1 | MODULE p4zlim |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zlim *** |
---|
4 | !! TOP : PISCES |
---|
5 | !!====================================================================== |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-04 (O. Aumont, C. Ethe) Limitation for iron modelled in quota |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_pisces |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_pisces' PISCES bio-model |
---|
13 | !!---------------------------------------------------------------------- |
---|
14 | !! p4z_lim : Compute the nutrients limitation terms |
---|
15 | !! p4z_lim_init : Read the namelist |
---|
16 | !!---------------------------------------------------------------------- |
---|
17 | USE oce_trc ! Shared ocean-passive tracers variables |
---|
18 | USE trc ! Tracers defined |
---|
19 | USE sms_pisces ! PISCES variables |
---|
20 | USE p4zopt ! Optical |
---|
21 | USE iom ! I/O manager |
---|
22 | |
---|
23 | IMPLICIT NONE |
---|
24 | PRIVATE |
---|
25 | |
---|
26 | PUBLIC p4z_lim |
---|
27 | PUBLIC p4z_lim_init |
---|
28 | |
---|
29 | !! * Shared module variables |
---|
30 | REAL(wp), PUBLIC :: concnno3 !: NO3, PO4 half saturation |
---|
31 | REAL(wp), PUBLIC :: concdno3 !: Phosphate half saturation for diatoms |
---|
32 | REAL(wp), PUBLIC :: concnnh4 !: NH4 half saturation for phyto |
---|
33 | REAL(wp), PUBLIC :: concdnh4 !: NH4 half saturation for diatoms |
---|
34 | REAL(wp), PUBLIC :: concnfer !: Iron half saturation for nanophyto |
---|
35 | REAL(wp), PUBLIC :: concdfer !: Iron half saturation for diatoms |
---|
36 | REAL(wp), PUBLIC :: concbno3 !: NO3 half saturation for bacteria |
---|
37 | REAL(wp), PUBLIC :: concbnh4 !: NH4 half saturation for bacteria |
---|
38 | REAL(wp), PUBLIC :: xsizedia !: Minimum size criteria for diatoms |
---|
39 | REAL(wp), PUBLIC :: xsizephy !: Minimum size criteria for nanophyto |
---|
40 | REAL(wp), PUBLIC :: xsizern !: Size ratio for nanophytoplankton |
---|
41 | REAL(wp), PUBLIC :: xsizerd !: Size ratio for diatoms |
---|
42 | REAL(wp), PUBLIC :: xksi1 !: half saturation constant for Si uptake |
---|
43 | REAL(wp), PUBLIC :: xksi2 !: half saturation constant for Si/C |
---|
44 | REAL(wp), PUBLIC :: xkdoc !: 2nd half-sat. of DOC remineralization |
---|
45 | REAL(wp), PUBLIC :: concbfe !: Fe half saturation for bacteria |
---|
46 | REAL(wp), PUBLIC :: oxymin !: half saturation constant for anoxia |
---|
47 | REAL(wp), PUBLIC :: qnfelim !: optimal Fe quota for nanophyto |
---|
48 | REAL(wp), PUBLIC :: qdfelim !: optimal Fe quota for diatoms |
---|
49 | REAL(wp), PUBLIC :: caco3r !: mean rainratio |
---|
50 | |
---|
51 | ! Coefficient for iron limitation |
---|
52 | REAL(wp) :: xcoef1 = 0.0016 / 55.85 |
---|
53 | REAL(wp) :: xcoef2 = 1.21E-5 * 14. / 55.85 / 7.625 * 0.5 * 1.5 |
---|
54 | REAL(wp) :: xcoef3 = 1.15E-4 * 14. / 55.85 / 7.625 * 0.5 |
---|
55 | |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
58 | !! $Id: p4zlim.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
59 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
60 | !!---------------------------------------------------------------------- |
---|
61 | |
---|
62 | CONTAINS |
---|
63 | |
---|
64 | SUBROUTINE p4z_lim( kt, knt ) |
---|
65 | !!--------------------------------------------------------------------- |
---|
66 | !! *** ROUTINE p4z_lim *** |
---|
67 | !! |
---|
68 | !! ** Purpose : Compute the co-limitations by the various nutrients |
---|
69 | !! for the various phytoplankton species |
---|
70 | !! |
---|
71 | !! ** Method : - ??? |
---|
72 | !!--------------------------------------------------------------------- |
---|
73 | ! |
---|
74 | INTEGER, INTENT(in) :: kt, knt |
---|
75 | ! |
---|
76 | INTEGER :: ji, jj, jk |
---|
77 | REAL(wp) :: zlim1, zlim2, zlim3, zlim4, zno3, zferlim |
---|
78 | REAL(wp) :: zconcd, zconcd2, zconcn, zconcn2 |
---|
79 | REAL(wp) :: z1_trbdia, z1_trbphy, ztem1, ztem2, zetot1, zetot2 |
---|
80 | REAL(wp) :: zdenom, zratio, zironmin |
---|
81 | REAL(wp) :: zconc1d, zconc1dnh4, zconc0n, zconc0nnh4 |
---|
82 | !!--------------------------------------------------------------------- |
---|
83 | ! |
---|
84 | IF( nn_timing == 1 ) CALL timing_start('p4z_lim') |
---|
85 | ! |
---|
86 | DO jk = 1, jpkm1 |
---|
87 | DO jj = 1, jpj |
---|
88 | DO ji = 1, jpi |
---|
89 | |
---|
90 | ! Tuning of the iron concentration to a minimum level that is set to the detection limit |
---|
91 | !------------------------------------- |
---|
92 | zno3 = trb(ji,jj,jk,jpno3) / 40.e-6 |
---|
93 | zferlim = MAX( 3e-11 * zno3 * zno3, 5e-12 ) |
---|
94 | zferlim = MIN( zferlim, 7e-11 ) |
---|
95 | trb(ji,jj,jk,jpfer) = MAX( trb(ji,jj,jk,jpfer), zferlim ) |
---|
96 | |
---|
97 | ! Computation of a variable Ks for iron on diatoms taking into account |
---|
98 | ! that increasing biomass is made of generally bigger cells |
---|
99 | !------------------------------------------------ |
---|
100 | zconcd = MAX( 0.e0 , trb(ji,jj,jk,jpdia) - xsizedia ) |
---|
101 | zconcd2 = trb(ji,jj,jk,jpdia) - zconcd |
---|
102 | zconcn = MAX( 0.e0 , trb(ji,jj,jk,jpphy) - xsizephy ) |
---|
103 | zconcn2 = trb(ji,jj,jk,jpphy) - zconcn |
---|
104 | z1_trbphy = 1. / ( trb(ji,jj,jk,jpphy) + rtrn ) |
---|
105 | z1_trbdia = 1. / ( trb(ji,jj,jk,jpdia) + rtrn ) |
---|
106 | |
---|
107 | concdfe(ji,jj,jk) = MAX( concdfer, ( zconcd2 * concdfer + concdfer * xsizerd * zconcd ) * z1_trbdia ) |
---|
108 | zconc1d = MAX( concdno3, ( zconcd2 * concdno3 + concdno3 * xsizerd * zconcd ) * z1_trbdia ) |
---|
109 | zconc1dnh4 = MAX( concdnh4, ( zconcd2 * concdnh4 + concdnh4 * xsizerd * zconcd ) * z1_trbdia ) |
---|
110 | |
---|
111 | concnfe(ji,jj,jk) = MAX( concnfer, ( zconcn2 * concnfer + concnfer * xsizern * zconcn ) * z1_trbphy ) |
---|
112 | zconc0n = MAX( concnno3, ( zconcn2 * concnno3 + concnno3 * xsizern * zconcn ) * z1_trbphy ) |
---|
113 | zconc0nnh4 = MAX( concnnh4, ( zconcn2 * concnnh4 + concnnh4 * xsizern * zconcn ) * z1_trbphy ) |
---|
114 | |
---|
115 | ! Michaelis-Menten Limitation term for nutrients Small bacteria |
---|
116 | ! ------------------------------------------------------------- |
---|
117 | zdenom = 1. / ( concbno3 * concbnh4 + concbnh4 * trb(ji,jj,jk,jpno3) + concbno3 * trb(ji,jj,jk,jpnh4) ) |
---|
118 | xnanono3(ji,jj,jk) = trb(ji,jj,jk,jpno3) * concbnh4 * zdenom |
---|
119 | xnanonh4(ji,jj,jk) = trb(ji,jj,jk,jpnh4) * concbno3 * zdenom |
---|
120 | ! |
---|
121 | zlim1 = xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) |
---|
122 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + concbnh4 ) |
---|
123 | zlim3 = trb(ji,jj,jk,jpfer) / ( concbfe + trb(ji,jj,jk,jpfer) ) |
---|
124 | zlim4 = trb(ji,jj,jk,jpdoc) / ( xkdoc + trb(ji,jj,jk,jpdoc) ) |
---|
125 | xlimbacl(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) |
---|
126 | xlimbac (ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) * zlim4 |
---|
127 | |
---|
128 | ! Michaelis-Menten Limitation term for nutrients Small flagellates |
---|
129 | ! ----------------------------------------------- |
---|
130 | zdenom = 1. / ( zconc0n * zconc0nnh4 + zconc0nnh4 * trb(ji,jj,jk,jpno3) + zconc0n * trb(ji,jj,jk,jpnh4) ) |
---|
131 | xnanono3(ji,jj,jk) = trb(ji,jj,jk,jpno3) * zconc0nnh4 * zdenom |
---|
132 | xnanonh4(ji,jj,jk) = trb(ji,jj,jk,jpnh4) * zconc0n * zdenom |
---|
133 | ! |
---|
134 | zlim1 = xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) |
---|
135 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + zconc0nnh4 ) |
---|
136 | zratio = trb(ji,jj,jk,jpnfe) * z1_trbphy |
---|
137 | zironmin = xcoef1 * trb(ji,jj,jk,jpnch) * z1_trbphy + xcoef2 * zlim1 + xcoef3 * xnanono3(ji,jj,jk) |
---|
138 | zlim3 = MAX( 0.,( zratio - zironmin ) / qnfelim ) |
---|
139 | xnanopo4(ji,jj,jk) = zlim2 |
---|
140 | xlimnfe (ji,jj,jk) = MIN( 1., zlim3 ) |
---|
141 | xlimphy (ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) |
---|
142 | ! |
---|
143 | ! Michaelis-Menten Limitation term for nutrients Diatoms |
---|
144 | ! ---------------------------------------------- |
---|
145 | zdenom = 1. / ( zconc1d * zconc1dnh4 + zconc1dnh4 * trb(ji,jj,jk,jpno3) + zconc1d * trb(ji,jj,jk,jpnh4) ) |
---|
146 | xdiatno3(ji,jj,jk) = trb(ji,jj,jk,jpno3) * zconc1dnh4 * zdenom |
---|
147 | xdiatnh4(ji,jj,jk) = trb(ji,jj,jk,jpnh4) * zconc1d * zdenom |
---|
148 | ! |
---|
149 | zlim1 = xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) |
---|
150 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + zconc1dnh4 ) |
---|
151 | zlim3 = trb(ji,jj,jk,jpsil) / ( trb(ji,jj,jk,jpsil) + xksi(ji,jj) ) |
---|
152 | zratio = trb(ji,jj,jk,jpdfe) * z1_trbdia |
---|
153 | zironmin = xcoef1 * trb(ji,jj,jk,jpdch) * z1_trbdia + xcoef2 * zlim1 + xcoef3 * xdiatno3(ji,jj,jk) |
---|
154 | zlim4 = MAX( 0., ( zratio - zironmin ) / qdfelim ) |
---|
155 | xdiatpo4(ji,jj,jk) = zlim2 |
---|
156 | xlimdfe (ji,jj,jk) = MIN( 1., zlim4 ) |
---|
157 | xlimdia (ji,jj,jk) = MIN( zlim1, zlim2, zlim3, zlim4 ) |
---|
158 | xlimsi (ji,jj,jk) = MIN( zlim1, zlim2, zlim4 ) |
---|
159 | END DO |
---|
160 | END DO |
---|
161 | END DO |
---|
162 | |
---|
163 | ! Compute the fraction of nanophytoplankton that is made of calcifiers |
---|
164 | ! -------------------------------------------------------------------- |
---|
165 | DO jk = 1, jpkm1 |
---|
166 | DO jj = 1, jpj |
---|
167 | DO ji = 1, jpi |
---|
168 | zlim1 = ( trb(ji,jj,jk,jpno3) * concnnh4 + trb(ji,jj,jk,jpnh4) * concnno3 ) & |
---|
169 | & / ( concnno3 * concnnh4 + concnnh4 * trb(ji,jj,jk,jpno3) + concnno3 * trb(ji,jj,jk,jpnh4) ) |
---|
170 | zlim2 = trb(ji,jj,jk,jppo4) / ( trb(ji,jj,jk,jppo4) + concnnh4 ) |
---|
171 | zlim3 = trb(ji,jj,jk,jpfer) / ( trb(ji,jj,jk,jpfer) + 5.E-11 ) |
---|
172 | ztem1 = MAX( 0., tsn(ji,jj,jk,jp_tem) ) |
---|
173 | ztem2 = tsn(ji,jj,jk,jp_tem) - 10. |
---|
174 | zetot1 = MAX( 0., etot_ndcy(ji,jj,jk) - 1.) / ( 4. + etot_ndcy(ji,jj,jk) ) |
---|
175 | zetot2 = 30. / ( 30. + etot_ndcy(ji,jj,jk) ) |
---|
176 | |
---|
177 | xfracal(ji,jj,jk) = caco3r * MIN( zlim1, zlim2, zlim3 ) & |
---|
178 | & * ztem1 / ( 0.1 + ztem1 ) & |
---|
179 | & * MAX( 1., trb(ji,jj,jk,jpphy) * 1.e6 / 2. ) & |
---|
180 | & * zetot1 * zetot2 & |
---|
181 | & * ( 1. + EXP(-ztem2 * ztem2 / 25. ) ) & |
---|
182 | & * MIN( 1., 50. / ( hmld(ji,jj) + rtrn ) ) |
---|
183 | xfracal(ji,jj,jk) = MIN( 0.8 , xfracal(ji,jj,jk) ) |
---|
184 | xfracal(ji,jj,jk) = MAX( 0.02, xfracal(ji,jj,jk) ) |
---|
185 | END DO |
---|
186 | END DO |
---|
187 | END DO |
---|
188 | ! |
---|
189 | DO jk = 1, jpkm1 |
---|
190 | DO jj = 1, jpj |
---|
191 | DO ji = 1, jpi |
---|
192 | ! denitrification factor computed from O2 levels |
---|
193 | nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( 6.e-6 - trb(ji,jj,jk,jpoxy) ) & |
---|
194 | & / ( oxymin + trb(ji,jj,jk,jpoxy) ) ) |
---|
195 | nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) ) |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | END DO |
---|
199 | ! |
---|
200 | IF( lk_iomput .AND. knt == nrdttrc ) THEN ! save output diagnostics |
---|
201 | IF( iom_use( "xfracal" ) ) CALL iom_put( "xfracal", xfracal(:,:,:) * tmask(:,:,:) ) ! euphotic layer deptht |
---|
202 | IF( iom_use( "LNnut" ) ) CALL iom_put( "LNnut" , xlimphy(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
203 | IF( iom_use( "LDnut" ) ) CALL iom_put( "LDnut" , xlimdia(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term |
---|
204 | IF( iom_use( "LNFe" ) ) CALL iom_put( "LNFe" , xlimnfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
205 | IF( iom_use( "LDFe" ) ) CALL iom_put( "LDFe" , xlimdfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term |
---|
206 | ENDIF |
---|
207 | ! |
---|
208 | IF( nn_timing == 1 ) CALL timing_stop('p4z_lim') |
---|
209 | ! |
---|
210 | END SUBROUTINE p4z_lim |
---|
211 | |
---|
212 | SUBROUTINE p4z_lim_init |
---|
213 | |
---|
214 | !!---------------------------------------------------------------------- |
---|
215 | !! *** ROUTINE p4z_lim_init *** |
---|
216 | !! |
---|
217 | !! ** Purpose : Initialization of nutrient limitation parameters |
---|
218 | !! |
---|
219 | !! ** Method : Read the nampislim namelist and check the parameters |
---|
220 | !! called at the first timestep (nittrc000) |
---|
221 | !! |
---|
222 | !! ** input : Namelist nampislim |
---|
223 | !! |
---|
224 | !!---------------------------------------------------------------------- |
---|
225 | |
---|
226 | NAMELIST/nampislim/ concnno3, concdno3, concnnh4, concdnh4, concnfer, concdfer, concbfe, & |
---|
227 | & concbno3, concbnh4, xsizedia, xsizephy, xsizern, xsizerd, & |
---|
228 | & xksi1, xksi2, xkdoc, qnfelim, qdfelim, caco3r, oxymin |
---|
229 | INTEGER :: ios ! Local integer output status for namelist read |
---|
230 | |
---|
231 | REWIND( numnatp_ref ) ! Namelist nampislim in reference namelist : Pisces nutrient limitation parameters |
---|
232 | READ ( numnatp_ref, nampislim, IOSTAT = ios, ERR = 901) |
---|
233 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampislim in reference namelist', lwp ) |
---|
234 | |
---|
235 | REWIND( numnatp_cfg ) ! Namelist nampislim in configuration namelist : Pisces nutrient limitation parameters |
---|
236 | READ ( numnatp_cfg, nampislim, IOSTAT = ios, ERR = 902 ) |
---|
237 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampislim in configuration namelist', lwp ) |
---|
238 | IF(lwm) WRITE ( numonp, nampislim ) |
---|
239 | |
---|
240 | IF(lwp) THEN ! control print |
---|
241 | WRITE(numout,*) ' ' |
---|
242 | WRITE(numout,*) ' Namelist parameters for nutrient limitations, nampislim' |
---|
243 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
244 | WRITE(numout,*) ' mean rainratio caco3r = ', caco3r |
---|
245 | WRITE(numout,*) ' NO3 half saturation of nanophyto concnno3 = ', concnno3 |
---|
246 | WRITE(numout,*) ' NO3 half saturation of diatoms concdno3 = ', concdno3 |
---|
247 | WRITE(numout,*) ' NH4 half saturation for phyto concnnh4 = ', concnnh4 |
---|
248 | WRITE(numout,*) ' NH4 half saturation for diatoms concdnh4 = ', concdnh4 |
---|
249 | WRITE(numout,*) ' half saturation constant for Si uptake xksi1 = ', xksi1 |
---|
250 | WRITE(numout,*) ' half saturation constant for Si/C xksi2 = ', xksi2 |
---|
251 | WRITE(numout,*) ' half-sat. of DOC remineralization xkdoc = ', xkdoc |
---|
252 | WRITE(numout,*) ' Iron half saturation for nanophyto concnfer = ', concnfer |
---|
253 | WRITE(numout,*) ' Iron half saturation for diatoms concdfer = ', concdfer |
---|
254 | WRITE(numout,*) ' size ratio for nanophytoplankton xsizern = ', xsizern |
---|
255 | WRITE(numout,*) ' size ratio for diatoms xsizerd = ', xsizerd |
---|
256 | WRITE(numout,*) ' NO3 half saturation of bacteria concbno3 = ', concbno3 |
---|
257 | WRITE(numout,*) ' NH4 half saturation for bacteria concbnh4 = ', concbnh4 |
---|
258 | WRITE(numout,*) ' Minimum size criteria for diatoms xsizedia = ', xsizedia |
---|
259 | WRITE(numout,*) ' Minimum size criteria for nanophyto xsizephy = ', xsizephy |
---|
260 | WRITE(numout,*) ' Fe half saturation for bacteria concbfe = ', concbfe |
---|
261 | WRITE(numout,*) ' halk saturation constant for anoxia oxymin =' , oxymin |
---|
262 | WRITE(numout,*) ' optimal Fe quota for nano. qnfelim = ', qnfelim |
---|
263 | WRITE(numout,*) ' Optimal Fe quota for diatoms qdfelim = ', qdfelim |
---|
264 | ENDIF |
---|
265 | ! |
---|
266 | nitrfac (:,:,:) = 0._wp |
---|
267 | ! |
---|
268 | END SUBROUTINE p4z_lim_init |
---|
269 | |
---|
270 | #else |
---|
271 | !!====================================================================== |
---|
272 | !! Dummy module : No PISCES bio-model |
---|
273 | !!====================================================================== |
---|
274 | CONTAINS |
---|
275 | SUBROUTINE p4z_lim ! Empty routine |
---|
276 | END SUBROUTINE p4z_lim |
---|
277 | #endif |
---|
278 | |
---|
279 | !!====================================================================== |
---|
280 | END MODULE p4zlim |
---|