1 | MODULE traadv_tvd |
---|
2 | !!============================================================================== |
---|
3 | !! *** MODULE traadv_tvd *** |
---|
4 | !! Ocean tracers: horizontal & vertical advective trend |
---|
5 | !!============================================================================== |
---|
6 | !! History : OPA ! 1995-12 (L. Mortier) Original code |
---|
7 | !! ! 2000-01 (H. Loukos) adapted to ORCA |
---|
8 | !! ! 2000-10 (MA Foujols E.Kestenare) include file not routine |
---|
9 | !! ! 2000-12 (E. Kestenare M. Levy) fix bug in trtrd indexes |
---|
10 | !! ! 2001-07 (E. Durand G. Madec) adaptation to ORCA config |
---|
11 | !! 8.5 ! 2002-06 (G. Madec) F90: Free form and module |
---|
12 | !! NEMO 1.0 ! 2004-01 (A. de Miranda, G. Madec, J.M. Molines ): advective bbl |
---|
13 | !! 2.0 ! 2008-04 (S. Cravatte) add the i-, j- & k- trends computation |
---|
14 | !! - ! 2009-11 (V. Garnier) Surface pressure gradient organization |
---|
15 | !! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | !! tra_adv_tvd : update the tracer trend with the horizontal |
---|
20 | !! and vertical advection trends using a TVD scheme |
---|
21 | !! nonosc : compute monotonic tracer fluxes by a nonoscillatory |
---|
22 | !! algorithm |
---|
23 | !!---------------------------------------------------------------------- |
---|
24 | USE oce ! ocean dynamics and active tracers |
---|
25 | USE dom_oce ! ocean space and time domain |
---|
26 | USE trdmod_oce ! tracers trends |
---|
27 | USE trdtra ! tracers trends |
---|
28 | USE in_out_manager ! I/O manager |
---|
29 | USE dynspg_oce ! choice/control of key cpp for surface pressure gradient |
---|
30 | USE lib_mpp ! MPP library |
---|
31 | USE lbclnk ! ocean lateral boundary condition (or mpp link) |
---|
32 | USE diaptr ! poleward transport diagnostics |
---|
33 | USE trc_oce ! share passive tracers/Ocean variables |
---|
34 | USE wrk_nemo ! Memory Allocation |
---|
35 | USE timing ! Timing |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | PRIVATE |
---|
39 | |
---|
40 | PUBLIC tra_adv_tvd ! routine called by step.F90 |
---|
41 | |
---|
42 | LOGICAL :: l_trd ! flag to compute trends |
---|
43 | |
---|
44 | !! * Substitutions |
---|
45 | # include "domzgr_substitute.h90" |
---|
46 | # include "vectopt_loop_substitute.h90" |
---|
47 | !!---------------------------------------------------------------------- |
---|
48 | !! NEMO/OPA 3.3 , NEMO Consortium (2010) |
---|
49 | !! $Id$ |
---|
50 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
51 | !!---------------------------------------------------------------------- |
---|
52 | CONTAINS |
---|
53 | |
---|
54 | SUBROUTINE tra_adv_tvd ( kt, kit000, cdtype, p2dt, pun, pvn, pwn, & |
---|
55 | & ptb, ptn, pta, kjpt ) |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | !! *** ROUTINE tra_adv_tvd *** |
---|
58 | !! |
---|
59 | !! ** Purpose : Compute the now trend due to total advection of |
---|
60 | !! tracers and add it to the general trend of tracer equations |
---|
61 | !! |
---|
62 | !! ** Method : TVD scheme, i.e. 2nd order centered scheme with |
---|
63 | !! corrected flux (monotonic correction) |
---|
64 | !! note: - this advection scheme needs a leap-frog time scheme |
---|
65 | !! |
---|
66 | !! ** Action : - update (pta) with the now advective tracer trends |
---|
67 | !! - save the trends |
---|
68 | !!---------------------------------------------------------------------- |
---|
69 | USE oce , ONLY: zwx => ua , zwy => va ! (ua,va) used as workspace |
---|
70 | ! |
---|
71 | INTEGER , INTENT(in ) :: kt ! ocean time-step index |
---|
72 | INTEGER , INTENT(in ) :: kit000 ! first time step index |
---|
73 | CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator) |
---|
74 | INTEGER , INTENT(in ) :: kjpt ! number of tracers |
---|
75 | REAL(wp), DIMENSION( jpk ), INTENT(in ) :: p2dt ! vertical profile of tracer time-step |
---|
76 | REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pun, pvn, pwn ! 3 ocean velocity components |
---|
77 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: ptb, ptn ! before and now tracer fields |
---|
78 | REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pta ! tracer trend |
---|
79 | ! |
---|
80 | INTEGER :: ji, jj, jk, jn ! dummy loop indices |
---|
81 | REAL(wp) :: z2dtt, zbtr, ztra ! local scalar |
---|
82 | REAL(wp) :: zfp_ui, zfp_vj, zfp_wk ! - - |
---|
83 | REAL(wp) :: zfm_ui, zfm_vj, zfm_wk ! - - |
---|
84 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zwi, zwz |
---|
85 | REAL(wp), POINTER, DIMENSION(:,:,:) :: ztrdx, ztrdy, ztrdz |
---|
86 | !!---------------------------------------------------------------------- |
---|
87 | ! |
---|
88 | IF( nn_timing == 1 ) CALL timing_start('tra_adv_tvd') |
---|
89 | ! |
---|
90 | CALL wrk_alloc( jpi, jpj, jpk, zwi, zwz ) |
---|
91 | ! |
---|
92 | IF( kt == kit000 ) THEN |
---|
93 | IF(lwp) WRITE(numout,*) |
---|
94 | IF(lwp) WRITE(numout,*) 'tra_adv_tvd : TVD advection scheme on ', cdtype |
---|
95 | IF(lwp) WRITE(numout,*) '~~~~~~~~~~~' |
---|
96 | ! |
---|
97 | l_trd = .FALSE. |
---|
98 | IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE. |
---|
99 | ENDIF |
---|
100 | ! |
---|
101 | IF( l_trd ) THEN |
---|
102 | CALL wrk_alloc( jpi, jpj, jpk, ztrdx, ztrdy, ztrdz ) |
---|
103 | ztrdx(:,:,:) = 0.e0 ; ztrdy(:,:,:) = 0.e0 ; ztrdz(:,:,:) = 0.e0 |
---|
104 | ENDIF |
---|
105 | ! |
---|
106 | zwi(:,:,:) = 0.e0 |
---|
107 | ! |
---|
108 | ! ! =========== |
---|
109 | DO jn = 1, kjpt ! tracer loop |
---|
110 | ! ! =========== |
---|
111 | ! 1. Bottom value : flux set to zero |
---|
112 | ! ---------------------------------- |
---|
113 | zwx(:,:,jpk) = 0.e0 ; zwz(:,:,jpk) = 0.e0 |
---|
114 | zwy(:,:,jpk) = 0.e0 ; zwi(:,:,jpk) = 0.e0 |
---|
115 | |
---|
116 | ! 2. upstream advection with initial mass fluxes & intermediate update |
---|
117 | ! -------------------------------------------------------------------- |
---|
118 | ! upstream tracer flux in the i and j direction |
---|
119 | DO jk = 1, jpkm1 |
---|
120 | DO jj = 1, jpjm1 |
---|
121 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
122 | ! upstream scheme |
---|
123 | zfp_ui = pun(ji,jj,jk) + ABS( pun(ji,jj,jk) ) |
---|
124 | zfm_ui = pun(ji,jj,jk) - ABS( pun(ji,jj,jk) ) |
---|
125 | zfp_vj = pvn(ji,jj,jk) + ABS( pvn(ji,jj,jk) ) |
---|
126 | zfm_vj = pvn(ji,jj,jk) - ABS( pvn(ji,jj,jk) ) |
---|
127 | zwx(ji,jj,jk) = 0.5 * ( zfp_ui * ptb(ji,jj,jk,jn) + zfm_ui * ptb(ji+1,jj ,jk,jn) ) |
---|
128 | zwy(ji,jj,jk) = 0.5 * ( zfp_vj * ptb(ji,jj,jk,jn) + zfm_vj * ptb(ji ,jj+1,jk,jn) ) |
---|
129 | END DO |
---|
130 | END DO |
---|
131 | END DO |
---|
132 | |
---|
133 | ! upstream tracer flux in the k direction |
---|
134 | ! Surface value |
---|
135 | IF( lk_vvl ) THEN ; zwz(:,:, 1 ) = 0.e0 ! volume variable |
---|
136 | ELSE ; zwz(:,:, 1 ) = pwn(:,:,1) * ptb(:,:,1,jn) ! linear free surface |
---|
137 | ENDIF |
---|
138 | ! Interior value |
---|
139 | DO jk = 2, jpkm1 |
---|
140 | DO jj = 1, jpj |
---|
141 | DO ji = 1, jpi |
---|
142 | zfp_wk = pwn(ji,jj,jk) + ABS( pwn(ji,jj,jk) ) |
---|
143 | zfm_wk = pwn(ji,jj,jk) - ABS( pwn(ji,jj,jk) ) |
---|
144 | zwz(ji,jj,jk) = 0.5 * ( zfp_wk * ptb(ji,jj,jk,jn) + zfm_wk * ptb(ji,jj,jk-1,jn) ) |
---|
145 | END DO |
---|
146 | END DO |
---|
147 | END DO |
---|
148 | |
---|
149 | ! total advective trend |
---|
150 | DO jk = 1, jpkm1 |
---|
151 | z2dtt = p2dt(jk) |
---|
152 | DO jj = 2, jpjm1 |
---|
153 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
154 | zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) |
---|
155 | ! total intermediate advective trends |
---|
156 | ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & |
---|
157 | & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) & |
---|
158 | & + zwz(ji,jj,jk) - zwz(ji ,jj ,jk+1) ) |
---|
159 | ! update and guess with monotonic sheme |
---|
160 | pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ztra |
---|
161 | zwi(ji,jj,jk) = ( ptb(ji,jj,jk,jn) + z2dtt * ztra ) * tmask(ji,jj,jk) |
---|
162 | END DO |
---|
163 | END DO |
---|
164 | END DO |
---|
165 | ! ! Lateral boundary conditions on zwi (unchanged sign) |
---|
166 | CALL lbc_lnk( zwi, 'T', 1. ) |
---|
167 | |
---|
168 | ! ! trend diagnostics (contribution of upstream fluxes) |
---|
169 | IF( l_trd ) THEN |
---|
170 | ! store intermediate advective trends |
---|
171 | ztrdx(:,:,:) = zwx(:,:,:) ; ztrdy(:,:,:) = zwy(:,:,:) ; ztrdz(:,:,:) = zwz(:,:,:) |
---|
172 | END IF |
---|
173 | ! ! "Poleward" heat and salt transports (contribution of upstream fluxes) |
---|
174 | IF( cdtype == 'TRA' .AND. ln_diaptr .AND. ( MOD( kt, nn_fptr ) == 0 ) ) THEN |
---|
175 | IF( jn == jp_tem ) htr_adv(:) = ptr_vj( zwy(:,:,:) ) |
---|
176 | IF( jn == jp_sal ) str_adv(:) = ptr_vj( zwy(:,:,:) ) |
---|
177 | ENDIF |
---|
178 | |
---|
179 | ! 3. antidiffusive flux : high order minus low order |
---|
180 | ! -------------------------------------------------- |
---|
181 | ! antidiffusive flux on i and j |
---|
182 | DO jk = 1, jpkm1 |
---|
183 | DO jj = 1, jpjm1 |
---|
184 | DO ji = 1, fs_jpim1 ! vector opt. |
---|
185 | zwx(ji,jj,jk) = 0.5 * pun(ji,jj,jk) * ( ptn(ji,jj,jk,jn) + ptn(ji+1,jj,jk,jn) ) - zwx(ji,jj,jk) |
---|
186 | zwy(ji,jj,jk) = 0.5 * pvn(ji,jj,jk) * ( ptn(ji,jj,jk,jn) + ptn(ji,jj+1,jk,jn) ) - zwy(ji,jj,jk) |
---|
187 | END DO |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | |
---|
191 | ! antidiffusive flux on k |
---|
192 | zwz(:,:,1) = 0.e0 ! Surface value |
---|
193 | ! |
---|
194 | DO jk = 2, jpkm1 ! Interior value |
---|
195 | DO jj = 1, jpj |
---|
196 | DO ji = 1, jpi |
---|
197 | zwz(ji,jj,jk) = 0.5 * pwn(ji,jj,jk) * ( ptn(ji,jj,jk,jn) + ptn(ji,jj,jk-1,jn) ) - zwz(ji,jj,jk) |
---|
198 | END DO |
---|
199 | END DO |
---|
200 | END DO |
---|
201 | CALL lbc_lnk( zwx, 'U', -1. ) ; CALL lbc_lnk( zwy, 'V', -1. ) ! Lateral bondary conditions |
---|
202 | CALL lbc_lnk( zwz, 'W', 1. ) |
---|
203 | |
---|
204 | ! 4. monotonicity algorithm |
---|
205 | ! ------------------------- |
---|
206 | CALL nonosc( ptb(:,:,:,jn), zwx, zwy, zwz, zwi, p2dt ) |
---|
207 | |
---|
208 | |
---|
209 | ! 5. final trend with corrected fluxes |
---|
210 | ! ------------------------------------ |
---|
211 | DO jk = 1, jpkm1 |
---|
212 | DO jj = 2, jpjm1 |
---|
213 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
214 | zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) |
---|
215 | ! total advective trends |
---|
216 | ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) & |
---|
217 | & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) & |
---|
218 | & + zwz(ji,jj,jk) - zwz(ji ,jj ,jk+1) ) |
---|
219 | ! add them to the general tracer trends |
---|
220 | pta(ji,jj,jk,jn) = pta(ji,jj,jk,jn) + ztra |
---|
221 | END DO |
---|
222 | END DO |
---|
223 | END DO |
---|
224 | |
---|
225 | ! ! trend diagnostics (contribution of upstream fluxes) |
---|
226 | IF( l_trd ) THEN |
---|
227 | ztrdx(:,:,:) = ztrdx(:,:,:) + zwx(:,:,:) ! <<< Add to previously computed |
---|
228 | ztrdy(:,:,:) = ztrdy(:,:,:) + zwy(:,:,:) ! <<< Add to previously computed |
---|
229 | ztrdz(:,:,:) = ztrdz(:,:,:) + zwz(:,:,:) ! <<< Add to previously computed |
---|
230 | |
---|
231 | CALL trd_tra( kt, cdtype, jn, jptra_trd_xad, ztrdx, pun, ptn(:,:,:,jn) ) |
---|
232 | CALL trd_tra( kt, cdtype, jn, jptra_trd_yad, ztrdy, pvn, ptn(:,:,:,jn) ) |
---|
233 | CALL trd_tra( kt, cdtype, jn, jptra_trd_zad, ztrdz, pwn, ptn(:,:,:,jn) ) |
---|
234 | END IF |
---|
235 | ! ! "Poleward" heat and salt transports (contribution of upstream fluxes) |
---|
236 | IF( cdtype == 'TRA' .AND. ln_diaptr .AND. ( MOD( kt, nn_fptr ) == 0 ) ) THEN |
---|
237 | IF( jn == jp_tem ) htr_adv(:) = ptr_vj( zwy(:,:,:) ) + htr_adv(:) |
---|
238 | IF( jn == jp_sal ) str_adv(:) = ptr_vj( zwy(:,:,:) ) + str_adv(:) |
---|
239 | ENDIF |
---|
240 | ! |
---|
241 | END DO |
---|
242 | ! |
---|
243 | CALL wrk_dealloc( jpi, jpj, jpk, zwi, zwz ) |
---|
244 | IF( l_trd ) CALL wrk_dealloc( jpi, jpj, jpk, ztrdx, ztrdy, ztrdz ) |
---|
245 | ! |
---|
246 | IF( nn_timing == 1 ) CALL timing_stop('tra_adv_tvd') |
---|
247 | ! |
---|
248 | END SUBROUTINE tra_adv_tvd |
---|
249 | |
---|
250 | |
---|
251 | SUBROUTINE nonosc( pbef, paa, pbb, pcc, paft, p2dt ) |
---|
252 | !!--------------------------------------------------------------------- |
---|
253 | !! *** ROUTINE nonosc *** |
---|
254 | !! |
---|
255 | !! ** Purpose : compute monotonic tracer fluxes from the upstream |
---|
256 | !! scheme and the before field by a nonoscillatory algorithm |
---|
257 | !! |
---|
258 | !! ** Method : ... ??? |
---|
259 | !! warning : pbef and paft must be masked, but the boundaries |
---|
260 | !! conditions on the fluxes are not necessary zalezak (1979) |
---|
261 | !! drange (1995) multi-dimensional forward-in-time and upstream- |
---|
262 | !! in-space based differencing for fluid |
---|
263 | !!---------------------------------------------------------------------- |
---|
264 | ! |
---|
265 | !!---------------------------------------------------------------------- |
---|
266 | REAL(wp), DIMENSION(jpk) , INTENT(in ) :: p2dt ! vertical profile of tracer time-step |
---|
267 | REAL(wp), DIMENSION (jpi,jpj,jpk), INTENT(in ) :: pbef, paft ! before & after field |
---|
268 | REAL(wp), DIMENSION (jpi,jpj,jpk), INTENT(inout) :: paa, pbb, pcc ! monotonic fluxes in the 3 directions |
---|
269 | ! |
---|
270 | INTEGER :: ji, jj, jk ! dummy loop indices |
---|
271 | INTEGER :: ikm1 ! local integer |
---|
272 | REAL(wp) :: zpos, zneg, zbt, za, zb, zc, zbig, zrtrn, z2dtt ! local scalars |
---|
273 | REAL(wp) :: zau, zbu, zcu, zav, zbv, zcv, zup, zdo ! - - |
---|
274 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zbetup, zbetdo, zbup, zbdo |
---|
275 | !!---------------------------------------------------------------------- |
---|
276 | ! |
---|
277 | IF( nn_timing == 1 ) CALL timing_start('nonosc') |
---|
278 | ! |
---|
279 | CALL wrk_alloc( jpi, jpj, jpk, zbetup, zbetdo, zbup, zbdo ) |
---|
280 | ! |
---|
281 | |
---|
282 | zbig = 1.e+40_wp |
---|
283 | zrtrn = 1.e-15_wp |
---|
284 | zbetup(:,:,jpk) = 0._wp ; zbetdo(:,:,jpk) = 0._wp |
---|
285 | |
---|
286 | |
---|
287 | ! Search local extrema |
---|
288 | ! -------------------- |
---|
289 | ! max/min of pbef & paft with large negative/positive value (-/+zbig) inside land |
---|
290 | zbup = MAX( pbef * tmask - zbig * ( 1.e0 - tmask ), & |
---|
291 | & paft * tmask - zbig * ( 1.e0 - tmask ) ) |
---|
292 | zbdo = MIN( pbef * tmask + zbig * ( 1.e0 - tmask ), & |
---|
293 | & paft * tmask + zbig * ( 1.e0 - tmask ) ) |
---|
294 | |
---|
295 | DO jk = 1, jpkm1 |
---|
296 | ikm1 = MAX(jk-1,1) |
---|
297 | z2dtt = p2dt(jk) |
---|
298 | DO jj = 2, jpjm1 |
---|
299 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
300 | |
---|
301 | ! search maximum in neighbourhood |
---|
302 | zup = MAX( zbup(ji ,jj ,jk ), & |
---|
303 | & zbup(ji-1,jj ,jk ), zbup(ji+1,jj ,jk ), & |
---|
304 | & zbup(ji ,jj-1,jk ), zbup(ji ,jj+1,jk ), & |
---|
305 | & zbup(ji ,jj ,ikm1), zbup(ji ,jj ,jk+1) ) |
---|
306 | |
---|
307 | ! search minimum in neighbourhood |
---|
308 | zdo = MIN( zbdo(ji ,jj ,jk ), & |
---|
309 | & zbdo(ji-1,jj ,jk ), zbdo(ji+1,jj ,jk ), & |
---|
310 | & zbdo(ji ,jj-1,jk ), zbdo(ji ,jj+1,jk ), & |
---|
311 | & zbdo(ji ,jj ,ikm1), zbdo(ji ,jj ,jk+1) ) |
---|
312 | |
---|
313 | ! positive part of the flux |
---|
314 | zpos = MAX( 0., paa(ji-1,jj ,jk ) ) - MIN( 0., paa(ji ,jj ,jk ) ) & |
---|
315 | & + MAX( 0., pbb(ji ,jj-1,jk ) ) - MIN( 0., pbb(ji ,jj ,jk ) ) & |
---|
316 | & + MAX( 0., pcc(ji ,jj ,jk+1) ) - MIN( 0., pcc(ji ,jj ,jk ) ) |
---|
317 | |
---|
318 | ! negative part of the flux |
---|
319 | zneg = MAX( 0., paa(ji ,jj ,jk ) ) - MIN( 0., paa(ji-1,jj ,jk ) ) & |
---|
320 | & + MAX( 0., pbb(ji ,jj ,jk ) ) - MIN( 0., pbb(ji ,jj-1,jk ) ) & |
---|
321 | & + MAX( 0., pcc(ji ,jj ,jk ) ) - MIN( 0., pcc(ji ,jj ,jk+1) ) |
---|
322 | |
---|
323 | ! up & down beta terms |
---|
324 | zbt = e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) / z2dtt |
---|
325 | zbetup(ji,jj,jk) = ( zup - paft(ji,jj,jk) ) / ( zpos + zrtrn ) * zbt |
---|
326 | zbetdo(ji,jj,jk) = ( paft(ji,jj,jk) - zdo ) / ( zneg + zrtrn ) * zbt |
---|
327 | END DO |
---|
328 | END DO |
---|
329 | END DO |
---|
330 | CALL lbc_lnk( zbetup, 'T', 1. ) ; CALL lbc_lnk( zbetdo, 'T', 1. ) ! lateral boundary cond. (unchanged sign) |
---|
331 | |
---|
332 | ! 3. monotonic flux in the i & j direction (paa & pbb) |
---|
333 | ! ---------------------------------------- |
---|
334 | DO jk = 1, jpkm1 |
---|
335 | DO jj = 2, jpjm1 |
---|
336 | DO ji = fs_2, fs_jpim1 ! vector opt. |
---|
337 | zau = MIN( 1.e0, zbetdo(ji,jj,jk), zbetup(ji+1,jj,jk) ) |
---|
338 | zbu = MIN( 1.e0, zbetup(ji,jj,jk), zbetdo(ji+1,jj,jk) ) |
---|
339 | zcu = ( 0.5 + SIGN( 0.5 , paa(ji,jj,jk) ) ) |
---|
340 | paa(ji,jj,jk) = paa(ji,jj,jk) * ( zcu * zau + ( 1.e0 - zcu) * zbu ) |
---|
341 | |
---|
342 | zav = MIN( 1.e0, zbetdo(ji,jj,jk), zbetup(ji,jj+1,jk) ) |
---|
343 | zbv = MIN( 1.e0, zbetup(ji,jj,jk), zbetdo(ji,jj+1,jk) ) |
---|
344 | zcv = ( 0.5 + SIGN( 0.5 , pbb(ji,jj,jk) ) ) |
---|
345 | pbb(ji,jj,jk) = pbb(ji,jj,jk) * ( zcv * zav + ( 1.e0 - zcv) * zbv ) |
---|
346 | |
---|
347 | ! monotonic flux in the k direction, i.e. pcc |
---|
348 | ! ------------------------------------------- |
---|
349 | za = MIN( 1., zbetdo(ji,jj,jk+1), zbetup(ji,jj,jk) ) |
---|
350 | zb = MIN( 1., zbetup(ji,jj,jk+1), zbetdo(ji,jj,jk) ) |
---|
351 | zc = ( 0.5 + SIGN( 0.5 , pcc(ji,jj,jk+1) ) ) |
---|
352 | pcc(ji,jj,jk+1) = pcc(ji,jj,jk+1) * ( zc * za + ( 1.e0 - zc) * zb ) |
---|
353 | END DO |
---|
354 | END DO |
---|
355 | END DO |
---|
356 | CALL lbc_lnk( paa, 'U', -1. ) ; CALL lbc_lnk( pbb, 'V', -1. ) ! lateral boundary condition (changed sign) |
---|
357 | ! |
---|
358 | CALL wrk_dealloc( jpi, jpj, jpk, zbetup, zbetdo, zbup, zbdo ) |
---|
359 | ! |
---|
360 | IF( nn_timing == 1 ) CALL timing_stop('nonosc') |
---|
361 | ! |
---|
362 | END SUBROUTINE nonosc |
---|
363 | |
---|
364 | !!====================================================================== |
---|
365 | END MODULE traadv_tvd |
---|