1 | MODULE obs_oper |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE obs_oper *** |
---|
4 | !! Observation diagnostics: Observation operators for various observation |
---|
5 | !! types |
---|
6 | !!====================================================================== |
---|
7 | |
---|
8 | !!---------------------------------------------------------------------- |
---|
9 | !! obs_prof_opt : Compute the model counterpart of profile data |
---|
10 | !! obs_surf_opt : Compute the model counterpart of surface data |
---|
11 | !! obs_pro_sco_opt: Compute the model counterpart of temperature and |
---|
12 | !! salinity observations from profiles in generalised |
---|
13 | !! vertical coordinates |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | |
---|
16 | !! * Modules used |
---|
17 | USE par_kind, ONLY : & ! Precision variables |
---|
18 | & wp |
---|
19 | USE in_out_manager ! I/O manager |
---|
20 | USE obs_inter_sup ! Interpolation support |
---|
21 | USE obs_inter_h2d, ONLY : & ! Horizontal interpolation to the obs pt |
---|
22 | & obs_int_h2d, & |
---|
23 | & obs_int_h2d_init |
---|
24 | USE obs_inter_z1d, ONLY : & ! Vertical interpolation to the obs pt |
---|
25 | & obs_int_z1d, & |
---|
26 | & obs_int_z1d_spl |
---|
27 | USE obs_const, ONLY : & |
---|
28 | & obfillflt ! Fillvalue |
---|
29 | USE dom_oce, ONLY : & |
---|
30 | & glamt, glamu, glamv, & |
---|
31 | & gphit, gphiu, gphiv, & |
---|
32 | & gdept_n, gdept_0 |
---|
33 | USE lib_mpp, ONLY : & |
---|
34 | & ctl_warn, ctl_stop |
---|
35 | USE obs_grid, ONLY : & |
---|
36 | & obs_level_search |
---|
37 | USE sbcdcy, ONLY : & ! For calculation of where it is night-time |
---|
38 | & sbc_dcy, nday_qsr |
---|
39 | |
---|
40 | IMPLICIT NONE |
---|
41 | |
---|
42 | !! * Routine accessibility |
---|
43 | PRIVATE |
---|
44 | |
---|
45 | PUBLIC obs_prof_opt, & ! Compute the model counterpart of profile obs |
---|
46 | & obs_pro_sco_opt, & ! Compute the model counterpart of profile observations |
---|
47 | & obs_surf_opt ! Compute the model counterpart of surface obs |
---|
48 | |
---|
49 | INTEGER, PARAMETER, PUBLIC :: & |
---|
50 | & imaxavtypes = 20 ! Max number of daily avgd obs types |
---|
51 | |
---|
52 | !!---------------------------------------------------------------------- |
---|
53 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
54 | !! $Id$ |
---|
55 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | |
---|
58 | CONTAINS |
---|
59 | |
---|
60 | SUBROUTINE obs_prof_opt( prodatqc, kt, kpi, kpj, kpk, & |
---|
61 | & kit000, kdaystp, & |
---|
62 | & pvar1, pvar2, pgdept, pmask1, pmask2, & |
---|
63 | & plam1, plam2, pphi1, pphi2, & |
---|
64 | & k1dint, k2dint, kdailyavtypes ) |
---|
65 | |
---|
66 | !!----------------------------------------------------------------------- |
---|
67 | !! |
---|
68 | !! *** ROUTINE obs_pro_opt *** |
---|
69 | !! |
---|
70 | !! ** Purpose : Compute the model counterpart of profiles |
---|
71 | !! data by interpolating from the model grid to the |
---|
72 | !! observation point. |
---|
73 | !! |
---|
74 | !! ** Method : Linearly interpolate to each observation point using |
---|
75 | !! the model values at the corners of the surrounding grid box. |
---|
76 | !! |
---|
77 | !! First, a vertical profile of horizontally interpolated model |
---|
78 | !! now values is computed at the obs (lon, lat) point. |
---|
79 | !! Several horizontal interpolation schemes are available: |
---|
80 | !! - distance-weighted (great circle) (k2dint = 0) |
---|
81 | !! - distance-weighted (small angle) (k2dint = 1) |
---|
82 | !! - bilinear (geographical grid) (k2dint = 2) |
---|
83 | !! - bilinear (quadrilateral grid) (k2dint = 3) |
---|
84 | !! - polynomial (quadrilateral grid) (k2dint = 4) |
---|
85 | !! |
---|
86 | !! Next, the vertical profile is interpolated to the |
---|
87 | !! data depth points. Two vertical interpolation schemes are |
---|
88 | !! available: |
---|
89 | !! - linear (k1dint = 0) |
---|
90 | !! - Cubic spline (k1dint = 1) |
---|
91 | !! |
---|
92 | !! For the cubic spline the 2nd derivative of the interpolating |
---|
93 | !! polynomial is computed before entering the vertical interpolation |
---|
94 | !! routine. |
---|
95 | !! |
---|
96 | !! If the logical is switched on, the model equivalent is |
---|
97 | !! a daily mean model temperature field. So, we first compute |
---|
98 | !! the mean, then interpolate only at the end of the day. |
---|
99 | !! |
---|
100 | !! Note: in situ temperature observations must be converted |
---|
101 | !! to potential temperature (the model variable) prior to |
---|
102 | !! assimilation. |
---|
103 | !! |
---|
104 | !! ** Action : |
---|
105 | !! |
---|
106 | !! History : |
---|
107 | !! ! 97-11 (A. Weaver, S. Ricci, N. Daget) |
---|
108 | !! ! 06-03 (G. Smith) NEMOVAR migration |
---|
109 | !! ! 06-10 (A. Weaver) Cleanup |
---|
110 | !! ! 07-01 (K. Mogensen) Merge of temperature and salinity |
---|
111 | !! ! 07-03 (K. Mogensen) General handling of profiles |
---|
112 | !! ! 15-02 (M. Martin) Combined routine for all profile types |
---|
113 | !!----------------------------------------------------------------------- |
---|
114 | |
---|
115 | !! * Modules used |
---|
116 | USE obs_profiles_def ! Definition of storage space for profile obs. |
---|
117 | |
---|
118 | IMPLICIT NONE |
---|
119 | |
---|
120 | !! * Arguments |
---|
121 | TYPE(obs_prof), INTENT(INOUT) :: & |
---|
122 | & prodatqc ! Subset of profile data passing QC |
---|
123 | INTEGER, INTENT(IN) :: kt ! Time step |
---|
124 | INTEGER, INTENT(IN) :: kpi ! Model grid parameters |
---|
125 | INTEGER, INTENT(IN) :: kpj |
---|
126 | INTEGER, INTENT(IN) :: kpk |
---|
127 | INTEGER, INTENT(IN) :: kit000 ! Number of the first time step |
---|
128 | ! (kit000-1 = restart time) |
---|
129 | INTEGER, INTENT(IN) :: k1dint ! Vertical interpolation type (see header) |
---|
130 | INTEGER, INTENT(IN) :: k2dint ! Horizontal interpolation type (see header) |
---|
131 | INTEGER, INTENT(IN) :: kdaystp ! Number of time steps per day |
---|
132 | REAL(KIND=wp), INTENT(IN), DIMENSION(kpi,kpj,kpk) :: & |
---|
133 | & pvar1, & ! Model field 1 |
---|
134 | & pvar2, & ! Model field 2 |
---|
135 | & pmask1, & ! Land-sea mask 1 |
---|
136 | & pmask2 ! Land-sea mask 2 |
---|
137 | REAL(KIND=wp), INTENT(IN), DIMENSION(kpi,kpj) :: & |
---|
138 | & plam1, & ! Model longitudes for variable 1 |
---|
139 | & plam2, & ! Model longitudes for variable 2 |
---|
140 | & pphi1, & ! Model latitudes for variable 1 |
---|
141 | & pphi2 ! Model latitudes for variable 2 |
---|
142 | REAL(KIND=wp), INTENT(IN), DIMENSION(kpk) :: & |
---|
143 | & pgdept ! Model array of depth levels |
---|
144 | INTEGER, DIMENSION(imaxavtypes), OPTIONAL :: & |
---|
145 | & kdailyavtypes ! Types for daily averages |
---|
146 | |
---|
147 | !! * Local declarations |
---|
148 | INTEGER :: ji |
---|
149 | INTEGER :: jj |
---|
150 | INTEGER :: jk |
---|
151 | INTEGER :: jobs |
---|
152 | INTEGER :: inrc |
---|
153 | INTEGER :: ipro |
---|
154 | INTEGER :: idayend |
---|
155 | INTEGER :: ista |
---|
156 | INTEGER :: iend |
---|
157 | INTEGER :: iobs |
---|
158 | INTEGER, DIMENSION(imaxavtypes) :: & |
---|
159 | & idailyavtypes |
---|
160 | INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
161 | & igrdi1, & |
---|
162 | & igrdi2, & |
---|
163 | & igrdj1, & |
---|
164 | & igrdj2 |
---|
165 | REAL(KIND=wp) :: zlam |
---|
166 | REAL(KIND=wp) :: zphi |
---|
167 | REAL(KIND=wp) :: zdaystp |
---|
168 | REAL(KIND=wp), DIMENSION(kpk) :: & |
---|
169 | & zobsmask1, & |
---|
170 | & zobsmask2, & |
---|
171 | & zobsk, & |
---|
172 | & zobs2k |
---|
173 | REAL(KIND=wp), DIMENSION(2,2,kpk) :: & |
---|
174 | & zweig1, & |
---|
175 | & zweig2 |
---|
176 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: & |
---|
177 | & zmask1, & |
---|
178 | & zmask2, & |
---|
179 | & zint1, & |
---|
180 | & zint2, & |
---|
181 | & zinm1, & |
---|
182 | & zinm2 |
---|
183 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
184 | & zglam1, & |
---|
185 | & zglam2, & |
---|
186 | & zgphi1, & |
---|
187 | & zgphi2 |
---|
188 | LOGICAL :: ld_dailyav |
---|
189 | |
---|
190 | !------------------------------------------------------------------------ |
---|
191 | ! Local initialization |
---|
192 | !------------------------------------------------------------------------ |
---|
193 | ! Record and data counters |
---|
194 | inrc = kt - kit000 + 2 |
---|
195 | ipro = prodatqc%npstp(inrc) |
---|
196 | |
---|
197 | ! Daily average types |
---|
198 | ld_dailyav = .FALSE. |
---|
199 | IF ( PRESENT(kdailyavtypes) ) THEN |
---|
200 | idailyavtypes(:) = kdailyavtypes(:) |
---|
201 | IF ( ANY (idailyavtypes(:) /= -1) ) ld_dailyav = .TRUE. |
---|
202 | ELSE |
---|
203 | idailyavtypes(:) = -1 |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ! Daily means are calculated for values over timesteps: |
---|
207 | ! [1 <= kt <= kdaystp], [kdaystp+1 <= kt <= 2*kdaystp], ... |
---|
208 | idayend = MOD( kt - kit000 + 1, kdaystp ) |
---|
209 | |
---|
210 | IF ( ld_dailyav ) THEN |
---|
211 | |
---|
212 | ! Initialize daily mean for first timestep of the day |
---|
213 | IF ( idayend == 1 .OR. kt == 0 ) THEN |
---|
214 | DO jk = 1, jpk |
---|
215 | DO jj = 1, jpj |
---|
216 | DO ji = 1, jpi |
---|
217 | prodatqc%vdmean(ji,jj,jk,1) = 0.0 |
---|
218 | prodatqc%vdmean(ji,jj,jk,2) = 0.0 |
---|
219 | END DO |
---|
220 | END DO |
---|
221 | END DO |
---|
222 | ENDIF |
---|
223 | |
---|
224 | DO jk = 1, jpk |
---|
225 | DO jj = 1, jpj |
---|
226 | DO ji = 1, jpi |
---|
227 | ! Increment field 1 for computing daily mean |
---|
228 | prodatqc%vdmean(ji,jj,jk,1) = prodatqc%vdmean(ji,jj,jk,1) & |
---|
229 | & + pvar1(ji,jj,jk) |
---|
230 | ! Increment field 2 for computing daily mean |
---|
231 | prodatqc%vdmean(ji,jj,jk,2) = prodatqc%vdmean(ji,jj,jk,2) & |
---|
232 | & + pvar2(ji,jj,jk) |
---|
233 | END DO |
---|
234 | END DO |
---|
235 | END DO |
---|
236 | |
---|
237 | ! Compute the daily mean at the end of day |
---|
238 | zdaystp = 1.0 / REAL( kdaystp ) |
---|
239 | IF ( idayend == 0 ) THEN |
---|
240 | IF (lwp) WRITE(numout,*) 'Calculating prodatqc%vdmean on time-step: ',kt |
---|
241 | CALL FLUSH(numout) |
---|
242 | DO jk = 1, jpk |
---|
243 | DO jj = 1, jpj |
---|
244 | DO ji = 1, jpi |
---|
245 | prodatqc%vdmean(ji,jj,jk,1) = prodatqc%vdmean(ji,jj,jk,1) & |
---|
246 | & * zdaystp |
---|
247 | prodatqc%vdmean(ji,jj,jk,2) = prodatqc%vdmean(ji,jj,jk,2) & |
---|
248 | & * zdaystp |
---|
249 | END DO |
---|
250 | END DO |
---|
251 | END DO |
---|
252 | ENDIF |
---|
253 | |
---|
254 | ENDIF |
---|
255 | |
---|
256 | ! Get the data for interpolation |
---|
257 | ALLOCATE( & |
---|
258 | & igrdi1(2,2,ipro), & |
---|
259 | & igrdi2(2,2,ipro), & |
---|
260 | & igrdj1(2,2,ipro), & |
---|
261 | & igrdj2(2,2,ipro), & |
---|
262 | & zglam1(2,2,ipro), & |
---|
263 | & zglam2(2,2,ipro), & |
---|
264 | & zgphi1(2,2,ipro), & |
---|
265 | & zgphi2(2,2,ipro), & |
---|
266 | & zmask1(2,2,kpk,ipro), & |
---|
267 | & zmask2(2,2,kpk,ipro), & |
---|
268 | & zint1(2,2,kpk,ipro), & |
---|
269 | & zint2(2,2,kpk,ipro) & |
---|
270 | & ) |
---|
271 | |
---|
272 | DO jobs = prodatqc%nprofup + 1, prodatqc%nprofup + ipro |
---|
273 | iobs = jobs - prodatqc%nprofup |
---|
274 | igrdi1(1,1,iobs) = prodatqc%mi(jobs,1)-1 |
---|
275 | igrdj1(1,1,iobs) = prodatqc%mj(jobs,1)-1 |
---|
276 | igrdi1(1,2,iobs) = prodatqc%mi(jobs,1)-1 |
---|
277 | igrdj1(1,2,iobs) = prodatqc%mj(jobs,1) |
---|
278 | igrdi1(2,1,iobs) = prodatqc%mi(jobs,1) |
---|
279 | igrdj1(2,1,iobs) = prodatqc%mj(jobs,1)-1 |
---|
280 | igrdi1(2,2,iobs) = prodatqc%mi(jobs,1) |
---|
281 | igrdj1(2,2,iobs) = prodatqc%mj(jobs,1) |
---|
282 | igrdi2(1,1,iobs) = prodatqc%mi(jobs,2)-1 |
---|
283 | igrdj2(1,1,iobs) = prodatqc%mj(jobs,2)-1 |
---|
284 | igrdi2(1,2,iobs) = prodatqc%mi(jobs,2)-1 |
---|
285 | igrdj2(1,2,iobs) = prodatqc%mj(jobs,2) |
---|
286 | igrdi2(2,1,iobs) = prodatqc%mi(jobs,2) |
---|
287 | igrdj2(2,1,iobs) = prodatqc%mj(jobs,2)-1 |
---|
288 | igrdi2(2,2,iobs) = prodatqc%mi(jobs,2) |
---|
289 | igrdj2(2,2,iobs) = prodatqc%mj(jobs,2) |
---|
290 | END DO |
---|
291 | |
---|
292 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi1, igrdj1, plam1, zglam1 ) |
---|
293 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi1, igrdj1, pphi1, zgphi1 ) |
---|
294 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi1, igrdj1, pmask1, zmask1 ) |
---|
295 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi1, igrdj1, pvar1, zint1 ) |
---|
296 | |
---|
297 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi2, igrdj2, plam2, zglam2 ) |
---|
298 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi2, igrdj2, pphi2, zgphi2 ) |
---|
299 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi2, igrdj2, pmask2, zmask2 ) |
---|
300 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi2, igrdj2, pvar2, zint2 ) |
---|
301 | |
---|
302 | ! At the end of the day also get interpolated means |
---|
303 | IF ( ld_dailyav .AND. idayend == 0 ) THEN |
---|
304 | |
---|
305 | ALLOCATE( & |
---|
306 | & zinm1(2,2,kpk,ipro), & |
---|
307 | & zinm2(2,2,kpk,ipro) & |
---|
308 | & ) |
---|
309 | |
---|
310 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi1, igrdj1, & |
---|
311 | & prodatqc%vdmean(:,:,:,1), zinm1 ) |
---|
312 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi2, igrdj2, & |
---|
313 | & prodatqc%vdmean(:,:,:,2), zinm2 ) |
---|
314 | |
---|
315 | ENDIF |
---|
316 | |
---|
317 | DO jobs = prodatqc%nprofup + 1, prodatqc%nprofup + ipro |
---|
318 | |
---|
319 | iobs = jobs - prodatqc%nprofup |
---|
320 | |
---|
321 | IF ( kt /= prodatqc%mstp(jobs) ) THEN |
---|
322 | |
---|
323 | IF(lwp) THEN |
---|
324 | WRITE(numout,*) |
---|
325 | WRITE(numout,*) ' E R R O R : Observation', & |
---|
326 | & ' time step is not consistent with the', & |
---|
327 | & ' model time step' |
---|
328 | WRITE(numout,*) ' =========' |
---|
329 | WRITE(numout,*) |
---|
330 | WRITE(numout,*) ' Record = ', jobs, & |
---|
331 | & ' kt = ', kt, & |
---|
332 | & ' mstp = ', prodatqc%mstp(jobs), & |
---|
333 | & ' ntyp = ', prodatqc%ntyp(jobs) |
---|
334 | ENDIF |
---|
335 | CALL ctl_stop( 'obs_pro_opt', 'Inconsistent time' ) |
---|
336 | ENDIF |
---|
337 | |
---|
338 | zlam = prodatqc%rlam(jobs) |
---|
339 | zphi = prodatqc%rphi(jobs) |
---|
340 | |
---|
341 | ! Horizontal weights and vertical mask |
---|
342 | |
---|
343 | IF ( prodatqc%npvend(jobs,1) > 0 ) THEN |
---|
344 | |
---|
345 | CALL obs_int_h2d_init( kpk, kpk, k2dint, zlam, zphi, & |
---|
346 | & zglam1(:,:,iobs), zgphi1(:,:,iobs), & |
---|
347 | & zmask1(:,:,:,iobs), zweig1, zobsmask1 ) |
---|
348 | |
---|
349 | ENDIF |
---|
350 | |
---|
351 | IF ( prodatqc%npvend(jobs,2) > 0 ) THEN |
---|
352 | |
---|
353 | CALL obs_int_h2d_init( kpk, kpk, k2dint, zlam, zphi, & |
---|
354 | & zglam2(:,:,iobs), zgphi2(:,:,iobs), & |
---|
355 | & zmask2(:,:,:,iobs), zweig2, zobsmask2 ) |
---|
356 | |
---|
357 | ENDIF |
---|
358 | |
---|
359 | IF ( prodatqc%npvend(jobs,1) > 0 ) THEN |
---|
360 | |
---|
361 | zobsk(:) = obfillflt |
---|
362 | |
---|
363 | IF ( ANY (idailyavtypes(:) == prodatqc%ntyp(jobs)) ) THEN |
---|
364 | |
---|
365 | IF ( idayend == 0 ) THEN |
---|
366 | ! Daily averaged data |
---|
367 | CALL obs_int_h2d( kpk, kpk, & |
---|
368 | & zweig1, zinm1(:,:,:,iobs), zobsk ) |
---|
369 | |
---|
370 | ENDIF |
---|
371 | |
---|
372 | ELSE |
---|
373 | |
---|
374 | ! Point data |
---|
375 | CALL obs_int_h2d( kpk, kpk, & |
---|
376 | & zweig1, zint1(:,:,:,iobs), zobsk ) |
---|
377 | |
---|
378 | ENDIF |
---|
379 | |
---|
380 | !------------------------------------------------------------- |
---|
381 | ! Compute vertical second-derivative of the interpolating |
---|
382 | ! polynomial at obs points |
---|
383 | !------------------------------------------------------------- |
---|
384 | |
---|
385 | IF ( k1dint == 1 ) THEN |
---|
386 | CALL obs_int_z1d_spl( kpk, zobsk, zobs2k, & |
---|
387 | & pgdept, zobsmask1 ) |
---|
388 | ENDIF |
---|
389 | |
---|
390 | !----------------------------------------------------------------- |
---|
391 | ! Vertical interpolation to the observation point |
---|
392 | !----------------------------------------------------------------- |
---|
393 | ista = prodatqc%npvsta(jobs,1) |
---|
394 | iend = prodatqc%npvend(jobs,1) |
---|
395 | CALL obs_int_z1d( kpk, & |
---|
396 | & prodatqc%var(1)%mvk(ista:iend), & |
---|
397 | & k1dint, iend - ista + 1, & |
---|
398 | & prodatqc%var(1)%vdep(ista:iend), & |
---|
399 | & zobsk, zobs2k, & |
---|
400 | & prodatqc%var(1)%vmod(ista:iend), & |
---|
401 | & pgdept, zobsmask1 ) |
---|
402 | |
---|
403 | ENDIF |
---|
404 | |
---|
405 | IF ( prodatqc%npvend(jobs,2) > 0 ) THEN |
---|
406 | |
---|
407 | zobsk(:) = obfillflt |
---|
408 | |
---|
409 | IF ( ANY (idailyavtypes(:) == prodatqc%ntyp(jobs)) ) THEN |
---|
410 | |
---|
411 | IF ( idayend == 0 ) THEN |
---|
412 | |
---|
413 | ! Daily averaged data |
---|
414 | CALL obs_int_h2d( kpk, kpk, & |
---|
415 | & zweig2, zinm2(:,:,:,iobs), zobsk ) |
---|
416 | |
---|
417 | ENDIF |
---|
418 | |
---|
419 | ELSE |
---|
420 | |
---|
421 | ! Point data |
---|
422 | CALL obs_int_h2d( kpk, kpk, & |
---|
423 | & zweig2, zint2(:,:,:,iobs), zobsk ) |
---|
424 | |
---|
425 | ENDIF |
---|
426 | |
---|
427 | |
---|
428 | !------------------------------------------------------------- |
---|
429 | ! Compute vertical second-derivative of the interpolating |
---|
430 | ! polynomial at obs points |
---|
431 | !------------------------------------------------------------- |
---|
432 | |
---|
433 | IF ( k1dint == 1 ) THEN |
---|
434 | CALL obs_int_z1d_spl( kpk, zobsk, zobs2k, & |
---|
435 | & pgdept, zobsmask2 ) |
---|
436 | ENDIF |
---|
437 | |
---|
438 | !---------------------------------------------------------------- |
---|
439 | ! Vertical interpolation to the observation point |
---|
440 | !---------------------------------------------------------------- |
---|
441 | ista = prodatqc%npvsta(jobs,2) |
---|
442 | iend = prodatqc%npvend(jobs,2) |
---|
443 | CALL obs_int_z1d( kpk, & |
---|
444 | & prodatqc%var(2)%mvk(ista:iend),& |
---|
445 | & k1dint, iend - ista + 1, & |
---|
446 | & prodatqc%var(2)%vdep(ista:iend),& |
---|
447 | & zobsk, zobs2k, & |
---|
448 | & prodatqc%var(2)%vmod(ista:iend),& |
---|
449 | & pgdept, zobsmask2 ) |
---|
450 | |
---|
451 | ENDIF |
---|
452 | |
---|
453 | END DO |
---|
454 | |
---|
455 | ! Deallocate the data for interpolation |
---|
456 | DEALLOCATE( & |
---|
457 | & igrdi1, & |
---|
458 | & igrdi2, & |
---|
459 | & igrdj1, & |
---|
460 | & igrdj2, & |
---|
461 | & zglam1, & |
---|
462 | & zglam2, & |
---|
463 | & zgphi1, & |
---|
464 | & zgphi2, & |
---|
465 | & zmask1, & |
---|
466 | & zmask2, & |
---|
467 | & zint1, & |
---|
468 | & zint2 & |
---|
469 | & ) |
---|
470 | |
---|
471 | ! At the end of the day also get interpolated means |
---|
472 | IF ( ld_dailyav .AND. idayend == 0 ) THEN |
---|
473 | DEALLOCATE( & |
---|
474 | & zinm1, & |
---|
475 | & zinm2 & |
---|
476 | & ) |
---|
477 | ENDIF |
---|
478 | |
---|
479 | prodatqc%nprofup = prodatqc%nprofup + ipro |
---|
480 | |
---|
481 | END SUBROUTINE obs_prof_opt |
---|
482 | |
---|
483 | SUBROUTINE obs_pro_sco_opt( prodatqc, kt, kpi, kpj, kpk, kit000, kdaystp, & |
---|
484 | & ptn, psn, pgdept, pgdepw, ptmask, k1dint, k2dint, & |
---|
485 | & kdailyavtypes ) |
---|
486 | !!----------------------------------------------------------------------- |
---|
487 | !! |
---|
488 | !! *** ROUTINE obs_pro_opt *** |
---|
489 | !! |
---|
490 | !! ** Purpose : Compute the model counterpart of profiles |
---|
491 | !! data by interpolating from the model grid to the |
---|
492 | !! observation point. Generalised vertical coordinate version |
---|
493 | !! |
---|
494 | !! ** Method : Linearly interpolate to each observation point using |
---|
495 | !! the model values at the corners of the surrounding grid box. |
---|
496 | !! |
---|
497 | !! First, model values on the model grid are interpolated vertically to the |
---|
498 | !! Depths of the profile observations. Two vertical interpolation schemes are |
---|
499 | !! available: |
---|
500 | !! - linear (k1dint = 0) |
---|
501 | !! - Cubic spline (k1dint = 1) |
---|
502 | !! |
---|
503 | !! |
---|
504 | !! Secondly the interpolated values are interpolated horizontally to the |
---|
505 | !! obs (lon, lat) point. |
---|
506 | !! Several horizontal interpolation schemes are available: |
---|
507 | !! - distance-weighted (great circle) (k2dint = 0) |
---|
508 | !! - distance-weighted (small angle) (k2dint = 1) |
---|
509 | !! - bilinear (geographical grid) (k2dint = 2) |
---|
510 | !! - bilinear (quadrilateral grid) (k2dint = 3) |
---|
511 | !! - polynomial (quadrilateral grid) (k2dint = 4) |
---|
512 | !! |
---|
513 | !! For the cubic spline the 2nd derivative of the interpolating |
---|
514 | !! polynomial is computed before entering the vertical interpolation |
---|
515 | !! routine. |
---|
516 | !! |
---|
517 | !! For ENACT moored buoy data (e.g., TAO), the model equivalent is |
---|
518 | !! a daily mean model temperature field. So, we first compute |
---|
519 | !! the mean, then interpolate only at the end of the day. |
---|
520 | !! |
---|
521 | !! This is the procedure to be used with generalised vertical model |
---|
522 | !! coordinates (ie s-coordinates. It is ~4x slower than the equivalent |
---|
523 | !! horizontal then vertical interpolation algorithm, but can deal with situations |
---|
524 | !! where the model levels are not flat. |
---|
525 | !! ONLY PERFORMED if ln_sco=.TRUE. |
---|
526 | !! |
---|
527 | !! Note: the in situ temperature observations must be converted |
---|
528 | !! to potential temperature (the model variable) prior to |
---|
529 | !! assimilation. |
---|
530 | !!?????????????????????????????????????????????????????????????? |
---|
531 | !! INCLUDE POTENTIAL TEMP -> IN SITU TEMP IN OBS OPERATOR??? |
---|
532 | !!?????????????????????????????????????????????????????????????? |
---|
533 | !! |
---|
534 | !! ** Action : |
---|
535 | !! |
---|
536 | !! History : |
---|
537 | !! ! 2014-08 (J. While) Adapted from obs_pro_opt to handel generalised |
---|
538 | !! vertical coordinates |
---|
539 | !!----------------------------------------------------------------------- |
---|
540 | |
---|
541 | !! * Modules used |
---|
542 | USE obs_profiles_def ! Definition of storage space for profile obs. |
---|
543 | |
---|
544 | IMPLICIT NONE |
---|
545 | |
---|
546 | !! * Arguments |
---|
547 | TYPE(obs_prof), INTENT(INOUT) :: prodatqc ! Subset of profile data not failing screening |
---|
548 | INTEGER, INTENT(IN) :: kt ! Time step |
---|
549 | INTEGER, INTENT(IN) :: kpi ! Model grid parameters |
---|
550 | INTEGER, INTENT(IN) :: kpj |
---|
551 | INTEGER, INTENT(IN) :: kpk |
---|
552 | INTEGER, INTENT(IN) :: kit000 ! Number of the first time step |
---|
553 | ! (kit000-1 = restart time) |
---|
554 | INTEGER, INTENT(IN) :: k1dint ! Vertical interpolation type (see header) |
---|
555 | INTEGER, INTENT(IN) :: k2dint ! Horizontal interpolation type (see header) |
---|
556 | INTEGER, INTENT(IN) :: kdaystp ! Number of time steps per day |
---|
557 | REAL(KIND=wp), INTENT(IN), DIMENSION(kpi,kpj,kpk) :: & |
---|
558 | & ptn, & ! Model temperature field |
---|
559 | & psn, & ! Model salinity field |
---|
560 | & ptmask ! Land-sea mask |
---|
561 | REAL(KIND=wp), INTENT(IN), DIMENSION(kpi,kpj,kpk) :: & |
---|
562 | & pgdept, & ! Model array of depth T levels |
---|
563 | & pgdepw ! Model array of depth W levels |
---|
564 | INTEGER, DIMENSION(imaxavtypes), OPTIONAL :: & |
---|
565 | & kdailyavtypes ! Types for daily averages |
---|
566 | |
---|
567 | !! * Local declarations |
---|
568 | INTEGER :: ji |
---|
569 | INTEGER :: jj |
---|
570 | INTEGER :: jk |
---|
571 | INTEGER :: iico, ijco |
---|
572 | INTEGER :: jobs |
---|
573 | INTEGER :: inrc |
---|
574 | INTEGER :: ipro |
---|
575 | INTEGER :: idayend |
---|
576 | INTEGER :: ista |
---|
577 | INTEGER :: iend |
---|
578 | INTEGER :: iobs |
---|
579 | INTEGER :: iin, ijn, ikn, ik ! looping indices over interpolation nodes |
---|
580 | INTEGER, DIMENSION(imaxavtypes) :: & |
---|
581 | & idailyavtypes |
---|
582 | INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
583 | & igrdi, & |
---|
584 | & igrdj |
---|
585 | INTEGER :: & |
---|
586 | & inum_obs |
---|
587 | INTEGER, ALLOCATABLE, DIMENSION(:) :: iv_indic |
---|
588 | REAL(KIND=wp) :: zlam |
---|
589 | REAL(KIND=wp) :: zphi |
---|
590 | REAL(KIND=wp) :: zdaystp |
---|
591 | REAL(KIND=wp), DIMENSION(kpk) :: & |
---|
592 | & zobsmask, & |
---|
593 | & zobsk, & |
---|
594 | & zobs2k |
---|
595 | REAL(KIND=wp), DIMENSION(2,2,1) :: & |
---|
596 | & zweig, & |
---|
597 | & l_zweig |
---|
598 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: & |
---|
599 | & zmask, & |
---|
600 | & zintt, & |
---|
601 | & zints, & |
---|
602 | & zinmt, & |
---|
603 | & zgdept,& |
---|
604 | & zgdepw,& |
---|
605 | & zinms |
---|
606 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
607 | & zglam, & |
---|
608 | & zgphi |
---|
609 | REAL(KIND=wp), DIMENSION(1) :: zmsk_1 |
---|
610 | REAL(KIND=wp), DIMENSION(:,:,:), ALLOCATABLE :: interp_corner |
---|
611 | |
---|
612 | !------------------------------------------------------------------------ |
---|
613 | ! Local initialization |
---|
614 | !------------------------------------------------------------------------ |
---|
615 | ! ... Record and data counters |
---|
616 | inrc = kt - kit000 + 2 |
---|
617 | ipro = prodatqc%npstp(inrc) |
---|
618 | |
---|
619 | ! Daily average types |
---|
620 | IF ( PRESENT(kdailyavtypes) ) THEN |
---|
621 | idailyavtypes(:) = kdailyavtypes(:) |
---|
622 | ELSE |
---|
623 | idailyavtypes(:) = -1 |
---|
624 | ENDIF |
---|
625 | |
---|
626 | ! Initialize daily mean for first time-step |
---|
627 | idayend = MOD( kt - kit000 + 1, kdaystp ) |
---|
628 | |
---|
629 | ! Added kt == 0 test to catch restart case |
---|
630 | IF ( idayend == 1 .OR. kt == 0) THEN |
---|
631 | |
---|
632 | IF (lwp) WRITE(numout,*) 'Reset prodatqc%vdmean on time-step: ',kt |
---|
633 | DO jk = 1, jpk |
---|
634 | DO jj = 1, jpj |
---|
635 | DO ji = 1, jpi |
---|
636 | prodatqc%vdmean(ji,jj,jk,1) = 0.0 |
---|
637 | prodatqc%vdmean(ji,jj,jk,2) = 0.0 |
---|
638 | END DO |
---|
639 | END DO |
---|
640 | END DO |
---|
641 | |
---|
642 | ENDIF |
---|
643 | |
---|
644 | DO jk = 1, jpk |
---|
645 | DO jj = 1, jpj |
---|
646 | DO ji = 1, jpi |
---|
647 | ! Increment the temperature field for computing daily mean |
---|
648 | prodatqc%vdmean(ji,jj,jk,1) = prodatqc%vdmean(ji,jj,jk,1) & |
---|
649 | & + ptn(ji,jj,jk) |
---|
650 | ! Increment the salinity field for computing daily mean |
---|
651 | prodatqc%vdmean(ji,jj,jk,2) = prodatqc%vdmean(ji,jj,jk,2) & |
---|
652 | & + psn(ji,jj,jk) |
---|
653 | END DO |
---|
654 | END DO |
---|
655 | END DO |
---|
656 | |
---|
657 | ! Compute the daily mean at the end of day |
---|
658 | zdaystp = 1.0 / REAL( kdaystp ) |
---|
659 | IF ( idayend == 0 ) THEN |
---|
660 | DO jk = 1, jpk |
---|
661 | DO jj = 1, jpj |
---|
662 | DO ji = 1, jpi |
---|
663 | prodatqc%vdmean(ji,jj,jk,1) = prodatqc%vdmean(ji,jj,jk,1) & |
---|
664 | & * zdaystp |
---|
665 | prodatqc%vdmean(ji,jj,jk,2) = prodatqc%vdmean(ji,jj,jk,2) & |
---|
666 | & * zdaystp |
---|
667 | END DO |
---|
668 | END DO |
---|
669 | END DO |
---|
670 | ENDIF |
---|
671 | |
---|
672 | ! Get the data for interpolation |
---|
673 | ALLOCATE( & |
---|
674 | & igrdi(2,2,ipro), & |
---|
675 | & igrdj(2,2,ipro), & |
---|
676 | & zglam(2,2,ipro), & |
---|
677 | & zgphi(2,2,ipro), & |
---|
678 | & zmask(2,2,kpk,ipro), & |
---|
679 | & zintt(2,2,kpk,ipro), & |
---|
680 | & zints(2,2,kpk,ipro), & |
---|
681 | & zgdept(2,2,kpk,ipro), & |
---|
682 | & zgdepw(2,2,kpk,ipro) & |
---|
683 | & ) |
---|
684 | |
---|
685 | DO jobs = prodatqc%nprofup + 1, prodatqc%nprofup + ipro |
---|
686 | iobs = jobs - prodatqc%nprofup |
---|
687 | igrdi(1,1,iobs) = prodatqc%mi(jobs,1)-1 |
---|
688 | igrdj(1,1,iobs) = prodatqc%mj(jobs,1)-1 |
---|
689 | igrdi(1,2,iobs) = prodatqc%mi(jobs,1)-1 |
---|
690 | igrdj(1,2,iobs) = prodatqc%mj(jobs,1) |
---|
691 | igrdi(2,1,iobs) = prodatqc%mi(jobs,1) |
---|
692 | igrdj(2,1,iobs) = prodatqc%mj(jobs,1)-1 |
---|
693 | igrdi(2,2,iobs) = prodatqc%mi(jobs,1) |
---|
694 | igrdj(2,2,iobs) = prodatqc%mj(jobs,1) |
---|
695 | END DO |
---|
696 | |
---|
697 | ! Initialise depth arrays |
---|
698 | zgdept = 0.0 |
---|
699 | zgdepw = 0.0 |
---|
700 | |
---|
701 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi, igrdj, glamt, zglam ) |
---|
702 | CALL obs_int_comm_2d( 2, 2, ipro, kpi, kpj, igrdi, igrdj, gphit, zgphi ) |
---|
703 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, ptmask,zmask ) |
---|
704 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, ptn, zintt ) |
---|
705 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, psn, zints ) |
---|
706 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, pgdept(:,:,:), & |
---|
707 | & zgdept ) |
---|
708 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, pgdepw(:,:,:), & |
---|
709 | & zgdepw ) |
---|
710 | |
---|
711 | ! At the end of the day also get interpolated means |
---|
712 | IF ( idayend == 0 ) THEN |
---|
713 | |
---|
714 | ALLOCATE( & |
---|
715 | & zinmt(2,2,kpk,ipro), & |
---|
716 | & zinms(2,2,kpk,ipro) & |
---|
717 | & ) |
---|
718 | |
---|
719 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, & |
---|
720 | & prodatqc%vdmean(:,:,:,1), zinmt ) |
---|
721 | CALL obs_int_comm_3d( 2, 2, ipro, kpi, kpj, kpk, igrdi, igrdj, & |
---|
722 | & prodatqc%vdmean(:,:,:,2), zinms ) |
---|
723 | |
---|
724 | ENDIF |
---|
725 | |
---|
726 | ! Return if no observations to process |
---|
727 | ! Has to be done after comm commands to ensure processors |
---|
728 | ! stay in sync |
---|
729 | IF ( ipro == 0 ) RETURN |
---|
730 | |
---|
731 | DO jobs = prodatqc%nprofup + 1, prodatqc%nprofup + ipro |
---|
732 | |
---|
733 | iobs = jobs - prodatqc%nprofup |
---|
734 | |
---|
735 | IF ( kt /= prodatqc%mstp(jobs) ) THEN |
---|
736 | |
---|
737 | IF(lwp) THEN |
---|
738 | WRITE(numout,*) |
---|
739 | WRITE(numout,*) ' E R R O R : Observation', & |
---|
740 | & ' time step is not consistent with the', & |
---|
741 | & ' model time step' |
---|
742 | WRITE(numout,*) ' =========' |
---|
743 | WRITE(numout,*) |
---|
744 | WRITE(numout,*) ' Record = ', jobs, & |
---|
745 | & ' kt = ', kt, & |
---|
746 | & ' mstp = ', prodatqc%mstp(jobs), & |
---|
747 | & ' ntyp = ', prodatqc%ntyp(jobs) |
---|
748 | ENDIF |
---|
749 | CALL ctl_stop( 'obs_pro_opt', 'Inconsistent time' ) |
---|
750 | ENDIF |
---|
751 | |
---|
752 | zlam = prodatqc%rlam(jobs) |
---|
753 | zphi = prodatqc%rphi(jobs) |
---|
754 | |
---|
755 | ! Horizontal weights |
---|
756 | ! Only calculated once, for both T and S. |
---|
757 | ! Masked values are calculated later. |
---|
758 | |
---|
759 | IF ( ( prodatqc%npvend(jobs,1) > 0 ) .OR. & |
---|
760 | & ( prodatqc%npvend(jobs,2) > 0 ) ) THEN |
---|
761 | |
---|
762 | CALL obs_int_h2d_init( 1, 1, k2dint, zlam, zphi, & |
---|
763 | & zglam(:,:,iobs), zgphi(:,:,iobs), & |
---|
764 | & zmask(:,:,1,iobs), zweig, zmsk_1 ) |
---|
765 | |
---|
766 | ENDIF |
---|
767 | |
---|
768 | ! IF zmsk_1 = 0; then ob is on land |
---|
769 | IF (zmsk_1(1) < 0.1) THEN |
---|
770 | WRITE(numout,*) 'WARNING (obs_oper) :- profile found within landmask' |
---|
771 | |
---|
772 | ELSE |
---|
773 | |
---|
774 | ! Temperature |
---|
775 | |
---|
776 | IF ( prodatqc%npvend(jobs,1) > 0 ) THEN |
---|
777 | |
---|
778 | zobsk(:) = obfillflt |
---|
779 | |
---|
780 | IF ( ANY (idailyavtypes(:) == prodatqc%ntyp(jobs)) ) THEN |
---|
781 | |
---|
782 | IF ( idayend == 0 ) THEN |
---|
783 | |
---|
784 | ! Daily averaged moored buoy (MRB) data |
---|
785 | |
---|
786 | ! vertically interpolate all 4 corners |
---|
787 | ista = prodatqc%npvsta(jobs,1) |
---|
788 | iend = prodatqc%npvend(jobs,1) |
---|
789 | inum_obs = iend - ista + 1 |
---|
790 | ALLOCATE(interp_corner(2,2,inum_obs),iv_indic(inum_obs)) |
---|
791 | |
---|
792 | DO iin=1,2 |
---|
793 | DO ijn=1,2 |
---|
794 | |
---|
795 | |
---|
796 | |
---|
797 | IF ( k1dint == 1 ) THEN |
---|
798 | CALL obs_int_z1d_spl( kpk, & |
---|
799 | & zinmt(iin,ijn,:,iobs), & |
---|
800 | & zobs2k, zgdept(iin,ijn,:,iobs), & |
---|
801 | & zmask(iin,ijn,:,iobs)) |
---|
802 | ENDIF |
---|
803 | |
---|
804 | CALL obs_level_search(kpk, & |
---|
805 | & zgdept(iin,ijn,:,iobs), & |
---|
806 | & inum_obs, prodatqc%var(1)%vdep(ista:iend), & |
---|
807 | & iv_indic) |
---|
808 | CALL obs_int_z1d(kpk, iv_indic, k1dint, inum_obs, & |
---|
809 | & prodatqc%var(1)%vdep(ista:iend), & |
---|
810 | & zinmt(iin,ijn,:,iobs), & |
---|
811 | & zobs2k, interp_corner(iin,ijn,:), & |
---|
812 | & zgdept(iin,ijn,:,iobs), & |
---|
813 | & zmask(iin,ijn,:,iobs)) |
---|
814 | |
---|
815 | ENDDO |
---|
816 | ENDDO |
---|
817 | |
---|
818 | |
---|
819 | ELSE |
---|
820 | |
---|
821 | CALL ctl_stop( ' A nonzero' // & |
---|
822 | & ' number of profile T BUOY data should' // & |
---|
823 | & ' only occur at the end of a given day' ) |
---|
824 | |
---|
825 | ENDIF |
---|
826 | |
---|
827 | ELSE |
---|
828 | |
---|
829 | ! Point data |
---|
830 | |
---|
831 | ! vertically interpolate all 4 corners |
---|
832 | ista = prodatqc%npvsta(jobs,1) |
---|
833 | iend = prodatqc%npvend(jobs,1) |
---|
834 | inum_obs = iend - ista + 1 |
---|
835 | ALLOCATE(interp_corner(2,2,inum_obs), iv_indic(inum_obs)) |
---|
836 | DO iin=1,2 |
---|
837 | DO ijn=1,2 |
---|
838 | |
---|
839 | |
---|
840 | IF ( k1dint == 1 ) THEN |
---|
841 | CALL obs_int_z1d_spl( kpk, & |
---|
842 | & zintt(iin,ijn,:,iobs),& |
---|
843 | & zobs2k, zgdept(iin,ijn,:,iobs), & |
---|
844 | & zmask(iin,ijn,:,iobs)) |
---|
845 | |
---|
846 | ENDIF |
---|
847 | |
---|
848 | CALL obs_level_search(kpk, & |
---|
849 | & zgdept(iin,ijn,:,iobs),& |
---|
850 | & inum_obs, prodatqc%var(1)%vdep(ista:iend), & |
---|
851 | & iv_indic) |
---|
852 | CALL obs_int_z1d(kpk, iv_indic, k1dint, inum_obs, & |
---|
853 | & prodatqc%var(1)%vdep(ista:iend), & |
---|
854 | & zintt(iin,ijn,:,iobs), & |
---|
855 | & zobs2k,interp_corner(iin,ijn,:), & |
---|
856 | & zgdept(iin,ijn,:,iobs), & |
---|
857 | & zmask(iin,ijn,:,iobs) ) |
---|
858 | |
---|
859 | ENDDO |
---|
860 | ENDDO |
---|
861 | |
---|
862 | ENDIF |
---|
863 | |
---|
864 | !------------------------------------------------------------- |
---|
865 | ! Compute the horizontal interpolation for every profile level |
---|
866 | !------------------------------------------------------------- |
---|
867 | |
---|
868 | DO ikn=1,inum_obs |
---|
869 | iend=ista+ikn-1 |
---|
870 | |
---|
871 | l_zweig(:,:,1) = 0._wp |
---|
872 | |
---|
873 | ! This code forces the horizontal weights to be |
---|
874 | ! zero IF the observation is below the bottom of the |
---|
875 | ! corners of the interpolation nodes, Or if it is in |
---|
876 | ! the mask. This is important for observations are near |
---|
877 | ! steep bathymetry |
---|
878 | DO iin=1,2 |
---|
879 | DO ijn=1,2 |
---|
880 | |
---|
881 | depth_loop1: DO ik=kpk,2,-1 |
---|
882 | IF(zmask(iin,ijn,ik-1,iobs ) > 0.9 )THEN |
---|
883 | |
---|
884 | l_zweig(iin,ijn,1) = & |
---|
885 | & zweig(iin,ijn,1) * & |
---|
886 | & MAX( SIGN(1._wp,(zgdepw(iin,ijn,ik,iobs) ) & |
---|
887 | & - prodatqc%var(1)%vdep(iend)),0._wp) |
---|
888 | |
---|
889 | EXIT depth_loop1 |
---|
890 | ENDIF |
---|
891 | ENDDO depth_loop1 |
---|
892 | |
---|
893 | ENDDO |
---|
894 | ENDDO |
---|
895 | |
---|
896 | CALL obs_int_h2d( 1, 1, l_zweig, interp_corner(:,:,ikn), & |
---|
897 | & prodatqc%var(1)%vmod(iend:iend) ) |
---|
898 | |
---|
899 | ENDDO |
---|
900 | |
---|
901 | |
---|
902 | DEALLOCATE(interp_corner,iv_indic) |
---|
903 | |
---|
904 | ENDIF |
---|
905 | |
---|
906 | |
---|
907 | ! Salinity |
---|
908 | |
---|
909 | IF ( prodatqc%npvend(jobs,2) > 0 ) THEN |
---|
910 | |
---|
911 | zobsk(:) = obfillflt |
---|
912 | |
---|
913 | IF ( ANY (idailyavtypes(:) == prodatqc%ntyp(jobs)) ) THEN |
---|
914 | |
---|
915 | IF ( idayend == 0 ) THEN |
---|
916 | |
---|
917 | ! Daily averaged moored buoy (MRB) data |
---|
918 | |
---|
919 | ! vertically interpolate all 4 corners |
---|
920 | ista = prodatqc%npvsta(iobs,2) |
---|
921 | iend = prodatqc%npvend(iobs,2) |
---|
922 | inum_obs = iend - ista + 1 |
---|
923 | ALLOCATE(interp_corner(2,2,inum_obs),iv_indic(inum_obs)) |
---|
924 | |
---|
925 | DO iin=1,2 |
---|
926 | DO ijn=1,2 |
---|
927 | |
---|
928 | |
---|
929 | |
---|
930 | IF ( k1dint == 1 ) THEN |
---|
931 | CALL obs_int_z1d_spl( kpk, & |
---|
932 | & zinms(iin,ijn,:,iobs), & |
---|
933 | & zobs2k, zgdept(iin,ijn,:,iobs), & |
---|
934 | & zmask(iin,ijn,:,iobs)) |
---|
935 | ENDIF |
---|
936 | |
---|
937 | CALL obs_level_search(kpk, & |
---|
938 | & zgdept(iin,ijn,:,iobs), & |
---|
939 | & inum_obs, prodatqc%var(2)%vdep(ista:iend), & |
---|
940 | & iv_indic) |
---|
941 | CALL obs_int_z1d(kpk, iv_indic, k1dint, inum_obs, & |
---|
942 | & prodatqc%var(2)%vdep(ista:iend), & |
---|
943 | & zinms(iin,ijn,:,iobs), & |
---|
944 | & zobs2k, interp_corner(iin,ijn,:), & |
---|
945 | & zgdept(iin,ijn,:,iobs), & |
---|
946 | & zmask(iin,ijn,:,iobs)) |
---|
947 | |
---|
948 | ENDDO |
---|
949 | ENDDO |
---|
950 | |
---|
951 | |
---|
952 | ELSE |
---|
953 | |
---|
954 | CALL ctl_stop( ' A nonzero' // & |
---|
955 | & ' number of profile T BUOY data should' // & |
---|
956 | & ' only occur at the end of a given day' ) |
---|
957 | |
---|
958 | ENDIF |
---|
959 | |
---|
960 | ELSE |
---|
961 | |
---|
962 | ! Point data |
---|
963 | |
---|
964 | ! vertically interpolate all 4 corners |
---|
965 | ista = prodatqc%npvsta(jobs,2) |
---|
966 | iend = prodatqc%npvend(jobs,2) |
---|
967 | inum_obs = iend - ista + 1 |
---|
968 | ALLOCATE(interp_corner(2,2,inum_obs), iv_indic(inum_obs)) |
---|
969 | |
---|
970 | DO iin=1,2 |
---|
971 | DO ijn=1,2 |
---|
972 | |
---|
973 | |
---|
974 | IF ( k1dint == 1 ) THEN |
---|
975 | CALL obs_int_z1d_spl( kpk, & |
---|
976 | & zints(iin,ijn,:,iobs),& |
---|
977 | & zobs2k, zgdept(iin,ijn,:,iobs), & |
---|
978 | & zmask(iin,ijn,:,iobs)) |
---|
979 | |
---|
980 | ENDIF |
---|
981 | |
---|
982 | CALL obs_level_search(kpk, & |
---|
983 | & zgdept(iin,ijn,:,iobs),& |
---|
984 | & inum_obs, prodatqc%var(2)%vdep(ista:iend), & |
---|
985 | & iv_indic) |
---|
986 | CALL obs_int_z1d(kpk, iv_indic, k1dint, inum_obs, & |
---|
987 | & prodatqc%var(2)%vdep(ista:iend), & |
---|
988 | & zints(iin,ijn,:,iobs), & |
---|
989 | & zobs2k,interp_corner(iin,ijn,:), & |
---|
990 | & zgdept(iin,ijn,:,iobs), & |
---|
991 | & zmask(iin,ijn,:,iobs) ) |
---|
992 | |
---|
993 | ENDDO |
---|
994 | ENDDO |
---|
995 | |
---|
996 | ENDIF |
---|
997 | |
---|
998 | !------------------------------------------------------------- |
---|
999 | ! Compute the horizontal interpolation for every profile level |
---|
1000 | !------------------------------------------------------------- |
---|
1001 | |
---|
1002 | DO ikn=1,inum_obs |
---|
1003 | iend=ista+ikn-1 |
---|
1004 | |
---|
1005 | l_zweig(:,:,1) = 0._wp |
---|
1006 | |
---|
1007 | ! This code forces the horizontal weights to be |
---|
1008 | ! zero IF the observation is below the bottom of the |
---|
1009 | ! corners of the interpolation nodes, Or if it is in |
---|
1010 | ! the mask. This is important for observations are near |
---|
1011 | ! steep bathymetry |
---|
1012 | DO iin=1,2 |
---|
1013 | DO ijn=1,2 |
---|
1014 | |
---|
1015 | depth_loop2: DO ik=kpk,2,-1 |
---|
1016 | IF(zmask(iin,ijn,ik-1,iobs ) > 0.9 )THEN |
---|
1017 | |
---|
1018 | l_zweig(iin,ijn,1) = & |
---|
1019 | & zweig(iin,ijn,1) * & |
---|
1020 | & MAX( SIGN(1._wp,(zgdepw(iin,ijn,ik,iobs) ) & |
---|
1021 | & - prodatqc%var(2)%vdep(iend)),0._wp) |
---|
1022 | |
---|
1023 | EXIT depth_loop2 |
---|
1024 | ENDIF |
---|
1025 | ENDDO depth_loop2 |
---|
1026 | |
---|
1027 | ENDDO |
---|
1028 | ENDDO |
---|
1029 | |
---|
1030 | CALL obs_int_h2d( 1, 1, l_zweig, interp_corner(:,:,ikn), & |
---|
1031 | & prodatqc%var(2)%vmod(iend:iend) ) |
---|
1032 | |
---|
1033 | ENDDO |
---|
1034 | |
---|
1035 | |
---|
1036 | DEALLOCATE(interp_corner,iv_indic) |
---|
1037 | |
---|
1038 | ENDIF |
---|
1039 | |
---|
1040 | ENDIF |
---|
1041 | |
---|
1042 | END DO |
---|
1043 | |
---|
1044 | ! Deallocate the data for interpolation |
---|
1045 | DEALLOCATE( & |
---|
1046 | & igrdi, & |
---|
1047 | & igrdj, & |
---|
1048 | & zglam, & |
---|
1049 | & zgphi, & |
---|
1050 | & zmask, & |
---|
1051 | & zintt, & |
---|
1052 | & zints, & |
---|
1053 | & zgdept,& |
---|
1054 | & zgdepw & |
---|
1055 | & ) |
---|
1056 | ! At the end of the day also get interpolated means |
---|
1057 | IF ( idayend == 0 ) THEN |
---|
1058 | DEALLOCATE( & |
---|
1059 | & zinmt, & |
---|
1060 | & zinms & |
---|
1061 | & ) |
---|
1062 | ENDIF |
---|
1063 | |
---|
1064 | prodatqc%nprofup = prodatqc%nprofup + ipro |
---|
1065 | |
---|
1066 | END SUBROUTINE obs_pro_sco_opt |
---|
1067 | |
---|
1068 | SUBROUTINE obs_surf_opt( surfdataqc, kt, kpi, kpj, & |
---|
1069 | & kit000, kdaystp, psurf, psurfmask, & |
---|
1070 | & k2dint, ldnightav ) |
---|
1071 | |
---|
1072 | !!----------------------------------------------------------------------- |
---|
1073 | !! |
---|
1074 | !! *** ROUTINE obs_surf_opt *** |
---|
1075 | !! |
---|
1076 | !! ** Purpose : Compute the model counterpart of surface |
---|
1077 | !! data by interpolating from the model grid to the |
---|
1078 | !! observation point. |
---|
1079 | !! |
---|
1080 | !! ** Method : Linearly interpolate to each observation point using |
---|
1081 | !! the model values at the corners of the surrounding grid box. |
---|
1082 | !! |
---|
1083 | !! The new model value is first computed at the obs (lon, lat) point. |
---|
1084 | !! |
---|
1085 | !! Several horizontal interpolation schemes are available: |
---|
1086 | !! - distance-weighted (great circle) (k2dint = 0) |
---|
1087 | !! - distance-weighted (small angle) (k2dint = 1) |
---|
1088 | !! - bilinear (geographical grid) (k2dint = 2) |
---|
1089 | !! - bilinear (quadrilateral grid) (k2dint = 3) |
---|
1090 | !! - polynomial (quadrilateral grid) (k2dint = 4) |
---|
1091 | !! |
---|
1092 | !! |
---|
1093 | !! ** Action : |
---|
1094 | !! |
---|
1095 | !! History : |
---|
1096 | !! ! 07-03 (A. Weaver) |
---|
1097 | !! ! 15-02 (M. Martin) Combined routine for surface types |
---|
1098 | !!----------------------------------------------------------------------- |
---|
1099 | |
---|
1100 | !! * Modules used |
---|
1101 | USE obs_surf_def ! Definition of storage space for surface observations |
---|
1102 | |
---|
1103 | IMPLICIT NONE |
---|
1104 | |
---|
1105 | !! * Arguments |
---|
1106 | TYPE(obs_surf), INTENT(INOUT) :: & |
---|
1107 | & surfdataqc ! Subset of surface data passing QC |
---|
1108 | INTEGER, INTENT(IN) :: kt ! Time step |
---|
1109 | INTEGER, INTENT(IN) :: kpi ! Model grid parameters |
---|
1110 | INTEGER, INTENT(IN) :: kpj |
---|
1111 | INTEGER, INTENT(IN) :: kit000 ! Number of the first time step |
---|
1112 | ! (kit000-1 = restart time) |
---|
1113 | INTEGER, INTENT(IN) :: kdaystp ! Number of time steps per day |
---|
1114 | INTEGER, INTENT(IN) :: k2dint ! Horizontal interpolation type (see header) |
---|
1115 | REAL(wp), INTENT(IN), DIMENSION(kpi,kpj) :: & |
---|
1116 | & psurf, & ! Model surface field |
---|
1117 | & psurfmask ! Land-sea mask |
---|
1118 | LOGICAL, INTENT(IN) :: ldnightav ! Logical for averaging night-time data |
---|
1119 | |
---|
1120 | !! * Local declarations |
---|
1121 | INTEGER :: ji |
---|
1122 | INTEGER :: jj |
---|
1123 | INTEGER :: jobs |
---|
1124 | INTEGER :: inrc |
---|
1125 | INTEGER :: isurf |
---|
1126 | INTEGER :: iobs |
---|
1127 | INTEGER :: idayend |
---|
1128 | INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
1129 | & igrdi, & |
---|
1130 | & igrdj |
---|
1131 | INTEGER, DIMENSION(:,:), SAVE, ALLOCATABLE :: & |
---|
1132 | & icount_night, & |
---|
1133 | & imask_night |
---|
1134 | REAL(wp) :: zlam |
---|
1135 | REAL(wp) :: zphi |
---|
1136 | REAL(wp), DIMENSION(1) :: zext, zobsmask |
---|
1137 | REAL(wp) :: zdaystp |
---|
1138 | REAL(wp), DIMENSION(2,2,1) :: & |
---|
1139 | & zweig |
---|
1140 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
1141 | & zmask, & |
---|
1142 | & zsurf, & |
---|
1143 | & zsurfm, & |
---|
1144 | & zglam, & |
---|
1145 | & zgphi |
---|
1146 | REAL(wp), DIMENSION(:,:), SAVE, ALLOCATABLE :: & |
---|
1147 | & zintmp, & |
---|
1148 | & zouttmp, & |
---|
1149 | & zmeanday ! to compute model sst in region of 24h daylight (pole) |
---|
1150 | |
---|
1151 | !------------------------------------------------------------------------ |
---|
1152 | ! Local initialization |
---|
1153 | !------------------------------------------------------------------------ |
---|
1154 | ! Record and data counters |
---|
1155 | inrc = kt - kit000 + 2 |
---|
1156 | isurf = surfdataqc%nsstp(inrc) |
---|
1157 | |
---|
1158 | IF ( ldnightav ) THEN |
---|
1159 | |
---|
1160 | ! Initialize array for night mean |
---|
1161 | IF ( kt == 0 ) THEN |
---|
1162 | ALLOCATE ( icount_night(kpi,kpj) ) |
---|
1163 | ALLOCATE ( imask_night(kpi,kpj) ) |
---|
1164 | ALLOCATE ( zintmp(kpi,kpj) ) |
---|
1165 | ALLOCATE ( zouttmp(kpi,kpj) ) |
---|
1166 | ALLOCATE ( zmeanday(kpi,kpj) ) |
---|
1167 | nday_qsr = -1 ! initialisation flag for nbc_dcy |
---|
1168 | ENDIF |
---|
1169 | |
---|
1170 | ! Night-time means are calculated for night-time values over timesteps: |
---|
1171 | ! [1 <= kt <= kdaystp], [kdaystp+1 <= kt <= 2*kdaystp], ..... |
---|
1172 | idayend = MOD( kt - kit000 + 1, kdaystp ) |
---|
1173 | |
---|
1174 | ! Initialize night-time mean for first timestep of the day |
---|
1175 | IF ( idayend == 1 .OR. kt == 0 ) THEN |
---|
1176 | DO jj = 1, jpj |
---|
1177 | DO ji = 1, jpi |
---|
1178 | surfdataqc%vdmean(ji,jj) = 0.0 |
---|
1179 | zmeanday(ji,jj) = 0.0 |
---|
1180 | icount_night(ji,jj) = 0 |
---|
1181 | END DO |
---|
1182 | END DO |
---|
1183 | ENDIF |
---|
1184 | |
---|
1185 | zintmp(:,:) = 0.0 |
---|
1186 | zouttmp(:,:) = sbc_dcy( zintmp(:,:), .TRUE. ) |
---|
1187 | imask_night(:,:) = INT( zouttmp(:,:) ) |
---|
1188 | |
---|
1189 | DO jj = 1, jpj |
---|
1190 | DO ji = 1, jpi |
---|
1191 | ! Increment the temperature field for computing night mean and counter |
---|
1192 | surfdataqc%vdmean(ji,jj) = surfdataqc%vdmean(ji,jj) & |
---|
1193 | & + psurf(ji,jj) * REAL( imask_night(ji,jj) ) |
---|
1194 | zmeanday(ji,jj) = zmeanday(ji,jj) + psurf(ji,jj) |
---|
1195 | icount_night(ji,jj) = icount_night(ji,jj) + imask_night(ji,jj) |
---|
1196 | END DO |
---|
1197 | END DO |
---|
1198 | |
---|
1199 | ! Compute the night-time mean at the end of the day |
---|
1200 | zdaystp = 1.0 / REAL( kdaystp ) |
---|
1201 | IF ( idayend == 0 ) THEN |
---|
1202 | IF (lwp) WRITE(numout,*) 'Calculating surfdataqc%vdmean on time-step: ',kt |
---|
1203 | DO jj = 1, jpj |
---|
1204 | DO ji = 1, jpi |
---|
1205 | ! Test if "no night" point |
---|
1206 | IF ( icount_night(ji,jj) > 0 ) THEN |
---|
1207 | surfdataqc%vdmean(ji,jj) = surfdataqc%vdmean(ji,jj) & |
---|
1208 | & / REAL( icount_night(ji,jj) ) |
---|
1209 | ELSE |
---|
1210 | !At locations where there is no night (e.g. poles), |
---|
1211 | ! calculate daily mean instead of night-time mean. |
---|
1212 | surfdataqc%vdmean(ji,jj) = zmeanday(ji,jj) * zdaystp |
---|
1213 | ENDIF |
---|
1214 | END DO |
---|
1215 | END DO |
---|
1216 | ENDIF |
---|
1217 | |
---|
1218 | ENDIF |
---|
1219 | |
---|
1220 | ! Get the data for interpolation |
---|
1221 | |
---|
1222 | ALLOCATE( & |
---|
1223 | & igrdi(2,2,isurf), & |
---|
1224 | & igrdj(2,2,isurf), & |
---|
1225 | & zglam(2,2,isurf), & |
---|
1226 | & zgphi(2,2,isurf), & |
---|
1227 | & zmask(2,2,isurf), & |
---|
1228 | & zsurf(2,2,isurf) & |
---|
1229 | & ) |
---|
1230 | |
---|
1231 | DO jobs = surfdataqc%nsurfup + 1, surfdataqc%nsurfup + isurf |
---|
1232 | iobs = jobs - surfdataqc%nsurfup |
---|
1233 | igrdi(1,1,iobs) = surfdataqc%mi(jobs)-1 |
---|
1234 | igrdj(1,1,iobs) = surfdataqc%mj(jobs)-1 |
---|
1235 | igrdi(1,2,iobs) = surfdataqc%mi(jobs)-1 |
---|
1236 | igrdj(1,2,iobs) = surfdataqc%mj(jobs) |
---|
1237 | igrdi(2,1,iobs) = surfdataqc%mi(jobs) |
---|
1238 | igrdj(2,1,iobs) = surfdataqc%mj(jobs)-1 |
---|
1239 | igrdi(2,2,iobs) = surfdataqc%mi(jobs) |
---|
1240 | igrdj(2,2,iobs) = surfdataqc%mj(jobs) |
---|
1241 | END DO |
---|
1242 | |
---|
1243 | CALL obs_int_comm_2d( 2, 2, isurf, kpi, kpj, & |
---|
1244 | & igrdi, igrdj, glamt, zglam ) |
---|
1245 | CALL obs_int_comm_2d( 2, 2, isurf, kpi, kpj, & |
---|
1246 | & igrdi, igrdj, gphit, zgphi ) |
---|
1247 | CALL obs_int_comm_2d( 2, 2, isurf, kpi, kpj, & |
---|
1248 | & igrdi, igrdj, psurfmask, zmask ) |
---|
1249 | CALL obs_int_comm_2d( 2, 2, isurf, kpi, kpj, & |
---|
1250 | & igrdi, igrdj, psurf, zsurf ) |
---|
1251 | |
---|
1252 | ! At the end of the day get interpolated means |
---|
1253 | IF (ldnightav ) THEN |
---|
1254 | IF ( idayend == 0 ) THEN |
---|
1255 | |
---|
1256 | ALLOCATE( & |
---|
1257 | & zsurfm(2,2,isurf) & |
---|
1258 | & ) |
---|
1259 | |
---|
1260 | CALL obs_int_comm_2d( 2, 2, isurf, kpi, kpj, igrdi, igrdj, & |
---|
1261 | & surfdataqc%vdmean(:,:), zsurfm ) |
---|
1262 | |
---|
1263 | ENDIF |
---|
1264 | ENDIF |
---|
1265 | |
---|
1266 | ! Loop over observations |
---|
1267 | DO jobs = surfdataqc%nsurfup + 1, surfdataqc%nsurfup + isurf |
---|
1268 | |
---|
1269 | iobs = jobs - surfdataqc%nsurfup |
---|
1270 | |
---|
1271 | IF ( kt /= surfdataqc%mstp(jobs) ) THEN |
---|
1272 | |
---|
1273 | IF(lwp) THEN |
---|
1274 | WRITE(numout,*) |
---|
1275 | WRITE(numout,*) ' E R R O R : Observation', & |
---|
1276 | & ' time step is not consistent with the', & |
---|
1277 | & ' model time step' |
---|
1278 | WRITE(numout,*) ' =========' |
---|
1279 | WRITE(numout,*) |
---|
1280 | WRITE(numout,*) ' Record = ', jobs, & |
---|
1281 | & ' kt = ', kt, & |
---|
1282 | & ' mstp = ', surfdataqc%mstp(jobs), & |
---|
1283 | & ' ntyp = ', surfdataqc%ntyp(jobs) |
---|
1284 | ENDIF |
---|
1285 | CALL ctl_stop( 'obs_surf_opt', 'Inconsistent time' ) |
---|
1286 | |
---|
1287 | ENDIF |
---|
1288 | |
---|
1289 | zlam = surfdataqc%rlam(jobs) |
---|
1290 | zphi = surfdataqc%rphi(jobs) |
---|
1291 | |
---|
1292 | ! Get weights to interpolate the model value to the observation point |
---|
1293 | CALL obs_int_h2d_init( 1, 1, k2dint, zlam, zphi, & |
---|
1294 | & zglam(:,:,iobs), zgphi(:,:,iobs), & |
---|
1295 | & zmask(:,:,iobs), zweig, zobsmask ) |
---|
1296 | |
---|
1297 | ! Interpolate the model field to the observation point |
---|
1298 | IF ( ldnightav .AND. idayend == 0 ) THEN |
---|
1299 | ! Night-time averaged data |
---|
1300 | CALL obs_int_h2d( 1, 1, zweig, zsurfm(:,:,iobs), zext ) |
---|
1301 | ELSE |
---|
1302 | CALL obs_int_h2d( 1, 1, zweig, zsurf(:,:,iobs), zext ) |
---|
1303 | ENDIF |
---|
1304 | |
---|
1305 | IF ( TRIM(surfdataqc%cvars(1)) == 'SLA' .AND. surfdataqc%nextra == 2 ) THEN |
---|
1306 | ! ... Remove the MDT from the SSH at the observation point to get the SLA |
---|
1307 | surfdataqc%rext(jobs,1) = zext(1) |
---|
1308 | surfdataqc%rmod(jobs,1) = surfdataqc%rext(jobs,1) - surfdataqc%rext(jobs,2) |
---|
1309 | ELSE |
---|
1310 | surfdataqc%rmod(jobs,1) = zext(1) |
---|
1311 | ENDIF |
---|
1312 | |
---|
1313 | END DO |
---|
1314 | |
---|
1315 | ! Deallocate the data for interpolation |
---|
1316 | DEALLOCATE( & |
---|
1317 | & igrdi, & |
---|
1318 | & igrdj, & |
---|
1319 | & zglam, & |
---|
1320 | & zgphi, & |
---|
1321 | & zmask, & |
---|
1322 | & zsurf & |
---|
1323 | & ) |
---|
1324 | |
---|
1325 | ! At the end of the day also deallocate night-time mean array |
---|
1326 | IF ( ldnightav ) THEN |
---|
1327 | IF ( idayend == 0 ) THEN |
---|
1328 | DEALLOCATE( & |
---|
1329 | & zsurfm & |
---|
1330 | & ) |
---|
1331 | ENDIF |
---|
1332 | ENDIF |
---|
1333 | |
---|
1334 | surfdataqc%nsurfup = surfdataqc%nsurfup + isurf |
---|
1335 | |
---|
1336 | END SUBROUTINE obs_surf_opt |
---|
1337 | |
---|
1338 | END MODULE obs_oper |
---|