum,'(/)') |
---|
248 | DO jj = jpjdta, 1, -1 |
---|
249 | READ(inum,9202) ij, ( idata(ji,jj), ji = il1, il2 ) |
---|
250 | END DO |
---|
251 | il1 = il1 + ifreq |
---|
252 | END DO |
---|
253 | |
---|
254 | DO jj = 1, nlcj |
---|
255 | DO ji = 1, nlci |
---|
256 | icof(ji,jj) = idata( mig(ji), mjg(jj) ) |
---|
257 | END DO |
---|
258 | END DO |
---|
259 | DO jj = nlcj+1, jpj |
---|
260 | DO ji = 1, nlci |
---|
261 | icof(ji,jj) = icof(ji,nlcj) |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | DO jj = 1, jpj |
---|
265 | DO ji = nlci+1, jpi |
---|
266 | icof(ji,jj) = icof(nlci,jj) |
---|
267 | END DO |
---|
268 | END DO |
---|
269 | |
---|
270 | 9101 FORMAT(1x,a15,2i8) |
---|
271 | 9201 FORMAT(3x,13(i3,12x)) |
---|
272 | 9202 FORMAT(i3,41i3) |
---|
273 | |
---|
274 | DEALLOCATE(idata) |
---|
275 | |
---|
276 | ! Set ahm1 and ahm2 ( T- and F- points) (used for laplacian operator) |
---|
277 | ! ================= |
---|
278 | ! define ahm1 and ahm2 at the right grid point position |
---|
279 | ! (USER: modify ahm1 and ahm2 following your desiderata) |
---|
280 | |
---|
281 | |
---|
282 | ! Decrease ahm to zahmeq m2/s in the tropics |
---|
283 | ! (from 90 to 20 degre: ahm = constant |
---|
284 | ! from 20 to 2.5 degre: ahm = decrease in (1-cos)/2 |
---|
285 | ! from 2.5 to 0 degre: ahm = constant |
---|
286 | ! symmetric in the south hemisphere) |
---|
287 | |
---|
288 | zahmeq = aht0 |
---|
289 | |
---|
290 | DO jj = 1, jpj |
---|
291 | DO ji = 1, jpi |
---|
292 | IF( ABS( gphif(ji,jj) ) >= 20. ) THEN |
---|
293 | ahm2(ji,jj) = ahm0 |
---|
294 | ELSEIF( ABS( gphif(ji,jj) ) <= 2.5 ) THEN |
---|
295 | ahm2(ji,jj) = zahmeq |
---|
296 | ELSE |
---|
297 | ahm2(ji,jj) = zahmeq + (ahm0-zahmeq)/2. & |
---|
298 | * ( 1. - COS( rad * ( ABS(gphif(ji,jj))-2.5 ) * 180. / 17.5 ) ) |
---|
299 | ENDIF |
---|
300 | IF( ABS( gphit(ji,jj) ) >= 20. ) THEN |
---|
301 | ahm1(ji,jj) = ahm0 |
---|
302 | ELSEIF( ABS( gphit(ji,jj) ) <= 2.5 ) THEN |
---|
303 | ahm1(ji,jj) = zahmeq |
---|
304 | ELSE |
---|
305 | ahm1(ji,jj) = zahmeq + (ahm0-zahmeq)/2. & |
---|
306 | * ( 1. - COS( rad * ( ABS(gphit(ji,jj))-2.5 ) * 180. / 17.5 ) ) |
---|
307 | ENDIF |
---|
308 | END DO |
---|
309 | END DO |
---|
310 | |
---|
311 | ! increase along western boundaries of equatorial strip |
---|
312 | ! t-point |
---|
313 | DO jj = 1, jpjm1 |
---|
314 | DO ji = 1, jpim1 |
---|
315 | zcoft = FLOAT( icof(ji,jj) ) / 100. |
---|
316 | ahm1(ji,jj) = zcoft * ahm0 + (1.-zcoft) * ahm1(ji,jj) |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | ! f-point |
---|
320 | icof(:,:) = icof(:,:) * tmask(:,:,1) |
---|
321 | DO jj = 1, jpjm1 |
---|
322 | DO ji = 1, jpim1 ! NO vector opt. |
---|
323 | zmsk = tmask(ji,jj+1,1) + tmask(ji+1,jj+1,1) + tmask(ji,jj,1) + tmask(ji,jj+1,1) |
---|
324 | IF( zmsk == 0. ) THEN |
---|
325 | zcoff = 1. |
---|
326 | ELSE |
---|
327 | zcoff = FLOAT( icof(ji,jj+1) + icof(ji+1,jj+1) + icof(ji,jj) + icof(ji,jj+1) ) & |
---|
328 | / (zmsk * 100.) |
---|
329 | ENDIF |
---|
330 | ahm2(ji,jj) = zcoff * ahm0 + (1.-zcoff) * ahm2(ji,jj) |
---|
331 | END DO |
---|
332 | END DO |
---|
333 | ENDIF |
---|
334 | |
---|
335 | ! Lateral boundary conditions on ( ahm1, ahm2 ) |
---|
336 | ! ============== |
---|
337 | CALL lbc_lnk( ahm1, 'T', 1. ) ! T-point, unchanged sign |
---|
338 | CALL lbc_lnk( ahm2, 'F', 1. ) ! F-point, unchanged sign |
---|
339 | |
---|
340 | ! Control print |
---|
341 | IF( lwp .AND. ld_print ) THEN |
---|
342 | WRITE(numout,*) |
---|
343 | WRITE(numout,*) 'inildf: 2D ahm1 array' |
---|
344 | CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
345 | WRITE(numout,*) |
---|
346 | WRITE(numout,*) 'inildf: 2D ahm2 array' |
---|
347 | CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
348 | ENDIF |
---|
349 | ! |
---|
350 | CALL wrk_dealloc( jpi , jpj , icof ) |
---|
351 | ! |
---|
352 | END SUBROUTINE ldf_dyn_c2d_orca |
---|
353 | |
---|
354 | |
---|
355 | SUBROUTINE ldf_dyn_c2d_orca_R1( ld_print ) |
---|
356 | !!---------------------------------------------------------------------- |
---|
357 | !! *** ROUTINE ldf_dyn_c2d *** |
---|
358 | !! |
---|
359 | !! **** W A R N I N G **** |
---|
360 | !! |
---|
361 | !! ORCA R1 configuration |
---|
362 | !! |
---|
363 | !! **** W A R N I N G **** |
---|
364 | !! |
---|
365 | !! ** Purpose : initializations of the lateral viscosity for orca R1 |
---|
366 | !! |
---|
367 | !! ** Method : blah blah blah... |
---|
368 | !! |
---|
369 | !!---------------------------------------------------------------------- |
---|
370 | USE ldftra_oce, ONLY: aht0 |
---|
371 | ! |
---|
372 | LOGICAL, INTENT (in) :: ld_print ! If true, output arrays on numout |
---|
373 | ! |
---|
374 | INTEGER :: ji, jj, jn ! dummy loop indices |
---|
375 | INTEGER :: inum ! temporary logical unit |
---|
376 | INTEGER :: iim, ijm |
---|
377 | INTEGER :: ifreq, il1, il2, ij, ii |
---|
378 | INTEGER :: ijpt0,ijpt1, ierror |
---|
379 | REAL(wp) :: zahmeq, zcoft, zcoff, zmsk, zam20s |
---|
380 | CHARACTER (len=15) :: clexp |
---|
381 | INTEGER, POINTER, DIMENSION(:,:) :: icof |
---|
382 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: idata |
---|
383 | !!---------------------------------------------------------------------- |
---|
384 | ! |
---|
385 | CALL wrk_alloc( jpi , jpj , icof ) |
---|
386 | ! |
---|
387 | |
---|
388 | IF(lwp) WRITE(numout,*) |
---|
389 | IF(lwp) WRITE(numout,*) 'inildf: 2d eddy viscosity coefficient' |
---|
390 | IF(lwp) WRITE(numout,*) '~~~~~~ --' |
---|
391 | IF(lwp) WRITE(numout,*) ' orca_r1 configuration' |
---|
392 | |
---|
393 | IF( cp_cfg == "orca" .AND. cp_cfz == "antarctic" ) THEN |
---|
394 | ! |
---|
395 | ! 1.2 Modify ahm |
---|
396 | ! -------------- |
---|
397 | IF(lwp)WRITE(numout,*) ' inildf: Antarctic ocean' |
---|
398 | IF(lwp)WRITE(numout,*) ' no tropics, no reduction of ahm' |
---|
399 | IF(lwp)WRITE(numout,*) ' north boundary increase' |
---|
400 | |
---|
401 | ahm1(:,:) = ahm0 |
---|
402 | ahm2(:,:) = ahm0 |
---|
403 | |
---|
404 | ijpt0=max(1,min(49 -njmpp+1,jpj)) |
---|
405 | ijpt1=max(0,min(49-njmpp+1,jpj-1)) |
---|
406 | DO jj=ijpt0,ijpt1 |
---|
407 | ahm2(:,jj)=ahm0*2. |
---|
408 | ahm1(:,jj)=ahm0*2. |
---|
409 | END DO |
---|
410 | ijpt0=max(1,min(48 -njmpp+1,jpj)) |
---|
411 | ijpt1=max(0,min(48-njmpp+1,jpj-1)) |
---|
412 | DO jj=ijpt0,ijpt1 |
---|
413 | ahm2(:,jj)=ahm0*1.9 |
---|
414 | ahm1(:,jj)=ahm0*1.75 |
---|
415 | END DO |
---|
416 | ijpt0=max(1,min(47 -njmpp+1,jpj)) |
---|
417 | ijpt1=max(0,min(47-njmpp+1,jpj-1)) |
---|
418 | DO jj=ijpt0,ijpt1 |
---|
419 | ahm2(:,jj)=ahm0*1.5 |
---|
420 | ahm1(:,jj)=ahm0*1.25 |
---|
421 | END DO |
---|
422 | ijpt0=max(1,min(46 -njmpp+1,jpj)) |
---|
423 | ijpt1=max(0,min(46-njmpp+1,jpj-1)) |
---|
424 | DO jj=ijpt0,ijpt1 |
---|
425 | ahm2(:,jj)=ahm0*1.1 |
---|
426 | END DO |
---|
427 | |
---|
428 | ELSE IF( cp_cfg == "orca" .AND. cp_cfz == "arctic" ) THEN |
---|
429 | ! 1.2 Modify ahm |
---|
430 | ! -------------- |
---|
431 | IF(lwp)WRITE(numout,*) ' inildf: Arctic ocean' |
---|
432 | IF(lwp)WRITE(numout,*) ' no tropics, no reduction of ahm' |
---|
433 | IF(lwp)WRITE(numout,*) ' south and west boundary increase' |
---|
434 | |
---|
435 | |
---|
436 | ahm1(:,:) = ahm0 |
---|
437 | ahm2(:,:) = ahm0 |
---|
438 | |
---|
439 | ijpt0=max(1,min(98-jpjzoom+1-njmpp+1,jpj)) |
---|
440 | ijpt1=max(0,min(98-jpjzoom+1-njmpp+1,jpj-1)) |
---|
441 | DO jj=ijpt0,ijpt1 |
---|
442 | ahm2(:,jj)=ahm0*2. |
---|
443 | ahm1(:,jj)=ahm0*2. |
---|
444 | END DO |
---|
445 | ijpt0=max(1,min(99-jpjzoom+1-njmpp+1,jpj)) |
---|
446 | ijpt1=max(0,min(99-jpjzoom+1-njmpp+1,jpj-1)) |
---|
447 | DO jj=ijpt0,ijpt1 |
---|
448 | ahm2(:,jj)=ahm0*1.9 |
---|
449 | ahm1(:,jj)=ahm0*1.75 |
---|
450 | END DO |
---|
451 | ijpt0=max(1,min(100-jpjzoom+1-njmpp+1,jpj)) |
---|
452 | ijpt1=max(0,min(100-jpjzoom+1-njmpp+1,jpj-1)) |
---|
453 | DO jj=ijpt0,ijpt1 |
---|
454 | ahm2(:,jj)=ahm0*1.5 |
---|
455 | ahm1(:,jj)=ahm0*1.25 |
---|
456 | END DO |
---|
457 | ijpt0=max(1,min(101-jpjzoom+1-njmpp+1,jpj)) |
---|
458 | ijpt1=max(0,min(101-jpjzoom+1-njmpp+1,jpj-1)) |
---|
459 | DO jj=ijpt0,ijpt1 |
---|
460 | ahm2(:,jj)=ahm0*1.1 |
---|
461 | END DO |
---|
462 | ELSE |
---|
463 | |
---|
464 | ! Read 2d integer array to specify western boundary increase in the |
---|
465 | ! ===================== equatorial strip (20N-20S) defined at t-points |
---|
466 | |
---|
467 | ALLOCATE( idata(jpidta,jpjdta), STAT=ierror ) |
---|
468 | IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'ldf_dyn_c2d_orca_R1: unable to allocate idata array' ) |
---|
469 | ! |
---|
470 | CALL ctl_opn( inum, 'ahmcoef', 'UNKNOWN', 'FORMATTED', 'SEQUENTIAL', & |
---|
471 | & 1, numout, lwp ) |
---|
472 | REWIND inum |
---|
473 | READ(inum,9101) clexp, iim, ijm |
---|
474 | READ(inum,'(/)') |
---|
475 | ifreq = 40 |
---|
476 | il1 = 1 |
---|
477 | DO jn = 1, jpidta/ifreq+1 |
---|
478 | READ(inum,'(/)') |
---|
479 | il2 = MIN( jpidta, il1+ifreq-1 ) |
---|
480 | READ(inum,9201) ( ii, ji = il1, il2, 5 ) |
---|
481 | READ(inum,'(/)') |
---|
482 | DO jj = jpjdta, 1, -1 |
---|
483 | READ(inum,9202) ij, ( idata(ji,jj), ji = il1, il2 ) |
---|
484 | END DO |
---|
485 | il1 = il1 + ifreq |
---|
486 | END DO |
---|
487 | |
---|
488 | DO jj = 1, nlcj |
---|
489 | DO ji = 1, nlci |
---|
490 | icof(ji,jj) = idata( mig(ji), mjg(jj) ) |
---|
491 | END DO |
---|
492 | END DO |
---|
493 | DO jj = nlcj+1, jpj |
---|
494 | DO ji = 1, nlci |
---|
495 | icof(ji,jj) = icof(ji,nlcj) |
---|
496 | END DO |
---|
497 | END DO |
---|
498 | DO jj = 1, jpj |
---|
499 | DO ji = nlci+1, jpi |
---|
500 | icof(ji,jj) = icof(nlci,jj) |
---|
501 | END DO |
---|
502 | END DO |
---|
503 | |
---|
504 | 9101 FORMAT(1x,a15,2i8) |
---|
505 | 9201 FORMAT(3x,13(i3,12x)) |
---|
506 | 9202 FORMAT(i3,41i3) |
---|
507 | |
---|
508 | DEALLOCATE(idata) |
---|
509 | |
---|
510 | ! Set ahm1 and ahm2 ( T- and F- points) (used for laplacian operator) |
---|
511 | ! ================= |
---|
512 | ! define ahm1 and ahm2 at the right grid point position |
---|
513 | ! (USER: modify ahm1 and ahm2 following your desiderata) |
---|
514 | |
---|
515 | |
---|
516 | ! Decrease ahm to zahmeq m2/s in the tropics |
---|
517 | ! (from 90 to 20 degrees: ahm = scaled by local metrics |
---|
518 | ! from 20 to 2.5 degrees: ahm = decrease in (1-cos)/2 |
---|
519 | ! from 2.5 to 0 degrees: ahm = constant |
---|
520 | ! symmetric in the south hemisphere) |
---|
521 | |
---|
522 | zahmeq = aht0 |
---|
523 | zam20s = ahm0*COS( rad * 20. ) |
---|
524 | |
---|
525 | DO jj = 1, jpj |
---|
526 | DO ji = 1, jpi |
---|
527 | IF( ABS( gphif(ji,jj) ) >= 20. ) THEN |
---|
528 | ! leave as set in ldf_dyn_c2d |
---|
529 | ELSEIF( ABS( gphif(ji,jj) ) <= 2.5 ) THEN |
---|
530 | ahm2(ji,jj) = zahmeq |
---|
531 | ELSE |
---|
532 | ahm2(ji,jj) = zahmeq + (zam20s-zahmeq)/2. & |
---|
533 | * ( 1. - COS( rad * ( ABS(gphif(ji,jj))-2.5 ) * 180. / 17.5 ) ) |
---|
534 | ENDIF |
---|
535 | IF( ABS( gphit(ji,jj) ) >= 20. ) THEN |
---|
536 | ! leave as set in ldf_dyn_c2d |
---|
537 | ELSEIF( ABS( gphit(ji,jj) ) <= 2.5 ) THEN |
---|
538 | ahm1(ji,jj) = zahmeq |
---|
539 | ELSE |
---|
540 | ahm1(ji,jj) = zahmeq + (zam20s-zahmeq)/2. & |
---|
541 | * ( 1. - COS( rad * ( ABS(gphit(ji,jj))-2.5 ) * 180. / 17.5 ) ) |
---|
542 | ENDIF |
---|
543 | END DO |
---|
544 | END DO |
---|
545 | |
---|
546 | ! increase along western boundaries of equatorial strip |
---|
547 | ! t-point |
---|
548 | DO jj = 1, jpjm1 |
---|
549 | DO ji = 1, jpim1 |
---|
550 | IF( ABS( gphit(ji,jj) ) < 20. ) THEN |
---|
551 | zcoft = FLOAT( icof(ji,jj) ) / 100. |
---|
552 | ahm1(ji,jj) = zcoft * ahm0 + (1.-zcoft) * ahm1(ji,jj) |
---|
553 | ENDIF |
---|
554 | END DO |
---|
555 | END DO |
---|
556 | ! f-point |
---|
557 | icof(:,:) = icof(:,:) * tmask(:,:,1) |
---|
558 | DO jj = 1, jpjm1 |
---|
559 | DO ji = 1, jpim1 |
---|
560 | IF( ABS( gphif(ji,jj) ) < 20. ) THEN |
---|
561 | zmsk = tmask(ji,jj+1,1) + tmask(ji+1,jj+1,1) + tmask(ji,jj,1) + tmask(ji,jj+1,1) |
---|
562 | IF( zmsk == 0. ) THEN |
---|
563 | zcoff = 1. |
---|
564 | ELSE |
---|
565 | zcoff = FLOAT( icof(ji,jj+1) + icof(ji+1,jj+1) + icof(ji,jj) + icof(ji,jj+1) ) & |
---|
566 | / (zmsk * 100.) |
---|
567 | ENDIF |
---|
568 | ahm2(ji,jj) = zcoff * ahm0 + (1.-zcoff) * ahm2(ji,jj) |
---|
569 | ENDIF |
---|
570 | END DO |
---|
571 | END DO |
---|
572 | ENDIF |
---|
573 | |
---|
574 | ! Lateral boundary conditions on ( ahm1, ahm2 ) |
---|
575 | ! ============== |
---|
576 | CALL lbc_lnk( ahm1, 'T', 1. ) ! T-point, unchanged sign |
---|
577 | CALL lbc_lnk( ahm2, 'F', 1. ) ! F-point, unchanged sign |
---|
578 | |
---|
579 | ! Control print |
---|
580 | IF( lwp .AND. ld_print ) THEN |
---|
581 | WRITE(numout,*) |
---|
582 | WRITE(numout,*) 'inildf: 2D ahm1 array' |
---|
583 | CALL prihre(ahm1,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
584 | WRITE(numout,*) |
---|
585 | WRITE(numout,*) 'inildf: 2D ahm2 array' |
---|
586 | CALL prihre(ahm2,jpi,jpj,1,jpi,1,1,jpj,1,1.e-3,numout) |
---|
587 | ENDIF |
---|
588 | ! |
---|
589 | CALL wrk_dealloc( jpi , jpj , icof ) |
---|
590 | ! |
---|
591 | END SUBROUTINE ldf_dyn_c2d_orca_R1 |
---|