Changeset 10406
- Timestamp:
- 2018-12-18T11:25:09+01:00 (4 years ago)
- Location:
- NEMO/trunk/doc/latex
- Files:
-
- 30 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/NEMO
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/NEMO/main
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/NEMO/subfiles
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/NEMO/subfiles/annex_A.tex
r10354 r10406 259 259 Applying the time derivative chain rule (first equation of (\autoref{apdx:A_s_chain_rule})) to $u$ and 260 260 using (\autoref{apdx:A_w_in_s}) provides the expression of the last term of the right hand side, 261 \ begin{equation*}{\begin{array}{*{20}l}261 \[ {\begin{array}{*{20}l} 262 262 w_s \;\frac{\partial u}{\partial s} 263 263 = \frac{\partial s}{\partial t} \; \frac{\partial u }{\partial s} 264 264 = \left. {\frac{\partial u }{\partial t}} \right|_s - \left. {\frac{\partial u }{\partial t}} \right|_z \quad , 265 265 \end{array} } 266 \ end{equation*}266 \] 267 267 leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative, 268 268 $i.e.$ the total $s-$coordinate time derivative : … … 370 370 371 371 The horizontal pressure gradient term can be transformed as follows: 372 \ begin{equation*}372 \[ 373 373 \begin{split} 374 -\frac{1}{\rho 375 & =-\frac{1}{\rho 376 & =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\377 &=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma _1374 -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z 375 & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\ 376 & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\ 377 &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma _1 378 378 \end{split} 379 \ end{equation*}379 \] 380 380 Applying similar manipulation to the second component and 381 381 replacing $\sigma _1$ and $\sigma _2$ by their expression \autoref{apdx:A_s_slope}, it comes: 382 382 \begin{equation} \label{apdx:A_grad_p_1} 383 383 \begin{split} 384 -\frac{1}{\rho 385 &=-\frac{1}{\rho 384 -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 385 &=-\frac{1}{\rho_o \,e_1 } \left( \left. {\frac{\partial p}{\partial i}} \right|_s 386 386 + g\;\rho \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) \\ 387 387 % 388 -\frac{1}{\rho 389 &=-\frac{1}{\rho 388 -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 389 &=-\frac{1}{\rho_o \,e_2 } \left( \left. {\frac{\partial p}{\partial j}} \right|_s 390 390 + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) \\ 391 391 \end{split} … … 400 400 and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$. 401 401 The pressure is then given by: 402 \ begin{equation*}402 \[ 403 403 \begin{split} 404 404 p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \left( \rho_o \, d + 1 \right) \; e_3 \; dk \\ 405 405 &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + g \, \int_z^\eta e_3 \; dk 406 406 \end{split} 407 \ end{equation*}407 \] 408 408 Therefore, $p$ and $p_h'$ are linked through: 409 409 \begin{equation} \label{apdx:A_pressure} … … 411 411 \end{equation} 412 412 and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is: 413 \ begin{equation*}413 \[ 414 414 \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 415 \ end{equation*}415 \] 416 416 417 417 Substituing \autoref{apdx:A_pressure} in \autoref{apdx:A_grad_p_1} and … … 419 419 \begin{equation} \label{apdx:A_grad_p_2} 420 420 \begin{split} 421 -\frac{1}{\rho 421 -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 422 422 &=-\frac{1}{e_1 } \left( \left. {\frac{\partial p_h'}{\partial i}} \right|_s 423 423 + g\; d \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} \\ 424 424 % 425 -\frac{1}{\rho 425 -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 426 426 &=-\frac{1}{e_2 } \left( \left. {\frac{\partial p_h'}{\partial j}} \right|_s 427 427 + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) - \frac{g}{e_2 } \frac{\partial \eta}{\partial j}\\ -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_B.tex
r10354 r10406 20 20 \subsubsection*{In z-coordinates} 21 21 In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by: 22 \begin{ eqnarray} \label{apdx:B1}22 \begin{align} \label{apdx:B1} 23 23 &D^T = \frac{1}{e_1 \, e_2} \left[ 24 24 \left. \frac{\partial}{\partial i} \left( \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z \right) \right|_z \right. … … 26 26 + \left. \frac{\partial}{\partial j} \left( \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z \right) \right|_z \right] 27 27 + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right) 28 \end{ eqnarray}28 \end{align} 29 29 30 30 \subsubsection*{In generalized vertical coordinates} … … 156 156 \end{equation} 157 157 where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials: 158 \ begin{equation*}158 \[ 159 159 a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 160 160 \qquad , \qquad 161 161 a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 162 162 \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 163 \ end{equation*}163 \] 164 164 165 165 In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, … … 204 204 The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes. 205 205 Let us demonstrate the second one: 206 \ begin{equation*}206 \[ 207 207 \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv 208 208 = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv, 209 \ end{equation*}209 \] 210 210 and since 211 211 \begin{subequations} … … 249 249 where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, 250 250 relative to $s$-coordinate surfaces: 251 \ begin{equation*}251 \[ 252 252 r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1} 253 253 \qquad , \qquad 254 254 r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 255 255 \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}. 256 \ end{equation*}256 \] 257 257 258 258 To prove \autoref{apdx:B5} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious. … … 325 325 Using \autoref{eq:PE_div}, the definition of the horizontal divergence, 326 326 the third componant of the second vector is obviously zero and thus : 327 \ begin{equation*}327 \[ 328 328 \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) 329 \ end{equation*}329 \] 330 330 331 331 Note that this operator ensures a full separation between -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex
r10354 r10406 25 25 26 26 fluxes at the faces of a $T$-box: 27 \ begin{equation*}27 \[ 28 28 U = e_{2u}\,e_{3u}\; u \qquad V = e_{1v}\,e_{3v}\; v \qquad W = e_{1w}\,e_{2w}\; \omega \\ 29 \ end{equation*}29 \] 30 30 31 31 volume of cells at $u$-, $v$-, and $T$-points: 32 \ begin{equation*}32 \[ 33 33 b_u = e_{1u}\,e_{2u}\,e_{3u} \qquad b_v = e_{1v}\,e_{2v}\,e_{3v} \qquad b_t = e_{1t}\,e_{2t}\,e_{3t} \\ 34 \ end{equation*}34 \] 35 35 36 36 partial derivative notation: $\partial_\bullet = \frac{\partial}{\partial \bullet}$ … … 47 47 48 48 Continuity equation with the above notation: 49 \ begin{equation*}49 \[ 50 50 \frac{1}{e_{3t}} \partial_t (e_{3t})+ \frac{1}{b_t} \biggl\{ \delta_i [U] + \delta_j [V] + \delta_k [W] \biggr\} = 0 51 \ end{equation*}51 \] 52 52 53 53 A quantity, $Q$ is conserved when its domain averaged time change is zero, that is when: 54 \ begin{equation*}54 \[ 55 55 \partial_t \left( \int_D{ Q\;dv } \right) =0 56 \ end{equation*}56 \] 57 57 Noting that the coordinate system used .... blah blah 58 \ begin{equation*}58 \[ 59 59 \partial_t \left( \int_D {Q\;dv} \right) = \int_D { \partial_t \left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk } 60 60 = \int_D { \frac{1}{e_3} \partial_t \left( e_3 \, Q \right) dv } =0 61 \ end{equation*}61 \] 62 62 equation of evolution of $Q$ written as 63 63 the time evolution of the vertical content of $Q$ like for tracers, or momentum in flux form, … … 162 162 $\ $\newline % force a new ligne 163 163 The prognostic ocean dynamics equation can be summarized as follows: 164 \ begin{equation*}164 \[ 165 165 \text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} } 166 166 {\text{COR} + \text{ADV} } 167 167 + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF} 168 \ end{equation*}168 \] 169 169 $\ $\newline % force a new ligne 170 170 … … 365 365 366 366 For the ENE scheme, the two components of the vorticity term are given by: 367 \ begin{equation*}367 \[ 368 368 - e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h \equiv 369 369 \left( {{ \begin{array} {*{20}c} … … 373 373 \overline {\, q \ \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i} \hfill \\ 374 374 \end{array}} } \right) 375 \ end{equation*}375 \] 376 376 377 377 This formulation does not conserve the enstrophy but it does conserve the total kinetic energy. … … 471 471 472 472 The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due to the horizontal gradient of KE~: 473 \ begin{equation*}473 \[ 474 474 \int_D \textbf{U}_h \cdot \frac{1}{e_3 } \omega \partial_k \textbf{U}_h \;dv 475 475 = - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv 476 476 + \frac{1}{2} \int_D { \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv } \\ 477 \ end{equation*}477 \] 478 478 Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) 479 479 and the continuity equation, then \autoref{eq:DOM_di_adj} again, … … 544 544 For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. 545 545 This leads to the following expression for the vertical advection: 546 \ begin{equation*}546 \[ 547 547 \frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h 548 548 \equiv \left( {{\begin{array} {*{20}c} … … 552 552 \left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill \\ 553 553 \end{array}} } \right) 554 \ end{equation*}554 \] 555 555 a formulation that requires an additional horizontal mean in contrast with the one used in NEMO. 556 556 Nine velocity points have to be used instead of 3. … … 588 588 the change of KE due to the work of pressure forces is balanced by 589 589 the change of potential energy due to buoyancy forces: 590 \ begin{equation*}590 \[ 591 591 - \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 592 592 = - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right) \,g\,z \;dv 593 593 + \int_D g\, \rho \; \partial_t (z) \;dv 594 \ end{equation*}594 \] 595 595 596 596 This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates. … … 771 771 This altered Coriolis parameter is discretised at an f-point. 772 772 It is given by: 773 \ begin{equation*}773 \[ 774 774 f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\; 775 775 \equiv \; 776 776 f+\frac{1} {e_{1f}\,e_{2f}} \left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right] 777 777 -\overline u^{\,j+1/2} \delta_{j+1/2} \left[ e_{1u} \right] \right) 778 \ end{equation*}778 \] 779 779 780 780 Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form. … … 842 842 \end{flalign*} 843 843 Applying similar manipulation applied to the second term of the scalar product leads to: 844 \ begin{equation*}844 \[ 845 845 - \int_D \textbf{U}_h \cdot \left( {{\begin{array} {*{20}c} 846 846 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ … … 848 848 \equiv + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) 849 849 \biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\} 850 \ end{equation*}850 \] 851 851 which is the discrete form of $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv $. 852 852 \autoref{eq:C_ADV_KE_flux} is thus satisfied. … … 1032 1032 1033 1033 conservation of a tracer, $T$: 1034 \ begin{equation*}1034 \[ 1035 1035 \frac{\partial }{\partial t} \left( \int_D {T\;dv} \right) 1036 1036 = \int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv }=0 1037 \ end{equation*}1037 \] 1038 1038 1039 1039 conservation of its variance: … … 1156 1156 The lateral momentum diffusion term dissipates the horizontal kinetic energy: 1157 1157 %\begin{flalign*} 1158 \ begin{equation*}1158 \[ 1159 1159 \begin{split} 1160 1160 \int_D \textbf{U}_h \cdot … … 1198 1198 \quad \leq 0 \\ 1199 1199 \end{split} 1200 \ end{equation*}1200 \] 1201 1201 1202 1202 % ------------------------------------------------------------------------------------------------------------- -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_E.tex
r10354 r10406 26 26 For example, in the $i$-direction: 27 27 \begin{equation} \label{eq:tra_adv_ubs2} 28 \tau 29 & \tau 30 & \tau 28 \tau_u^{ubs} = \left\{ \begin{aligned} 29 & \tau_u^{cen4} + \frac{1}{12} \,\tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 30 & \tau_u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 31 31 \end{aligned} \right. 32 32 \end{equation} 33 33 or equivalently, the advective flux is 34 34 \begin{equation} \label{eq:tra_adv_ubs2} 35 U_{i+1/2} \ \tau 35 U_{i+1/2} \ \tau_u^{ubs} 36 36 =U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2} 37 37 - \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 38 38 \end{equation} 39 39 where $U_{i+1/2} = e_{1u}\,e_{3u}\,u_{i+1/2}$ and 40 $\tau "_i =\delta _i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$.40 $\tau "_i =\delta_i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$. 41 41 By choosing this expression for $\tau "$ we consider a fourth order approximation of $\partial_i^2$ with 42 42 a constant i-grid spacing ($\Delta i=1$). 43 43 44 44 Alternative choice: introduce the scale factors: 45 $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta_{i+1/2}[\tau] \right]$.45 $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta_{i+1/2}[\tau] \right]$. 46 46 47 47 … … 76 76 77 77 NB 2: In a forthcoming release four options will be proposed for the vertical component used in the UBS scheme. 78 $\tau 78 $\tau_w^{ubs}$ will be evaluated using either \textit{(a)} a centered $2^{nd}$ order scheme, 79 79 or \textit{(b)} a TVD scheme, or \textit{(c)} an interpolation based on conservative parabolic splines following 80 80 \citet{Shchepetkin_McWilliams_OM05} implementation of UBS in ROMS, or \textit{(d)} an UBS. … … 83 83 NB 3: It is straight forward to rewrite \autoref{eq:tra_adv_ubs} as follows: 84 84 \begin{equation} \label{eq:tra_adv_ubs2} 85 \tau 86 & \tau 87 & \tau 85 \tau_u^{ubs} = \left\{ \begin{aligned} 86 & \tau_u^{cen4} + \frac{1}{12} \tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 87 & \tau_u^{cen4} - \frac{1}{12} \tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 88 88 \end{aligned} \right. 89 89 \end{equation} … … 91 91 \begin{equation} \label{eq:tra_adv_ubs2} 92 92 \begin{split} 93 e_{2u} e_{3u}\,u_{i+1/2} \ \tau 93 e_{2u} e_{3u}\,u_{i+1/2} \ \tau_u^{ubs} 94 94 &= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\ 95 95 & - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] … … 107 107 \begin{equation} \label{eq:tra_ldf_lap} 108 108 \begin{split} 109 D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\; e_{3T} } &\left[ {\quad \delta 110 \left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta 109 D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\; e_{3T} } &\left[ {\quad \delta_i 110 \left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta_{i+1/2} 111 111 \left[ T \right]} \right]} \right. 112 112 \\ 113 &\ \left. {+\; \delta 114 {A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta 113 &\ \left. {+\; \delta_j \left[ 114 {A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta_{j+1/2} \left[ T 115 115 \right]} \right)} \right]\quad } \right] 116 116 \end{split} … … 121 121 \begin{split} 122 122 D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 123 & \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2}123 & \delta_i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2} 124 124 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 125 \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2}125 \delta_i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2} 126 126 [T] \right] \right] \right] 127 127 \end{split} … … 133 133 \begin{split} 134 134 D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 135 & \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2}135 & \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2} 136 136 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 137 \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2}137 \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2} 138 138 [T] \right] \right] \right] 139 139 \end{split} … … 143 143 \begin{split} 144 144 F_u^{lT} = - \frac{1}{12} 145 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta 145 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta_{i+1/2} 146 146 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 147 \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta_{i+1/2}147 \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta_{i+1/2} 148 148 [T] \right] \right] 149 149 \end{split} … … 158 158 \end{equation} 159 159 if the velocity is uniform ($i.e.$ $|u|=cst$) and 160 choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right]$160 choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right]$ 161 161 162 162 sol 1 coefficient at T-point ( add $e_{1u}$ and $e_{1T}$ on both side of first $\delta$): … … 164 164 \begin{split} 165 165 F_u^{lT} 166 &= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right]166 &= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] 167 167 \end{split} 168 168 \end{equation} … … 173 173 \begin{split} 174 174 F_u^{lT} 175 &= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta _i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] \\176 &= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta _i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta_{i+1/2}[\tau] \right] \right]175 &= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta_i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] \\ 176 &= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta_i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta_{i+1/2}[\tau] \right] \right] 177 177 \end{split} 178 178 \end{equation} … … 191 191 \begin{subequations} \label{eq:dt_mt} 192 192 \begin{align} 193 \delta 193 \delta_{t+\rdt/2} [q] &= \ \ \, q^{t+\rdt} - q^{t} \\ 194 194 \overline q^{\,t+\rdt/2} &= \left\{ q^{t+\rdt} + q^{t} \right\} \; / \; 2 195 195 \end{align} … … 202 202 \begin{equation} \label{eq:LF} 203 203 \frac{\partial q}{\partial t} 204 \equiv \frac{1}{\rdt} \overline{ \delta 204 \equiv \frac{1}{\rdt} \overline{ \delta_{t+\rdt/2}[q]}^{\,t} 205 205 = \frac{q^{t+\rdt}-q^{t-\rdt}}{2\rdt} 206 206 \end{equation} … … 219 219 \int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 220 220 &\equiv \sum\limits_{0}^{N} 221 {\frac{1}{\rdt} q^t \ \overline{ \delta 222 \equiv \sum\limits_{0}^{N} { q^t \ \overline{ \delta 223 &\equiv \sum\limits_{0}^{N} { \overline{q}^{\,t+\Delta/2}{ \delta 224 \equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta 225 &\equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta 221 {\frac{1}{\rdt} q^t \ \overline{ \delta_{t+\rdt/2}[q]}^{\,t} \ \rdt} 222 \equiv \sum\limits_{0}^{N} { q^t \ \overline{ \delta_{t+\rdt/2}[q]}^{\,t} } \\ 223 &\equiv \sum\limits_{0}^{N} { \overline{q}^{\,t+\Delta/2}{ \delta_{t+\rdt/2}[q]}} 224 \equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta_{t+\rdt/2}[q^2] }\\ 225 &\equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta_{t+\rdt/2}[q^2] } 226 226 \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) 227 227 \end{split} \end{equation} -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_iso.tex
r10354 r10406 155 155 noting that the $e_{{3}_{i+1/2}^k}$ in the area $e{_{3}}_{i+1/2}^k{e_{2}}_{i+1/2}i^k$ at the $u$-point cancels out with 156 156 the $1/{e_{3}}_{i+1/2}^k$ associated with the vertical tracer gradient, is then \autoref{eq:tra_ldf_iso} 157 \ begin{equation*}157 \[ 158 158 \left(F_u^{13} \right)_{i+\hhalf}^k = \Alts_{i+\hhalf}^k 159 159 {e_{2}}_{i+1/2}^k \overline{\overline 160 160 r_1} ^{\,i,k}\,\overline{\overline{\delta_k T}}^{\,i,k}, 161 \ end{equation*}161 \] 162 162 where 163 \ begin{equation*}163 \[ 164 164 \overline{\overline 165 165 r_1} ^{\,i,k} = -\frac{{e_{3u}}_{i+1/2}^k}{{e_{1u}}_{i+1/2}^k} 166 166 \frac{\delta_{i+1/2} [\rho]}{\overline{\overline{\delta_k \rho}}^{\,i,k}}, 167 \ end{equation*}167 \] 168 168 and here and in the following we drop the $^{lT}$ superscript from $\Alt$ for simplicity. 169 169 Unfortunately the resulting combination $\overline{\overline{\delta_k\bullet}}^{\,i,k}$ of a $k$ average and … … 200 200 \label{eq:i13} 201 201 \left( F_u^{13} \right)_{i+\frac{1}{2}}^k = \Alts_{i+1}^k a_1 s_1 202 \delta 202 \delta_{k+\frac{1}{2}} \left[ T^{i+1} 203 203 \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}} + \Alts _i^k a_2 s_2 \delta 204 204 _{k+\frac{1}{2}} \left[ T^i 205 205 \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}} \\ 206 +\Alts _{i+1}^k a_3 s_3 \delta 206 +\Alts _{i+1}^k a_3 s_3 \delta_{k-\frac{1}{2}} \left[ T^{i+1} 207 207 \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}} +\Alts _i^k a_4 s_4 \delta 208 208 _{k-\frac{1}{2}} \left[ T^i \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}, … … 218 218 \label{eq:i31} 219 219 \left( F_w^{31} \right) _i ^{k+\frac{1}{2}} = \Alts_i^{k+1} a_{1}' 220 s_{1}' \delta 221 +\Alts_i^{k+1} a_{2}' s_{2}' \delta 222 + \Alts_i^k a_{3}' s_{3}' \delta 223 +\Alts_i^k a_{4}' s_{4}' \delta 220 s_{1}' \delta_{i-\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i-\frac{1}{2}}^{k+1} 221 +\Alts_i^{k+1} a_{2}' s_{2}' \delta_{i+\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i+\frac{1}{2}}^{k+1}\\ 222 + \Alts_i^k a_{3}' s_{3}' \delta_{i-\frac{1}{2}} \left[ T^k\right]/{e_{3u}}_{i-\frac{1}{2}}^k 223 +\Alts_i^k a_{4}' s_{4}' \delta_{i+\frac{1}{2}} \left[ T^k \right]/{e_{3u}}_{i+\frac{1}{2}}^k. 224 224 \end{multline} 225 225 … … 275 275 - \left( \Alts_i^{k+1} a_{1} + \Alts_i^{k+1} a_{2} + \Alts_i^k 276 276 a_{3} + \Alts_i^k a_{4} \right) 277 \frac{\delta 277 \frac{\delta_{i+1/2} \left[ T^k\right]}{{e_{1u}}_{\,i+1/2}^{\,k}}, 278 278 \end{equation} 279 279 where the areas $a_i$ are as in \autoref{eq:i13}. … … 647 647 (here the $\sigma_i$ are the slopes of the coordinate surfaces relative to geopotentials) 648 648 \autoref{eq:PE_slopes_eiv} rather than the slope $r_i$ relative to coordinate surfaces, so we require 649 \ begin{equation*}649 \[ 650 650 |\tilde{r}_i|\leq \tilde{r}_\mathrm{max}=0.01. 651 \ end{equation*}651 \] 652 652 and then recalculate the slopes $r_i$ relative to coordinates. 653 653 Each individual triad slope -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r10354 r10406 45 45 is corrected by adding the analysis increments for temperature, salinity, horizontal velocity and SSH as 46 46 additional tendency terms to the prognostic equations: 47 \begin{ eqnarray} \label{eq:wa_traj_iau}47 \begin{align} \label{eq:wa_traj_iau} 48 48 {\bf x}^{a}(t_{i}) = M(t_{i}, t_{0})[{\bf x}^{b}(t_{0})] 49 49 \; + \; F_{i} \delta \tilde{\bf x}^{a} 50 \end{ eqnarray}50 \end{align} 51 51 where $F_{i}$ is a weighting function for applying the increments $\delta\tilde{\bf x}^{a}$ defined such that 52 52 $\sum_{i=1}^{N} F_{i}=1$. … … 58 58 In addition, two different weighting functions have been implemented. 59 59 The first function employs constant weights, 60 \begin{ eqnarray} \label{eq:F1_i}60 \begin{align} \label{eq:F1_i} 61 61 F^{(1)}_{i} 62 62 =\left\{ \begin{array}{ll} … … 65 65 0 & {\rm if} \; \; \; t_{i} > t_{n} 66 66 \end{array} \right. 67 \end{ eqnarray}67 \end{align} 68 68 where $M = m-n$. 69 69 The second function employs peaked hat-like weights in order to give maximum weight in the centre of the sub-window, 70 70 with the weighting reduced linearly to a small value at the window end-points: 71 \begin{ eqnarray} \label{eq:F2_i}71 \begin{align} \label{eq:F2_i} 72 72 F^{(2)}_{i} 73 73 =\left\{ \begin{array}{ll} … … 77 77 0 & {\rm if} \; \; \; t_{i} > t_{n} 78 78 \end{array} \right. 79 \end{ eqnarray}79 \end{align} 80 80 where $\alpha^{-1} = \sum_{i=1}^{M/2} 2i$ and $M$ is assumed to be even. 81 81 The weights described by \autoref{eq:F2_i} provide a smoother transition of the analysis trajectory from … … 91 91 \begin{equation} \label{eq:asm_dmp} 92 92 \left\{ \begin{aligned} 93 u^{n}_I = u^{n-1}_I + \frac{1}{e_{1u} } \delta 93 u^{n}_I = u^{n-1}_I + \frac{1}{e_{1u} } \delta_{i+1/2} \left( {A_D 94 94 \;\chi^{n-1}_I } \right) \\ 95 95 \\ 96 v^{n}_I = v^{n-1}_I + \frac{1}{e_{2v} } \delta 96 v^{n}_I = v^{n-1}_I + \frac{1}{e_{2v} } \delta_{j+1/2} \left( {A_D 97 97 \;\chi^{n-1}_I } \right) \\ 98 98 \end{aligned} \right., … … 101 101 \begin{equation} \label{eq:asm_div} 102 102 \chi^{n-1}_I = \frac{1}{e_{1t}\,e_{2t}\,e_{3t} } 103 \left( {\delta 104 +\delta 103 \left( {\delta_i \left[ {e_{2u}\,e_{3u}\,u^{n-1}_I} \right] 104 +\delta_j \left[ {e_{1v}\,e_{3v}\,v^{n-1}_I} \right]} \right). 105 105 \end{equation} 106 106 By the application of \autoref{eq:asm_dmp} and \autoref{eq:asm_dmp} the divergence is filtered in each iteration, -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex
r10354 r10406 61 61 The warm layer is calculated using the model of \citet{Takaya_al_JGR10} (TAKAYA10 model hereafter). 62 62 This is a simple flux based model that is defined by the equations 63 \begin{ eqnarray}63 \begin{align} 64 64 \frac{\partial{\Delta T_{\rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 65 65 \nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,} 66 66 \label{eq:ecmwf1} \\ 67 67 L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:ecmwf2} 68 \end{ eqnarray}68 \end{align} 69 69 where $\Delta T_{\rm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 70 70 In equation (\autoref{eq:ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water, -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r10354 r10406 113 113 \begin{subequations} \label{eq:di_mi} 114 114 \begin{align} 115 \delta 115 \delta_i [q] &= \ \ q(i+1/2) - q(i-1/2) \\ 116 116 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2 117 117 \end{align} … … 124 124 These operators have the following discrete forms in the curvilinear $s$-coordinate system: 125 125 \begin{equation} \label{eq:DOM_grad} 126 \nabla q\equiv \frac{1}{e_{1u} } \delta 127 + \frac{1}{e_{2v} } \delta 128 + \frac{1}{e_{3w}} \delta 126 \nabla q\equiv \frac{1}{e_{1u} } \delta_{i+1/2 } [q] \;\,\mathbf{i} 127 + \frac{1}{e_{2v} } \delta_{j+1/2 } [q] \;\,\mathbf{j} 128 + \frac{1}{e_{3w}} \delta_{k+1/2} [q] \;\,\mathbf{k} 129 129 \end{equation} 130 130 \begin{multline} \label{eq:DOM_lap} … … 138 138 defined at vector points $(u,v,w)$ has its three curl components defined at $vw$-, $uw$, and $f$-points, 139 139 and its divergence defined at $t$-points: 140 \begin{ eqnarray} \label{eq:DOM_curl}140 \begin{align} \label{eq:DOM_curl} 141 141 \nabla \times {\rm{\bf A}}\equiv & 142 142 \frac{1}{e_{2v}\,e_{3vw} } \ \left( \delta_{j +1/2} \left[e_{3w}\,a_3 \right] -\delta_{k+1/2} \left[e_{2v} \,a_2 \right] \right) &\ \mathbf{i} \\ 143 143 +& \frac{1}{e_{2u}\,e_{3uw}} \ \left( \delta_{k+1/2} \left[e_{1u}\,a_1 \right] -\delta_{i +1/2} \left[e_{3w}\,a_3 \right] \right) &\ \mathbf{j} \\ 144 144 +& \frac{1}{e_{1f} \,e_{2f} } \ \left( \delta_{i +1/2} \left[e_{2v}\,a_2 \right] -\delta_{j +1/2} \left[e_{1u}\,a_1 \right] \right) &\ \mathbf{k} 145 \end{ eqnarray}146 \begin{ eqnarray} \label{eq:DOM_div}145 \end{align} 146 \begin{align} \label{eq:DOM_div} 147 147 \nabla \cdot \rm{\bf A} \equiv 148 148 \frac{1}{e_{1t}\,e_{2t}\,e_{3t}} \left( \delta_i \left[e_{2u}\,e_{3u}\,a_1 \right] 149 149 +\delta_j \left[e_{1v}\,e_{3v}\,a_2 \right] \right)+\frac{1}{e_{3t} }\delta_k \left[a_3 \right] 150 \end{ eqnarray}150 \end{align} 151 151 152 152 The vertical average over the whole water column denoted by an overbar becomes for a quantity $q$ which … … 181 181 \begin{align} 182 182 \label{eq:DOM_di_adj} 183 \sum\limits_i { a_i \;\delta 184 &\equiv -\sum\limits_i {\delta 183 \sum\limits_i { a_i \;\delta_i \left[ b \right]} 184 &\equiv -\sum\limits_i {\delta_{i+1/2} \left[ a \right]\;b_{i+1/2} } \\ 185 185 \label{eq:DOM_mi_adj} 186 186 \sum\limits_i { a_i \;\overline b^{\,i}} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r10354 r10406 19 19 20 20 The prognostic ocean dynamics equation can be summarized as follows: 21 \ begin{equation*}21 \[ 22 22 \text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} } 23 23 {\text{COR} + \text{ADV} } 24 24 + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF} 25 \ end{equation*}25 \] 26 26 NXT stands for next, referring to the time-stepping. 27 27 The first group of terms on the rhs of this equation corresponds to the Coriolis and advection terms that … … 73 73 The vorticity is defined at an $f$-point ($i.e.$ corner point) as follows: 74 74 \begin{equation} \label{eq:divcur_cur} 75 \zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta 76 -\delta 75 \zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta_{i+1/2} \left[ {e_{2v}\;v} \right] 76 -\delta_{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right) 77 77 \end{equation} 78 78 … … 81 81 \begin{equation} \label{eq:divcur_div} 82 82 \chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} } 83 \left( {\delta 84 +\delta 83 \left( {\delta_i \left[ {e_{2u}\,e_{3u}\,u} \right] 84 +\delta_j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right) 85 85 \end{equation} 86 86 … … 109 109 \begin{aligned} 110 110 \frac{\partial \eta }{\partial t} 111 &\equiv \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{ \delta 112 +\delta 113 - \frac{\textit{emp}}{\rho 114 &\equiv \sum\limits_k {\chi \ e_{3t}} - \frac{\textit{emp}}{\rho 111 &\equiv \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{ \delta_i \left[ {e_{2u}\,e_{3u}\;u} \right] 112 +\delta_j \left[ {e_{1v}\,e_{3v}\;v} \right] \right\} } 113 - \frac{\textit{emp}}{\rho_w } \\ 114 &\equiv \sum\limits_k {\chi \ e_{3t}} - \frac{\textit{emp}}{\rho_w } 115 115 \end{aligned} 116 116 \end{equation} 117 117 where \textit{emp} is the surface freshwater budget (evaporation minus precipitation), 118 118 expressed in Kg/m$^2$/s (which is equal to mm/s), 119 and $\rho 119 and $\rho_w$=1,035~Kg/m$^3$ is the reference density of sea water (Boussinesq approximation). 120 120 If river runoff is expressed as a surface freshwater flux (see \autoref{chap:SBC}) then 121 121 \textit{emp} can be written as the evaporation minus precipitation, minus the river runoff. … … 355 355 \begin{equation} \label{eq:dynkeg} 356 356 \left\{ \begin{aligned} 357 -\frac{1}{2 \; e_{1u} } & \ \delta 358 -\frac{1}{2 \; e_{2v} } & \ \delta 357 -\frac{1}{2 \; e_{1u} } & \ \delta_{i+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right] \\ 358 -\frac{1}{2 \; e_{2v} } & \ \delta_{j+1/2} \left[ {\overline {u^2}^{\,i} + \overline{v^2}^{\,j}} \right] 359 359 \end{aligned} \right. 360 360 \end{equation} … … 373 373 \begin{equation} \label{eq:dynzad} 374 374 \left\{ \begin{aligned} 375 -\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2} \;\delta 376 -\frac{1} {e_{1v}\,e_{2v}\,e_{3v}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2} \;\delta 375 -\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,i+1/2} \;\delta_{k+1/2} \left[ u \right]\ }^{\,k} \\ 376 -\frac{1} {e_{1v}\,e_{2v}\,e_{3v}} &\ \overline{\ \overline{ e_{1t}\,e_{2t}\;w } ^{\,j+1/2} \;\delta_{k+1/2} \left[ u \right]\ }^{\,k} 377 377 \end{aligned} \right. 378 378 \end{equation} … … 414 414 \begin{multline} \label{eq:dyncor_metric} 415 415 f+\frac{1}{e_1 e_2 }\left( {v\frac{\partial e_2 }{\partial i} - u\frac{\partial e_1 }{\partial j}} \right) \\ 416 \equiv f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta 417 - \overline u ^{j+1/2}\delta 416 \equiv f + \frac{1}{e_{1f} e_{2f} } \left( { \ \overline v ^{i+1/2}\delta_{i+1/2} \left[ {e_{2u} } \right] 417 - \overline u ^{j+1/2}\delta_{j+1/2} \left[ {e_{1u} } \right] } \ \right) 418 418 \end{multline} 419 419 … … 434 434 \begin{aligned} 435 435 \frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 436 \left( \delta 437 + \delta 438 \left. + \delta 436 \left( \delta_{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i } \ u_t \right] 437 + \delta_{j } \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2} \ u_f \right] \right. \ \; \\ 438 \left. + \delta_{k } \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2} \ u_{uw} \right] \right) \\ 439 439 \\ 440 440 \frac{1}{e_{1v}\,e_{2v}\,e_{3v}} 441 \left( \delta 442 + \delta 443 \left. + \delta 441 \left( \delta_{i } \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f \right] 442 + \delta_{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i } \ v_t \right] \right. \ \, \, \\ 443 \left. + \delta_{k } \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw} \right] \right) \\ 444 444 \end{aligned} 445 445 \right. … … 490 490 \end{cases} 491 491 \end{equation} 492 where $u"_{i+1/2} =\delta _{i+1/2} \left[ {\delta_i \left[ u \right]} \right]$.492 where $u"_{i+1/2} =\delta_{i+1/2} \left[ {\delta_i \left[ u \right]} \right]$. 493 493 This results in a dissipatively dominant ($i.e.$ hyper-diffusive) truncation error 494 494 \citep{Shchepetkin_McWilliams_OM05}. … … 562 562 \begin{equation} \label{eq:dynhpg_zco_surf} 563 563 \left\{ \begin{aligned} 564 \left. \delta 565 &= \frac{1}{2} g \ \left. \delta 566 \left. \delta 567 &= \frac{1}{2} g \ \left. \delta 564 \left. \delta_{i+1/2} \left[ p^h \right] \right|_{k=km} 565 &= \frac{1}{2} g \ \left. \delta_{i+1/2} \left[ e_{3w} \ \rho \right] \right|_{k=km} \\ 566 \left. \delta_{j+1/2} \left[ p^h \right] \right|_{k=km} 567 &= \frac{1}{2} g \ \left. \delta_{j+1/2} \left[ e_{3w} \ \rho \right] \right|_{k=km} \\ 568 568 \end{aligned} \right. 569 569 \end{equation} … … 572 572 \begin{equation} \label{eq:dynhpg_zco} 573 573 \left\{ \begin{aligned} 574 \left. \delta 575 &= \left. \delta 576 + \frac{1}{2}\;g\; \left. \delta 577 \left. \delta 578 &= \left. \delta 579 + \frac{1}{2}\;g\; \left. \delta 574 \left. \delta_{i+1/2} \left[ p^h \right] \right|_{k} 575 &= \left. \delta_{i+1/2} \left[ p^h \right] \right|_{k-1} 576 + \frac{1}{2}\;g\; \left. \delta_{i+1/2} \left[ e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k} \\ 577 \left. \delta_{j+1/2} \left[ p^h \right] \right|_{k} 578 &= \left. \delta_{j+1/2} \left[ p^h \right] \right|_{k-1} 579 + \frac{1}{2}\;g\; \left. \delta_{j+1/2} \left[ e_{3w} \ \overline {\rho}^{k+1/2} \right] \right|_{k} \\ 580 580 \end{aligned} \right. 581 581 \end{equation} … … 622 622 \begin{equation} \label{eq:dynhpg_sco} 623 623 \left\{ \begin{aligned} 624 - \frac{1} {\rho_o \, e_{1u}} \; \delta 625 + \frac{g\; \overline {\rho}^{i+1/2}} {\rho_o \, e_{1u}} \; \delta 626 - \frac{1} {\rho_o \, e_{2v}} \; \delta 627 + \frac{g\; \overline {\rho}^{j+1/2}} {\rho_o \, e_{2v}} \; \delta 624 - \frac{1} {\rho_o \, e_{1u}} \; \delta_{i+1/2} \left[ p^h \right] 625 + \frac{g\; \overline {\rho}^{i+1/2}} {\rho_o \, e_{1u}} \; \delta_{i+1/2} \left[ z_t \right] \\ 626 - \frac{1} {\rho_o \, e_{2v}} \; \delta_{j+1/2} \left[ p^h \right] 627 + \frac{g\; \overline {\rho}^{j+1/2}} {\rho_o \, e_{2v}} \; \delta_{j+1/2} \left[ z_t \right] \\ 628 628 \end{aligned} \right. 629 629 \end{equation} … … 695 695 \begin{equation} \label{eq:dynhpg_lf} 696 696 \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \; 697 -\frac{1}{\rho _o \,e_{1u} }\delta_{i+1/2} \left[ {p_h^t } \right]697 -\frac{1}{\rho_o \,e_{1u} }\delta_{i+1/2} \left[ {p_h^t } \right] 698 698 \end{equation} 699 699 … … 701 701 \begin{equation} \label{eq:dynhpg_imp} 702 702 \frac{u^{t+\rdt}-u^{t-\rdt}}{2\rdt} = \;\cdots \; 703 -\frac{1}{4\,\rho 703 -\frac{1}{4\,\rho_o \,e_{1u} } \delta_{i+1/2} \left[ p_h^{t+\rdt} +2\,p_h^t +p_h^{t-\rdt} \right] 704 704 \end{equation} 705 705 … … 783 783 \begin{equation} \label{eq:dynspg_exp} 784 784 \left\{ \begin{aligned} 785 - \frac{1}{e_{1u}\,\rho_o} \; \delta 786 - \frac{1}{e_{2v}\,\rho_o} \; \delta 785 - \frac{1}{e_{1u}\,\rho_o} \; \delta_{i+1/2} \left[ \,\rho \,\eta\, \right] \\ 786 - \frac{1}{e_{2v}\,\rho_o} \; \delta_{j+1/2} \left[ \,\rho \,\eta\, \right] 787 787 \end{aligned} \right. 788 788 \end{equation} … … 1093 1093 \begin{equation} \label{eq:dynldf_lap} 1094 1094 \left\{ \begin{aligned} 1095 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta 1096 \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta 1095 D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm} 1096 \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta_j \left[ 1097 1097 {A_f^{lm} \;e_{3f} \zeta } \right] \\ 1098 1098 \\ 1099 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta 1100 \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta 1099 D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm} 1100 \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta_i \left[ 1101 1101 {A_f^{lm} \;e_{3f} \zeta } \right] \\ 1102 1102 \end{aligned} \right. … … 1127 1127 \begin{split} 1128 1128 D_u^{l\textbf{U}} &= \frac{1}{e_{1u} \, e_{2u} \, e_{3u} } \\ 1129 & \left\{\quad {\delta 1130 {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta 1131 -e_{2t} \; r_{1t} \,\overline{\overline {\delta 1129 & \left\{\quad {\delta_{i+1/2} \left[ {A_T^{lm} \left( 1130 {\frac{e_{2t} \; e_{3t} }{e_{1t} } \,\delta_{i}[u] 1131 -e_{2t} \; r_{1t} \,\overline{\overline {\delta_{k+1/2}[u]}}^{\,i,\,k}} 1132 1132 \right)} \right]} \right. 1133 1133 \\ 1134 1134 & \qquad +\ \delta_j \left[ {A_f^{lm} \left( {\frac{e_{1f}\,e_{3f} }{e_{2f} 1135 }\,\delta 1136 \,\overline{\overline {\delta 1135 }\,\delta_{j+1/2} [u] - e_{1f}\, r_{2f} 1136 \,\overline{\overline {\delta_{k+1/2} [u]}} ^{\,j+1/2,\,k}} 1137 1137 \right)} \right] 1138 1138 \\ … … 1150 1150 \\ 1151 1151 D_v^{l\textbf{V}} &= \frac{1}{e_{1v} \, e_{2v} \, e_{3v} } \\ 1152 & \left\{\quad {\delta 1153 {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta 1154 -e_{2f} \; r_{1f} \,\overline{\overline {\delta 1152 & \left\{\quad {\delta_{i+1/2} \left[ {A_f^{lm} \left( 1153 {\frac{e_{2f} \; e_{3f} }{e_{1f} } \,\delta_{i+1/2}[v] 1154 -e_{2f} \; r_{1f} \,\overline{\overline {\delta_{k+1/2}[v]}}^{\,i+1/2,\,k}} 1155 1155 \right)} \right]} \right. 1156 1156 \\ 1157 1157 & \qquad +\ \delta_j \left[ {A_T^{lm} \left( {\frac{e_{1t}\,e_{3t} }{e_{2t} 1158 }\,\delta 1159 \,\overline{\overline {\delta 1158 }\,\delta_{j} [v] - e_{1t}\, r_{2t} 1159 \,\overline{\overline {\delta_{k+1/2} [v]}} ^{\,j,\,k}} 1160 1160 \right)} \right] 1161 1161 \\ … … 1213 1213 \begin{equation} \label{eq:dynzdf} 1214 1214 \left\{ \begin{aligned} 1215 D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta 1216 \ \delta 1215 D_u^{vm} &\equiv \frac{1}{e_{3u}} \ \delta_k \left[ \frac{A_{uw}^{vm} }{e_{3uw} } 1216 \ \delta_{k+1/2} [\,u\,] \right] \\ 1217 1217 \\ 1218 D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta 1219 \ \delta 1218 D_v^{vm} &\equiv \frac{1}{e_{3v}} \ \delta_k \left[ \frac{A_{vw}^{vm} }{e_{3vw} } 1219 \ \delta_{k+1/2} [\,v\,] \right] 1220 1220 \end{aligned} \right. 1221 1221 \end{equation} … … 1228 1228 \begin{equation} \label{eq:dynzdf_sbc} 1229 1229 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1} 1230 = \frac{1}{\rho _o} \binom{\tau _u}{\tau_v }1231 \end{equation} 1232 where $\left( \tau _u ,\tau_v \right)$ are the two components of the wind stress vector in1230 = \frac{1}{\rho_o} \binom{\tau_u}{\tau_v } 1231 \end{equation} 1232 where $\left( \tau_u ,\tau_v \right)$ are the two components of the wind stress vector in 1233 1233 the (\textbf{i},\textbf{j}) coordinate system. 1234 1234 The high mixing coefficients in the surface mixed layer ensure that the surface wind stress is distributed in -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r10354 r10406 46 46 \begin{equation} \label{eq:lbc_aaaa} 47 47 \frac{A^{lT} }{e_1 }\frac{\partial T}{\partial i}\equiv \frac{A_u^{lT} 48 }{e_{1u} } \; \delta 48 }{e_{1u} } \; \delta_{i+1 / 2} \left[ T \right]\;\;mask_u 49 49 \end{equation} 50 50 (where mask$_{u}$ is the mask array at a $u$-point) ensures that the heat flux is zero inside land and … … 106 106 Therefore, the vorticity along the coastlines is given by: 107 107 108 \ begin{equation*}108 \[ 109 109 \zeta \equiv 2 \left(\delta_{i+1/2} \left[e_{2v} v \right] - \delta_{j+1/2} \left[e_{1u} u \right] \right) / \left(e_{1f} e_{2f} \right) \ , 110 \ end{equation*}110 \] 111 111 where $u$ and $v$ are masked fields. 112 112 Setting the mask$_{f}$ array to $2$ along the coastline provides a vorticity field computed with 113 113 the no-slip boundary condition, simply by multiplying it by the mask$_{f}$ : 114 114 \begin{equation} \label{eq:lbc_bbbb} 115 \zeta \equiv \frac{1}{e_{1f} {\kern 1pt}e_{2f} }\left( {\delta 116 \left[ {e_{2v} \,v} \right]-\delta 115 \zeta \equiv \frac{1}{e_{1f} {\kern 1pt}e_{2f} }\left( {\delta_{i+1/2} 116 \left[ {e_{2v} \,v} \right]-\delta_{j+1/2} \left[ {e_{1u} \,u} \right]} 117 117 \right)\;\mbox{mask}_f 118 118 \end{equation} … … 279 279 The whole domain dimensions are named \np{jpiglo}, \np{jpjglo} and \jp{jpk}. 280 280 The relationship between the whole domain and a sub-domain is: 281 \begin{ eqnarray}281 \begin{align} 282 282 jpi & = & ( jpiglo-2*jpreci + (jpni-1) ) / jpni + 2*jpreci \nonumber \\ 283 283 jpj & = & ( jpjglo-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj \label{eq:lbc_jpi} 284 \end{ eqnarray}284 \end{align} 285 285 where \jp{jpni}, \jp{jpnj} are the number of processors following the i- and j-axis. 286 286 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex
r10354 r10406 578 578 All horizontal interpolation methods implemented in NEMO estimate the value of a model variable $x$ at point $P$ as 579 579 a weighted linear combination of the values of the model variables at the grid points ${\rm A}$, ${\rm B}$ etc.: 580 \begin{ eqnarray}580 \begin{align} 581 581 {x_{}}_{\rm P} & \hspace{-2mm} = \hspace{-2mm} & 582 582 \frac{1}{w} \left( {w_{}}_{\rm A} {x_{}}_{\rm A} + … … 584 584 {w_{}}_{\rm C} {x_{}}_{\rm C} + 585 585 {w_{}}_{\rm D} {x_{}}_{\rm D} \right) 586 \end{ eqnarray}586 \end{align} 587 587 where ${w_{}}_{\rm A}$, ${w_{}}_{\rm B}$ etc. are the respective weights for the model field at 588 588 points ${\rm A}$, ${\rm B}$ etc., and $w = {w_{}}_{\rm A} + {w_{}}_{\rm B} + {w_{}}_{\rm C} + {w_{}}_{\rm D}$. … … 597 597 For example, the weight given to the field ${x_{}}_{\rm A}$ is specified as the product of the distances 598 598 from ${\rm P}$ to the other points: 599 \begin{ eqnarray}599 \begin{align} 600 600 {w_{}}_{\rm A} = s({\rm P}, {\rm B}) \, s({\rm P}, {\rm C}) \, s({\rm P}, {\rm D}) 601 601 \nonumber 602 \end{ eqnarray}602 \end{align} 603 603 where 604 \begin{ eqnarray}604 \begin{align} 605 605 s\left ({\rm P}, {\rm M} \right ) 606 606 & \hspace{-2mm} = \hspace{-2mm} & … … 610 610 \cos ({\lambda_{}}_{\rm M} - {\lambda_{}}_{\rm P}) 611 611 \right\} 612 \end{ eqnarray}612 \end{align} 613 613 and $M$ corresponds to $B$, $C$ or $D$. 614 614 A more stable form of the great-circle distance formula for small distances ($x$ near 1) 615 615 involves the arcsine function ($e.g.$ see p.~101 of \citet{Daley_Barker_Bk01}: 616 \begin{ eqnarray}616 \begin{align} 617 617 s\left( {\rm P}, {\rm M} \right) 618 618 & \hspace{-2mm} = \hspace{-2mm} & 619 619 \sin^{-1} \! \left\{ \sqrt{ 1 - x^2 } \right\} 620 620 \nonumber 621 \end{ eqnarray}621 \end{align} 622 622 where 623 \begin{ eqnarray}623 \begin{align} 624 624 x & \hspace{-2mm} = \hspace{-2mm} & 625 625 {a_{}}_{\rm M} {a_{}}_{\rm P} + {b_{}}_{\rm M} {b_{}}_{\rm P} + {c_{}}_{\rm M} {c_{}}_{\rm P} 626 626 \nonumber 627 \end{ eqnarray}627 \end{align} 628 628 and 629 \begin{ eqnarray}629 \begin{align} 630 630 {a_{}}_{\rm M} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\rm M}, 631 631 \nonumber \\ … … 641 641 \nonumber 642 642 \nonumber 643 \end{ eqnarray}643 \end{align} 644 644 645 645 \item[2.] {\bf Great-Circle distance-weighted interpolation with small angle approximation.} 646 646 Similar to the previous interpolation but with the distance $s$ computed as 647 \begin{ eqnarray}647 \begin{align} 648 648 s\left( {\rm P}, {\rm M} \right) 649 649 & \hspace{-2mm} = \hspace{-2mm} & … … 651 651 + \left( {\lambda_{}}_{\rm M} - {\lambda_{}}_{\rm P} \right)^{2} 652 652 \cos^{2} {\phi_{}}_{\rm M} } 653 \end{ eqnarray}653 \end{align} 654 654 where $M$ corresponds to $A$, $B$, $C$ or $D$. 655 655 … … 719 719 denote the bottom left, bottom right, top left and top right corner points of the cell, respectively. 720 720 To determine if P is inside the cell, we verify that the cross-products 721 \begin{ eqnarray}721 \begin{align} 722 722 \begin{array}{lllll} 723 723 {{\bf r}_{}}_{\rm PA} \times {{\bf r}_{}}_{\rm PC} … … 743 743 \end{array} 744 744 \label{eq:cross} 745 \end{ eqnarray}745 \end{align} 746 746 point in the opposite direction to the unit normal $\widehat{\bf k}$ 747 747 (i.e., that the coefficients of $\widehat{\bf k}$ are negative), -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r10405 r10406 19 19 \begin{itemize} 20 20 \item 21 the two components of the surface ocean stress $\left( {\tau _u \;,\;\tau_v} \right)$21 the two components of the surface ocean stress $\left( {\tau_u \;,\;\tau_v} \right)$ 22 22 \item 23 23 the incoming solar and non solar heat fluxes $\left( {Q_{ns} \;,\;Q_{sr} } \right)$ … … 391 391 The symbolic algorithm used to calculate values on the model grid is now: 392 392 393 \ begin{equation*}\begin{split}393 \[ \begin{split} 394 394 f_{m}(i,j) = f_{m}(i,j) +& \sum_{k=1}^{4} {wgt(k)f(idx(src(k)))} 395 395 + \sum_{k=5}^{8} {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} } \\ … … 397 397 + \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 398 398 \end{split} 399 \ end{equation*}399 \] 400 400 The gradients here are taken with respect to the horizontal indices and not distances since 401 401 the spatial dependency has been absorbed into the weights. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r10354 r10406 27 27 The two active tracers are potential temperature and salinity. 28 28 Their prognostic equations can be summarized as follows: 29 \ begin{equation*}29 \[ 30 30 \text{NXT} = \text{ADV}+\text{LDF}+\text{ZDF}+\text{SBC} 31 31 \ (+\text{QSR})\ (+\text{BBC})\ (+\text{BBL})\ (+\text{DMP}) 32 \ end{equation*}32 \] 33 33 34 34 NXT stands for next, referring to the time-stepping. … … 76 76 \begin{equation} \label{eq:tra_adv} 77 77 ADV_\tau =-\frac{1}{b_t} \left( 78 \;\delta _i \left[ e_{2u}\,e_{3u} \; u\; \tau_u \right]79 +\delta _j \left[ e_{1v}\,e_{3v} \; v\; \tau_v \right] \; \right)80 -\frac{1}{e_{3t}} \;\delta _k \left[ w\; \tau_w \right]78 \;\delta_i \left[ e_{2u}\,e_{3u} \; u\; \tau_u \right] 79 +\delta_j \left[ e_{1v}\,e_{3v} \; v\; \tau_v \right] \; \right) 80 -\frac{1}{e_{3t}} \;\delta_k \left[ w\; \tau_w \right] 81 81 \end{equation} 82 82 where $\tau$ is either T or S, and $b_t= e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells. … … 125 125 the vertical boundary condition is applied at the fixed surface $z=0$ rather than on the moving surface $z=\eta$. 126 126 There is a non-zero advective flux which is set for all advection schemes as 127 $\left. {\tau 127 $\left. {\tau_w } \right|_{k=1/2} =T_{k=1} $, 128 128 $i.e.$ the product of surface velocity (at $z=0$) by the first level tracer value. 129 129 \item[non-linear free surface:] … … 194 194 For example, in the $i$-direction : 195 195 \begin{equation} \label{eq:tra_adv_cen2} 196 \tau 196 \tau_u^{cen2} =\overline T ^{i+1/2} 197 197 \end{equation} 198 198 … … 213 213 For example, in the $i$-direction: 214 214 \begin{equation} \label{eq:tra_adv_cen4} 215 \tau 216 =\overline{ T - \frac{1}{6}\,\delta 215 \tau_u^{cen4} 216 =\overline{ T - \frac{1}{6}\,\delta_i \left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2} 217 217 \end{equation} 218 218 In the vertical direction (\np{nn\_cen\_v}\forcode{ = 4}), … … 238 238 239 239 At a $T$-grid cell adjacent to a boundary (coastline, bottom and surface), 240 an additional hypothesis must be made to evaluate $\tau 240 an additional hypothesis must be made to evaluate $\tau_u^{cen4}$. 241 241 This hypothesis usually reduces the order of the scheme. 242 242 Here we choose to set the gradient of $T$ across the boundary to zero. … … 260 260 \begin{equation} \label{eq:tra_adv_fct} 261 261 \begin{split} 262 \tau 262 \tau_u^{ups}&= \begin{cases} 263 263 T_{i+1} & \text{if $\ u_{i+1/2} < 0$} \hfill \\ 264 264 T_i & \text{if $\ u_{i+1/2} \geq 0$} \hfill \\ 265 265 \end{cases} \\ 266 266 \\ 267 \tau _u^{fct}&=\tau _u^{ups} +c_u \;\left( {\tau _u^{cen} -\tau_u^{ups} } \right)267 \tau_u^{fct}&=\tau_u^{ups} +c_u \;\left( {\tau_u^{cen} -\tau_u^{ups} } \right) 268 268 \end{split} 269 269 \end{equation} … … 287 287 288 288 For stability reasons (see \autoref{chap:STP}), 289 $\tau 290 $\tau 289 $\tau_u^{cen}$ is evaluated in (\autoref{eq:tra_adv_fct}) using the \textit{now} tracer while 290 $\tau_u^{ups}$ is evaluated using the \textit{before} tracer. 291 291 In other words, the advective part of the scheme is time stepped with a leap-frog scheme 292 292 while a forward scheme is used for the diffusive part. … … 306 306 For example, in the $i$-direction : 307 307 \begin{equation} \label{eq:tra_adv_mus} 308 \tau 309 &\tau 308 \tau_u^{mus} = \left\{ \begin{aligned} 309 &\tau_i &+ \frac{1}{2} \;\left( 1-\frac{u_{i+1/2} \;\rdt}{e_{1u}} \right) 310 310 &\ \widetilde{\partial _i \tau} & \quad \text{if }\;u_{i+1/2} \geqslant 0 \\ 311 &\tau 311 &\tau_{i+1/2} &+\frac{1}{2}\;\left( 1+\frac{u_{i+1/2} \;\rdt}{e_{1u} } \right) 312 312 &\ \widetilde{\partial_{i+1/2} \tau } & \text{if }\;u_{i+1/2} <0 313 313 \end{aligned} \right. … … 317 317 318 318 The time stepping is performed using a forward scheme, 319 that is the \textit{before} tracer field is used to evaluate $\tau 319 that is the \textit{before} tracer field is used to evaluate $\tau_u^{mus}$. 320 320 321 321 For an ocean grid point adjacent to land and where the ocean velocity is directed toward land, … … 339 339 For example, in the $i$-direction: 340 340 \begin{equation} \label{eq:tra_adv_ubs} 341 \tau 341 \tau_u^{ubs} =\overline T ^{i+1/2}-\;\frac{1}{6} \left\{ 342 342 \begin{aligned} 343 343 &\tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ … … 345 345 \end{aligned} \right. 346 346 \end{equation} 347 where $\tau "_i =\delta _i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$.347 where $\tau "_i =\delta_i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$. 348 348 349 349 This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error … … 374 374 Note that it is straightforward to rewrite \autoref{eq:tra_adv_ubs} as follows: 375 375 \begin{equation} \label{eq:traadv_ubs2} 376 \tau _u^{ubs} = \tau_u^{cen4} + \frac{1}{12} \left\{376 \tau_u^{ubs} = \tau_u^{cen4} + \frac{1}{12} \left\{ 377 377 \begin{aligned} 378 378 & + \tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ … … 382 382 or equivalently 383 383 \begin{equation} \label{eq:traadv_ubs2b} 384 u_{i+1/2} \ \tau 385 =u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta 384 u_{i+1/2} \ \tau_u^{ubs} 385 =u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\delta_i\left[ \delta_{i+1/2}[T] \,\right] }^{\,i+1/2} 386 386 - \frac{1}{2} |u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 387 387 \end{equation} … … 521 521 \begin{equation} \label{eq:tra_ldf_lap} 522 522 D_t^{lT} =\frac{1}{b_t} \left( \; 523 \delta _{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta_{i+1/2} [T] \right]524 + \delta _{j}\left[ A_v^{lT} \; \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta_{j+1/2} [T] \right] \;\right)523 \delta_{i}\left[ A_u^{lT} \; \frac{e_{2u}\,e_{3u}}{e_{1u}} \;\delta_{i+1/2} [T] \right] 524 + \delta_{j}\left[ A_v^{lT} \; \frac{e_{1v}\,e_{3v}}{e_{2v}} \;\delta_{j+1/2} [T] \right] \;\right) 525 525 \end{equation} 526 526 where $b_t$=$e_{1t}\,e_{2t}\,e_{3t}$ is the volume of $T$-cells and … … 728 728 \begin{equation} \label{eq:tra_sbc} 729 729 \begin{aligned} 730 &F^T = \frac{ 1 }{\rho 731 & F^S =\frac{ 1 }{\rho 730 &F^T = \frac{ 1 }{\rho_o \;C_p \,\left. e_{3t} \right|_{k=1} } &\overline{ Q_{ns} }^t & \\ 731 & F^S =\frac{ 1 }{\rho_o \, \left. e_{3t} \right|_{k=1} } &\overline{ \textit{sfx} }^t & \\ 732 732 \end{aligned} 733 733 \end{equation} … … 743 743 \begin{equation} \label{eq:tra_sbc_lin} 744 744 \begin{aligned} 745 &F^T = \frac{ 1 }{\rho 745 &F^T = \frac{ 1 }{\rho_o \;C_p \,\left. e_{3t} \right|_{k=1} } 746 746 &\overline{ \left( Q_{ns} - \textit{emp}\;C_p\,\left. T \right|_{k=1} \right) }^t & \\ 747 747 % 748 & F^S =\frac{ 1 }{\rho 748 & F^S =\frac{ 1 }{\rho_o \,\left. e_{3t} \right|_{k=1} } 749 749 &\overline{ \left( \;\textit{sfx} - \textit{emp} \;\left. S \right|_{k=1} \right) }^t & \\ 750 750 \end{aligned} … … 1410 1410 A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, 1411 1411 the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. 1412 The horizontal difference is then given by: $\delta 1412 The horizontal difference is then given by: $\delta_{i+1/2} T_k= \widetilde{T}_k^{\,i+1} -T_k^{\,i}$ and 1413 1413 the average by: $\overline{T}_k^{\,i+1/2}= ( \widetilde{T}_k^{\,i+1/2} - T_k^{\,i} ) / 2$. 1414 1414 } … … 1416 1416 \end{figure} 1417 1417 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1418 \ begin{equation*}1418 \[ 1419 1419 \widetilde{T}= \left\{ \begin{aligned} 1420 &T^{\,i+1} -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta 1420 &T^{\,i+1} -\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right)}{ e_{3w}^{i+1} }\;\delta_k T^{i+1} 1421 1421 && \quad\text{if $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\ 1422 1422 \\ 1423 &T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i }\;\delta 1423 &T^{\,i} \ \ \ \,+\frac{ \left( e_{3w}^{i+1} -e_{3w}^i \right) }{e_{3w}^i }\;\delta_k T^{i+1} 1424 1424 && \quad\text{if $\ e_{3w}^{i+1} < e_{3w}^i$ } 1425 1425 \end{aligned} \right. 1426 \ end{equation*}1426 \] 1427 1427 and the resulting forms for the horizontal difference and the horizontal average value of $T$ at a $U$-point are: 1428 1428 \begin{equation} \label{eq:zps_hde} 1429 1429 \begin{aligned} 1430 \delta 1430 \delta_{i+1/2} T= \begin{cases} 1431 1431 \ \ \ \widetilde {T}\quad\ -T^i & \ \ \quad\quad\text{if $\ e_{3w}^{i+1} \geq e_{3w}^i$ } \\ 1432 1432 \\ -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r10354 r10406 1329 1329 In the above formula, $h_{ab}$ denotes the height above bottom, 1330 1330 $h_{wkb}$ denotes the WKB-stretched height above bottom, defined by 1331 \ begin{equation*}1331 \[ 1332 1332 h_{wkb} = H \, \frac{ \int_{-H}^{z} N \, dz' } { \int_{-H}^{\eta} N \, dz' } \; , 1333 \ end{equation*}1333 \] 1334 1334 The $n_p$ parameter (given by \np{nn\_zpyc} in \ngn{namzdf\_tmx\_new} namelist) 1335 1335 controls the stratification-dependence of the pycnocline-intensified dissipation. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex
r10354 r10406 123 123 124 124 \begin{equation} \label{eq:hpg_pe} 125 \int_D {-\frac{1}{\rho 125 \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv} 126 126 \end{equation} 127 127 … … 143 143 surface pressure forces is exactly zero: 144 144 \begin{equation} \label{eq:spg} 145 \int_D {-\frac{1}{\rho 145 \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0 146 146 \end{equation} 147 147 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex
r10354 r10406 68 68 +\frac{1}{2}\nabla \left( {{\rm {\bf U}}^2} \right)} \right]_h 69 69 -f\;{\rm {\bf k}}\times {\rm {\bf U}}_h 70 -\frac{1}{\rho 70 -\frac{1}{\rho_o }\nabla _h p + {\rm {\bf D}}^{\rm {\bf U}} + {\rm {\bf F}}^{\rm {\bf U}} 71 71 \end{equation} 72 72 \begin{equation} \label{eq:PE_hydrostatic} … … 570 570 - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) 571 571 - \frac{1}{e_3 } w \frac{\partial u}{\partial k} & \\ 572 - \frac{1}{e_1 } \frac{\partial}{\partial i} \left( \frac{p_s+p_h }{\rho 572 - \frac{1}{e_1 } \frac{\partial}{\partial i} \left( \frac{p_s+p_h }{\rho_o} \right) 573 573 &+ D_u^{\vect{U}} + F_u^{\vect{U}} \\ 574 574 \\ … … 577 577 - \frac{1}{2\,e_2 } \frac{\partial }{\partial j}\left( u^2+v^2 \right) 578 578 - \frac{1}{e_3 } w \frac{\partial v}{\partial k} & \\ 579 - \frac{1}{e_2 } \frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho 579 - \frac{1}{e_2 } \frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) 580 580 &+ D_v^{\vect{U}} + F_v^{\vect{U}} 581 581 \end{split} \end{equation} … … 595 595 + \frac{\partial \left( {e_1 \,v\,u} \right)}{\partial j} \right) 596 596 - \frac{1}{e_3 }\frac{\partial \left( { w\,u} \right)}{\partial k} \\ 597 - \frac{1}{e_1 }\frac{\partial}{\partial i}\left( \frac{p_s+p_h }{\rho 597 - \frac{1}{e_1 }\frac{\partial}{\partial i}\left( \frac{p_s+p_h }{\rho_o} \right) 598 598 + D_u^{\vect{U}} + F_u^{\vect{U}} 599 599 \end{multline} … … 607 607 + \frac{\partial \left( {e_1 \,v\,v} \right)}{\partial j} \right) 608 608 - \frac{1}{e_3 } \frac{\partial \left( { w\,v} \right)}{\partial k} \\ 609 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho 609 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) 610 610 + D_v^{\vect{U}} + F_v^{\vect{U}} 611 611 \end{multline} … … 771 771 - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) 772 772 - \frac{1}{e_3} \omega \frac{\partial u}{\partial k} \\ 773 - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho 774 + g\frac{\rho }{\rho 773 - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o} \right) 774 + g\frac{\rho }{\rho_o}\sigma _1 775 775 + D_u^{\vect{U}} + F_u^{\vect{U}} \quad 776 776 \end{multline} … … 780 780 - \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left( u^2+v^2 \right) 781 781 - \frac{1}{e_3 } \omega \frac{\partial v}{\partial k} \\ 782 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho 783 + g\frac{\rho }{\rho 782 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) 783 + g\frac{\rho }{\rho_o }\sigma _2 784 784 + D_v^{\vect{U}} + F_v^{\vect{U}} \quad 785 785 \end{multline} … … 796 796 + \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j} \right) 797 797 - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k} \\ 798 - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho 799 + g\frac{\rho }{\rho 798 - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o} \right) 799 + g\frac{\rho }{\rho_o}\sigma _1 800 800 + D_u^{\vect{U}} + F_u^{\vect{U}} \quad 801 801 \end{multline} … … 809 809 + \frac{\partial \left( {e_1 \; e_3 \,v\,v} \right)}{\partial j} \right) 810 810 - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k} \\ 811 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho 812 + g\frac{\rho }{\rho 811 - \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o} \right) 812 + g\frac{\rho }{\rho_o }\sigma _2 813 813 + D_v^{\vect{U}} + F_v^{\vect{U}} \quad 814 814 \end{multline} … … 896 896 $\textit{z*} = 0$ and $\textit{z*} = -H$ respectively. 897 897 Also the divergence of the flow field is no longer zero as shown by the continuity equation: 898 \ begin{equation*}898 \[ 899 899 \frac{\partial r}{\partial t} = \nabla_{\textit{z*}} \cdot \left( r \; \rm{\bf U}_h \right) 900 900 \left( r \; w\textit{*} \right) = 0 901 \ end{equation*}901 \] 902 902 %} 903 903 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r10354 r10406 106 106 The sea surface height is given by: 107 107 \begin{equation} \label{eq:dynspg_ssh} 108 \frac{\partial \eta }{\partial t}\equiv \frac{\text{EMP}}{\rho 109 e_{2T} }\sum\limits_k {\left( {\delta 110 \right]+\delta 108 \frac{\partial \eta }{\partial t}\equiv \frac{\text{EMP}}{\rho_w }+\frac{1}{e_{1T} 109 e_{2T} }\sum\limits_k {\left( {\delta_i \left[ {e_{2u} e_{3u} u} 110 \right]+\delta_j \left[ {e_{1v} e_{3v} v} \right]} \right)} 111 111 \end{equation} 112 112 113 113 where EMP is the surface freshwater budget (evaporation minus precipitation, and minus river runoffs 114 114 (if the later are introduced as a surface freshwater flux, see \autoref{chap:SBC}) expressed in $Kg.m^{-2}.s^{-1}$, 115 and $\rho 115 and $\rho_w =1,000\,Kg.m^{-3}$ is the volumic mass of pure water. 116 116 The sea-surface height is evaluated using a leapfrog scheme in combination with an Asselin time filter, 117 117 i.e. the velocity appearing in (\autoref{eq:dynspg_ssh}) is centred in time (\textit{now} velocity). … … 120 120 \begin{equation} \label{eq:dynspg_exp} 121 121 \left\{ \begin{aligned} 122 - \frac{1} {e_{1u}} \; \delta 122 - \frac{1} {e_{1u}} \; \delta_{i+1/2} \left[ \,\eta\, \right] \\ 123 123 \\ 124 - \frac{1} {e_{2v}} \; \delta 124 - \frac{1} {e_{2v}} \; \delta_{j+1/2} \left[ \,\eta\, \right] 125 125 \end{aligned} \right. 126 126 \end{equation} 127 127 128 Consistent with the linearization, a $\left. \rho \right|_{k=1} / \rho 128 Consistent with the linearization, a $\left. \rho \right|_{k=1} / \rho_o$ factor is omitted in 129 129 (\autoref{eq:dynspg_exp}). 130 130 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r10354 r10406 163 163 \begin{equation} \label{eq:STP_imp_zdf} 164 164 \frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\rdt}\equiv \text{RHS}+\frac{1}{e_{3t} }\delta 165 _k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta 165 _k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta_{k+1/2} \left[ {T^{t+1}} \right]} 166 166 \right] 167 167 \end{equation} … … 352 352 \begin{flalign*} 353 353 &\frac{\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1}}{2\rdt} 354 \equiv \text{RHS}+ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k+1/2} \left[ {T^{t+1}} \right]}354 \equiv \text{RHS}+ \delta_k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k+1/2} \left[ {T^{t+1}} \right]} 355 355 \right] \\ 356 356 &\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1} 357 \equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta _k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k+1/2} \left[ {T^{t+1}} \right]}357 \equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta_k \left[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k+1/2} \left[ {T^{t+1}} \right]} 358 358 \right] \\ 359 359 &\left( e_{3t}\,T \right)_k^{t+1}-\left( e_{3t}\,T \right)_k^{t-1} -
NEMO/trunk/doc/latex/SI3
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/Figures
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/Figures/drafts
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/Figures/scripts
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/namelists
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/tex_main
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/SI3/tex_sub
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
-
NEMO/trunk/doc/latex/TOP
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb _latexmk5 *.fdb* 6 6 *.fls 7 7 *.idx
-
- Property svn:ignore
Note: See TracChangeset
for help on using the changeset viewer.