1 | !************************************************************************ |
---|
2 | ! Fortran 95 OPA Nesting tools * |
---|
3 | ! * |
---|
4 | ! Copyright (C) 2005 Florian Lemarié (Florian.Lemarie@imag.fr) * |
---|
5 | ! Laurent Debreu (Laurent.Debreu@imag.fr) * |
---|
6 | !************************************************************************ |
---|
7 | ! |
---|
8 | MODULE agrif_partial_steps |
---|
9 | ! |
---|
10 | USE agrif_types |
---|
11 | CONTAINS |
---|
12 | |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | ! |
---|
18 | !************************************************************************ |
---|
19 | ! * |
---|
20 | ! MODULE AGRIF_PARTIAL_STEPS * |
---|
21 | ! * |
---|
22 | !************************************************************************ |
---|
23 | |
---|
24 | |
---|
25 | !************************************************************************ |
---|
26 | ! * |
---|
27 | ! Subroutine get_partial_steps * |
---|
28 | ! * |
---|
29 | ! subroutine to compute gdepw_ps on the input grid (based on NEMO code) * |
---|
30 | ! * |
---|
31 | !************************************************************************ |
---|
32 | ! |
---|
33 | SUBROUTINE get_partial_steps(Grid) |
---|
34 | ! |
---|
35 | IMPLICIT NONE |
---|
36 | ! |
---|
37 | TYPE(Coordinates) :: Grid |
---|
38 | REAL*8 :: za2,za1,za0,zsur,zacr,zkth,zacr2,zkth2,zdepth,zdepwp,zmin,zmax,zdiff,ze3tp,ze3wp |
---|
39 | INTEGER :: i,j,jk,jj,ji,jpj,jpi,ik,ii,ipt,jpt |
---|
40 | INTEGER, DIMENSION(1) :: k |
---|
41 | INTEGER :: k1 |
---|
42 | REAL*8, POINTER, DIMENSION(:) :: gdepw,gdept,e3w,e3t |
---|
43 | REAL*8, POINTER, DIMENSION(:,:) :: hdepw,e3tp,e3wp |
---|
44 | REAL*8, POINTER, DIMENSION(:,:,:) :: gdept_ps,gdepw_ps |
---|
45 | REAL*8 e3t_ps |
---|
46 | |
---|
47 | ! |
---|
48 | WRITE(*,*) 'convert bathymetry from etopo for partial step z-coordinate case' |
---|
49 | WRITE(*,*) 'minimum thickness of partial step e3zps_min = ', e3zps_min, ' (m)' |
---|
50 | WRITE(*,*) ' step level e3zps_rat = ', e3zps_rat |
---|
51 | ! |
---|
52 | jpi = SIZE(Grid%bathy_meter,1) |
---|
53 | jpj = SIZE(Grid%bathy_meter,2) |
---|
54 | ! |
---|
55 | ALLOCATE(gdepw(N),gdept(N),e3w(N),e3t(N)) |
---|
56 | ALLOCATE(gdepw_ps(jpi,jpj,N)) |
---|
57 | IF (.NOT.ASSOCIATED(Grid%bathy_level)) ALLOCATE(Grid%bathy_level(jpi,jpj)) |
---|
58 | ! |
---|
59 | IF ( ( pa0 == 0 .OR. pa1 == 0 .OR. psur == 0 ) & |
---|
60 | .AND. ppdzmin.NE.0 .AND. pphmax.NE.0 ) THEN |
---|
61 | ! |
---|
62 | WRITE(*,*) 'psur,pa0,pa1 computed' |
---|
63 | za1=( ppdzmin - pphmax / (N-1) ) & |
---|
64 | / ( TANH((1-ppkth)/ppacr) - ppacr/(N-1) & |
---|
65 | * ( LOG( COSH( (N - ppkth) / ppacr) ) & |
---|
66 | - LOG( COSH( ( 1 - ppkth) / ppacr) ) ) ) |
---|
67 | |
---|
68 | za0 = ppdzmin - za1 * TANH( (1-ppkth) / ppacr ) |
---|
69 | zsur = - za0 - za1 * ppacr * LOG( COSH( (1-ppkth) / ppacr ) ) |
---|
70 | ! |
---|
71 | ELSE IF ( (ppdzmin == 0 .OR. pphmax == 0) .AND. psur.NE.0 .AND. & |
---|
72 | pa0.NE.0 .AND. pa1.NE.0 ) THEN |
---|
73 | ! |
---|
74 | WRITE(*,*) 'psur,pa0,pa1 given by namelist' |
---|
75 | zsur = psur |
---|
76 | za0 = pa0 |
---|
77 | za1 = pa1 |
---|
78 | za2 = pa2 |
---|
79 | ! |
---|
80 | ELSE |
---|
81 | ! |
---|
82 | WRITE(*,*) 'ERROR ***** bad vertical grid parameters ...' |
---|
83 | WRITE(*,*) ' ' |
---|
84 | WRITE(*,*) 'please check values of variables' |
---|
85 | WRITE(*,*) 'in namelist vertical_grid section' |
---|
86 | WRITE(*,*) ' ' |
---|
87 | STOP |
---|
88 | ! |
---|
89 | ENDIF |
---|
90 | |
---|
91 | zacr = ppacr |
---|
92 | zkth = ppkth |
---|
93 | zacr2 = ppacr2 |
---|
94 | zkth2 = ppkth2 |
---|
95 | ! |
---|
96 | IF( ppkth == 0. ) THEN ! uniform vertical grid |
---|
97 | za1 = pphmax / FLOAT(N-1) |
---|
98 | DO i = 1, N |
---|
99 | gdepw(i) = ( i - 1 ) * za1 |
---|
100 | gdept(i) = ( i - 0.5 ) * za1 |
---|
101 | e3w (i) = za1 |
---|
102 | e3t (i) = za1 |
---|
103 | END DO |
---|
104 | ELSE ! Madec & Imbard 1996 function |
---|
105 | IF( .NOT. ldbletanh ) THEN |
---|
106 | DO i = 1,N |
---|
107 | ! |
---|
108 | gdepw(i) = (zsur+za0*i+za1*zacr*LOG(COSH((i-zkth)/zacr))) |
---|
109 | gdept(i) = (zsur+za0*(i+0.5)+za1*zacr*LOG(COSH(((i+0.5)-zkth)/zacr))) |
---|
110 | e3w(i) = (za0 + za1 * TANH((i-zkth)/zacr)) |
---|
111 | e3t(i) = (za0 + za1 * TANH(((i+0.5)-zkth)/zacr)) |
---|
112 | ! |
---|
113 | END DO |
---|
114 | ELSE |
---|
115 | DO i = 1,N |
---|
116 | ! Double tanh function |
---|
117 | gdepw(i) = ( zsur + za0*i + za1 * zacr * LOG ( COSH( (i-zkth ) / zacr ) ) & |
---|
118 | & + za2 * zacr2* LOG ( COSH( (i-zkth2) / zacr2 ) ) ) |
---|
119 | gdept(i) = ( zsur + za0*(i+0.5) + za1 * zacr * LOG ( COSH( ((i+0.5)-zkth ) / zacr ) ) & |
---|
120 | & + za2 * zacr2* LOG ( COSH( ((i+0.5)-zkth2) / zacr2 ) ) ) |
---|
121 | e3w (i) = za0 + za1 * TANH( (i-zkth ) / zacr ) & |
---|
122 | & + za2 * TANH( (i-zkth2) / zacr2 ) |
---|
123 | e3t (i) = za0 + za1 * TANH( ((i+0.5)-zkth ) / zacr ) & |
---|
124 | & + za2 * TANH( ((i+0.5)-zkth2) / zacr2 ) |
---|
125 | END DO |
---|
126 | ENDIF |
---|
127 | ENDIF |
---|
128 | gdepw(1) = 0.0 |
---|
129 | IF ( ln_e3_dep ) THEN ! e3. = dk[gdep] |
---|
130 | ! |
---|
131 | DO i = 1, N-1 |
---|
132 | e3t(i) = gdepw(i+1)-gdepw(i) |
---|
133 | END DO |
---|
134 | e3t(N) = e3t(N-1) |
---|
135 | |
---|
136 | DO i = 2, N |
---|
137 | e3w(i) = gdept(i) - gdept(i-1) |
---|
138 | END DO |
---|
139 | e3w(1 ) = 2. * (gdept(1) - gdepw(1)) |
---|
140 | END IF |
---|
141 | ! |
---|
142 | ! Initialization of constant |
---|
143 | ! |
---|
144 | zmax = gdepw(N) + e3t(N) |
---|
145 | IF( rn_hmin < 0. ) THEN ; i = - INT( rn_hmin ) ! from a nb of level |
---|
146 | ELSE ; i = MINLOC( gdepw, mask = gdepw > rn_hmin, dim = 1 ) ! from a depth |
---|
147 | ENDIF |
---|
148 | zmin = gdepw(i+1) |
---|
149 | ! |
---|
150 | ! Initialize bathy_level to the maximum ocean level available |
---|
151 | ! |
---|
152 | Grid%bathy_level = N-1 |
---|
153 | ! |
---|
154 | ! storage of land and island's number (zera and negative values) in mbathy |
---|
155 | ! |
---|
156 | DO jj = 1, jpj |
---|
157 | DO ji= 1, jpi |
---|
158 | IF( Grid%bathy_meter(ji,jj) <= 0. ) & |
---|
159 | Grid%bathy_level(ji,jj) = INT( Grid%bathy_meter(ji,jj) ) |
---|
160 | END DO |
---|
161 | END DO |
---|
162 | ! |
---|
163 | ! the last ocean level thickness cannot exceed e3t(jpkm1)+e3t(jpk) |
---|
164 | ! |
---|
165 | DO jj = 1, jpj |
---|
166 | DO ji= 1, jpi |
---|
167 | IF( Grid%bathy_meter(ji,jj) <= 0. ) THEN |
---|
168 | Grid%bathy_meter(ji,jj) = 0.e0 |
---|
169 | ELSE |
---|
170 | Grid%bathy_meter(ji,jj) = MAX( Grid%bathy_meter(ji,jj), zmin ) |
---|
171 | Grid%bathy_meter(ji,jj) = MIN( Grid%bathy_meter(ji,jj), zmax ) |
---|
172 | ENDIF |
---|
173 | END DO |
---|
174 | END DO |
---|
175 | ! |
---|
176 | ! Compute bathy_level for ocean points (i.e. the number of ocean levels) |
---|
177 | ! find the number of ocean levels such that the last level thickness |
---|
178 | ! is larger than the minimum of e3zps_min and e3zps_rat * e3t (where |
---|
179 | ! e3t is the reference level thickness |
---|
180 | ! |
---|
181 | DO jk = N-1, 1, -1 |
---|
182 | zdepth = gdepw(jk) + MIN( e3zps_min, e3t(jk)*e3zps_rat ) |
---|
183 | DO jj = 1, jpj |
---|
184 | DO ji = 1, jpi |
---|
185 | IF( 0. < Grid%bathy_meter(ji,jj) .AND. Grid%bathy_meter(ji,jj) <= zdepth ) & |
---|
186 | Grid%bathy_level(ji,jj) = jk-1 |
---|
187 | END DO |
---|
188 | END DO |
---|
189 | END DO |
---|
190 | |
---|
191 | |
---|
192 | CALL bathymetry_control(grid%bathy_level) |
---|
193 | ! |
---|
194 | ! initialization to the reference z-coordinate |
---|
195 | ! |
---|
196 | WRITE(*,*) ' initialization to the reference z-coordinate ' |
---|
197 | ! |
---|
198 | DO jk = 1, N |
---|
199 | ! Write(*,*) 'k = ',jk |
---|
200 | gdepw_ps(1:jpi,1:jpj,jk) = gdepw(jk) |
---|
201 | END DO |
---|
202 | ! |
---|
203 | Grid%gdepw_ps(:,:) = gdepw_ps(:,:,3) |
---|
204 | ! |
---|
205 | DO jj = 1, jpj |
---|
206 | DO ji = 1, jpi |
---|
207 | ik = Grid%bathy_level(ji,jj) |
---|
208 | ! ocean point only |
---|
209 | IF( ik > 0 ) THEN |
---|
210 | ! max ocean level case |
---|
211 | IF( ik == N-1 ) THEN |
---|
212 | zdepwp = Grid%bathy_meter(ji,jj) |
---|
213 | ze3tp = Grid%bathy_meter(ji,jj) - gdepw(ik) |
---|
214 | ze3wp = 0.5 * e3w(ik) * ( 1. + ( ze3tp/e3t(ik) ) ) |
---|
215 | gdepw_ps(ji,jj,ik+1) = zdepwp |
---|
216 | ! standard case |
---|
217 | ELSE |
---|
218 | ! |
---|
219 | IF( Grid%bathy_meter(ji,jj) <= gdepw(ik+1) ) THEN |
---|
220 | gdepw_ps(ji,jj,ik+1) = Grid%bathy_meter(ji,jj) |
---|
221 | ELSE |
---|
222 | ! |
---|
223 | gdepw_ps(ji,jj,ik+1) = gdepw(ik+1) |
---|
224 | ENDIF |
---|
225 | ! |
---|
226 | ENDIF |
---|
227 | ! |
---|
228 | ENDIF |
---|
229 | END DO |
---|
230 | END DO |
---|
231 | ! |
---|
232 | DO jj = 1, jpj |
---|
233 | DO ji = 1, jpi |
---|
234 | ik = Grid%bathy_level(ji,jj) |
---|
235 | ! ocean point only |
---|
236 | IF( ik > 0 ) THEN |
---|
237 | ! bathymetry output |
---|
238 | ! |
---|
239 | Grid%gdepw_ps(ji,jj) = gdepw_ps(ji,jj,ik+1) |
---|
240 | ! |
---|
241 | !AJOUT----------------------------------------------------------------------- |
---|
242 | ! |
---|
243 | ELSE |
---|
244 | ! |
---|
245 | Grid%gdepw_ps(ji,jj) = 0 |
---|
246 | ! |
---|
247 | !AJOUT------------------------------------------------------------------------ |
---|
248 | ! |
---|
249 | ENDIF |
---|
250 | ! |
---|
251 | END DO |
---|
252 | END DO |
---|
253 | ! |
---|
254 | ! |
---|
255 | DEALLOCATE(gdepw,gdept,e3w,e3t) |
---|
256 | DEALLOCATE(gdepw_ps) |
---|
257 | END SUBROUTINE get_partial_steps |
---|
258 | ! |
---|
259 | ! |
---|
260 | !************************************************************************* |
---|
261 | ! * |
---|
262 | ! Subroutine check interp * |
---|
263 | ! * |
---|
264 | ! subroutine to compute gdepw_ps on the input grid (based on NEMO code) * |
---|
265 | ! * |
---|
266 | !************************************************************************ |
---|
267 | ! |
---|
268 | ! |
---|
269 | SUBROUTINE check_interp( ParentGrid , gdepwChild ) |
---|
270 | ! |
---|
271 | IMPLICIT NONE |
---|
272 | ! |
---|
273 | TYPE(Coordinates) :: ParentGrid |
---|
274 | REAL*8,DIMENSION(:,:) :: gdepwChild |
---|
275 | INTEGER :: i,j,ji,ij,ii,jj,jpt,ipt |
---|
276 | REAL,DIMENSION(N) :: gdepw,e3t |
---|
277 | REAL :: za0,za1,za2,zsur,zacr,zacr2,zkth,zkth2,zmin,zmax,zdepth |
---|
278 | INTEGER :: kbathy,jk |
---|
279 | ! |
---|
280 | IF ( ( pa0 == 0 .OR. pa1 == 0 .OR. psur == 0 ) & |
---|
281 | .AND. ppdzmin.NE.0 .AND. pphmax.NE.0 ) THEN |
---|
282 | ! |
---|
283 | WRITE(*,*) 'psur,pa0,pa1 computed' |
---|
284 | za1=( ppdzmin - pphmax / (N-1) ) & |
---|
285 | / ( TANH((1-ppkth)/ppacr) - ppacr/(N-1) & |
---|
286 | * ( LOG( COSH( (N - ppkth) / ppacr) ) & |
---|
287 | - LOG( COSH( ( 1 - ppkth) / ppacr) ) ) ) |
---|
288 | |
---|
289 | za0 = ppdzmin - za1 * TANH( (1-ppkth) / ppacr ) |
---|
290 | zsur = - za0 - za1 * ppacr * LOG( COSH( (1-ppkth) / ppacr ) ) |
---|
291 | ! |
---|
292 | ELSE IF ( (ppdzmin == 0 .OR. pphmax == 0) .AND. psur.NE.0 .AND. & |
---|
293 | pa0.NE.0 .AND. pa1.NE.0 ) THEN |
---|
294 | ! |
---|
295 | WRITE(*,*) 'psur,pa0,pa1 given by namelist' |
---|
296 | zsur = psur |
---|
297 | za0 = pa0 |
---|
298 | za1 = pa1 |
---|
299 | za2 = pa2 |
---|
300 | ! |
---|
301 | ELSE |
---|
302 | ! |
---|
303 | WRITE(*,*) 'ERROR ***** bad vertical grid parameters ...' |
---|
304 | WRITE(*,*) ' ' |
---|
305 | WRITE(*,*) 'please check values of variables' |
---|
306 | WRITE(*,*) 'in namelist vertical_grid section' |
---|
307 | WRITE(*,*) ' ' |
---|
308 | STOP |
---|
309 | ! |
---|
310 | ENDIF |
---|
311 | |
---|
312 | zacr = ppacr |
---|
313 | zkth = ppkth |
---|
314 | zacr2 = ppacr2 |
---|
315 | zkth2 = ppkth2 |
---|
316 | ! |
---|
317 | IF( ppkth == 0. ) THEN ! uniform vertical grid |
---|
318 | za1 = pphmax / FLOAT(N-1) |
---|
319 | DO i = 1, N |
---|
320 | gdepw(i) = ( i - 1 ) * za1 |
---|
321 | e3t (i) = za1 |
---|
322 | END DO |
---|
323 | ELSE ! Madec & Imbard 1996 function |
---|
324 | IF( .NOT. ldbletanh ) THEN |
---|
325 | DO i = 1,N |
---|
326 | ! |
---|
327 | gdepw(i) = (zsur+za0*i+za1*zacr*LOG(COSH((i-zkth)/zacr))) |
---|
328 | e3t(i) = (za0 + za1 * TANH(((i+0.5)-zkth)/zacr)) |
---|
329 | ! |
---|
330 | END DO |
---|
331 | ELSE |
---|
332 | DO i = 1,N |
---|
333 | ! Double tanh function |
---|
334 | gdepw(i) = ( zsur + za0*i + za1 * zacr * LOG ( COSH( (i-zkth ) / zacr ) ) & |
---|
335 | & + za2 * zacr2* LOG ( COSH( (i-zkth2) / zacr2 ) ) ) |
---|
336 | e3t (i) = za0 + za1 * TANH( ((i+0.5)-zkth ) / zacr ) & |
---|
337 | & + za2 * TANH( ((i+0.5)-zkth2) / zacr2 ) |
---|
338 | END DO |
---|
339 | ENDIF |
---|
340 | ENDIF |
---|
341 | gdepw(1) = 0.0 |
---|
342 | IF ( ln_e3_dep ) THEN ! e3. = dk[gdep] |
---|
343 | ! |
---|
344 | DO i = 1, N-1 |
---|
345 | e3t(i) = gdepw(i+1)-gdepw(i) |
---|
346 | END DO |
---|
347 | e3t(N) = e3t(N-1) |
---|
348 | END IF |
---|
349 | ! |
---|
350 | ! |
---|
351 | ! west boundary |
---|
352 | IF( ln_agrif_domain ) THEN |
---|
353 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,2+nbghostcellsfine+(npt_copy+npt_connect)*irafx-1,1,nyfin) |
---|
354 | ELSE |
---|
355 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,(npt_copy+npt_connect)*irafx,1,nyfin) |
---|
356 | ENDIF |
---|
357 | ! |
---|
358 | ! east boundary |
---|
359 | IF( ln_agrif_domain ) THEN |
---|
360 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,nxfin-1-nbghostcellsfine-((npt_copy+npt_connect)*irafx-1),nxfin,1,nyfin) |
---|
361 | ELSE |
---|
362 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,nxfin-((npt_copy+npt_connect)*irafx+1),nxfin,1,nyfin) |
---|
363 | ENDIF |
---|
364 | ! |
---|
365 | ! north boundary |
---|
366 | IF( ln_agrif_domain ) THEN |
---|
367 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,nxfin,nyfin-1-nbghostcellsfine-((npt_copy+npt_connect)*irafy-1),nyfin) |
---|
368 | ELSE |
---|
369 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,nxfin,nyfin-((npt_copy+npt_connect)*irafy+1),nyfin) |
---|
370 | ENDIF |
---|
371 | ! |
---|
372 | ! south boundary |
---|
373 | IF( ln_agrif_domain ) THEN |
---|
374 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,nxfin,1,2+nbghostcellsfine+(npt_copy+npt_connect)*irafy-1) |
---|
375 | ELSE |
---|
376 | CALL correct_level( gdepwchild,ParentGrid,gdepw,e3t,1,nxfin,1,(npt_copy+npt_connect)*irafy) |
---|
377 | ENDIF |
---|
378 | ! |
---|
379 | ! |
---|
380 | ! |
---|
381 | END SUBROUTINE check_interp |
---|
382 | ! |
---|
383 | SUBROUTINE correct_level( gdepwchild,ParentGrid,gdepw,e3t,minboundx,maxboundx,minboundy,maxboundy ) |
---|
384 | ! |
---|
385 | IMPLICIT NONE |
---|
386 | TYPE(Coordinates) :: ParentGrid |
---|
387 | REAL*8,DIMENSION(:,:) :: gdepwChild |
---|
388 | REAL*8,DIMENSION(N) :: gdepw,e3t |
---|
389 | INTEGER :: minboundx,maxboundx,minboundy,maxboundy |
---|
390 | INTEGER :: kbathy,jk,indx,indy,diff |
---|
391 | REAL :: xdiff |
---|
392 | INTEGER :: i,j,ji,ij,ii,jj,jpt,ipt,i1,i2,j1,j2,ii1,ii2,jj1,jj2 |
---|
393 | REAL*8 :: slopex, slopey,val,tmp1,tmp2,tmp3,tmp4 |
---|
394 | INTEGER :: parentbathy |
---|
395 | REAL :: mindepth, maxdepth |
---|
396 | REAL :: xmin,ymin,dxfin,dyfin,dsparent |
---|
397 | INTEGER ipbegin,ipend,jpbegin,jpend |
---|
398 | INTEGER ibegin,iend,jbegin,jend |
---|
399 | REAL x,y,zmin,zmax |
---|
400 | INTEGER ptx,pty |
---|
401 | REAL,DIMENSION(:,:),ALLOCATABLE :: gdepwtemp |
---|
402 | INTEGER,DIMENSION(:,:),ALLOCATABLE :: parentbathytab |
---|
403 | ! |
---|
404 | ! |
---|
405 | ! Initialization of constant |
---|
406 | ! |
---|
407 | zmax = gdepw(N) + e3t(N) |
---|
408 | IF( rn_hmin < 0. ) THEN ; i = - INT( rn_hmin ) ! from a nb of level |
---|
409 | ELSE ; i = MINLOC( gdepw, mask = gdepw > rn_hmin, dim = 1 ) ! from a depth |
---|
410 | ENDIF |
---|
411 | zmin = gdepw(i+1) |
---|
412 | ! |
---|
413 | ! check that interpolated value stays at the same level |
---|
414 | ! |
---|
415 | ! |
---|
416 | diff = 0 |
---|
417 | IF ( MOD(irafx,2) .EQ. 0 ) diff = 1 |
---|
418 | |
---|
419 | xdiff = REAL(diff)/2. |
---|
420 | |
---|
421 | dxfin = 1./irafx |
---|
422 | dyfin = 1./irafy |
---|
423 | |
---|
424 | ptx = 1 + nbghostcellsfine + 1 |
---|
425 | pty = 1 + nbghostcellsfine + 1 |
---|
426 | |
---|
427 | xmin = (imin-1) * 1 |
---|
428 | ymin = (jmin-1) * 1 |
---|
429 | |
---|
430 | |
---|
431 | ! compute x and y the locations of the indices minbounx and minboundy |
---|
432 | |
---|
433 | x = xmin + (minboundx-ptx)*dxfin + dxfin/2. |
---|
434 | y = ymin + (minboundy-pty)*dyfin + dyfin/2. |
---|
435 | |
---|
436 | ! compute the indices of the nearest coarse grid points |
---|
437 | ipbegin = ptx + agrif_int((x-0.-1./2.) / 1.) - 1 |
---|
438 | jpbegin = pty + agrif_int((y-0.-1./2.) / 1.) - 1 |
---|
439 | |
---|
440 | ! compute indices of the fine grid points nearest to the preceeding coarse grid points |
---|
441 | ! (inferior values) |
---|
442 | |
---|
443 | x = (ipbegin - ptx) + 1./2. |
---|
444 | y = (jpbegin - pty) + 1./2. |
---|
445 | |
---|
446 | ibegin = ptx + agrif_int((x-xmin-dxfin/2.)/dxfin) |
---|
447 | jbegin = pty + agrif_int((y-ymin-dyfin/2.)/dyfin) |
---|
448 | |
---|
449 | ! compute x and y the locations of the indices maxbounx and maxboundy |
---|
450 | x = xmin + (maxboundx-ptx)*dxfin + dxfin/2. |
---|
451 | y = ymin + (maxboundy-pty)*dyfin + dyfin/2. |
---|
452 | |
---|
453 | ! compute the indices of the nearest coarse grid points |
---|
454 | ipend = ptx + CEILING((x-0.-1./2) / 1.) + 1 |
---|
455 | jpend = pty + CEILING((y-0.-1./2) / 1.) + 1 |
---|
456 | |
---|
457 | ! compute indices of the fine grid points nearest to the preceeding coarse grid points |
---|
458 | ! (inferior values) |
---|
459 | |
---|
460 | x = (ipend - ptx) + 1./2. |
---|
461 | y = (jpend - pty) + 1./2. |
---|
462 | iend = ptx + agrif_int((x-xmin-dxfin/2.)/dxfin) |
---|
463 | jend = pty + agrif_int((y-ymin-dyfin/2.)/dyfin) |
---|
464 | |
---|
465 | IF( ln_agrif_domain ) THEN |
---|
466 | ALLOCATE(gdepwtemp(ibegin-irafx:iend+irafx,jbegin-irafy:jend+irafy)) |
---|
467 | ALLOCATE(parentbathytab(ibegin-irafx:iend+irafx,jbegin-irafy:jend+irafy)) |
---|
468 | |
---|
469 | i1 = ibegin |
---|
470 | i2 = iend |
---|
471 | j1 = jbegin |
---|
472 | j2 = jend |
---|
473 | |
---|
474 | ii1 = -FLOOR(irafx/2.0)+diff |
---|
475 | ii2 = FLOOR(irafx/2.0) |
---|
476 | jj1 = -FLOOR(irafy/2.0)+diff |
---|
477 | jj2 = FLOOR(irafy/2.0) |
---|
478 | ELSE |
---|
479 | ibegin = minboundx |
---|
480 | jbegin = minboundy |
---|
481 | iend = maxboundx ! (npt_copy+npt_connect)*irafx |
---|
482 | jend = maxboundy ! (npt_copy+npt_connect)*irafy |
---|
483 | ! |
---|
484 | ipbegin = imin + (ibegin-1)/irafx |
---|
485 | jpbegin = jmin + (jbegin-1)/irafy |
---|
486 | ipend = ipbegin + (npt_copy+npt_connect) - 1 |
---|
487 | jpend = jpbegin + (npt_copy+npt_connect) - 1 |
---|
488 | ! |
---|
489 | i1 = ibegin |
---|
490 | i2 = iend |
---|
491 | j1 = jbegin |
---|
492 | j2 = jend |
---|
493 | |
---|
494 | ii1 = 0 |
---|
495 | ii2 = irafx - 1 |
---|
496 | jj1 = 0 |
---|
497 | jj2 = irafy - 1 |
---|
498 | ! |
---|
499 | ALLOCATE(gdepwtemp(ibegin:iend,jbegin:jend)) |
---|
500 | ALLOCATE(parentbathytab(ibegin:iend,jbegin:jend)) |
---|
501 | |
---|
502 | ENDIF |
---|
503 | |
---|
504 | |
---|
505 | jpt=jpbegin |
---|
506 | DO j=jbegin,jend,irafy |
---|
507 | |
---|
508 | ipt=ipbegin |
---|
509 | |
---|
510 | |
---|
511 | DO i=i1,i2,irafx |
---|
512 | |
---|
513 | |
---|
514 | ! |
---|
515 | parentbathy = ParentGrid%bathy_level(ipt,jpt) |
---|
516 | IF (parentbathy == 0) THEN |
---|
517 | mindepth = 0. |
---|
518 | maxdepth = 0. |
---|
519 | ELSE |
---|
520 | mindepth = MAX(gdepw(parentbathy) + MIN( e3zps_min, e3t(parentbathy)*e3zps_rat ),zmin) |
---|
521 | ! maxdepth = min(gdepw(parentbathy + 1),zmax) |
---|
522 | IF (parentbathy < (N-1)) THEN |
---|
523 | maxdepth = gdepw(parentbathy + 1) |
---|
524 | ELSE |
---|
525 | maxdepth = HUGE(1.) |
---|
526 | ENDIF |
---|
527 | ENDIF |
---|
528 | |
---|
529 | slopex = vanleer(parentgrid%gdepw_ps(ipt-1:ipt+1,jpt))/REAL(irafx) |
---|
530 | |
---|
531 | |
---|
532 | tmp1 = (maxdepth - parentgrid%gdepw_ps(ipt,jpt)) / REAL(irafx) |
---|
533 | tmp2 = (parentgrid%gdepw_ps(ipt,jpt) - mindepth) / REAL(irafx) |
---|
534 | |
---|
535 | IF (ABS(slopex) > tmp1) THEN |
---|
536 | IF (slopex > 0) THEN |
---|
537 | slopex = tmp1 |
---|
538 | ELSE |
---|
539 | slopex = -tmp1 |
---|
540 | ENDIF |
---|
541 | ENDIF |
---|
542 | |
---|
543 | IF (ABS(slopex) > tmp2) THEN |
---|
544 | IF (slopex > 0) THEN |
---|
545 | slopex = tmp2 |
---|
546 | ELSE |
---|
547 | slopex = -tmp2 |
---|
548 | ENDIF |
---|
549 | ENDIF |
---|
550 | ! |
---|
551 | ! interpolation on fine grid points (connection zone) |
---|
552 | ! |
---|
553 | DO ii = i+ii1,i+ii2 |
---|
554 | !! x = ii-i - xdiff/2. |
---|
555 | !! val = parentgrid%gdepw_ps(ipt,jpt)+slopex * x |
---|
556 | !! chanut: uncomment this to get nearest neighbor interpolation |
---|
557 | val = parentgrid%gdepw_ps(ipt,jpt) |
---|
558 | gdepwtemp(ii,j) = val |
---|
559 | IF (gdepwtemp(ii,j) < mindepth) THEN |
---|
560 | gdepwtemp(ii,j) = mindepth |
---|
561 | ENDIF |
---|
562 | IF (gdepwtemp(ii,j) > maxdepth) THEN |
---|
563 | gdepwtemp(ii,j) = maxdepth |
---|
564 | ENDIF |
---|
565 | parentbathytab(ii,j) = parentbathy |
---|
566 | ENDDO |
---|
567 | ipt =ipt + 1 |
---|
568 | ENDDO |
---|
569 | |
---|
570 | jpt = jpt + 1 |
---|
571 | ENDDO |
---|
572 | |
---|
573 | DO j=jbegin+irafy,jend-irafy,irafy |
---|
574 | |
---|
575 | DO i=ibegin,iend |
---|
576 | |
---|
577 | parentbathy = parentbathytab(i,j) |
---|
578 | IF (parentbathy == 0) THEN |
---|
579 | mindepth = 0. |
---|
580 | maxdepth = 0. |
---|
581 | ELSE |
---|
582 | mindepth = MAX(gdepw(parentbathy) + MIN( e3zps_min, e3t(parentbathy)*e3zps_rat ),zmin) |
---|
583 | ! maxdepth = min(gdepw(parentbathy + 1),zmax) |
---|
584 | IF (parentbathy < (N-1)) THEN |
---|
585 | maxdepth = gdepw(parentbathy + 1) |
---|
586 | ELSE |
---|
587 | maxdepth = HUGE(1.) |
---|
588 | ENDIF |
---|
589 | ENDIF |
---|
590 | |
---|
591 | slopey = vanleer(gdepwtemp(i,j-irafy:j+irafy:irafy))/REAL(irafy) |
---|
592 | |
---|
593 | tmp1 = (maxdepth - gdepwtemp(i,j)) / REAL(irafy) |
---|
594 | tmp2 = (gdepwtemp(i,j) - mindepth) / REAL(irafy) |
---|
595 | |
---|
596 | IF (ABS(slopey) > tmp1) THEN |
---|
597 | IF (slopey > 0) THEN |
---|
598 | slopey = tmp1 |
---|
599 | ELSE |
---|
600 | slopey = -tmp1 |
---|
601 | ENDIF |
---|
602 | ENDIF |
---|
603 | IF (ABS(slopey) > tmp2) THEN |
---|
604 | IF (slopey > 0) THEN |
---|
605 | slopey = tmp2 |
---|
606 | ELSE |
---|
607 | slopey = -tmp2 |
---|
608 | ENDIF |
---|
609 | ENDIF |
---|
610 | |
---|
611 | |
---|
612 | DO jj = j+jj1,j+jj2 |
---|
613 | !! y = jj-j - xdiff/2. |
---|
614 | !! val = gdepwtemp(i,j) + slopey*y |
---|
615 | !! chanut: uncomment this to get nearest neighbor interpolation |
---|
616 | val = gdepwtemp(i,j) |
---|
617 | gdepwtemp(i,jj) = val |
---|
618 | ENDDO |
---|
619 | ENDDO |
---|
620 | ENDDO |
---|
621 | |
---|
622 | |
---|
623 | gdepwchild(minboundx:maxboundx,minboundy:maxboundy) = gdepwtemp(minboundx:maxboundx,minboundy:maxboundy) |
---|
624 | DEALLOCATE(gdepwtemp,parentbathytab) |
---|
625 | |
---|
626 | END SUBROUTINE correct_level |
---|
627 | ! |
---|
628 | ! |
---|
629 | !*************************************************** |
---|
630 | ! function van leer to compute the corresponding |
---|
631 | ! Van Leer slopes |
---|
632 | !*************************************************** |
---|
633 | ! |
---|
634 | REAL FUNCTION vanleer(tab) |
---|
635 | REAL, DIMENSION(3) :: tab |
---|
636 | REAL res,res1 |
---|
637 | REAL p1,p2,p3 |
---|
638 | |
---|
639 | p1=(tab(3)-tab(1))/2. |
---|
640 | p2=(tab(2)-tab(1)) |
---|
641 | p3=(tab(3)-tab(2)) |
---|
642 | |
---|
643 | IF ((p1>0.).AND.(p2>0.).AND.(p3>0)) THEN |
---|
644 | res1=MINVAL((/p1,p2,p3/)) |
---|
645 | ELSEIF ((p1<0.).AND.(p2<0.).AND.(p3<0)) THEN |
---|
646 | res1=MAXVAL((/p1,p2,p3/)) |
---|
647 | ELSE |
---|
648 | res1=0. |
---|
649 | ENDIF |
---|
650 | |
---|
651 | vanleer = res1 |
---|
652 | |
---|
653 | |
---|
654 | END FUNCTION vanleer |
---|
655 | ! |
---|
656 | ! |
---|
657 | !******************************************************************************** |
---|
658 | ! subroutine bathymetry_control * |
---|
659 | ! * |
---|
660 | ! - Purpose : check the bathymetry in levels * |
---|
661 | ! * |
---|
662 | ! - Method : The array mbathy is checked to verified its consistency * |
---|
663 | ! with the model options. in particular: * |
---|
664 | ! mbathy must have at least 1 land grid-points (mbathy<=0) * |
---|
665 | ! along closed boundary. * |
---|
666 | ! mbathy must be cyclic IF jperio=1. * |
---|
667 | ! mbathy must be lower or equal to jpk-1. * |
---|
668 | ! isolated ocean grid points are suppressed from mbathy * |
---|
669 | ! since they are only connected to remaining * |
---|
670 | ! ocean through vertical diffusion. * |
---|
671 | ! * |
---|
672 | ! * |
---|
673 | !******************************************************************************** |
---|
674 | |
---|
675 | SUBROUTINE bathymetry_control(mbathy) |
---|
676 | |
---|
677 | INTEGER :: i, j, jl |
---|
678 | INTEGER :: icompt, ibtest, ikmax |
---|
679 | REAL*8, DIMENSION(:,:) :: mbathy |
---|
680 | |
---|
681 | ! ================ |
---|
682 | ! Bathymetry check |
---|
683 | ! ================ |
---|
684 | |
---|
685 | ! Suppress isolated ocean grid points |
---|
686 | |
---|
687 | WRITE(*,*)' suppress isolated ocean grid points' |
---|
688 | WRITE(*,*)' -----------------------------------' |
---|
689 | |
---|
690 | icompt = 0 |
---|
691 | |
---|
692 | DO jl = 1, 2 |
---|
693 | ! |
---|
694 | DO j = 2, SIZE(mbathy,2)-1 |
---|
695 | DO i = 2, SIZE(mbathy,1)-1 |
---|
696 | |
---|
697 | ibtest = MAX( mbathy(i-1,j), mbathy(i+1,j),mbathy(i,j-1),mbathy(i,j+1) ) |
---|
698 | ! |
---|
699 | IF( ibtest < mbathy(i,j) ) THEN |
---|
700 | ! |
---|
701 | WRITE(*,*) 'grid-point(i,j)= ',i,j,'is changed from',mbathy(i,j),' to ', ibtest |
---|
702 | mbathy(i,j) = ibtest |
---|
703 | icompt = icompt + 1 |
---|
704 | ! |
---|
705 | ENDIF |
---|
706 | ! |
---|
707 | END DO |
---|
708 | END DO |
---|
709 | ! |
---|
710 | END DO |
---|
711 | ! |
---|
712 | IF( icompt == 0 ) THEN |
---|
713 | WRITE(*,*)' no isolated ocean grid points' |
---|
714 | ELSE |
---|
715 | WRITE(*,*)' ',icompt,' ocean grid points suppressed' |
---|
716 | ENDIF |
---|
717 | ! |
---|
718 | |
---|
719 | ! Number of ocean level inferior or equal to jpkm1 |
---|
720 | |
---|
721 | ikmax = 0 |
---|
722 | DO j = 1, SIZE(mbathy,2) |
---|
723 | DO ji = 1, SIZE(mbathy,1) |
---|
724 | ikmax = MAX( ikmax, NINT(mbathy(i,j)) ) |
---|
725 | END DO |
---|
726 | END DO |
---|
727 | ! |
---|
728 | IF( ikmax > N-1 ) THEN |
---|
729 | WRITE(*,*) ' maximum number of ocean level = ', ikmax,' > jpk-1' |
---|
730 | WRITE(*,*) ' change jpk to ',ikmax+1,' to use the exact ead bathymetry' |
---|
731 | ELSE IF( ikmax < N-1 ) THEN |
---|
732 | WRITE(*,*) ' maximum number of ocean level = ', ikmax,' < jpk-1' |
---|
733 | WRITE(*,*) ' you can decrease jpk to ', ikmax+1 |
---|
734 | ENDIF |
---|
735 | |
---|
736 | END SUBROUTINE bathymetry_control |
---|
737 | ! |
---|
738 | ! |
---|
739 | !********************************************************************************** |
---|
740 | ! |
---|
741 | !subroutine get_scale_factors |
---|
742 | ! |
---|
743 | !********************************************************************************** |
---|
744 | ! |
---|
745 | SUBROUTINE get_scale_factors(Grid,fse3t,fse3u,fse3v) |
---|
746 | ! |
---|
747 | IMPLICIT NONE |
---|
748 | ! |
---|
749 | TYPE(Coordinates) :: Grid |
---|
750 | REAL*8, DIMENSION(:,:,:) :: fse3u,fse3t,fse3v |
---|
751 | ! |
---|
752 | REAL*8 :: za2,za1,za0,zsur,zacr,zkth,zacr2,zkth2,zdepth,zdepwp,zmin,zmax,zdiff,ze3tp,ze3wp |
---|
753 | INTEGER :: i,j,jk,jj,ji,jpj,jpi,ik,ii,ipt,jpt,jpk |
---|
754 | INTEGER, DIMENSION(1) :: k |
---|
755 | INTEGER :: k1 |
---|
756 | REAL*8, POINTER, DIMENSION(:) :: gdepw,gdept,e3w,e3t |
---|
757 | REAL*8, POINTER, DIMENSION(:,:) :: hdepw,e3tp,e3wp |
---|
758 | REAL*8, POINTER, DIMENSION(:,:,:) :: gdept_ps,gdepw_ps |
---|
759 | ! |
---|
760 | jpi = SIZE(fse3t,1) |
---|
761 | jpj = SIZE(fse3t,2) |
---|
762 | jpk = SIZE(fse3t,3) |
---|
763 | ! |
---|
764 | ALLOCATE(gdepw(jpk),e3t(jpk)) |
---|
765 | ALLOCATE(gdepw_ps(jpi,jpj,jpk)) |
---|
766 | ! |
---|
767 | IF ( ( pa0 == 0 .OR. pa1 == 0 .OR. psur == 0 ) & |
---|
768 | .AND. ppdzmin.NE.0 .AND. pphmax.NE.0 ) THEN |
---|
769 | ! |
---|
770 | WRITE(*,*) 'psur,pa0,pa1 computed' |
---|
771 | za1=( ppdzmin - pphmax / (jpk-1) ) & |
---|
772 | / ( TANH((1-ppkth)/ppacr) - ppacr/(jpk-1) & |
---|
773 | * ( LOG( COSH( (jpk - ppkth) / ppacr) ) & |
---|
774 | - LOG( COSH( ( 1 - ppkth) / ppacr) ) ) ) |
---|
775 | |
---|
776 | za0 = ppdzmin - za1 * TANH( (1-ppkth) / ppacr ) |
---|
777 | zsur = - za0 - za1 * ppacr * LOG( COSH( (1-ppkth) / ppacr ) ) |
---|
778 | ! |
---|
779 | ELSE IF ( (ppdzmin == 0 .OR. pphmax == 0) .AND. psur.NE.0 .AND. & |
---|
780 | pa0.NE.0 .AND. pa1.NE.0 ) THEN |
---|
781 | ! |
---|
782 | WRITE(*,*) 'psur,pa0,pa1 given by namelist' |
---|
783 | zsur = psur |
---|
784 | za0 = pa0 |
---|
785 | za1 = pa1 |
---|
786 | za2 = pa2 |
---|
787 | ! |
---|
788 | ELSE |
---|
789 | ! |
---|
790 | WRITE(*,*) 'ERROR ***** bad vertical grid parameters ...' |
---|
791 | WRITE(*,*) ' ' |
---|
792 | WRITE(*,*) 'please check values of variables' |
---|
793 | WRITE(*,*) 'in namelist vertical_grid section' |
---|
794 | WRITE(*,*) ' ' |
---|
795 | STOP |
---|
796 | ! |
---|
797 | ENDIF |
---|
798 | |
---|
799 | zacr = ppacr |
---|
800 | zkth = ppkth |
---|
801 | zacr2 = ppacr2 |
---|
802 | zkth2 = ppkth2 |
---|
803 | ! |
---|
804 | IF( ppkth == 0. ) THEN ! uniform vertical grid |
---|
805 | za1 = pphmax / FLOAT(jpk-1) |
---|
806 | DO i = 1, jpk |
---|
807 | gdepw(i) = ( i - 1 ) * za1 |
---|
808 | e3t (i) = za1 |
---|
809 | END DO |
---|
810 | ELSE ! Madec & Imbard 1996 function |
---|
811 | IF( .NOT. ldbletanh ) THEN |
---|
812 | DO i = 1,jpk |
---|
813 | ! |
---|
814 | gdepw(i) = (zsur+za0*i+za1*zacr*LOG(COSH((i-zkth)/zacr))) |
---|
815 | e3t(i) = (za0 + za1 * TANH(((i+0.5)-zkth)/zacr)) |
---|
816 | ! |
---|
817 | END DO |
---|
818 | ELSE |
---|
819 | DO i = 1,jpk |
---|
820 | ! Double tanh function |
---|
821 | gdepw(i) = ( zsur + za0*i + za1 * zacr * LOG ( COSH( (i-zkth ) / zacr ) ) & |
---|
822 | & + za2 * zacr2* LOG ( COSH( (i-zkth2) / zacr2 ) ) ) |
---|
823 | e3t (i) = za0 + za1 * TANH( ((i+0.5)-zkth ) / zacr ) & |
---|
824 | & + za2 * TANH( ((i+0.5)-zkth2) / zacr2 ) |
---|
825 | END DO |
---|
826 | ENDIF |
---|
827 | ENDIF |
---|
828 | ! |
---|
829 | gdepw(1)=0. |
---|
830 | IF ( ln_e3_dep ) THEN ! e3. = dk[gdep] |
---|
831 | ! |
---|
832 | DO i = 1, jpk-1 |
---|
833 | e3t(i) = gdepw(i+1)-gdepw(i) |
---|
834 | END DO |
---|
835 | e3t(jpk) = e3t(jpk-1) |
---|
836 | END IF |
---|
837 | ! |
---|
838 | DO i = 1,jpk |
---|
839 | ! |
---|
840 | fse3t(:,:,i) = e3t(i) |
---|
841 | gdepw_ps(:,:,i) = gdepw(i) |
---|
842 | ! |
---|
843 | END DO |
---|
844 | ! |
---|
845 | gdepw(1) = 0.0 |
---|
846 | gdepw_ps(:,:,1) = 0.0 |
---|
847 | ! |
---|
848 | zmax = gdepw(jpk) + e3t(jpk) |
---|
849 | IF( rn_hmin < 0. ) THEN ; i = - INT( rn_hmin ) ! from a nb of level |
---|
850 | ELSE ; i = MINLOC( gdepw, mask = gdepw > rn_hmin, dim = 1 ) ! from a depth |
---|
851 | ENDIF |
---|
852 | zmin = gdepw(i+1) |
---|
853 | ! |
---|
854 | DO jj = 1, jpj |
---|
855 | DO ji= 1, jpi |
---|
856 | IF( Grid%bathy_meter(ji,jj) <= 0. ) THEN |
---|
857 | Grid%bathy_meter(ji,jj) = 0.e0 |
---|
858 | ELSE |
---|
859 | Grid%bathy_meter(ji,jj) = MAX( Grid%bathy_meter(ji,jj), zmin ) |
---|
860 | Grid%bathy_meter(ji,jj) = MIN( Grid%bathy_meter(ji,jj), zmax ) |
---|
861 | ENDIF |
---|
862 | END DO |
---|
863 | END DO |
---|
864 | ! |
---|
865 | DO jj = 1, jpj |
---|
866 | DO ji = 1, jpi |
---|
867 | ik = Grid%bathy_level(ji,jj) |
---|
868 | IF( ik > 0 ) THEN |
---|
869 | ! max ocean level case |
---|
870 | IF( ik == jpk-1 ) THEN |
---|
871 | zdepwp = Grid%bathy_meter(ji,jj) |
---|
872 | ze3tp = Grid%bathy_meter(ji,jj) - gdepw(ik) |
---|
873 | fse3t(ji,jj,ik ) = ze3tp |
---|
874 | fse3t(ji,jj,ik+1) = ze3tp |
---|
875 | gdepw_ps(ji,jj,ik+1) = zdepwp |
---|
876 | ELSE |
---|
877 | IF( Grid%bathy_meter(ji,jj) <= gdepw(ik+1) ) THEN |
---|
878 | gdepw_ps(ji,jj,ik+1) = Grid%bathy_meter(ji,jj) |
---|
879 | ELSE |
---|
880 | gdepw_ps(ji,jj,ik+1) = gdepw(ik+1) |
---|
881 | ENDIF |
---|
882 | fse3t(ji,jj,ik) = e3t(ik) * ( gdepw_ps(ji,jj,ik+1) - gdepw(ik)) & |
---|
883 | /( gdepw(ik+1) - gdepw(ik)) |
---|
884 | fse3t(ji,jj,ik+1) = fse3t(ji,jj,ik) |
---|
885 | |
---|
886 | ENDIF |
---|
887 | ENDIF |
---|
888 | END DO |
---|
889 | END DO |
---|
890 | ! |
---|
891 | DO i = 1, jpk |
---|
892 | fse3u (:,:,i) = e3t(i) |
---|
893 | fse3v (:,:,i) = e3t(i) |
---|
894 | END DO |
---|
895 | ! |
---|
896 | DO jk = 1,jpk |
---|
897 | DO jj = 1, jpj-1 |
---|
898 | DO ji = 1, jpi-1 |
---|
899 | fse3u (ji,jj,jk) = MIN( fse3t(ji,jj,jk), fse3t(ji+1,jj,jk)) |
---|
900 | fse3v (ji,jj,jk) = MIN( fse3t(ji,jj,jk), fse3t(ji,jj+1,jk)) |
---|
901 | ENDDO |
---|
902 | ENDDO |
---|
903 | ENDDO |
---|
904 | ! |
---|
905 | DEALLOCATE(gdepw,e3t) |
---|
906 | DEALLOCATE(gdepw_ps) |
---|
907 | DEALLOCATE(Grid%bathy_meter,Grid%bathy_level) |
---|
908 | ! |
---|
909 | END SUBROUTINE get_scale_factors |
---|
910 | ! |
---|
911 | END MODULE agrif_partial_steps |
---|
912 | |
---|
913 | |
---|