1 | from netCDF4 import Dataset |
---|
2 | from argparse import ArgumentParser |
---|
3 | import numpy as np |
---|
4 | import sys |
---|
5 | |
---|
6 | # |
---|
7 | # Basic iceberg trajectory post-processing python script. |
---|
8 | # This script collates iceberg trajectories from the distributed datasets written |
---|
9 | # out by each processing region and rearranges the ragged arrays into contiguous |
---|
10 | # streams for each unique iceberg. The output arrays are 2D (ntraj, ntimes) arrays. |
---|
11 | # Note that some icebergs may only exist for a subset of the possible times. In these |
---|
12 | # cases the missing instances are filled with invalid (NaN) values. |
---|
13 | # |
---|
14 | |
---|
15 | parser = ArgumentParser(description='produce collated trajectory file from distributed output\ |
---|
16 | files, e.g. \n python ./icb_pp.py \ |
---|
17 | -t trajectory_icebergs_004248_ -n 296 -o trajsout.nc' ) |
---|
18 | |
---|
19 | parser.add_argument('-t',dest='froot',help='fileroot_of_distrbuted_data; root name of \ |
---|
20 | distributed trajectory output (usually completed with XXXX.nc, where \ |
---|
21 | XXXX is the 4 digit processor number)', |
---|
22 | default='trajectory_icebergs_004248_') |
---|
23 | |
---|
24 | parser.add_argument('-n',dest='fnum',help='number of distributed files to process', |
---|
25 | type=int, default=None) |
---|
26 | |
---|
27 | parser.add_argument('-o',dest='fout',help='collated_output_file; file name to receive the \ |
---|
28 | collated trajectory data', default='trajsout.nc') |
---|
29 | |
---|
30 | args = parser.parse_args() |
---|
31 | |
---|
32 | default_used = 0 |
---|
33 | if args.froot is None: |
---|
34 | pathstart = 'trajectory_icebergs_004248_' |
---|
35 | default_used = 1 |
---|
36 | else: |
---|
37 | pathstart = args.froot |
---|
38 | |
---|
39 | if args.fnum is None: |
---|
40 | procnum = 0 |
---|
41 | default_used = 1 |
---|
42 | else: |
---|
43 | procnum = args.fnum |
---|
44 | |
---|
45 | if args.fout is None: |
---|
46 | pathout = 'trajsout.nc' |
---|
47 | default_used = 1 |
---|
48 | else: |
---|
49 | pathout = args.fout |
---|
50 | |
---|
51 | if default_used == 1: |
---|
52 | print('At least one default value will be used; command executing is:') |
---|
53 | print('icb_pp.py -t ',pathstart,' -n ',procnum,' -o ',pathout) |
---|
54 | |
---|
55 | if procnum < 1: |
---|
56 | print('Need some files to collate! procnum = ',procnum) |
---|
57 | sys.exit() |
---|
58 | |
---|
59 | icu = [] |
---|
60 | times = [] |
---|
61 | # |
---|
62 | # Loop through all distributed datasets to obtain the complete list |
---|
63 | # of iceberg identification numbers and timesteps |
---|
64 | # |
---|
65 | for n in range(procnum): |
---|
66 | nn = '%4.4d' % n |
---|
67 | fw = Dataset(pathstart+nn+'.nc') |
---|
68 | if len(fw.dimensions['n']) > 0: |
---|
69 | print pathstart+nn+'.nc' |
---|
70 | ic = fw.variables['iceberg_number'][:,0] |
---|
71 | ts = fw.variables['timestep'][:] |
---|
72 | icv = np.unique(ic) |
---|
73 | ts = np.unique(ts) |
---|
74 | print('Min Max ts: ',ts.min(), ts.max()) |
---|
75 | print('Number unique icebergs= ',icv.shape[0]) |
---|
76 | icu.append(icv) |
---|
77 | times.append(ts) |
---|
78 | fw.close() |
---|
79 | # |
---|
80 | # Now flatten the lists and reduce to the unique spanning set |
---|
81 | # |
---|
82 | icu = np.concatenate(icu) |
---|
83 | icu = np.unique(icu) |
---|
84 | times = np.concatenate(times) |
---|
85 | times = np.unique(times) |
---|
86 | ntraj = icu.shape[0] |
---|
87 | print(ntraj, ' unique icebergs found across all datasets') |
---|
88 | print('Icebergs ids range from: ',icu.min(), 'to: ',icu.max()) |
---|
89 | print('times range from: ',times.min(), 'to: ', times.max()) |
---|
90 | # |
---|
91 | # Declare 2-D arrays to receive the data from all files |
---|
92 | # |
---|
93 | nt = times.shape[0] |
---|
94 | lons = np.zeros((ntraj, nt)) |
---|
95 | lats = np.zeros((ntraj, nt)) |
---|
96 | tims = np.zeros((ntraj, nt)) |
---|
97 | xis = np.zeros((ntraj, nt)) |
---|
98 | yjs = np.zeros((ntraj, nt)) |
---|
99 | # |
---|
100 | # initially fill with invalid data |
---|
101 | # |
---|
102 | lons.fill(np.nan) |
---|
103 | lats.fill(np.nan) |
---|
104 | xis.fill(np.nan) |
---|
105 | yjs.fill(np.nan) |
---|
106 | tims.fill(np.nan) |
---|
107 | # |
---|
108 | # loop through distributed datasets again, this time |
---|
109 | # checking indices against icu and times lists and |
---|
110 | # inserting data into the correct locations in the |
---|
111 | # 2-D collated sets. |
---|
112 | # |
---|
113 | for n in range(procnum): |
---|
114 | nn = '%4.4d' % n |
---|
115 | fw = Dataset(pathstart+nn+'.nc') |
---|
116 | # Note many distributed datafiles will contain no iceberg data |
---|
117 | # so skip quickly over these |
---|
118 | m = len(fw.dimensions['n']) |
---|
119 | if m > 0: |
---|
120 | inx = np.zeros(m, dtype=int) |
---|
121 | tsx = np.zeros(m, dtype=int) |
---|
122 | print pathstart+nn+'.nc' |
---|
123 | ic = fw.variables['iceberg_number'][:,0] |
---|
124 | ts = fw.variables['timestep'][:] |
---|
125 | lns = fw.variables['lon'][:] |
---|
126 | lts = fw.variables['lat'][:] |
---|
127 | xxs = fw.variables['xi'][:] |
---|
128 | yys = fw.variables['yj'][:] |
---|
129 | for k in range(m): |
---|
130 | inxx = np.where(icu == ic[k]) |
---|
131 | inx[k] = inxx[0] |
---|
132 | for k in range(m): |
---|
133 | inxx = np.where(times == ts[k]) |
---|
134 | tsx[k] = inxx[0] |
---|
135 | lons[inx[:],tsx[:]] = lns[:] |
---|
136 | lats[inx[:],tsx[:]] = lts[:] |
---|
137 | tims[inx[:],tsx[:]] = ts[:] |
---|
138 | xis[inx[:],tsx[:]] = xxs[:] |
---|
139 | yjs[inx[:],tsx[:]] = yys[:] |
---|
140 | fw.close() |
---|
141 | |
---|
142 | # Finally create the output file and write out the collated sets |
---|
143 | # |
---|
144 | fo = Dataset(pathout, 'w', format='NETCDF4') |
---|
145 | ntrj = fo.createDimension('ntraj', ntraj) |
---|
146 | nti = fo.createDimension('ntime', None) |
---|
147 | olon = fo.createVariable('lon', 'f4',('ntraj','ntime')) |
---|
148 | olat = fo.createVariable('lat', 'f4',('ntraj','ntime')) |
---|
149 | otim = fo.createVariable('ttim', 'f4',('ntraj','ntime')) |
---|
150 | oxis = fo.createVariable('xis', 'f4',('ntraj','ntime')) |
---|
151 | oyjs = fo.createVariable('yjs', 'f4',('ntraj','ntime')) |
---|
152 | icbn = fo.createVariable('icbn', 'f4',('ntraj')) |
---|
153 | olon[:,:] = lons |
---|
154 | olat[:,:] = lats |
---|
155 | otim[:,:] = tims |
---|
156 | oxis[:,:] = xis |
---|
157 | oyjs[:,:] = yjs |
---|
158 | icbn[:] = icu |
---|
159 | fo.close() |
---|