1 | MODULE geo2ocean |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE geo2ocean *** |
---|
4 | !! Ocean mesh : ??? |
---|
5 | !!====================================================================== |
---|
6 | !! History : OPA ! 07-1996 (O. Marti) Original code |
---|
7 | !! NEMO 1.0 ! 02-2008 (G. Madec) F90: Free form |
---|
8 | !! 3.0 ! |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! repcmo : |
---|
13 | !! angle : |
---|
14 | !! geo2oce : |
---|
15 | !! repere : old routine suppress it ??? |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE dom_oce ! mesh and scale factors |
---|
18 | USE phycst ! physical constants |
---|
19 | USE in_out_manager ! I/O manager |
---|
20 | USE lbclnk ! ocean lateral boundary conditions (or mpp link) |
---|
21 | USE lib_mpp ! MPP library |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC rot_rep, repcmo, repere, geo2oce, oce2geo ! only rot_rep should be used |
---|
27 | ! repcmo and repere are keep only for compatibility. |
---|
28 | ! they are only a useless overlay of rot_rep |
---|
29 | |
---|
30 | PUBLIC obs_rot |
---|
31 | |
---|
32 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: & |
---|
33 | gsint, gcost, & ! cos/sin between model grid lines and NP direction at T point |
---|
34 | gsinu, gcosu, & ! cos/sin between model grid lines and NP direction at U point |
---|
35 | gsinv, gcosv, & ! cos/sin between model grid lines and NP direction at V point |
---|
36 | gsinf, gcosf ! cos/sin between model grid lines and NP direction at F point |
---|
37 | |
---|
38 | LOGICAL , SAVE, DIMENSION(4) :: linit = .FALSE. |
---|
39 | REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: gsinlon, gcoslon, gsinlat, gcoslat |
---|
40 | |
---|
41 | LOGICAL :: lmust_init = .TRUE. !: used to initialize the cos/sin variables (se above) |
---|
42 | |
---|
43 | !! * Substitutions |
---|
44 | # include "vectopt_loop_substitute.h90" |
---|
45 | !!---------------------------------------------------------------------- |
---|
46 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
47 | !! $Id$ |
---|
48 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
49 | !!---------------------------------------------------------------------- |
---|
50 | CONTAINS |
---|
51 | |
---|
52 | SUBROUTINE repcmo ( pxu1, pyu1, pxv1, pyv1, & |
---|
53 | px2 , py2 ) |
---|
54 | !!---------------------------------------------------------------------- |
---|
55 | !! *** ROUTINE repcmo *** |
---|
56 | !! |
---|
57 | !! ** Purpose : Change vector componantes from a geographic grid to a |
---|
58 | !! stretched coordinates grid. |
---|
59 | !! |
---|
60 | !! ** Method : Initialization of arrays at the first call. |
---|
61 | !! |
---|
62 | !! ** Action : - px2 : first componante (defined at u point) |
---|
63 | !! - py2 : second componante (defined at v point) |
---|
64 | !!---------------------------------------------------------------------- |
---|
65 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: pxu1, pyu1 ! geographic vector componantes at u-point |
---|
66 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: pxv1, pyv1 ! geographic vector componantes at v-point |
---|
67 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: px2 ! i-componante (defined at u-point) |
---|
68 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: py2 ! j-componante (defined at v-point) |
---|
69 | !!---------------------------------------------------------------------- |
---|
70 | |
---|
71 | ! Change from geographic to stretched coordinate |
---|
72 | ! ---------------------------------------------- |
---|
73 | CALL rot_rep( pxu1, pyu1, 'U', 'en->i',px2 ) |
---|
74 | CALL rot_rep( pxv1, pyv1, 'V', 'en->j',py2 ) |
---|
75 | |
---|
76 | END SUBROUTINE repcmo |
---|
77 | |
---|
78 | |
---|
79 | SUBROUTINE rot_rep ( pxin, pyin, cd_type, cdtodo, prot ) |
---|
80 | !!---------------------------------------------------------------------- |
---|
81 | !! *** ROUTINE rot_rep *** |
---|
82 | !! |
---|
83 | !! ** Purpose : Rotate the Repere: Change vector componantes between |
---|
84 | !! geographic grid <--> stretched coordinates grid. |
---|
85 | !! |
---|
86 | !! History : |
---|
87 | !! 9.2 ! 07-04 (S. Masson) |
---|
88 | !! (O. Marti ) Original code (repere and repcmo) |
---|
89 | !!---------------------------------------------------------------------- |
---|
90 | REAL(wp), DIMENSION(jpi,jpj), INTENT( IN ) :: pxin, pyin ! vector componantes |
---|
91 | CHARACTER(len=1), INTENT( IN ) :: cd_type ! define the nature of pt2d array grid-points |
---|
92 | CHARACTER(len=5), INTENT( IN ) :: cdtodo ! specify the work to do: |
---|
93 | !! ! 'en->i' east-north componantes to model i componante |
---|
94 | !! ! 'en->j' east-north componantes to model j componante |
---|
95 | !! ! 'ij->e' model i-j componantes to east componante |
---|
96 | !! ! 'ij->n' model i-j componantes to east componante |
---|
97 | REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: prot |
---|
98 | !!---------------------------------------------------------------------- |
---|
99 | |
---|
100 | ! Initialization of gsin* and gcos* at first call |
---|
101 | ! ----------------------------------------------- |
---|
102 | |
---|
103 | IF( lmust_init ) THEN |
---|
104 | IF(lwp) WRITE(numout,*) |
---|
105 | IF(lwp) WRITE(numout,*) ' rot_rep : geographic <--> stretched' |
---|
106 | IF(lwp) WRITE(numout,*) ' ~~~~~ coordinate transformation' |
---|
107 | ! |
---|
108 | CALL angle ! initialization of the transformation |
---|
109 | lmust_init = .FALSE. |
---|
110 | ENDIF |
---|
111 | |
---|
112 | SELECT CASE (cdtodo) |
---|
113 | CASE ('en->i') ! 'en->i' est-north componantes to model i componante |
---|
114 | SELECT CASE (cd_type) |
---|
115 | CASE ('T') ; prot(:,:) = pxin(:,:) * gcost(:,:) + pyin(:,:) * gsint(:,:) |
---|
116 | CASE ('U') ; prot(:,:) = pxin(:,:) * gcosu(:,:) + pyin(:,:) * gsinu(:,:) |
---|
117 | CASE ('V') ; prot(:,:) = pxin(:,:) * gcosv(:,:) + pyin(:,:) * gsinv(:,:) |
---|
118 | CASE ('F') ; prot(:,:) = pxin(:,:) * gcosf(:,:) + pyin(:,:) * gsinf(:,:) |
---|
119 | CASE DEFAULT ; CALL ctl_stop( 'Only T, U, V and F grid points are coded' ) |
---|
120 | END SELECT |
---|
121 | CASE ('en->j') ! 'en->j' est-north componantes to model j componante |
---|
122 | SELECT CASE (cd_type) |
---|
123 | CASE ('T') ; prot(:,:) = pyin(:,:) * gcost(:,:) - pxin(:,:) * gsint(:,:) |
---|
124 | CASE ('U') ; prot(:,:) = pyin(:,:) * gcosu(:,:) - pxin(:,:) * gsinu(:,:) |
---|
125 | CASE ('V') ; prot(:,:) = pyin(:,:) * gcosv(:,:) - pxin(:,:) * gsinv(:,:) |
---|
126 | CASE ('F') ; prot(:,:) = pyin(:,:) * gcosf(:,:) - pxin(:,:) * gsinf(:,:) |
---|
127 | CASE DEFAULT ; CALL ctl_stop( 'Only T, U, V and F grid points are coded' ) |
---|
128 | END SELECT |
---|
129 | CASE ('ij->e') ! 'ij->e' model i-j componantes to est componante |
---|
130 | SELECT CASE (cd_type) |
---|
131 | CASE ('T') ; prot(:,:) = pxin(:,:) * gcost(:,:) - pyin(:,:) * gsint(:,:) |
---|
132 | CASE ('U') ; prot(:,:) = pxin(:,:) * gcosu(:,:) - pyin(:,:) * gsinu(:,:) |
---|
133 | CASE ('V') ; prot(:,:) = pxin(:,:) * gcosv(:,:) - pyin(:,:) * gsinv(:,:) |
---|
134 | CASE ('F') ; prot(:,:) = pxin(:,:) * gcosf(:,:) - pyin(:,:) * gsinf(:,:) |
---|
135 | CASE DEFAULT ; CALL ctl_stop( 'Only T, U, V and F grid points are coded' ) |
---|
136 | END SELECT |
---|
137 | CASE ('ij->n') ! 'ij->n' model i-j componantes to est componante |
---|
138 | SELECT CASE (cd_type) |
---|
139 | CASE ('T') ; prot(:,:) = pyin(:,:) * gcost(:,:) + pxin(:,:) * gsint(:,:) |
---|
140 | CASE ('U') ; prot(:,:) = pyin(:,:) * gcosu(:,:) + pxin(:,:) * gsinu(:,:) |
---|
141 | CASE ('V') ; prot(:,:) = pyin(:,:) * gcosv(:,:) + pxin(:,:) * gsinv(:,:) |
---|
142 | CASE ('F') ; prot(:,:) = pyin(:,:) * gcosf(:,:) + pxin(:,:) * gsinf(:,:) |
---|
143 | CASE DEFAULT ; CALL ctl_stop( 'Only T, U, V and F grid points are coded' ) |
---|
144 | END SELECT |
---|
145 | CASE DEFAULT ; CALL ctl_stop( 'rot_rep: Syntax Error in the definition of cdtodo' ) |
---|
146 | END SELECT |
---|
147 | |
---|
148 | END SUBROUTINE rot_rep |
---|
149 | |
---|
150 | |
---|
151 | SUBROUTINE angle |
---|
152 | !!---------------------------------------------------------------------- |
---|
153 | !! *** ROUTINE angle *** |
---|
154 | !! |
---|
155 | !! ** Purpose : Compute angles between model grid lines and the North direction |
---|
156 | !! |
---|
157 | !! ** Method : |
---|
158 | !! |
---|
159 | !! ** Action : Compute (gsint, gcost, gsinu, gcosu, gsinv, gcosv, gsinf, gcosf) arrays: |
---|
160 | !! sinus and cosinus of the angle between the north-south axe and the |
---|
161 | !! j-direction at t, u, v and f-points |
---|
162 | !! |
---|
163 | !! History : |
---|
164 | !! 7.0 ! 96-07 (O. Marti ) Original code |
---|
165 | !! 8.0 ! 98-06 (G. Madec ) |
---|
166 | !! 8.5 ! 98-06 (G. Madec ) Free form, F90 + opt. |
---|
167 | !! 9.2 ! 07-04 (S. Masson) Add T, F points and bugfix in cos lateral boundary |
---|
168 | !!---------------------------------------------------------------------- |
---|
169 | INTEGER :: ji, jj ! dummy loop indices |
---|
170 | INTEGER :: ierr ! local integer |
---|
171 | REAL(wp) :: & |
---|
172 | zlam, zphi, & ! temporary scalars |
---|
173 | zlan, zphh, & ! " " |
---|
174 | zxnpt, zynpt, znnpt, & ! x,y components and norm of the vector: T point to North Pole |
---|
175 | zxnpu, zynpu, znnpu, & ! x,y components and norm of the vector: U point to North Pole |
---|
176 | zxnpv, zynpv, znnpv, & ! x,y components and norm of the vector: V point to North Pole |
---|
177 | zxnpf, zynpf, znnpf, & ! x,y components and norm of the vector: F point to North Pole |
---|
178 | zxvvt, zyvvt, znvvt, & ! x,y components and norm of the vector: between V points below and above a T point |
---|
179 | zxffu, zyffu, znffu, & ! x,y components and norm of the vector: between F points below and above a U point |
---|
180 | zxffv, zyffv, znffv, & ! x,y components and norm of the vector: between F points left and right a V point |
---|
181 | zxuuf, zyuuf, znuuf ! x,y components and norm of the vector: between U points below and above a F point |
---|
182 | !!---------------------------------------------------------------------- |
---|
183 | |
---|
184 | ALLOCATE( gsint(jpi,jpj), gcost(jpi,jpj), & |
---|
185 | & gsinu(jpi,jpj), gcosu(jpi,jpj), & |
---|
186 | & gsinv(jpi,jpj), gcosv(jpi,jpj), & |
---|
187 | & gsinf(jpi,jpj), gcosf(jpi,jpj), STAT=ierr ) |
---|
188 | IF(lk_mpp) CALL mpp_sum( ierr ) |
---|
189 | IF( ierr /= 0 ) CALL ctl_stop('STOP', 'angle_msh_geo: unable to allocate arrays' ) |
---|
190 | |
---|
191 | ! ============================= ! |
---|
192 | ! Compute the cosinus and sinus ! |
---|
193 | ! ============================= ! |
---|
194 | ! (computation done on the north stereographic polar plane) |
---|
195 | |
---|
196 | DO jj = 2, jpjm1 |
---|
197 | !CDIR NOVERRCHK |
---|
198 | DO ji = fs_2, jpi ! vector opt. |
---|
199 | |
---|
200 | ! north pole direction & modulous (at t-point) |
---|
201 | zlam = glamt(ji,jj) |
---|
202 | zphi = gphit(ji,jj) |
---|
203 | zxnpt = 0. - 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
204 | zynpt = 0. - 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
205 | znnpt = zxnpt*zxnpt + zynpt*zynpt |
---|
206 | |
---|
207 | ! north pole direction & modulous (at u-point) |
---|
208 | zlam = glamu(ji,jj) |
---|
209 | zphi = gphiu(ji,jj) |
---|
210 | zxnpu = 0. - 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
211 | zynpu = 0. - 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
212 | znnpu = zxnpu*zxnpu + zynpu*zynpu |
---|
213 | |
---|
214 | ! north pole direction & modulous (at v-point) |
---|
215 | zlam = glamv(ji,jj) |
---|
216 | zphi = gphiv(ji,jj) |
---|
217 | zxnpv = 0. - 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
218 | zynpv = 0. - 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
219 | znnpv = zxnpv*zxnpv + zynpv*zynpv |
---|
220 | |
---|
221 | ! north pole direction & modulous (at f-point) |
---|
222 | zlam = glamf(ji,jj) |
---|
223 | zphi = gphif(ji,jj) |
---|
224 | zxnpf = 0. - 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
225 | zynpf = 0. - 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) |
---|
226 | znnpf = zxnpf*zxnpf + zynpf*zynpf |
---|
227 | |
---|
228 | ! j-direction: v-point segment direction (around t-point) |
---|
229 | zlam = glamv(ji,jj ) |
---|
230 | zphi = gphiv(ji,jj ) |
---|
231 | zlan = glamv(ji,jj-1) |
---|
232 | zphh = gphiv(ji,jj-1) |
---|
233 | zxvvt = 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
234 | & - 2. * COS( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
235 | zyvvt = 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
236 | & - 2. * SIN( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
237 | znvvt = SQRT( znnpt * ( zxvvt*zxvvt + zyvvt*zyvvt ) ) |
---|
238 | znvvt = MAX( znvvt, 1.e-14 ) |
---|
239 | |
---|
240 | ! j-direction: f-point segment direction (around u-point) |
---|
241 | zlam = glamf(ji,jj ) |
---|
242 | zphi = gphif(ji,jj ) |
---|
243 | zlan = glamf(ji,jj-1) |
---|
244 | zphh = gphif(ji,jj-1) |
---|
245 | zxffu = 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
246 | & - 2. * COS( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
247 | zyffu = 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
248 | & - 2. * SIN( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
249 | znffu = SQRT( znnpu * ( zxffu*zxffu + zyffu*zyffu ) ) |
---|
250 | znffu = MAX( znffu, 1.e-14 ) |
---|
251 | |
---|
252 | ! i-direction: f-point segment direction (around v-point) |
---|
253 | zlam = glamf(ji ,jj) |
---|
254 | zphi = gphif(ji ,jj) |
---|
255 | zlan = glamf(ji-1,jj) |
---|
256 | zphh = gphif(ji-1,jj) |
---|
257 | zxffv = 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
258 | & - 2. * COS( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
259 | zyffv = 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
260 | & - 2. * SIN( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
261 | znffv = SQRT( znnpv * ( zxffv*zxffv + zyffv*zyffv ) ) |
---|
262 | znffv = MAX( znffv, 1.e-14 ) |
---|
263 | |
---|
264 | ! j-direction: u-point segment direction (around f-point) |
---|
265 | zlam = glamu(ji,jj+1) |
---|
266 | zphi = gphiu(ji,jj+1) |
---|
267 | zlan = glamu(ji,jj ) |
---|
268 | zphh = gphiu(ji,jj ) |
---|
269 | zxuuf = 2. * COS( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
270 | & - 2. * COS( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
271 | zyuuf = 2. * SIN( rad*zlam ) * TAN( rpi/4. - rad*zphi/2. ) & |
---|
272 | & - 2. * SIN( rad*zlan ) * TAN( rpi/4. - rad*zphh/2. ) |
---|
273 | znuuf = SQRT( znnpf * ( zxuuf*zxuuf + zyuuf*zyuuf ) ) |
---|
274 | znuuf = MAX( znuuf, 1.e-14 ) |
---|
275 | |
---|
276 | ! cosinus and sinus using scalar and vectorial products |
---|
277 | gsint(ji,jj) = ( zxnpt*zyvvt - zynpt*zxvvt ) / znvvt |
---|
278 | gcost(ji,jj) = ( zxnpt*zxvvt + zynpt*zyvvt ) / znvvt |
---|
279 | |
---|
280 | gsinu(ji,jj) = ( zxnpu*zyffu - zynpu*zxffu ) / znffu |
---|
281 | gcosu(ji,jj) = ( zxnpu*zxffu + zynpu*zyffu ) / znffu |
---|
282 | |
---|
283 | gsinf(ji,jj) = ( zxnpf*zyuuf - zynpf*zxuuf ) / znuuf |
---|
284 | gcosf(ji,jj) = ( zxnpf*zxuuf + zynpf*zyuuf ) / znuuf |
---|
285 | |
---|
286 | ! (caution, rotation of 90 degres) |
---|
287 | gsinv(ji,jj) = ( zxnpv*zxffv + zynpv*zyffv ) / znffv |
---|
288 | gcosv(ji,jj) =-( zxnpv*zyffv - zynpv*zxffv ) / znffv |
---|
289 | |
---|
290 | END DO |
---|
291 | END DO |
---|
292 | |
---|
293 | ! =============== ! |
---|
294 | ! Geographic mesh ! |
---|
295 | ! =============== ! |
---|
296 | |
---|
297 | DO jj = 2, jpjm1 |
---|
298 | DO ji = fs_2, jpi ! vector opt. |
---|
299 | IF( MOD( ABS( glamv(ji,jj) - glamv(ji,jj-1) ), 360. ) < 1.e-8 ) THEN |
---|
300 | gsint(ji,jj) = 0. |
---|
301 | gcost(ji,jj) = 1. |
---|
302 | ENDIF |
---|
303 | IF( MOD( ABS( glamf(ji,jj) - glamf(ji,jj-1) ), 360. ) < 1.e-8 ) THEN |
---|
304 | gsinu(ji,jj) = 0. |
---|
305 | gcosu(ji,jj) = 1. |
---|
306 | ENDIF |
---|
307 | IF( ABS( gphif(ji,jj) - gphif(ji-1,jj) ) < 1.e-8 ) THEN |
---|
308 | gsinv(ji,jj) = 0. |
---|
309 | gcosv(ji,jj) = 1. |
---|
310 | ENDIF |
---|
311 | IF( MOD( ABS( glamu(ji,jj) - glamu(ji,jj+1) ), 360. ) < 1.e-8 ) THEN |
---|
312 | gsinf(ji,jj) = 0. |
---|
313 | gcosf(ji,jj) = 1. |
---|
314 | ENDIF |
---|
315 | END DO |
---|
316 | END DO |
---|
317 | |
---|
318 | ! =========================== ! |
---|
319 | ! Lateral boundary conditions ! |
---|
320 | ! =========================== ! |
---|
321 | |
---|
322 | ! lateral boundary cond.: T-, U-, V-, F-pts, sgn |
---|
323 | CALL lbc_lnk( gcost, 'T', -1. ) ; CALL lbc_lnk( gsint, 'T', -1. ) |
---|
324 | CALL lbc_lnk( gcosu, 'U', -1. ) ; CALL lbc_lnk( gsinu, 'U', -1. ) |
---|
325 | CALL lbc_lnk( gcosv, 'V', -1. ) ; CALL lbc_lnk( gsinv, 'V', -1. ) |
---|
326 | CALL lbc_lnk( gcosf, 'F', -1. ) ; CALL lbc_lnk( gsinf, 'F', -1. ) |
---|
327 | |
---|
328 | END SUBROUTINE angle |
---|
329 | |
---|
330 | |
---|
331 | SUBROUTINE geo2oce ( pxx, pyy, pzz, cgrid, & |
---|
332 | pte, ptn ) |
---|
333 | !!---------------------------------------------------------------------- |
---|
334 | !! *** ROUTINE geo2oce *** |
---|
335 | !! |
---|
336 | !! ** Purpose : |
---|
337 | !! |
---|
338 | !! ** Method : Change wind stress from geocentric to east/north |
---|
339 | !! |
---|
340 | !! History : |
---|
341 | !! ! (O. Marti) Original code |
---|
342 | !! ! 91-03 (G. Madec) |
---|
343 | !! ! 92-07 (M. Imbard) |
---|
344 | !! ! 99-11 (M. Imbard) NetCDF format with IOIPSL |
---|
345 | !! ! 00-08 (D. Ludicone) Reduced section at Bab el Mandeb |
---|
346 | !! 8.5 ! 02-06 (G. Madec) F90: Free form |
---|
347 | !! 3.0 ! 07-08 (G. Madec) geo2oce suppress lon/lat agruments |
---|
348 | !!---------------------------------------------------------------------- |
---|
349 | REAL(wp), DIMENSION(jpi,jpj), INTENT(in ) :: pxx, pyy, pzz |
---|
350 | CHARACTER(len=1) , INTENT(in ) :: cgrid |
---|
351 | REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pte, ptn |
---|
352 | !! |
---|
353 | REAL(wp), PARAMETER :: rpi = 3.141592653e0 |
---|
354 | REAL(wp), PARAMETER :: rad = rpi / 180.e0 |
---|
355 | INTEGER :: ig ! |
---|
356 | INTEGER :: ierr ! local integer |
---|
357 | !!---------------------------------------------------------------------- |
---|
358 | |
---|
359 | IF( .NOT. ALLOCATED( gsinlon ) ) THEN |
---|
360 | ALLOCATE( gsinlon(jpi,jpj,4) , gcoslon(jpi,jpj,4) , & |
---|
361 | & gsinlat(jpi,jpj,4) , gcoslat(jpi,jpj,4) , STAT=ierr ) |
---|
362 | IF( lk_mpp ) CALL mpp_sum( ierr ) |
---|
363 | IF( ierr /= 0 ) CALL ctl_stop('STOP', 'angle_msh_geo: unable to allocate arrays' ) |
---|
364 | ENDIF |
---|
365 | |
---|
366 | SELECT CASE( cgrid) |
---|
367 | CASE ( 'T' ) |
---|
368 | ig = 1 |
---|
369 | IF( .NOT. linit(ig) ) THEN |
---|
370 | gsinlon(:,:,ig) = SIN( rad * glamt(:,:) ) |
---|
371 | gcoslon(:,:,ig) = COS( rad * glamt(:,:) ) |
---|
372 | gsinlat(:,:,ig) = SIN( rad * gphit(:,:) ) |
---|
373 | gcoslat(:,:,ig) = COS( rad * gphit(:,:) ) |
---|
374 | linit(ig) = .TRUE. |
---|
375 | ENDIF |
---|
376 | CASE ( 'U' ) |
---|
377 | ig = 2 |
---|
378 | IF( .NOT. linit(ig) ) THEN |
---|
379 | gsinlon(:,:,ig) = SIN( rad * glamu(:,:) ) |
---|
380 | gcoslon(:,:,ig) = COS( rad * glamu(:,:) ) |
---|
381 | gsinlat(:,:,ig) = SIN( rad * gphiu(:,:) ) |
---|
382 | gcoslat(:,:,ig) = COS( rad * gphiu(:,:) ) |
---|
383 | linit(ig) = .TRUE. |
---|
384 | ENDIF |
---|
385 | CASE ( 'V' ) |
---|
386 | ig = 3 |
---|
387 | IF( .NOT. linit(ig) ) THEN |
---|
388 | gsinlon(:,:,ig) = SIN( rad * glamv(:,:) ) |
---|
389 | gcoslon(:,:,ig) = COS( rad * glamv(:,:) ) |
---|
390 | gsinlat(:,:,ig) = SIN( rad * gphiv(:,:) ) |
---|
391 | gcoslat(:,:,ig) = COS( rad * gphiv(:,:) ) |
---|
392 | linit(ig) = .TRUE. |
---|
393 | ENDIF |
---|
394 | CASE ( 'F' ) |
---|
395 | ig = 4 |
---|
396 | IF( .NOT. linit(ig) ) THEN |
---|
397 | gsinlon(:,:,ig) = SIN( rad * glamf(:,:) ) |
---|
398 | gcoslon(:,:,ig) = COS( rad * glamf(:,:) ) |
---|
399 | gsinlat(:,:,ig) = SIN( rad * gphif(:,:) ) |
---|
400 | gcoslat(:,:,ig) = COS( rad * gphif(:,:) ) |
---|
401 | linit(ig) = .TRUE. |
---|
402 | ENDIF |
---|
403 | CASE default |
---|
404 | WRITE(ctmp1,*) 'geo2oce : bad grid argument : ', cgrid |
---|
405 | CALL ctl_stop( ctmp1 ) |
---|
406 | END SELECT |
---|
407 | |
---|
408 | pte = - gsinlon(:,:,ig) * pxx + gcoslon(:,:,ig) * pyy |
---|
409 | ptn = - gcoslon(:,:,ig) * gsinlat(:,:,ig) * pxx & |
---|
410 | - gsinlon(:,:,ig) * gsinlat(:,:,ig) * pyy & |
---|
411 | + gcoslat(:,:,ig) * pzz |
---|
412 | !!$ ptv = gcoslon(:,:,ig) * gcoslat(:,:,ig) * pxx & |
---|
413 | !!$ + gsinlon(:,:,ig) * gcoslat(:,:,ig) * pyy & |
---|
414 | !!$ + gsinlat(:,:,ig) * pzz |
---|
415 | ! |
---|
416 | END SUBROUTINE geo2oce |
---|
417 | |
---|
418 | SUBROUTINE oce2geo ( pte, ptn, cgrid, & |
---|
419 | pxx , pyy , pzz ) |
---|
420 | !!---------------------------------------------------------------------- |
---|
421 | !! *** ROUTINE oce2geo *** |
---|
422 | !! |
---|
423 | !! ** Purpose : |
---|
424 | !! |
---|
425 | !! ** Method : Change vector from east/north to geocentric |
---|
426 | !! |
---|
427 | !! History : |
---|
428 | !! ! (A. Caubel) oce2geo - Original code |
---|
429 | !!---------------------------------------------------------------------- |
---|
430 | REAL(wp), DIMENSION(jpi,jpj), INTENT( IN ) :: pte, ptn |
---|
431 | CHARACTER(len=1) , INTENT( IN ) :: cgrid |
---|
432 | REAL(wp), DIMENSION(jpi,jpj), INTENT( OUT ) :: pxx , pyy , pzz |
---|
433 | !! |
---|
434 | REAL(wp), PARAMETER :: rpi = 3.141592653E0 |
---|
435 | REAL(wp), PARAMETER :: rad = rpi / 180.e0 |
---|
436 | INTEGER :: ig ! |
---|
437 | INTEGER :: ierr ! local integer |
---|
438 | !!---------------------------------------------------------------------- |
---|
439 | |
---|
440 | IF( ALLOCATED( gsinlon ) ) THEN |
---|
441 | ALLOCATE( gsinlon(jpi,jpj,4) , gcoslon(jpi,jpj,4) , & |
---|
442 | & gsinlat(jpi,jpj,4) , gcoslat(jpi,jpj,4) , STAT=ierr ) |
---|
443 | IF( lk_mpp ) CALL mpp_sum( ierr ) |
---|
444 | IF( ierr /= 0 ) CALL ctl_stop('STOP', 'angle_msh_geo: unable to allocate arrays' ) |
---|
445 | ENDIF |
---|
446 | |
---|
447 | SELECT CASE( cgrid) |
---|
448 | CASE ( 'T' ) |
---|
449 | ig = 1 |
---|
450 | IF( .NOT. linit(ig) ) THEN |
---|
451 | gsinlon(:,:,ig) = SIN( rad * glamt(:,:) ) |
---|
452 | gcoslon(:,:,ig) = COS( rad * glamt(:,:) ) |
---|
453 | gsinlat(:,:,ig) = SIN( rad * gphit(:,:) ) |
---|
454 | gcoslat(:,:,ig) = COS( rad * gphit(:,:) ) |
---|
455 | linit(ig) = .TRUE. |
---|
456 | ENDIF |
---|
457 | CASE ( 'U' ) |
---|
458 | ig = 2 |
---|
459 | IF( .NOT. linit(ig) ) THEN |
---|
460 | gsinlon(:,:,ig) = SIN( rad * glamu(:,:) ) |
---|
461 | gcoslon(:,:,ig) = COS( rad * glamu(:,:) ) |
---|
462 | gsinlat(:,:,ig) = SIN( rad * gphiu(:,:) ) |
---|
463 | gcoslat(:,:,ig) = COS( rad * gphiu(:,:) ) |
---|
464 | linit(ig) = .TRUE. |
---|
465 | ENDIF |
---|
466 | CASE ( 'V' ) |
---|
467 | ig = 3 |
---|
468 | IF( .NOT. linit(ig) ) THEN |
---|
469 | gsinlon(:,:,ig) = SIN( rad * glamv(:,:) ) |
---|
470 | gcoslon(:,:,ig) = COS( rad * glamv(:,:) ) |
---|
471 | gsinlat(:,:,ig) = SIN( rad * gphiv(:,:) ) |
---|
472 | gcoslat(:,:,ig) = COS( rad * gphiv(:,:) ) |
---|
473 | linit(ig) = .TRUE. |
---|
474 | ENDIF |
---|
475 | CASE ( 'F' ) |
---|
476 | ig = 4 |
---|
477 | IF( .NOT. linit(ig) ) THEN |
---|
478 | gsinlon(:,:,ig) = SIN( rad * glamf(:,:) ) |
---|
479 | gcoslon(:,:,ig) = COS( rad * glamf(:,:) ) |
---|
480 | gsinlat(:,:,ig) = SIN( rad * gphif(:,:) ) |
---|
481 | gcoslat(:,:,ig) = COS( rad * gphif(:,:) ) |
---|
482 | linit(ig) = .TRUE. |
---|
483 | ENDIF |
---|
484 | CASE default |
---|
485 | WRITE(ctmp1,*) 'geo2oce : bad grid argument : ', cgrid |
---|
486 | CALL ctl_stop( ctmp1 ) |
---|
487 | END SELECT |
---|
488 | |
---|
489 | pxx = - gsinlon(:,:,ig) * pte - gcoslon(:,:,ig) * gsinlat(:,:,ig) * ptn |
---|
490 | pyy = gcoslon(:,:,ig) * pte - gsinlon(:,:,ig) * gsinlat(:,:,ig) * ptn |
---|
491 | pzz = gcoslat(:,:,ig) * ptn |
---|
492 | |
---|
493 | |
---|
494 | END SUBROUTINE oce2geo |
---|
495 | |
---|
496 | |
---|
497 | SUBROUTINE repere ( px1, py1, px2, py2, kchoix, cd_type ) |
---|
498 | !!---------------------------------------------------------------------- |
---|
499 | !! *** ROUTINE repere *** |
---|
500 | !! |
---|
501 | !! ** Purpose : Change vector componantes between a geopgraphic grid |
---|
502 | !! and a stretched coordinates grid. |
---|
503 | !! |
---|
504 | !! ** Method : |
---|
505 | !! |
---|
506 | !! ** Action : |
---|
507 | !! |
---|
508 | !! History : |
---|
509 | !! ! 89-03 (O. Marti) original code |
---|
510 | !! ! 92-02 (M. Imbard) |
---|
511 | !! ! 93-03 (M. Guyon) symetrical conditions |
---|
512 | !! ! 98-05 (B. Blanke) |
---|
513 | !! 8.5 ! 02-08 (G. Madec) F90: Free form |
---|
514 | !!---------------------------------------------------------------------- |
---|
515 | REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: px1, py1 ! two horizontal components to be rotated |
---|
516 | REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: px2, py2 ! the two horizontal components in the model repere |
---|
517 | INTEGER , INTENT(in ) :: kchoix ! type of transformation |
---|
518 | ! ! = 1 change from geographic to model grid. |
---|
519 | ! ! =-1 change from model to geographic grid |
---|
520 | CHARACTER(len=1), INTENT(in ), OPTIONAL :: cd_type ! define the nature of pt2d array grid-points |
---|
521 | ! |
---|
522 | CHARACTER(len=1) :: cl_type ! define the nature of pt2d array grid-points (T point by default) |
---|
523 | !!---------------------------------------------------------------------- |
---|
524 | |
---|
525 | cl_type = 'T' |
---|
526 | IF( PRESENT(cd_type) ) cl_type = cd_type |
---|
527 | ! |
---|
528 | SELECT CASE (kchoix) |
---|
529 | CASE ( 1) ! change from geographic to model grid. |
---|
530 | CALL rot_rep( px1, py1, cl_type, 'en->i', px2 ) |
---|
531 | CALL rot_rep( px1, py1, cl_type, 'en->j', py2 ) |
---|
532 | CASE (-1) ! change from model to geographic grid |
---|
533 | CALL rot_rep( px1, py1, cl_type, 'ij->e', px2 ) |
---|
534 | CALL rot_rep( px1, py1, cl_type, 'ij->n', py2 ) |
---|
535 | CASE DEFAULT ; CALL ctl_stop( 'repere: Syntax Error in the definition of kchoix (1 OR -1' ) |
---|
536 | END SELECT |
---|
537 | |
---|
538 | END SUBROUTINE repere |
---|
539 | |
---|
540 | |
---|
541 | SUBROUTINE obs_rot ( psinu, pcosu, psinv, pcosv ) |
---|
542 | !!---------------------------------------------------------------------- |
---|
543 | !! *** ROUTINE obs_rot *** |
---|
544 | !! |
---|
545 | !! ** Purpose : Copy gsinu, gcosu, gsinv and gsinv |
---|
546 | !! to input data for rotations of |
---|
547 | !! current at observation points |
---|
548 | !! |
---|
549 | !! History : |
---|
550 | !! 9.2 ! 09-02 (K. Mogensen) |
---|
551 | !!---------------------------------------------------------------------- |
---|
552 | REAL(wp), DIMENSION(jpi,jpj), INTENT( OUT ):: psinu, pcosu, psinv, pcosv ! copy of data |
---|
553 | !!---------------------------------------------------------------------- |
---|
554 | |
---|
555 | ! Initialization of gsin* and gcos* at first call |
---|
556 | ! ----------------------------------------------- |
---|
557 | |
---|
558 | IF( lmust_init ) THEN |
---|
559 | IF(lwp) WRITE(numout,*) |
---|
560 | IF(lwp) WRITE(numout,*) ' obs_rot : geographic <--> stretched' |
---|
561 | IF(lwp) WRITE(numout,*) ' ~~~~~~~ coordinate transformation' |
---|
562 | |
---|
563 | CALL angle ! initialization of the transformation |
---|
564 | lmust_init = .FALSE. |
---|
565 | |
---|
566 | ENDIF |
---|
567 | |
---|
568 | psinu(:,:) = gsinu(:,:) |
---|
569 | pcosu(:,:) = gcosu(:,:) |
---|
570 | psinv(:,:) = gsinv(:,:) |
---|
571 | pcosv(:,:) = gcosv(:,:) |
---|
572 | |
---|
573 | END SUBROUTINE obs_rot |
---|
574 | |
---|
575 | !!====================================================================== |
---|
576 | END MODULE geo2ocean |
---|