1 | MODULE p4zrem |
---|
2 | !!====================================================================== |
---|
3 | !! *** MODULE p4zrem *** |
---|
4 | !! TOP : PISCES Compute remineralization/dissolution of organic compounds |
---|
5 | !!========================================================================= |
---|
6 | !! History : 1.0 ! 2004 (O. Aumont) Original code |
---|
7 | !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 |
---|
8 | !! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron |
---|
9 | !!---------------------------------------------------------------------- |
---|
10 | #if defined key_pisces |
---|
11 | !!---------------------------------------------------------------------- |
---|
12 | !! 'key_top' and TOP models |
---|
13 | !! 'key_pisces' PISCES bio-model |
---|
14 | !!---------------------------------------------------------------------- |
---|
15 | !! p4z_rem : Compute remineralization/dissolution of organic compounds |
---|
16 | !! p4z_rem_init : Initialisation of parameters for remineralisation |
---|
17 | !! p4z_rem_alloc : Allocate remineralisation variables |
---|
18 | !!---------------------------------------------------------------------- |
---|
19 | USE oce_trc ! shared variables between ocean and passive tracers |
---|
20 | USE trc ! passive tracers common variables |
---|
21 | USE sms_pisces ! PISCES Source Minus Sink variables |
---|
22 | USE p4zopt ! optical model |
---|
23 | USE p4zche ! chemical model |
---|
24 | USE p4zprod ! Growth rate of the 2 phyto groups |
---|
25 | USE p4zmeso ! Sources and sinks of mesozooplankton |
---|
26 | USE p4zint ! interpolation and computation of various fields |
---|
27 | USE p4zlim |
---|
28 | USE prtctl_trc ! print control for debugging |
---|
29 | USE iom ! I/O manager |
---|
30 | |
---|
31 | |
---|
32 | IMPLICIT NONE |
---|
33 | PRIVATE |
---|
34 | |
---|
35 | PUBLIC p4z_rem ! called in p4zbio.F90 |
---|
36 | PUBLIC p4z_rem_init ! called in trcsms_pisces.F90 |
---|
37 | PUBLIC p4z_rem_alloc |
---|
38 | |
---|
39 | !! * Shared module variables |
---|
40 | REAL(wp), PUBLIC :: xremik !: remineralisation rate of POC |
---|
41 | REAL(wp), PUBLIC :: xremip !: remineralisation rate of DOC |
---|
42 | REAL(wp), PUBLIC :: nitrif !: NH4 nitrification rate |
---|
43 | REAL(wp), PUBLIC :: xsirem !: remineralisation rate of POC |
---|
44 | REAL(wp), PUBLIC :: xsiremlab !: fast remineralisation rate of POC |
---|
45 | REAL(wp), PUBLIC :: xsilab !: fraction of labile biogenic silica |
---|
46 | REAL(wp), PUBLIC :: oxymin !: halk saturation constant for anoxia |
---|
47 | |
---|
48 | |
---|
49 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: denitr !: denitrification array |
---|
50 | REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: denitnh4 !: - - - - - |
---|
51 | |
---|
52 | !!---------------------------------------------------------------------- |
---|
53 | !! NEMO/TOP 3.3 , NEMO Consortium (2010) |
---|
54 | !! $Id: p4zrem.F90 3160 2011-11-20 14:27:18Z cetlod $ |
---|
55 | !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) |
---|
56 | !!---------------------------------------------------------------------- |
---|
57 | CONTAINS |
---|
58 | |
---|
59 | SUBROUTINE p4z_rem( kt, knt ) |
---|
60 | !!--------------------------------------------------------------------- |
---|
61 | !! *** ROUTINE p4z_rem *** |
---|
62 | !! |
---|
63 | !! ** Purpose : Compute remineralization/scavenging of organic compounds |
---|
64 | !! |
---|
65 | !! ** Method : - ??? |
---|
66 | !!--------------------------------------------------------------------- |
---|
67 | ! |
---|
68 | INTEGER, INTENT(in) :: kt, knt ! ocean time step |
---|
69 | ! |
---|
70 | INTEGER :: ji, jj, jk |
---|
71 | REAL(wp) :: zremip, zremik, zsiremin |
---|
72 | REAL(wp) :: zsatur, zsatur2, znusil, znusil2, zdep, zdepmin, zfactdep |
---|
73 | REAL(wp) :: zbactfer, zorem, zorem2, zofer, zolimit |
---|
74 | REAL(wp) :: zosil, ztem |
---|
75 | #if ! defined key_kriest |
---|
76 | REAL(wp) :: zofer2 |
---|
77 | #endif |
---|
78 | REAL(wp) :: zonitr, zstep, zfact |
---|
79 | CHARACTER (len=25) :: charout |
---|
80 | REAL(wp), POINTER, DIMENSION(:,: ) :: ztempbac |
---|
81 | REAL(wp), POINTER, DIMENSION(:,:,:) :: zdepbac, zolimi, zdepprod, zw3d |
---|
82 | !!--------------------------------------------------------------------- |
---|
83 | ! |
---|
84 | IF( nn_timing == 1 ) CALL timing_start('p4z_rem') |
---|
85 | ! |
---|
86 | ! Allocate temporary workspace |
---|
87 | CALL wrk_alloc( jpi, jpj, ztempbac ) |
---|
88 | CALL wrk_alloc( jpi, jpj, jpk, zdepbac, zdepprod, zolimi ) |
---|
89 | |
---|
90 | ! Initialisation of temprary arrys |
---|
91 | zdepprod(:,:,:) = 1._wp |
---|
92 | ztempbac(:,:) = 0._wp |
---|
93 | |
---|
94 | ! Computation of the mean phytoplankton concentration as |
---|
95 | ! a crude estimate of the bacterial biomass |
---|
96 | ! this parameterization has been deduced from a model version |
---|
97 | ! that was modeling explicitely bacteria |
---|
98 | ! ------------------------------------------------------- |
---|
99 | DO jk = 1, jpkm1 |
---|
100 | DO jj = 1, jpj |
---|
101 | DO ji = 1, jpi |
---|
102 | zdep = MAX( hmld(ji,jj), heup(ji,jj) ) |
---|
103 | IF( gdept_n(ji,jj,jk) < zdep ) THEN |
---|
104 | zdepbac(ji,jj,jk) = MIN( 0.7 * ( trb(ji,jj,jk,jpzoo) + 2.* trb(ji,jj,jk,jpmes) ), 4.e-6 ) |
---|
105 | ztempbac(ji,jj) = zdepbac(ji,jj,jk) |
---|
106 | ELSE |
---|
107 | zdepmin = MIN( 1., zdep / gdept_n(ji,jj,jk) ) |
---|
108 | zdepbac (ji,jj,jk) = zdepmin**0.683 * ztempbac(ji,jj) |
---|
109 | zdepprod(ji,jj,jk) = zdepmin**0.273 |
---|
110 | ENDIF |
---|
111 | END DO |
---|
112 | END DO |
---|
113 | END DO |
---|
114 | |
---|
115 | DO jk = 1, jpkm1 |
---|
116 | DO jj = 1, jpj |
---|
117 | DO ji = 1, jpi |
---|
118 | ! denitrification factor computed from O2 levels |
---|
119 | nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( 6.e-6 - trb(ji,jj,jk,jpoxy) ) & |
---|
120 | & / ( oxymin + trb(ji,jj,jk,jpoxy) ) ) |
---|
121 | nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) ) |
---|
122 | END DO |
---|
123 | END DO |
---|
124 | END DO |
---|
125 | |
---|
126 | DO jk = 1, jpkm1 |
---|
127 | DO jj = 1, jpj |
---|
128 | DO ji = 1, jpi |
---|
129 | zstep = xstep |
---|
130 | # if defined key_degrad |
---|
131 | zstep = zstep * facvol(ji,jj,jk) |
---|
132 | # endif |
---|
133 | ! DOC ammonification. Depends on depth, phytoplankton biomass |
---|
134 | ! and a limitation term which is supposed to be a parameterization |
---|
135 | ! of the bacterial activity. |
---|
136 | zremik = xremik * zstep / 1.e-6 * xlimbac(ji,jj,jk) * zdepbac(ji,jj,jk) |
---|
137 | zremik = MAX( zremik, 2.74e-4 * xstep ) |
---|
138 | ! Ammonification in oxic waters with oxygen consumption |
---|
139 | ! ----------------------------------------------------- |
---|
140 | zolimit = zremik * ( 1.- nitrfac(ji,jj,jk) ) * trb(ji,jj,jk,jpdoc) |
---|
141 | zolimi(ji,jj,jk) = MIN( ( trb(ji,jj,jk,jpoxy) - rtrn ) / o2ut, zolimit ) |
---|
142 | ! Ammonification in suboxic waters with denitrification |
---|
143 | ! ------------------------------------------------------- |
---|
144 | denitr(ji,jj,jk) = MIN( ( trb(ji,jj,jk,jpno3) - rtrn ) / rdenit, & |
---|
145 | & zremik * nitrfac(ji,jj,jk) * trb(ji,jj,jk,jpdoc) ) |
---|
146 | ! |
---|
147 | zolimi (ji,jj,jk) = MAX( 0.e0, zolimi (ji,jj,jk) ) |
---|
148 | denitr (ji,jj,jk) = MAX( 0.e0, denitr (ji,jj,jk) ) |
---|
149 | ! |
---|
150 | END DO |
---|
151 | END DO |
---|
152 | END DO |
---|
153 | |
---|
154 | |
---|
155 | DO jk = 1, jpkm1 |
---|
156 | DO jj = 1, jpj |
---|
157 | DO ji = 1, jpi |
---|
158 | zstep = xstep |
---|
159 | # if defined key_degrad |
---|
160 | zstep = zstep * facvol(ji,jj,jk) |
---|
161 | # endif |
---|
162 | ! NH4 nitrification to NO3. Ceased for oxygen concentrations |
---|
163 | ! below 2 umol/L. Inhibited at strong light |
---|
164 | ! ---------------------------------------------------------- |
---|
165 | zonitr =nitrif * zstep * trb(ji,jj,jk,jpnh4) / ( 1.+ emoy(ji,jj,jk) ) * ( 1.- nitrfac(ji,jj,jk) ) |
---|
166 | denitnh4(ji,jj,jk) = nitrif * zstep * trb(ji,jj,jk,jpnh4) * nitrfac(ji,jj,jk) |
---|
167 | ! Update of the tracers trends |
---|
168 | ! ---------------------------- |
---|
169 | tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zonitr - denitnh4(ji,jj,jk) |
---|
170 | tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) + zonitr - rdenita * denitnh4(ji,jj,jk) |
---|
171 | tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) - o2nit * zonitr |
---|
172 | tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) - 2 * rno3 * zonitr + rno3 * ( rdenita - 1. ) * denitnh4(ji,jj,jk) |
---|
173 | END DO |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | |
---|
177 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
178 | WRITE(charout, FMT="('rem1')") |
---|
179 | CALL prt_ctl_trc_info(charout) |
---|
180 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
181 | ENDIF |
---|
182 | |
---|
183 | DO jk = 1, jpkm1 |
---|
184 | DO jj = 1, jpj |
---|
185 | DO ji = 1, jpi |
---|
186 | |
---|
187 | ! Bacterial uptake of iron. No iron is available in DOC. So |
---|
188 | ! Bacteries are obliged to take up iron from the water. Some |
---|
189 | ! studies (especially at Papa) have shown this uptake to be significant |
---|
190 | ! ---------------------------------------------------------- |
---|
191 | zbactfer = 10.e-6 * rfact2 * prmax(ji,jj,jk) * xlimbacl(ji,jj,jk) & |
---|
192 | & * trb(ji,jj,jk,jpfer) / ( 2.5E-10 + trb(ji,jj,jk,jpfer) ) & |
---|
193 | & * zdepprod(ji,jj,jk) * zdepbac(ji,jj,jk) |
---|
194 | #if defined key_kriest |
---|
195 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zbactfer*0.05 |
---|
196 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zbactfer*0.05 |
---|
197 | #else |
---|
198 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zbactfer*0.16 |
---|
199 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zbactfer*0.12 |
---|
200 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + zbactfer*0.04 |
---|
201 | #endif |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | |
---|
206 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
207 | WRITE(charout, FMT="('rem2')") |
---|
208 | CALL prt_ctl_trc_info(charout) |
---|
209 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
210 | ENDIF |
---|
211 | |
---|
212 | DO jk = 1, jpkm1 |
---|
213 | DO jj = 1, jpj |
---|
214 | DO ji = 1, jpi |
---|
215 | zstep = xstep |
---|
216 | # if defined key_degrad |
---|
217 | zstep = zstep * facvol(ji,jj,jk) |
---|
218 | # endif |
---|
219 | ! POC disaggregation by turbulence and bacterial activity. |
---|
220 | ! -------------------------------------------------------- |
---|
221 | zremip = xremip * zstep * tgfunc(ji,jj,jk) * ( 1.- 0.55 * nitrfac(ji,jj,jk) ) |
---|
222 | |
---|
223 | ! POC disaggregation rate is reduced in anoxic zone as shown by |
---|
224 | ! sediment traps data. In oxic area, the exponent of the martin s |
---|
225 | ! law is around -0.87. In anoxic zone, it is around -0.35. This |
---|
226 | ! means a disaggregation constant about 0.5 the value in oxic zones |
---|
227 | ! ----------------------------------------------------------------- |
---|
228 | zorem = zremip * trb(ji,jj,jk,jppoc) |
---|
229 | zofer = zremip * trb(ji,jj,jk,jpsfe) |
---|
230 | #if ! defined key_kriest |
---|
231 | zorem2 = zremip * trb(ji,jj,jk,jpgoc) |
---|
232 | zofer2 = zremip * trb(ji,jj,jk,jpbfe) |
---|
233 | #else |
---|
234 | zorem2 = zremip * trb(ji,jj,jk,jpnum) |
---|
235 | #endif |
---|
236 | |
---|
237 | ! Update the appropriate tracers trends |
---|
238 | ! ------------------------------------- |
---|
239 | |
---|
240 | tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zorem |
---|
241 | tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + zofer |
---|
242 | #if defined key_kriest |
---|
243 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) - zorem |
---|
244 | tra(ji,jj,jk,jpnum) = tra(ji,jj,jk,jpnum) - zorem2 |
---|
245 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) - zofer |
---|
246 | #else |
---|
247 | tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zorem2 - zorem |
---|
248 | tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) - zorem2 |
---|
249 | tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + zofer2 - zofer |
---|
250 | tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) - zofer2 |
---|
251 | #endif |
---|
252 | |
---|
253 | END DO |
---|
254 | END DO |
---|
255 | END DO |
---|
256 | |
---|
257 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
258 | WRITE(charout, FMT="('rem3')") |
---|
259 | CALL prt_ctl_trc_info(charout) |
---|
260 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
261 | ENDIF |
---|
262 | |
---|
263 | DO jk = 1, jpkm1 |
---|
264 | DO jj = 1, jpj |
---|
265 | DO ji = 1, jpi |
---|
266 | zstep = xstep |
---|
267 | # if defined key_degrad |
---|
268 | zstep = zstep * facvol(ji,jj,jk) |
---|
269 | # endif |
---|
270 | ! Remineralization rate of BSi depedant on T and saturation |
---|
271 | ! --------------------------------------------------------- |
---|
272 | zsatur = ( sio3eq(ji,jj,jk) - trb(ji,jj,jk,jpsil) ) / ( sio3eq(ji,jj,jk) + rtrn ) |
---|
273 | zsatur = MAX( rtrn, zsatur ) |
---|
274 | zsatur2 = ( 1. + tsn(ji,jj,jk,jp_tem) / 400.)**37 |
---|
275 | znusil = 0.225 * ( 1. + tsn(ji,jj,jk,jp_tem) / 15.) * zsatur + 0.775 * zsatur2 * zsatur**9.25 |
---|
276 | znusil2 = 0.225 * ( 1. + tsn(ji,jj,1,jp_tem) / 15.) + 0.775 * zsatur2 |
---|
277 | |
---|
278 | ! Two classes of BSi are considered : a labile fraction and |
---|
279 | ! a more refractory one. The ratio between both fractions is |
---|
280 | ! constant and specified in the namelist. |
---|
281 | ! ---------------------------------------------------------- |
---|
282 | zdep = MAX( hmld(ji,jj), heup(ji,jj) ) |
---|
283 | zdep = MAX( 0., gdept_n(ji,jj,jk) - zdep ) |
---|
284 | ztem = MAX( tsn(ji,jj,1,jp_tem), 0. ) |
---|
285 | zfactdep = xsilab * EXP(-( xsiremlab - xsirem ) * znusil2 * zdep / wsbio2 ) * ztem / ( ztem + 10. ) |
---|
286 | zsiremin = ( xsiremlab * zfactdep + xsirem * ( 1. - zfactdep ) ) * zstep * znusil |
---|
287 | zosil = zsiremin * trb(ji,jj,jk,jpgsi) |
---|
288 | ! |
---|
289 | tra(ji,jj,jk,jpgsi) = tra(ji,jj,jk,jpgsi) - zosil |
---|
290 | tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) + zosil |
---|
291 | ! |
---|
292 | END DO |
---|
293 | END DO |
---|
294 | END DO |
---|
295 | |
---|
296 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
297 | WRITE(charout, FMT="('rem4')") |
---|
298 | CALL prt_ctl_trc_info(charout) |
---|
299 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
300 | ENDIF |
---|
301 | |
---|
302 | ! Update the arrays TRA which contain the biological sources and sinks |
---|
303 | ! -------------------------------------------------------------------- |
---|
304 | |
---|
305 | DO jk = 1, jpkm1 |
---|
306 | tra(:,:,jk,jppo4) = tra(:,:,jk,jppo4) + zolimi (:,:,jk) + denitr(:,:,jk) |
---|
307 | tra(:,:,jk,jpnh4) = tra(:,:,jk,jpnh4) + zolimi (:,:,jk) + denitr(:,:,jk) |
---|
308 | tra(:,:,jk,jpno3) = tra(:,:,jk,jpno3) - denitr (:,:,jk) * rdenit |
---|
309 | tra(:,:,jk,jpdoc) = tra(:,:,jk,jpdoc) - zolimi (:,:,jk) - denitr(:,:,jk) |
---|
310 | tra(:,:,jk,jpoxy) = tra(:,:,jk,jpoxy) - zolimi (:,:,jk) * o2ut |
---|
311 | tra(:,:,jk,jpdic) = tra(:,:,jk,jpdic) + zolimi (:,:,jk) + denitr(:,:,jk) |
---|
312 | tra(:,:,jk,jptal) = tra(:,:,jk,jptal) + rno3 * ( zolimi(:,:,jk) + ( rdenit + 1.) * denitr(:,:,jk) ) |
---|
313 | END DO |
---|
314 | |
---|
315 | IF( knt == nrdttrc ) THEN |
---|
316 | CALL wrk_alloc( jpi, jpj, jpk, zw3d ) |
---|
317 | zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s |
---|
318 | ! |
---|
319 | IF( iom_use( "REMIN" ) ) THEN |
---|
320 | zw3d(:,:,:) = zolimi(:,:,:) * tmask(:,:,:) * zfact ! Remineralisation rate |
---|
321 | CALL iom_put( "REMIN" , zw3d ) |
---|
322 | ENDIF |
---|
323 | IF( iom_use( "DENIT" ) ) THEN |
---|
324 | zw3d(:,:,:) = denitr(:,:,:) * rdenit * rno3 * tmask(:,:,:) * zfact ! Denitrification |
---|
325 | CALL iom_put( "DENIT" , zw3d ) |
---|
326 | ENDIF |
---|
327 | ! |
---|
328 | CALL wrk_dealloc( jpi, jpj, jpk, zw3d ) |
---|
329 | ENDIF |
---|
330 | |
---|
331 | IF(ln_ctl) THEN ! print mean trends (used for debugging) |
---|
332 | WRITE(charout, FMT="('rem6')") |
---|
333 | CALL prt_ctl_trc_info(charout) |
---|
334 | CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) |
---|
335 | ENDIF |
---|
336 | ! |
---|
337 | CALL wrk_dealloc( jpi, jpj, ztempbac ) |
---|
338 | CALL wrk_dealloc( jpi, jpj, jpk, zdepbac, zdepprod, zolimi ) |
---|
339 | ! |
---|
340 | IF( nn_timing == 1 ) CALL timing_stop('p4z_rem') |
---|
341 | ! |
---|
342 | END SUBROUTINE p4z_rem |
---|
343 | |
---|
344 | |
---|
345 | SUBROUTINE p4z_rem_init |
---|
346 | !!---------------------------------------------------------------------- |
---|
347 | !! *** ROUTINE p4z_rem_init *** |
---|
348 | !! |
---|
349 | !! ** Purpose : Initialization of remineralization parameters |
---|
350 | !! |
---|
351 | !! ** Method : Read the nampisrem namelist and check the parameters |
---|
352 | !! called at the first timestep |
---|
353 | !! |
---|
354 | !! ** input : Namelist nampisrem |
---|
355 | !! |
---|
356 | !!---------------------------------------------------------------------- |
---|
357 | NAMELIST/nampisrem/ xremik, xremip, nitrif, xsirem, xsiremlab, xsilab, & |
---|
358 | & oxymin |
---|
359 | INTEGER :: ios ! Local integer output status for namelist read |
---|
360 | |
---|
361 | REWIND( numnatp_ref ) ! Namelist nampisrem in reference namelist : Pisces remineralization |
---|
362 | READ ( numnatp_ref, nampisrem, IOSTAT = ios, ERR = 901) |
---|
363 | 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisrem in reference namelist', lwp ) |
---|
364 | |
---|
365 | REWIND( numnatp_cfg ) ! Namelist nampisrem in configuration namelist : Pisces remineralization |
---|
366 | READ ( numnatp_cfg, nampisrem, IOSTAT = ios, ERR = 902 ) |
---|
367 | 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisrem in configuration namelist', lwp ) |
---|
368 | IF(lwm) WRITE ( numonp, nampisrem ) |
---|
369 | |
---|
370 | IF(lwp) THEN ! control print |
---|
371 | WRITE(numout,*) ' ' |
---|
372 | WRITE(numout,*) ' Namelist parameters for remineralization, nampisrem' |
---|
373 | WRITE(numout,*) ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
374 | WRITE(numout,*) ' remineralisation rate of POC xremip =', xremip |
---|
375 | WRITE(numout,*) ' remineralization rate of DOC xremik =', xremik |
---|
376 | WRITE(numout,*) ' remineralization rate of Si xsirem =', xsirem |
---|
377 | WRITE(numout,*) ' fast remineralization rate of Si xsiremlab =', xsiremlab |
---|
378 | WRITE(numout,*) ' fraction of labile biogenic silica xsilab =', xsilab |
---|
379 | WRITE(numout,*) ' NH4 nitrification rate nitrif =', nitrif |
---|
380 | WRITE(numout,*) ' halk saturation constant for anoxia oxymin =', oxymin |
---|
381 | ENDIF |
---|
382 | ! |
---|
383 | nitrfac (:,:,:) = 0._wp |
---|
384 | denitr (:,:,:) = 0._wp |
---|
385 | denitnh4(:,:,:) = 0._wp |
---|
386 | ! |
---|
387 | END SUBROUTINE p4z_rem_init |
---|
388 | |
---|
389 | |
---|
390 | INTEGER FUNCTION p4z_rem_alloc() |
---|
391 | !!---------------------------------------------------------------------- |
---|
392 | !! *** ROUTINE p4z_rem_alloc *** |
---|
393 | !!---------------------------------------------------------------------- |
---|
394 | ALLOCATE( denitr(jpi,jpj,jpk), denitnh4(jpi,jpj,jpk), STAT=p4z_rem_alloc ) |
---|
395 | ! |
---|
396 | IF( p4z_rem_alloc /= 0 ) CALL ctl_warn('p4z_rem_alloc: failed to allocate arrays') |
---|
397 | ! |
---|
398 | END FUNCTION p4z_rem_alloc |
---|
399 | |
---|
400 | #else |
---|
401 | !!====================================================================== |
---|
402 | !! Dummy module : No PISCES bio-model |
---|
403 | !!====================================================================== |
---|
404 | CONTAINS |
---|
405 | SUBROUTINE p4z_rem ! Empty routine |
---|
406 | END SUBROUTINE p4z_rem |
---|
407 | #endif |
---|
408 | |
---|
409 | !!====================================================================== |
---|
410 | END MODULE p4zrem |
---|