Changeset 10419
- Timestamp:
- 2018-12-19T20:46:30+01:00 (6 years ago)
- Location:
- NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE
- Files:
-
- 1 deleted
- 73 edited
- 3 copied
Legend:
- Unmodified
- Added
- Removed
-
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/cfgs/SHARED/field_def_nemo-ice.xml
r9943 r10419 29 29 <field id="icemask15" long_name="Ice mask (0 if ice conc. lower than 15%, 1 otherwise)" standard_name="sea_ice_mask15" unit="" /> 30 30 <field id="icepres" long_name="Fraction of time steps with sea ice" standard_name="sea_ice_time_fraction" unit="" /> 31 31 <field id="fasticepres" long_name="Fraction of time steps with landfast ice" standard_name="fast_ice_time_fraction" unit="" /> 32 32 33 <!-- general fields --> 33 34 <field id="icemass" long_name="Sea-ice mass per area" standard_name="sea_ice_amount" unit="kg/m2"/> -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/cfgs/SHARED/field_def_nemo-pisces.xml
r10368 r10419 105 105 <field id="LGW" long_name="Weak ligands concentration" unit="mmol/m3" /> 106 106 <field id="LGW_e3t" long_name="LGW * e3t" unit="mmol/m2" > LGW * e3t </field > 107 <field id="LFe" long_name="Lithogenic iron concentration" unit="mmol/m3" />108 <field id="LFe_e3t" long_name="LFe * e3t" unit="mmol/m2" > LFe * e3t </field >109 107 110 108 <!-- PISCES light : variables available with ln_p2z --> … … 208 206 <field id="SIZEP" long_name="Mean relative size of picophyto." unit="-" grid_ref="grid_T_3D" /> 209 207 <field id="SIZED" long_name="Mean relative size of diatoms" unit="-" grid_ref="grid_T_3D" /> 210 <field id="Fe2" long_name="Iron II concentration" unit="nmol/m3" grid_ref="grid_T_3D" />211 208 <field id="Fe3" long_name="Iron III concentration" unit="nmol/m3" grid_ref="grid_T_3D" /> 212 209 <field id="FeL1" long_name="Complexed Iron concentration with L1" unit="nmol/m3" grid_ref="grid_T_3D" /> 213 <field id="FeL2" long_name="Complexed Iron concentration with L2" unit="nmol/m3" grid_ref="grid_T_3D" />214 <field id="FeP" long_name="Precipitated Iron III" unit="nmol/m3" grid_ref="grid_T_3D" />215 210 <field id="TL1" long_name="Total L1 concentration" unit="nmol/m3" grid_ref="grid_T_3D" /> 216 <field id="TL2" long_name="Total L2 concentration" unit="nmol/m3" grid_ref="grid_T_3D" />217 211 <field id="pdust" long_name="dust concentration" unit="g/m3" /> 218 212 <field id="Totlig" long_name="Total ligand concentation" unit="nmol/m3" grid_ref="grid_T_3D" /> -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/cfgs/SHARED/namelist_ice_ref
r10075 r10419 49 49 &namdyn ! Ice dynamics 50 50 !------------------------------------------------------------------------------ 51 ln_dynFULL = .true. ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction) 52 ln_dynRHGADV = .false. ! dyn.: no ridge/raft & no corrections (rheology + advection) 53 ln_dynADV = .false. ! dyn.: only advection w prescribed vel.(rn_uvice + advection) 54 rn_uice = 0.00001 ! prescribed ice u-velocity 55 rn_vice = 0. ! prescribed ice v-velocity 56 rn_ishlat = 2. ! free slip (0) ; partial slip (0-2) ; no slip (2) ; strong slip (>2) 57 ln_landfast = .false. ! landfast ice parameterization (T or F) 58 rn_gamma = 0.15 ! fraction of ocean depth that ice must reach to initiate landfast 59 ! recommended range: [0.1 ; 0.25] 60 rn_icebfr = 10. ! maximum bottom stress per unit area of contact [N/m2] 61 ! a very large value ensures ice velocity=0 even with a small contact area 62 ! recommended range: ?? (should be greater than atm-ice stress => >0.1 N/m2) 63 rn_lfrelax = 1.e-5 ! relaxation time scale to reach static friction [s-1] 51 ln_dynALL = .true. ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction) 52 ln_dynRHGADV = .false. ! dyn.: no ridge/raft & no corrections (rheology + advection) 53 ln_dynADV1D = .false. ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case) 54 ln_dynADV2D = .false. ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection) 55 rn_uice = 0.5 ! prescribed ice u-velocity 56 rn_vice = 0.5 ! prescribed ice v-velocity 57 rn_ishlat = 2. ! lbc : free slip (0) ; partial slip (0-2) ; no slip (2) ; strong slip (>2) 58 ln_landfast_L16 = .false. ! landfast: parameterization from Lemieux 2016 59 ln_landfast_home = .false. ! landfast: parameterization from "home made" 60 rn_depfra = 0.125 ! fraction of ocean depth that ice must reach to initiate landfast 61 ! recommended range: [0.1 ; 0.25] - L16=0.125 - home=0.15 62 rn_icebfr = 15. ! ln_landfast_L16: maximum bottom stress per unit volume [N/m3] 63 ! ln_landfast_home: maximum bottom stress per unit area of contact [N/m2] 64 ! recommended range: ?? L16=15 - home=10 65 rn_lfrelax = 1.e-5 ! relaxation time scale to reach static friction [s-1] 66 rn_tensile = 0.2 ! isotropic tensile strength 64 67 / 65 68 !------------------------------------------------------------------------------ … … 205 208 sn_tmi = 'Ice_initialization' , -12 ,'tmi' , .false. , .true., 'yearly' , '' , '', '' 206 209 sn_smi = 'Ice_initialization' , -12 ,'smi' , .false. , .true., 'yearly' , '' , '', '' 207 cn_dir 210 cn_dir='./' 208 211 / 209 212 !------------------------------------------------------------------------------ -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/cfgs/SHARED/namelist_pisces_ref
r10377 r10419 52 52 wsbio2scale = 5000. ! Big particles length scale of sinking 53 53 ! ! ln_ligand enabled 54 wfep = 0.2 ! FeP sinking speed55 54 ldocp = 1.E-4 ! Phyto ligand production per unit doc 56 55 ldocz = 1.E-4 ! Zoo ligand production per unit doc … … 155 154 excretn = 0.05 ! excretion ratio of phytoplankton 156 155 excretd = 0.05 ! excretion ratio of diatoms 157 ln_newprod = .true. ! Enable new parame. of production (T/F)158 156 bresp = 0.033 ! Basal respiration rate 159 157 chlcnm = 0.033 ! Maximum Chl/C in nanophytoplankton … … 222 220 sigma2 = 0.6 ! Fraction of mesozoo excretion as DOM 223 221 unass2 = 0.3 ! non assimilated fraction of P by mesozoo 224 grazflux = 2.e3 ! flux-feeding rate222 grazflux = 3.e3 ! flux-feeding rate 225 223 / 226 224 !----------------------------------------------------------------------- … … 304 302 &nampisfer ! parameters for iron chemistry 305 303 !----------------------------------------------------------------------- 306 ln_fechem = .false. ! complex iron chemistry ( T/F ) 307 ln_ligvar = .false. ! variable ligand concentration 308 xlam1 = 0.005 ! scavenging rate of Iron 309 xlamdust = 150.0 ! Scavenging rate of dust 310 ligand = 0.7E-9 ! Ligands concentration 311 kfep = 0.01 ! Nanoparticle formation rate constant 304 ln_ligvar = .true. ! variable ligand concentration 305 xlam1 = 0.005 ! scavenging rate of Iron 306 xlamdust = 150.0 ! Scavenging rate of dust 307 ligand = 0.7E-9 ! Ligands concentration 308 kfep = 0.01 ! Nanoparticle formation rate constant 312 309 / 313 310 !----------------------------------------------------------------------- … … 382 379 hratio = 1.e+7 ! Fe to 3He ratio assumed for vent iron supply 383 380 ! ! ln_ligand 384 fep_rats = 1. ! Fep/Fer ratio from sed sources385 fep_rath = 1. ! Fep/Fer ratio from sed hydro sources386 rdustfep = 0.0 ! Fraction of dust that is FeP387 381 lgw_rath = 0.5 ! Weak ligand ratio from sed hydro sources 388 382 / … … 390 384 &nampislig ! Namelist parameters for ligands, nampislig 391 385 !----------------------------------------------------------------------- 392 rfep = 0.001 ! Dissolution rate of FeP393 386 rlgw = 100. ! Lifetime (years) of weak ligands 394 387 rlig = 1.E-4 ! Remin ligand production per unit C -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/cfgs/SPITZ12/EXPREF/namelist_ice_cfg
r9902 r10419 35 35 &namdyn ! Ice dynamics 36 36 !------------------------------------------------------------------------------ 37 ln_landfast = .false. ! landfast ice parameterization (T or F)38 37 / 39 38 !------------------------------------------------------------------------------ -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/PDF_creation.sh
r10146 r10419 2 2 3 3 4 export opts='-shell-escape - interaction=nonstopmode'4 export opts='-shell-escape -pdf' 5 5 model='NEMO' 6 6 7 7 clean() { 8 8 ## Delete latex build files 9 find latex -regextype posix-extended -regex ".*\.(aux|log|maf|mtc|out|toc).*" -exec rm {} \; 9 find latex -regextype posix-extended \ 10 -regex ".*\.(aux|bbl|blg|dvi|fdb|fls|idx|ilg|ind|log|maf|mtc|out|pdf|toc).*" \ 11 -exec rm {} \; 10 12 11 13 ## Remove 'minted' directories … … 18 20 build() { 19 21 cd latex/$1/main 20 21 latex $opts $1'_manual' > /dev/null 22 makeindex -s $1'_manual'.ist $1'_manual' > /dev/null 23 bibtex $1'_manual' > /dev/null 24 #latex $opts $1'_manual' > /dev/null 25 pdflatex $opts $1'_manual' > /dev/null 26 27 mv $1'_manual'.pdf ../../.. 22 latexmk $opts $1'_manual' > /dev/null 23 mv $1'_manual'.pdf ../../.. 28 24 cd - 29 25 } 30 26 31 27 clean 32 build 28 build $model 33 29 34 30 exit 0 -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex
-
Property
svn:ignore
set to
*.aux
*.bbl
*.blg
*.dvi
*.fdb*
*.fls
*.idx
*.ilg
*.ind
*.log
*.maf
*.mtc*
*.out
*.pdf
*.toc
_minted-*
-
Property
svn:ignore
set to
-
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO
-
Property
svn:ignore
set to
*.aux
*.bbl
*.blg
*.dvi
*.fdb*
*.fls
*.idx
*.ilg
*.ind
*.log
*.maf
*.mtc*
*.out
*.pdf
*.toc
_minted-*
-
Property
svn:ignore
set to
-
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/main
- Property svn:ignore
-
old new 3 3 *.blg 4 4 *.dvi 5 *.fdb* 6 *.fls 5 7 *.idx 6 8 *.ilg
-
- Property svn:ignore
-
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/main/NEMO_manual.tex
r10146 r10419 25 25 %% ============================================================================== 26 26 27 %% Trick to include biblio in subfile compilation 28 \newcommand{\biblio}{ 29 \bibliographystyle{../main/ametsoc} 30 \bibliography{../main/NEMO_manual} 31 } 32 27 33 \begin{document} 34 35 %% Trick to include biblio in subfile compilation 36 \def\biblio{} 28 37 29 38 … … 34 43 35 44 \title{ 36 \vspace{-6.0cm}\includegraphics[width=1.1\textwidth]{logo_ALL} \\37 \vspace{ 5.1cm}\includegraphics[width=0.9\textwidth]{NEMO_logo_Black} \\45 %\vspace{-6.0cm}\includegraphics[width=1.1\textwidth]{logo_ALL} \\ 46 %\vspace{ 5.1cm}\includegraphics[width=0.9\textwidth]{NEMO_logo_Black} \\ 38 47 \vspace{ 1.4cm}\rule{345pt}{1.5pt} \\ 39 48 \vspace{0.45cm}{\Huge NEMO ocean engine} \\ … … 71 80 72 81 73 %% Abstract -Foreword82 %% Foreword 74 83 75 \subfile{../subfiles/ abstract_foreword}84 \subfile{../subfiles/foreword} 76 85 77 86 -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles
-
Property
svn:ignore
set to
*.aux
*.bbl
*.blg
*.dvi
*.fdb*
*.fls
*.idx
*.ilg
*.ind
*.log
*.maf
*.mtc*
*.out
*.pdf
*.toc
_minted-*
-
Property
svn:ignore
set to
-
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_A.tex
r10368 r10419 1 \documentclass[../tex_main/NEMO_manual]{subfiles} 1 \documentclass[../main/NEMO_manual]{subfiles} 2 2 3 \begin{document} 3 4 4 5 % ================================================================ 5 % Chapter ÑAppendix A : Curvilinear s-Coordinate Equations6 % Chapter Appendix A : Curvilinear s-Coordinate Equations 6 7 % ================================================================ 7 8 \chapter{Curvilinear $s-$Coordinate Equations} 8 9 \label{apdx:A} 10 9 11 \minitoc 10 12 11 13 \newpage 12 $\ $\newline % force a new ligne13 14 14 15 % ================================================================ … … 26 27 Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and 27 28 the horizontal slope of $s-$surfaces by: 28 \begin{equation} \label{apdx:A_s_slope} 29 \sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s 30 \quad \text{and} \quad 31 \sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s 29 \begin{equation} 30 \label{apdx:A_s_slope} 31 \sigma_1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s 32 \quad \text{and} \quad 33 \sigma_2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s 32 34 \end{equation} 33 35 34 36 The chain rule to establish the model equations in the curvilinear $s-$coordinate system is: 35 \begin{equation} \label{apdx:A_s_chain_rule} 36 \begin{aligned} 37 &\left. {\frac{\partial \bullet }{\partial t}} \right|_z = 38 \left. {\frac{\partial \bullet }{\partial t}} \right|_s 37 \begin{equation} 38 \label{apdx:A_s_chain_rule} 39 \begin{aligned} 40 &\left. {\frac{\partial \bullet }{\partial t}} \right|_z = 41 \left. {\frac{\partial \bullet }{\partial t}} \right|_s 39 42 -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\ 40 &\left. {\frac{\partial \bullet }{\partial i}} \right|_z =41 \left. {\frac{\partial \bullet }{\partial i}} \right|_s42 43 \left. {\frac{\partial \bullet }{\partial i}} \right|_s 44 -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} \\45 &\left. {\frac{\partial \bullet }{\partial j}} \right|_z =46 \left. {\frac{\partial \bullet }{\partial j}} \right|_s 47 48 \left. {\frac{\partial \bullet }{\partial j}} \right|_s 49 - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} \\50 &\;\frac{\partial \bullet }{\partial z} \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\ 51 \end{aligned}43 &\left. {\frac{\partial \bullet }{\partial i}} \right|_z = 44 \left. {\frac{\partial \bullet }{\partial i}} \right|_s 45 -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}= 46 \left. {\frac{\partial \bullet }{\partial i}} \right|_s 47 -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} \\ 48 &\left. {\frac{\partial \bullet }{\partial j}} \right|_z = 49 \left. {\frac{\partial \bullet }{\partial j}} \right|_s 50 - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}= 51 \left. {\frac{\partial \bullet }{\partial j}} \right|_s 52 - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} \\ 53 &\;\frac{\partial \bullet }{\partial z} \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} 54 \end{aligned} 52 55 \end{equation} 53 56 54 57 In particular applying the time derivative chain rule to $z$ provides the expression for $w_s$, 55 58 the vertical velocity of the $s-$surfaces referenced to a fix z-coordinate: 56 \begin{equation} \label{apdx:A_w_in_s}57 w_s = \left. \frac{\partial z }{\partial t} \right|_s 58 = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 59 = e_3 \, \frac{\partial s}{\partial t} 60 \end{equation}61 59 \begin{equation} 60 \label{apdx:A_w_in_s} 61 w_s = \left. \frac{\partial z }{\partial t} \right|_s 62 = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 63 = e_3 \, \frac{\partial s}{\partial t} 64 \end{equation} 62 65 63 66 % ================================================================ … … 72 75 obtain its expression in the curvilinear $s-$coordinate system: 73 76 74 \begin{subequations} 75 \begin{align*} {\begin{array}{*{20}l} 76 \nabla \cdot {\rm {\bf U}} 77 &= \frac{1}{e_1 \,e_2 } \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z 78 +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_z \right] 79 + \frac{\partial w}{\partial z} \\ 80 \\ 81 & = \frac{1}{e_1 \,e_2 } \left[ 82 \left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s 83 - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}84 + \left. \frac{\partial (e_1 \,v)}{\partial j} \right|_s85 - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s} \right] 86 + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\87 \\88 & = \frac{1}{e_1 \,e_2 } \left[ 89 \left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s 90 91 92 - \sigma_1 \frac{\partial u}{\partial s}93 - \sigma _2 \frac{\partial v}{\partial s} \right]\\94 \\ 95 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 96 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s97 -\left. e_2 \,u \frac{\partial e_3 }{\partial i} \right|_s 98 + \left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s99 - \left. e_1 v \frac{\partial e_3 }{\partial j} \right|_s \right] \\ 100 & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad 101 + \frac{1}{e_3 } \left[ \frac{\partial w}{\partial s}102 - \sigma _1 \frac{\partial u}{\partial s} 103 - \sigma _2 \frac{\partial v}{\partial s} \right] \\ 104 % 105 \intertext{Noting that $ 106 \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s107 =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s 108 =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right) 109 =\frac{\partial \sigma _1}{\partial s} 110 $ and $ 111 \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s 112 =\frac{\partial \sigma _2}{\partial s}113 $, it becomes:} 114 % 115 \nabla \cdot {\rm {\bf U}} 116 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 117 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 118 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] \\ 119 & \qquad \qquad \qquad \qquad \quad 120 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\121 \\ 122 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 123 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 124 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 125 + \frac{1}{e_3 } \; \frac{\partial}{\partial s} \left[ w - u\;\sigma _1 - v\;\sigma _2 \right]126 \end{array} } 127 \end{align*}77 \begin{subequations} 78 \begin{align*} 79 { 80 \begin{array}{*{20}l} 81 \nabla \cdot {\rm {\bf U}} 82 &= \frac{1}{e_1 \,e_2 } \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z 83 +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_z \right] 84 + \frac{\partial w}{\partial z} \\ \\ 85 & = \frac{1}{e_1 \,e_2 } \left[ 86 \left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s 87 - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s} 88 + \left. \frac{\partial (e_1 \,v)}{\partial j} \right|_s 89 - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right] 90 + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\ 91 & = \frac{1}{e_1 \,e_2 } \left[ 92 \left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s 93 + \left. \frac{\partial (e_1 \,v)}{\partial j} \right|_s \right] 94 + \frac{1}{e_3 }\left[ \frac{\partial w}{\partial s} 95 - \sigma_1 \frac{\partial u}{\partial s} 96 - \sigma_2 \frac{\partial v}{\partial s} \right] \\ \\ 97 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 98 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 99 -\left. e_2 \,u \frac{\partial e_3 }{\partial i} \right|_s 100 + \left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s 101 - \left. e_1 v \frac{\partial e_3 }{\partial j} \right|_s \right] \\ 102 & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad 103 + \frac{1}{e_3 } \left[ \frac{\partial w}{\partial s} 104 - \sigma_1 \frac{\partial u}{\partial s} 105 - \sigma_2 \frac{\partial v}{\partial s} \right] \\ 106 % 107 \intertext{Noting that $ 108 \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s 109 =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s 110 =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right) 111 =\frac{\partial \sigma_1}{\partial s} 112 $ and $ 113 \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s 114 =\frac{\partial \sigma_2}{\partial s} 115 $, it becomes:} 116 % 117 \nabla \cdot {\rm {\bf U}} 118 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 119 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 120 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] \\ 121 & \qquad \qquad \qquad \qquad \quad 122 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\ 123 \\ 124 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 125 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 126 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 127 + \frac{1}{e_3 } \; \frac{\partial}{\partial s} \left[ w - u\;\sigma_1 - v\;\sigma_2 \right] 128 \end{array} 129 } 130 \end{align*} 128 131 \end{subequations} 129 132 … … 131 134 Introducing the dia-surface velocity component, 132 135 $\omega $, defined as the volume flux across the moving $s$-surfaces per unit horizontal area: 133 \begin{equation} \label{apdx:A_w_s} 134 \omega = w - w_s - \sigma _1 \,u - \sigma _2 \,v \\ 136 \begin{equation} 137 \label{apdx:A_w_s} 138 \omega = w - w_s - \sigma_1 \,u - \sigma_2 \,v \\ 135 139 \end{equation} 136 140 with $w_s$ given by \autoref{apdx:A_w_in_s}, 137 141 we obtain the expression for the divergence of the velocity in the curvilinear $s-$coordinate system: 138 \begin{subequations} 139 \begin{align*} {\begin{array}{*{20}l} 140 \nabla \cdot {\rm {\bf U}} 141 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 142 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 143 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 144 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 145 + \frac{1}{e_3 } \frac{\partial w_s }{\partial s} \\ 146 \\ 147 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 148 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 149 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right]150 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 151 + \frac{1}{e_3 } \frac{\partial}{\partial s} \left( e_3 \; \frac{\partial s}{\partial t} \right) \\ 152 \\153 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 154 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 155 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 156 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 157 + \frac{\partial}{\partial s} \frac{\partial s}{\partial t}158 + \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}\\159 \\ 160 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 161 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 162 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 163 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 164 + \frac{1}{e_3 } \frac{\partial e_3}{\partial t} \\ 165 \end{array} } 166 \end{align*}142 \begin{subequations} 143 \begin{align*} 144 { 145 \begin{array}{*{20}l} 146 \nabla \cdot {\rm {\bf U}} 147 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 148 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 149 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 150 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 151 + \frac{1}{e_3 } \frac{\partial w_s }{\partial s} \\ \\ 152 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 153 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 154 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 155 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 156 + \frac{1}{e_3 } \frac{\partial}{\partial s} \left( e_3 \; \frac{\partial s}{\partial t} \right) \\ \\ 157 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 158 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 159 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 160 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 161 + \frac{\partial}{\partial s} \frac{\partial s}{\partial t} 162 + \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s} \\ \\ 163 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 164 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s 165 +\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] 166 + \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 167 + \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 168 \end{array} 169 } 170 \end{align*} 167 171 \end{subequations} 168 172 169 173 As a result, the continuity equation \autoref{eq:PE_continuity} in the $s-$coordinates is: 170 \begin{equation} \label{apdx:A_sco_Continuity} 171 \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 172 + \frac{1}{e_1 \,e_2 \,e_3 }\left[ 173 {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s 174 + \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right] 175 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 174 \begin{equation} 175 \label{apdx:A_sco_Continuity} 176 \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 177 + \frac{1}{e_1 \,e_2 \,e_3 }\left[ 178 {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s 179 + \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right] 180 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 176 181 \end{equation} 177 182 A additional term has appeared that take into account … … 187 192 Here we only consider the first component of the momentum equation, 188 193 the generalization to the second one being straightforward. 189 190 $\ $\newline % force a new ligne191 194 192 195 $\bullet$ \textbf{Total derivative in vector invariant form} … … 197 200 its expression in the curvilinear $s-$coordinate system: 198 201 199 \begin{subequations} 200 \begin{align*} {\begin{array}{*{20}l} 201 \left. \frac{D u}{D t} \right|_z 202 &= \left. {\frac{\partial u }{\partial t}} \right|_z 203 - \left. \zeta \right|_z v 204 + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z 205 + w \;\frac{\partial u}{\partial z} \\ 206 \\ 207 &= \left. {\frac{\partial u }{\partial t}} \right|_z 208 - \left. \zeta \right|_z v 209 + \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z 210 -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v 211 + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z 212 + w \;\frac{\partial u}{\partial z} \\ 213 % 214 \intertext{introducing the chain rule (\autoref{apdx:A_s_chain_rule}) } 215 % 216 &= \left. {\frac{\partial u }{\partial t}} \right|_z 217 - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s 218 -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right. 219 \left. {-\frac{e_1}{e_3}\sigma _1 \frac{\partial (e_2 \,v)}{\partial s} 220 +\frac{e_2}{e_3}\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v \\ 221 & \qquad \qquad \qquad \qquad 222 { + \frac{1}{2e_1} \left( \left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s 223 - \frac{e_1}{e_3}\sigma _1 \frac{\partial (u^2+v^2)}{\partial s} \right) 224 + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} } \\ 225 \\ 226 &= \left. {\frac{\partial u }{\partial t}} \right|_z 227 + \left. \zeta \right|_s \;v 228 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 229 &\qquad \qquad \qquad \quad 230 + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} 231 - \left[ {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s} 232 - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}} \right]\;v 233 - \frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ 234 \\ 235 &= \left. {\frac{\partial u }{\partial t}} \right|_z 236 + \left. \zeta \right|_s \;v 237 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 238 &\qquad \qquad \qquad \quad 239 + \frac{1}{e_3} \left[ {w\frac{\partial u}{\partial s} 240 +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s} 241 - \sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\ 242 \\ 243 &= \left. {\frac{\partial u }{\partial t}} \right|_z 244 + \left. \zeta \right|_s \;v 245 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 246 + \frac{1}{e_3} \left[ w - \sigma _2 v - \sigma _1 u \right] 247 \; \frac{\partial u}{\partial s} \\ 248 % 249 \intertext{Introducing $\omega$, the dia-a-surface velocity given by (\autoref{apdx:A_w_s}) } 250 % 251 &= \left. {\frac{\partial u }{\partial t}} \right|_z 252 + \left. \zeta \right|_s \;v 253 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 254 + \frac{1}{e_3 } \left( \omega - w_s \right) \frac{\partial u}{\partial s} \\ 255 \end{array} } 256 \end{align*} 202 \begin{subequations} 203 \begin{align*} 204 { 205 \begin{array}{*{20}l} 206 \left. \frac{D u}{D t} \right|_z 207 &= \left. {\frac{\partial u }{\partial t}} \right|_z 208 - \left. \zeta \right|_z v 209 + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z 210 + w \;\frac{\partial u}{\partial z} \\ \\ 211 &= \left. {\frac{\partial u }{\partial t}} \right|_z 212 - \left. \zeta \right|_z v 213 + \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z 214 -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v 215 + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z 216 + w \;\frac{\partial u}{\partial z} \\ 217 % 218 \intertext{introducing the chain rule (\autoref{apdx:A_s_chain_rule}) } 219 % 220 &= \left. {\frac{\partial u }{\partial t}} \right|_z 221 - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s 222 -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right. 223 \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s} 224 +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v \\ 225 & \qquad \qquad \qquad \qquad 226 { 227 + \frac{1}{2e_1} \left( \left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s 228 - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s} \right) 229 + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} 230 } \\ \\ 231 &= \left. {\frac{\partial u }{\partial t}} \right|_z 232 + \left. \zeta \right|_s \;v 233 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 234 &\qquad \qquad \qquad \quad 235 + \frac{w}{e_3 } \;\frac{\partial u}{\partial s} 236 - \left[ {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s} 237 - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}} \right]\;v 238 - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\ 239 &= \left. {\frac{\partial u }{\partial t}} \right|_z 240 + \left. \zeta \right|_s \;v 241 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 242 &\qquad \qquad \qquad \quad 243 + \frac{1}{e_3} \left[ {w\frac{\partial u}{\partial s} 244 +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s} 245 - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\ 246 &= \left. {\frac{\partial u }{\partial t}} \right|_z 247 + \left. \zeta \right|_s \;v 248 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 249 + \frac{1}{e_3} \left[ w - \sigma_2 v - \sigma_1 u \right] 250 \; \frac{\partial u}{\partial s} \\ 251 % 252 \intertext{Introducing $\omega$, the dia-a-surface velocity given by (\autoref{apdx:A_w_s}) } 253 % 254 &= \left. {\frac{\partial u }{\partial t}} \right|_z 255 + \left. \zeta \right|_s \;v 256 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 257 + \frac{1}{e_3 } \left( \omega - w_s \right) \frac{\partial u}{\partial s} \\ 258 \end{array} 259 } 260 \end{align*} 257 261 \end{subequations} 258 262 % 259 263 Applying the time derivative chain rule (first equation of (\autoref{apdx:A_s_chain_rule})) to $u$ and 260 264 using (\autoref{apdx:A_w_in_s}) provides the expression of the last term of the right hand side, 261 \begin{equation*} {\begin{array}{*{20}l} 262 w_s \;\frac{\partial u}{\partial s} 263 = \frac{\partial s}{\partial t} \; \frac{\partial u }{\partial s} 264 = \left. {\frac{\partial u }{\partial t}} \right|_s - \left. {\frac{\partial u }{\partial t}} \right|_z \quad , 265 \end{array} } 266 \end{equation*} 265 \[ 266 { 267 \begin{array}{*{20}l} 268 w_s \;\frac{\partial u}{\partial s} 269 = \frac{\partial s}{\partial t} \; \frac{\partial u }{\partial s} 270 = \left. {\frac{\partial u }{\partial t}} \right|_s - \left. {\frac{\partial u }{\partial t}} \right|_z \quad , 271 \end{array} 272 } 273 \] 267 274 leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative, 268 275 $i.e.$ the total $s-$coordinate time derivative : 269 \begin{align} \label{apdx:A_sco_Dt_vect} 270 \left. \frac{D u}{D t} \right|_s 271 = \left. {\frac{\partial u }{\partial t}} \right|_s 276 \begin{align} 277 \label{apdx:A_sco_Dt_vect} 278 \left. \frac{D u}{D t} \right|_s 279 = \left. {\frac{\partial u }{\partial t}} \right|_s 272 280 + \left. \zeta \right|_s \;v 273 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 274 + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} 281 + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s 282 + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} 275 283 \end{align} 276 284 Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in … … 278 286 This is not the case for the flux form as shown in next paragraph. 279 287 280 $\ $\newline % force a new ligne281 282 288 $\bullet$ \textbf{Total derivative in flux form} 283 289 284 290 Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish. 285 291 Following the procedure used to establish (\autoref{eq:PE_flux_form}), it can be transformed into : 286 % \begin{subequations}287 \begin{align*} {\begin{array}{*{20}l}288 \left. \frac{D u}{D t} \right|_s &= \left. {\frac{\partial u }{\partial t}} \right|_s 289 & - \zeta \;v290 + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}291 + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\292 \\ 293 &= \left. {\frac{\partial u }{\partial t}} \right|_s294 &+\frac{1}{e_1\;e_2} \left( \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}295 + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j} \right) 296 + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\297 \\298 &&- \,u \left[ \frac{1}{e_1 e_2 } \left( \frac{\partial(e_2 u)}{\partial i}299 300 + \frac{1}{e_3} \frac{\partial \omega}{\partial s} \right]\\301 \\ 302 &&- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}303 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 304 \end{array} } 292 % \begin{subequations} 293 \begin{align*} 294 { 295 \begin{array}{*{20}l} 296 \left. \frac{D u}{D t} \right|_s &= \left. {\frac{\partial u }{\partial t}} \right|_s 297 & - \zeta \;v 298 + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i} 299 + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\ 300 &= \left. {\frac{\partial u }{\partial t}} \right|_s 301 &+\frac{1}{e_1\;e_2} \left( \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i} 302 + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j} \right) 303 + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\ 304 &&- \,u \left[ \frac{1}{e_1 e_2 } \left( \frac{\partial(e_2 u)}{\partial i} 305 + \frac{\partial(e_1 v)}{\partial j} \right) 306 + \frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] \\ \\ 307 &&- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 308 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 309 \end{array} 310 } 305 311 \end{align*} 306 312 % 307 313 Introducing the vertical scale factor inside the horizontal derivative of the first two terms 308 314 ($i.e.$ the horizontal divergence), it becomes : 309 \begin{subequations} 310 \begin{align*} {\begin{array}{*{20}l} 311 %\begin{align*} {\begin{array}{*{20}l} 312 %{\begin{array}{*{20}l} 313 \left. \frac{D u}{D t} \right|_s 314 &= \left. {\frac{\partial u }{\partial t}} \right|_s 315 &+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u^2 )}{\partial i} 316 + \frac{\partial( e_1 e_3 \,u v )}{\partial j} 317 - e_2 u u \frac{\partial e_3}{\partial i} 318 - e_1 u v \frac{\partial e_3 }{\partial j} \right) 319 + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ 320 \\ 321 && - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i} 322 + \frac{\partial(e_1 e_3 \, v)}{\partial j} 323 - e_2 u \;\frac{\partial e_3 }{\partial i} 324 - e_1 v \;\frac{\partial e_3 }{\partial j} \right) 325 -\frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] \\ 326 \\ 327 && - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 328 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 329 \\ 330 &= \left. {\frac{\partial u }{\partial t}} \right|_s 331 &+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u\,u )}{\partial i} 332 + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j} \right) 333 + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ 334 \\ 335 && - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i} 336 + \frac{\partial(e_1 e_3 \, v)}{\partial j} \right) 337 -\frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] 338 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 339 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 340 % 341 \intertext {Introducing a more compact form for the divergence of the momentum fluxes, 342 and using (\autoref{apdx:A_sco_Continuity}), the $s-$coordinate continuity equation, 343 it becomes : } 344 % 345 &= \left. {\frac{\partial u }{\partial t}} \right|_s 346 &+ \left. \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) \right|_s 347 + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 315 \begin{align*} 316 { 317 \begin{array}{*{20}l} 318 % \begin{align*} {\begin{array}{*{20}l} 319 % {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s 320 &= \left. {\frac{\partial u }{\partial t}} \right|_s 321 &+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u^2 )}{\partial i} 322 + \frac{\partial( e_1 e_3 \,u v )}{\partial j} 323 - e_2 u u \frac{\partial e_3}{\partial i} 324 - e_1 u v \frac{\partial e_3 }{\partial j} \right) 325 + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\ 326 && - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i} 327 + \frac{\partial(e_1 e_3 \, v)}{\partial j} 328 - e_2 u \;\frac{\partial e_3 }{\partial i} 329 - e_1 v \;\frac{\partial e_3 }{\partial j} \right) 330 -\frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] \\ \\ 331 && - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 332 -u \;\frac{\partial e_1 }{\partial j} \right) \\ \\ 333 &= \left. {\frac{\partial u }{\partial t}} \right|_s 334 &+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u\,u )}{\partial i} 335 + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j} \right) 336 + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\ 337 && - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i} 338 + \frac{\partial(e_1 e_3 \, v)}{\partial j} \right) 339 -\frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] 340 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 341 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 342 % 343 \intertext {Introducing a more compact form for the divergence of the momentum fluxes, 344 and using (\autoref{apdx:A_sco_Continuity}), the $s-$coordinate continuity equation, 345 it becomes : } 346 % 347 &= \left. {\frac{\partial u }{\partial t}} \right|_s 348 &+ \left. \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) \right|_s 349 + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 348 350 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 349 -u \;\frac{\partial e_1 }{\partial j} \right) \\ 350 \end{array} } 351 -u \;\frac{\partial e_1 }{\partial j} \right) 352 \\ 353 \end{array} 354 } 351 355 \end{align*} 352 \end{subequations}353 356 which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative, 354 357 $i.e.$ the total $s-$coordinate time derivative in flux form: 355 \begin{flalign}\label{apdx:A_sco_Dt_flux} 356 \left. \frac{D u}{D t} \right|_s = \frac{1}{e_3} \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s 357 + \left. \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) \right|_s 358 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 359 -u \;\frac{\partial e_1 }{\partial j} \right) 358 \begin{flalign} 359 \label{apdx:A_sco_Dt_flux} 360 \left. \frac{D u}{D t} \right|_s = \frac{1}{e_3} \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s 361 + \left. \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) \right|_s 362 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 363 -u \;\frac{\partial e_1 }{\partial j} \right) 360 364 \end{flalign} 361 365 which is the total time derivative expressed in the curvilinear $s-$coordinate system. … … 365 369 the continuity equation. 366 370 367 $\ $\newline % force a new ligne368 369 371 $\bullet$ \textbf{horizontal pressure gradient} 370 372 371 373 The horizontal pressure gradient term can be transformed as follows: 372 \ begin{equation*}373 \begin{split}374 -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z375 & =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\376 & =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\377 &=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma_1378 \end{split}379 \ end{equation*}374 \[ 375 \begin{split} 376 -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z 377 & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\ 378 & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\ 379 &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 380 \end{split} 381 \] 380 382 Applying similar manipulation to the second component and 381 replacing $\sigma _1$ and $\sigma _2$ by their expression \autoref{apdx:A_s_slope}, it comes: 382 \begin{equation} \label{apdx:A_grad_p_1} 383 \begin{split} 384 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 385 &=-\frac{1}{\rho _o \,e_1 } \left( \left. {\frac{\partial p}{\partial i}} \right|_s 386 + g\;\rho \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) \\ 387 % 388 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 389 &=-\frac{1}{\rho _o \,e_2 } \left( \left. {\frac{\partial p}{\partial j}} \right|_s 390 + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) \\ 391 \end{split} 383 replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{apdx:A_s_slope}, it comes: 384 \begin{equation} 385 \label{apdx:A_grad_p_1} 386 \begin{split} 387 -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 388 &=-\frac{1}{\rho_o \,e_1 } \left( \left. {\frac{\partial p}{\partial i}} \right|_s 389 + g\;\rho \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) \\ 390 % 391 -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 392 &=-\frac{1}{\rho_o \,e_2 } \left( \left. {\frac{\partial p}{\partial j}} \right|_s 393 + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) \\ 394 \end{split} 392 395 \end{equation} 393 396 … … 400 403 and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$. 401 404 The pressure is then given by: 402 \ begin{equation*}403 \begin{split}404 p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \left( \rho_o \, d + 1 \right) \; e_3 \; dk \\405 &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + g \, \int_z^\eta e_3 \; dk406 \end{split}407 \ end{equation*}405 \[ 406 \begin{split} 407 p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \left( \rho_o \, d + 1 \right) \; e_3 \; dk \\ 408 &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + g \, \int_z^\eta e_3 \; dk 409 \end{split} 410 \] 408 411 Therefore, $p$ and $p_h'$ are linked through: 409 \begin{equation} \label{apdx:A_pressure} 410 p = \rho_o \; p_h' + g \, ( z + \eta ) 412 \begin{equation} 413 \label{apdx:A_pressure} 414 p = \rho_o \; p_h' + g \, ( z + \eta ) 411 415 \end{equation} 412 416 and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is: 413 \ begin{equation*}414 \frac{\partial p_h'}{\partial k} = - d \, g \, e_3415 \ end{equation*}417 \[ 418 \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 419 \] 416 420 417 421 Substituing \autoref{apdx:A_pressure} in \autoref{apdx:A_grad_p_1} and 418 422 using the definition of the density anomaly it comes the expression in two parts: 419 \begin{equation} \label{apdx:A_grad_p_2} 420 \begin{split} 421 -\frac{1}{\rho _o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 422 &=-\frac{1}{e_1 } \left( \left. {\frac{\partial p_h'}{\partial i}} \right|_s 423 + g\; d \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} \\ 424 % 425 -\frac{1}{\rho _o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 426 &=-\frac{1}{e_2 } \left( \left. {\frac{\partial p_h'}{\partial j}} \right|_s 427 + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) - \frac{g}{e_2 } \frac{\partial \eta}{\partial j}\\ 428 \end{split} 423 \begin{equation} 424 \label{apdx:A_grad_p_2} 425 \begin{split} 426 -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z 427 &=-\frac{1}{e_1 } \left( \left. {\frac{\partial p_h'}{\partial i}} \right|_s 428 + g\; d \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} \\ 429 % 430 -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z 431 &=-\frac{1}{e_2 } \left( \left. {\frac{\partial p_h'}{\partial j}} \right|_s 432 + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) - \frac{g}{e_2 } \frac{\partial \eta}{\partial j}\\ 433 \end{split} 429 434 \end{equation} 430 435 This formulation of the pressure gradient is characterised by the appearance of … … 437 442 and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration. 438 443 439 440 $\ $\newline % force a new ligne441 442 444 $\bullet$ \textbf{The other terms of the momentum equation} 443 445 … … 446 448 The form of the lateral physics is discussed in \autoref{apdx:B}. 447 449 448 449 $\ $\newline % force a new ligne450 451 450 $\bullet$ \textbf{Full momentum equation} 452 451 … … 454 453 the vector invariant momentum equation solved by the model has the same mathematical expression as 455 454 the one in a curvilinear $z-$coordinate, except for the pressure gradient term: 456 \begin{subequations} \label{apdx:A_dyn_vect} 457 \begin{multline} \label{apdx:A_PE_dyn_vect_u} 458 \frac{\partial u}{\partial t}= 459 + \left( {\zeta +f} \right)\,v 460 - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) 461 - \frac{1}{e_3} \omega \frac{\partial u}{\partial k} \\ 462 - \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right) 463 - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} 464 + D_u^{\vect{U}} + F_u^{\vect{U}} 465 \end{multline} 466 \begin{multline} \label{apdx:A_dyn_vect_v} 467 \frac{\partial v}{\partial t}= 468 - \left( {\zeta +f} \right)\,u 469 - \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left( u^2+v^2 \right) 470 - \frac{1}{e_3 } \omega \frac{\partial v}{\partial k} \\ 471 - \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right) 472 - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} 473 + D_v^{\vect{U}} + F_v^{\vect{U}} 474 \end{multline} 455 \begin{subequations} 456 \label{apdx:A_dyn_vect} 457 \begin{multline} 458 \label{apdx:A_PE_dyn_vect_u} 459 \frac{\partial u}{\partial t}= 460 + \left( {\zeta +f} \right)\,v 461 - \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right) 462 - \frac{1}{e_3} \omega \frac{\partial u}{\partial k} \\ 463 - \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right) 464 - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} 465 + D_u^{\vect{U}} + F_u^{\vect{U}} 466 \end{multline} 467 \begin{multline} 468 \label{apdx:A_dyn_vect_v} 469 \frac{\partial v}{\partial t}= 470 - \left( {\zeta +f} \right)\,u 471 - \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left( u^2+v^2 \right) 472 - \frac{1}{e_3 } \omega \frac{\partial v}{\partial k} \\ 473 - \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right) 474 - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} 475 + D_v^{\vect{U}} + F_v^{\vect{U}} 476 \end{multline} 475 477 \end{subequations} 476 478 whereas the flux form momentum equation differs from it by 477 479 the formulation of both the time derivative and the pressure gradient term: 478 \begin{subequations} \label{apdx:A_dyn_flux} 479 \begin{multline} \label{apdx:A_PE_dyn_flux_u} 480 \frac{1}{e_3} \frac{\partial \left( e_3\,u \right) }{\partial t} = 481 \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) 482 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 483 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,v \\ 484 - \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right) 485 - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} 486 + D_u^{\vect{U}} + F_u^{\vect{U}} 487 \end{multline} 488 \begin{multline} \label{apdx:A_dyn_flux_v} 489 \frac{1}{e_3}\frac{\partial \left( e_3\,v \right) }{\partial t}= 490 - \nabla \cdot \left( {{\rm {\bf U}}\,v} \right) 491 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 492 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,u \\ 493 - \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right) 494 - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} 495 + D_v^{\vect{U}} + F_v^{\vect{U}} 496 \end{multline} 480 \begin{subequations} 481 \label{apdx:A_dyn_flux} 482 \begin{multline} 483 \label{apdx:A_PE_dyn_flux_u} 484 \frac{1}{e_3} \frac{\partial \left( e_3\,u \right) }{\partial t} = 485 \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) 486 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 487 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,v \\ 488 - \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right) 489 - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} 490 + D_u^{\vect{U}} + F_u^{\vect{U}} 491 \end{multline} 492 \begin{multline} 493 \label{apdx:A_dyn_flux_v} 494 \frac{1}{e_3}\frac{\partial \left( e_3\,v \right) }{\partial t}= 495 - \nabla \cdot \left( {{\rm {\bf U}}\,v} \right) 496 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 497 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,u \\ 498 - \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right) 499 - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} 500 + D_v^{\vect{U}} + F_v^{\vect{U}} 501 \end{multline} 497 502 \end{subequations} 498 503 Both formulation share the same hydrostatic pressure balance expressed in terms of 499 504 hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$: 500 \begin{equation} \label{apdx:A_dyn_zph} 501 \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 505 \begin{equation} 506 \label{apdx:A_dyn_zph} 507 \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 502 508 \end{equation} 503 509 … … 519 525 regrouping the time derivative terms in the left hand side : 520 526 521 \begin{multline} \label{apdx:A_tracer} 522 \frac{1}{e_3} \frac{\partial \left( e_3 T \right)}{\partial t} 523 = -\frac{1}{e_1 \,e_2 \,e_3} 524 \left[ \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right) 525 + \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] \\ 526 + \frac{1}{e_3} \frac{\partial }{\partial k} \left( Tw \right) 527 + D^{T} +F^{T} 527 \begin{multline} 528 \label{apdx:A_tracer} 529 \frac{1}{e_3} \frac{\partial \left( e_3 T \right)}{\partial t} 530 = -\frac{1}{e_1 \,e_2 \,e_3} 531 \left[ \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right) 532 + \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] \\ 533 + \frac{1}{e_3} \frac{\partial }{\partial k} \left( Tw \right) 534 + D^{T} +F^{T} 528 535 \end{multline} 529 530 536 531 537 The expression for the advection term is a straight consequence of (A.4), 532 538 the expression of the 3D divergence in the $s-$coordinates established above. 533 539 540 \biblio 541 534 542 \end{document} -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_B.tex
r10368 r10419 1 \documentclass[../tex_main/NEMO_manual]{subfiles} 1 \documentclass[../main/NEMO_manual]{subfiles} 2 2 3 \begin{document} 3 4 % ================================================================ 4 % Chapter ÑAppendix B : Diffusive Operators5 % Chapter Appendix B : Diffusive Operators 5 6 % ================================================================ 6 7 \chapter{Appendix B : Diffusive Operators} 7 8 \label{apdx:B} 9 8 10 \minitoc 9 11 10 11 12 \newpage 12 $\ $\newline % force a new ligne13 13 14 14 % ================================================================ … … 19 19 20 20 \subsubsection*{In z-coordinates} 21 21 22 In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by: 22 \begin{eqnarray} \label{apdx:B1} 23 &D^T = \frac{1}{e_1 \, e_2} \left[ 24 \left. \frac{\partial}{\partial i} \left( \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z \right) \right|_z \right. 25 \left. 26 + \left. \frac{\partial}{\partial j} \left( \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z \right) \right|_z \right] 27 + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right) 28 \end{eqnarray} 23 \begin{align} 24 \label{apdx:B1} 25 &D^T = \frac{1}{e_1 \, e_2} \left[ 26 \left. \frac{\partial}{\partial i} \left( \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z \right) \right|_z \right. 27 \left. 28 + \left. \frac{\partial}{\partial j} \left( \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z \right) \right|_z \right] 29 + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right) 30 \end{align} 29 31 30 32 \subsubsection*{In generalized vertical coordinates} 33 31 34 In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{apdx:A_s_slope} and 32 35 the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$. 33 36 The diffusion operator is given by: 34 37 35 \begin{equation} \label{apdx:B2} 36 D^T = \left. \nabla \right|_s \cdot 37 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ 38 \;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c} 39 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\ 40 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\ 41 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1 42 ^2+\sigma _2 ^2} \hfill \\ 43 \end{array} }} \right) 38 \begin{equation} 39 \label{apdx:B2} 40 D^T = \left. \nabla \right|_s \cdot 41 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ 42 \;\;\text{where} \;\Re =\left( {{ 43 \begin{array}{*{20}c} 44 1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\ 45 0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\ 46 {-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1 47 ^2+\sigma_2 ^2} \hfill \\ 48 \end{array} 49 }} \right) 44 50 \end{equation} 45 51 or in expanded form: 46 \begin{subequations} 47 \begin{align*} {\begin{array}{*{20}l} 48 D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left. 49 {\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 50 &\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 51 &\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. 52 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right] 53 \end{array} } 52 \begin{align*} 53 { 54 \begin{array}{*{20}l} 55 D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left. 56 {\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 57 &\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma_2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 58 &\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma_1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. 59 \left. {\left. {+\left( {\varepsilon +\sigma_1^2+\sigma_2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right] 60 \end{array} 61 } 54 62 \end{align*} 55 \end{subequations}56 63 57 64 Equation \autoref{apdx:B2} is obtained from \autoref{apdx:B1} without any additional assumption. … … 64 71 any loss of generality: 65 72 66 \begin{subequations} 67 \begin{align*} {\begin{array}{*{20}l} 68 D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z 69 +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ 70 \\ 71 % 72 &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s 73 -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 74 & \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right] 75 \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \qquad \qquad \qquad \\ 76 \\ 77 % 78 &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 79 & \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 80 & \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\ 81 \end{array} } \\ 82 % 83 {\begin{array}{*{20}l} 84 \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:} 85 % 86 & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 87 & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 88 & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 89 \\ 90 &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 91 & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}} \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 92 & \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 93 & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} 94 \end{array} } \\ 95 {\begin{array}{*{20}l} 96 % 97 \intertext{using the same remark as just above, it becomes:} 98 % 99 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 100 & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 101 & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 102 & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] } 103 \end{array} } \\ 104 {\begin{array}{*{20}l} 105 % 106 \intertext{Since the horizontal scale factors do not depend on the vertical coordinate, 107 the last term of the first line and the first term of the last line cancel, while 108 the second line reduces to a single vertical derivative, so it becomes:} 109 % 110 & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 111 & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} 112 \\ 113 % 114 \intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} 115 \end{array} } \\ 116 % 117 {\frac{1}{e_1\,e_2\,e_3}} 118 \left( {{\begin{array}{*{30}c} 119 {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\ 120 {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\ 121 \end{array}}}\right) 122 \cdot \left[ {A^{lT} 123 \left( {{\begin{array}{*{30}c} 124 {1} \hfill & {-\sigma_1 } \hfill \\ 125 {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\ 126 \end{array} }} \right) 127 \cdot 128 \left( {{\begin{array}{*{30}c} 129 {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\ 130 {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\ 131 \end{array}}} \right) \left( T \right)} \right] 73 \begin{align*} 74 { 75 \begin{array}{*{20}l} 76 D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z 77 +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\ 78 % 79 &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s 80 -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 81 & \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right] 82 \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \qquad \qquad \qquad \\ \\ 83 % 84 &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 85 & \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 86 & \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\ 87 \end{array} 88 } \\ 89 % 90 { 91 \begin{array}{*{20}l} 92 \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, it becomes:} 93 % 94 & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 95 & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 96 & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 97 \\ 98 &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 99 & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}} \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 100 & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 101 & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} 102 \end{array} 103 } \\ 104 { 105 \begin{array}{*{20}l} 106 % 107 \intertext{using the same remark as just above, it becomes:} 108 % 109 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 110 & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 111 & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 112 & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] } 113 \end{array} 114 } \\ 115 { 116 \begin{array}{*{20}l} 117 % 118 \intertext{Since the horizontal scale factors do not depend on the vertical coordinate, 119 the last term of the first line and the first term of the last line cancel, while 120 the second line reduces to a single vertical derivative, so it becomes:} 121 % 122 & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 123 & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 124 % 125 \intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} 126 \end{array} 127 } \\ 128 % 129 {\frac{1}{e_1\,e_2\,e_3}} 130 \left( {{ 131 \begin{array}{*{30}c} 132 {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\ 133 {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\ 134 \end{array}}} 135 \right) 136 \cdot \left[ {A^{lT} 137 \left( {{ 138 \begin{array}{*{30}c} 139 {1} \hfill & {-\sigma_1 } \hfill \\ 140 {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\ 141 \end{array} 142 }} \right) 143 \cdot 144 \left( {{ 145 \begin{array}{*{30}c} 146 {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\ 147 {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\ 148 \end{array} 149 }} \right) \left( T \right)} \right] 132 150 \end{align*} 133 \end{subequations} 134 \addtocounter{equation}{-2} 151 %\addtocounter{equation}{-2} 135 152 136 153 % ================================================================ … … 147 164 takes the following form \citep{Redi_JPO82}: 148 165 149 \begin{equation} \label{apdx:B3} 150 \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)} 151 \left[ {{\begin{array}{*{20}c} 152 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\ 153 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\ 154 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 155 \end{array} }} \right] 166 \begin{equation} 167 \label{apdx:B3} 168 \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)} 169 \left[ {{ 170 \begin{array}{*{20}c} 171 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\ 172 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\ 173 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 174 \end{array} 175 }} \right] 156 176 \end{equation} 157 177 where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials: 158 \ begin{equation*}159 a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}160 \qquad , \qquad161 a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}162 \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}163 \ end{equation*}178 \[ 179 a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 180 \qquad , \qquad 181 a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 182 \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 183 \] 164 184 165 185 In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, 166 186 so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}: 167 \begin{subequations} \label{apdx:B4} 168 \begin{equation} \label{apdx:B4a} 169 {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re = 170 \left[ {{\begin{array}{*{20}c} 171 1 \hfill & 0 \hfill & {-a_1 } \hfill \\ 172 0 \hfill & 1 \hfill & {-a_2 } \hfill \\ 173 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 174 \end{array} }} \right], 175 \end{equation} 176 and the iso/dianeutral diffusive operator in $z$-coordinates is then 177 \begin{equation}\label{apdx:B4b} 178 D^T = \left. \nabla \right|_z \cdot 179 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T \right]. \\ 180 \end{equation} 187 \begin{subequations} 188 \label{apdx:B4} 189 \begin{equation} 190 \label{apdx:B4a} 191 {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re = 192 \left[ {{ 193 \begin{array}{*{20}c} 194 1 \hfill & 0 \hfill & {-a_1 } \hfill \\ 195 0 \hfill & 1 \hfill & {-a_2 } \hfill \\ 196 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 197 \end{array} 198 }} \right], 199 \end{equation} 200 and the iso/dianeutral diffusive operator in $z$-coordinates is then 201 \begin{equation} 202 \label{apdx:B4b} 203 D^T = \left. \nabla \right|_z \cdot 204 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T \right]. \\ 205 \end{equation} 181 206 \end{subequations} 182 183 207 184 208 Physically, the full tensor \autoref{apdx:B3} represents strong isoneutral diffusion on a plane parallel to … … 192 216 Written out explicitly, 193 217 194 \begin{multline} \label{apdx:B_ldfiso} 195 D^T=\frac{1}{e_1 e_2 }\left\{ 196 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]} 197 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\ 198 \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\ 218 \begin{multline} 219 \label{apdx:B_ldfiso} 220 D^T=\frac{1}{e_1 e_2 }\left\{ 221 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]} 222 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\ 223 \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\ 199 224 \end{multline} 200 201 225 202 226 The isopycnal diffusion operator \autoref{apdx:B4}, … … 204 228 The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes. 205 229 Let us demonstrate the second one: 206 \ begin{equation*}207 \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv208 209 \ end{equation*}230 \[ 231 \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv 232 = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv, 233 \] 210 234 and since 211 \begin{subequations} 212 \begin{align*} {\begin{array}{*{20}l} 213 \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 214 \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1 215 \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left( 216 {\frac{\partial T}{\partial j}} \right)^2} \right. \\ 217 &\qquad \qquad \qquad 218 { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\ 219 &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial 220 T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial 221 j}-a_2 \frac{\partial T}{\partial k}} \right)^2} 222 +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right] \\ 223 & \geq 0 224 \end{array} } 235 \begin{align*} 236 { 237 \begin{array}{*{20}l} 238 \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 239 \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1 240 \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left( 241 {\frac{\partial T}{\partial j}} \right)^2} \right. \\ 242 &\qquad \qquad \qquad 243 { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\ 244 &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial 245 T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial 246 j}-a_2 \frac{\partial T}{\partial k}} \right)^2} 247 +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right] \\ 248 & \geq 0 249 \end{array} 250 } 225 251 \end{align*} 226 \end{subequations} 227 \addtocounter{equation}{-1} 252 %\addtocounter{equation}{-1} 228 253 the property becomes obvious. 229 254 … … 236 261 The resulting operator then takes the simple form 237 262 238 \begin{equation} \label{apdx:B_ldfiso_s} 239 D^T = \left. \nabla \right|_s \cdot 240 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ 241 \;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c} 242 1 \hfill & 0 \hfill & {-r _1 } \hfill \\ 243 0 \hfill & 1 \hfill & {-r _2 } \hfill \\ 244 {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1 245 ^2+r _2 ^2} \hfill \\ 246 \end{array} }} \right), 263 \begin{equation} 264 \label{apdx:B_ldfiso_s} 265 D^T = \left. \nabla \right|_s \cdot 266 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\ 267 \;\;\text{where} \;\Re =\left( {{ 268 \begin{array}{*{20}c} 269 1 \hfill & 0 \hfill & {-r _1 } \hfill \\ 270 0 \hfill & 1 \hfill & {-r _2 } \hfill \\ 271 {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1 272 ^2+r _2 ^2} \hfill \\ 273 \end{array} 274 }} \right), 247 275 \end{equation} 248 276 249 277 where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, 250 278 relative to $s$-coordinate surfaces: 251 \ begin{equation*}252 r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}253 \qquad , \qquad254 r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}255 \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.256 \ end{equation*}279 \[ 280 r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1} 281 \qquad , \qquad 282 r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 283 \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}. 284 \] 257 285 258 286 To prove \autoref{apdx:B5} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious. … … 260 288 the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as 261 289 262 \begin{equation} \label{apdx:B5} 263 D^T = \left. \nabla \right|_\rho \cdot 264 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T \right] \\ 265 \;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c} 266 1 \hfill & 0 \hfill &0 \hfill \\ 267 0 \hfill & 1 \hfill & 0 \hfill \\ 268 0 \hfill & 0 \hfill & \varepsilon \hfill \\ 269 \end{array} }} \right). 290 \begin{equation} 291 \label{apdx:B5} 292 D^T = \left. \nabla \right|_\rho \cdot 293 \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T \right] \\ 294 \;\;\text{where} \;\Re =\left( {{ 295 \begin{array}{*{20}c} 296 1 \hfill & 0 \hfill &0 \hfill \\ 297 0 \hfill & 1 \hfill & 0 \hfill \\ 298 0 \hfill & 0 \hfill & \varepsilon \hfill \\ 299 \end{array} 300 }} \right). 270 301 \end{equation} 271 302 Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives … … 289 320 to the horizontal velocity vector: 290 321 \begin{align*} 291 \Delta {\textbf{U}}_h 292 &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)- 293 \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ 294 \\ 295 &=\left( {{\begin{array}{*{20}c} 296 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\ 297 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\ 298 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\ 299 \end{array} }} \right)-\left( {{\begin{array}{*{20}c} 300 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3 301 }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 302 u}{\partial k}} \right)} \hfill \\ 303 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3 304 }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 305 }{\partial i}} \hfill \\ 306 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2 307 }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 308 j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 309 \hfill \\ 310 \end{array} }} \right) 311 \\ 312 \\ 313 &=\left( {{\begin{array}{*{20}c} 314 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\ 315 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\ 316 0 \\ 317 \end{array} }} \right) 318 +\frac{1}{e_3 } 319 \left( {{\begin{array}{*{20}c} 320 {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\ 321 {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\ 322 {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\ 323 \end{array} }} \right) 322 \Delta {\textbf{U}}_h 323 &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)- 324 \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\ 325 &=\left( {{ 326 \begin{array}{*{20}c} 327 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\ 328 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\ 329 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\ 330 \end{array} 331 }} \right) 332 -\left( {{ 333 \begin{array}{*{20}c} 334 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3 335 }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 336 u}{\partial k}} \right)} \hfill \\ 337 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3 338 }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 339 }{\partial i}} \hfill \\ 340 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2 341 }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 342 j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 343 \hfill \\ 344 \end{array} 345 }} \right) \\ \\ 346 &=\left( {{ 347 \begin{array}{*{20}c} 348 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\ 349 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\ 350 0 \\ 351 \end{array} 352 }} \right) 353 +\frac{1}{e_3 } 354 \left( {{ 355 \begin{array}{*{20}c} 356 {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\ 357 {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\ 358 {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\ 359 \end{array} 360 }} \right) 324 361 \end{align*} 325 362 Using \autoref{eq:PE_div}, the definition of the horizontal divergence, 326 363 the third componant of the second vector is obviously zero and thus : 327 \ begin{equation*}328 \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)329 \ end{equation*}364 \[ 365 \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) 366 \] 330 367 331 368 Note that this operator ensures a full separation between … … 335 372 The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in 336 373 the $z$-coordinate therefore takes the following form: 337 \begin{equation} \label{apdx:B_Lap_U} 338 {\textbf{D}}^{\textbf{U}} = 339 \nabla _h \left( {A^{lm}\;\chi } \right) 340 - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) 341 + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } 342 \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 374 \begin{equation} 375 \label{apdx:B_Lap_U} 376 { 377 \textbf{D}}^{\textbf{U}} = 378 \nabla _h \left( {A^{lm}\;\chi } \right) 379 - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) 380 + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } 381 \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 343 382 \end{equation} 344 383 that is, in expanded form: 345 384 \begin{align*} 346 D^{\textbf{U}}_u347 & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi } \right)}{\partial i}348 349 350 D^{\textbf{U}}_v351 & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j}352 353 385 D^{\textbf{U}}_u 386 & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi } \right)}{\partial i} 387 -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j} 388 +\frac{1}{e_3} \frac{\partial u}{\partial k} \\ 389 D^{\textbf{U}}_v 390 & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j} 391 +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i} 392 +\frac{1}{e_3} \frac{\partial v}{\partial k} 354 393 \end{align*} 355 394 … … 360 399 Generally, \autoref{apdx:B_Lap_U} is used in both $z$- and $s$-coordinate systems, 361 400 that is a Laplacian diffusion is applied on momentum along the coordinate directions. 401 402 \biblio 403 362 404 \end{document} -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_C.tex
r10368 r10419 1 \documentclass[../tex_main/NEMO_manual]{subfiles} 1 \documentclass[../main/NEMO_manual]{subfiles} 2 2 3 \begin{document} 3 4 % ================================================================ … … 6 7 \chapter{Discrete Invariants of the Equations} 7 8 \label{apdx:C} 9 8 10 \minitoc 9 11 … … 14 16 15 17 \newpage 16 $\ $\newline % force a new ligne17 18 18 19 % ================================================================ … … 25 26 26 27 fluxes at the faces of a $T$-box: 27 \ begin{equation*}28 U = e_{2u}\,e_{3u}\; u \qquad V = e_{1v}\,e_{3v}\; v \qquad W = e_{1w}\,e_{2w}\; \omega \\ 29 \ end{equation*}28 \[ 29 U = e_{2u}\,e_{3u}\; u \qquad V = e_{1v}\,e_{3v}\; v \qquad W = e_{1w}\,e_{2w}\; \omega 30 \] 30 31 31 32 volume of cells at $u$-, $v$-, and $T$-points: 32 \ begin{equation*}33 b_u = e_{1u}\,e_{2u}\,e_{3u} \qquad b_v = e_{1v}\,e_{2v}\,e_{3v} \qquad b_t = e_{1t}\,e_{2t}\,e_{3t} \\ 34 \ end{equation*}33 \[ 34 b_u = e_{1u}\,e_{2u}\,e_{3u} \qquad b_v = e_{1v}\,e_{2v}\,e_{3v} \qquad b_t = e_{1t}\,e_{2t}\,e_{3t} 35 \] 35 36 36 37 partial derivative notation: $\partial_\bullet = \frac{\partial}{\partial \bullet}$ … … 42 43 ($i.e.$ $s(k_s) = \eta$ and $s(k_b)=-H$, where $H$ is the bottom depth). 43 44 \begin{flalign*} 44 z(k) = \eta - \int\limits_{\tilde{k}=k}^{\tilde{k}=k_s} e_3(\tilde{k}) \;d\tilde{k}45 = \eta - \int\limits_k^{k_s} e_3 \;d\tilde{k}45 z(k) = \eta - \int\limits_{\tilde{k}=k}^{\tilde{k}=k_s} e_3(\tilde{k}) \;d\tilde{k} 46 = \eta - \int\limits_k^{k_s} e_3 \;d\tilde{k} 46 47 \end{flalign*} 47 48 48 49 Continuity equation with the above notation: 49 \ begin{equation*}50 \frac{1}{e_{3t}} \partial_t (e_{3t})+ \frac{1}{b_t} \biggl\{ \delta_i [U] + \delta_j [V] + \delta_k [W] \biggr\} = 051 \ end{equation*}50 \[ 51 \frac{1}{e_{3t}} \partial_t (e_{3t})+ \frac{1}{b_t} \biggl\{ \delta_i [U] + \delta_j [V] + \delta_k [W] \biggr\} = 0 52 \] 52 53 53 54 A quantity, $Q$ is conserved when its domain averaged time change is zero, that is when: 54 \ begin{equation*}55 \partial_t \left( \int_D{ Q\;dv } \right) =056 \ end{equation*}55 \[ 56 \partial_t \left( \int_D{ Q\;dv } \right) =0 57 \] 57 58 Noting that the coordinate system used .... blah blah 58 \ begin{equation*}59 \partial_t \left( \int_D {Q\;dv} \right) = \int_D { \partial_t \left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk }60 61 \ end{equation*}59 \[ 60 \partial_t \left( \int_D {Q\;dv} \right) = \int_D { \partial_t \left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk } 61 = \int_D { \frac{1}{e_3} \partial_t \left( e_3 \, Q \right) dv } =0 62 \] 62 63 equation of evolution of $Q$ written as 63 64 the time evolution of the vertical content of $Q$ like for tracers, or momentum in flux form, 64 65 the quadratic quantity $\frac{1}{2}Q^2$ is conserved when: 65 66 \begin{flalign*} 66 \partial_t \left( \int_D{ \frac{1}{2} \,Q^2\;dv } \right)67 =& \int_D{ \frac{1}{2} \partial_t \left( \frac{1}{e_3}\left( e_3 \, Q \right)^2 \right) e_1e_2\;di\,dj\,dk } \\68 =& \int_D { Q \;\partial_t\left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk } 69 - \int_D { \frac{1}{2} Q^2 \,\partial_t (e_3) \;e_1e_2\;di\,dj\,dk } \\67 \partial_t \left( \int_D{ \frac{1}{2} \,Q^2\;dv } \right) 68 =& \int_D{ \frac{1}{2} \partial_t \left( \frac{1}{e_3}\left( e_3 \, Q \right)^2 \right) e_1e_2\;di\,dj\,dk } \\ 69 =& \int_D { Q \;\partial_t\left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk } 70 - \int_D { \frac{1}{2} Q^2 \,\partial_t (e_3) \;e_1e_2\;di\,dj\,dk } \\ 70 71 \end{flalign*} 71 72 that is in a more compact form : 72 \begin{flalign} \label{eq:Q2_flux} 73 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 74 =& \int_D { \frac{Q}{e_3} \partial_t \left( e_3 \, Q \right) dv } 73 \begin{flalign} 74 \label{eq:Q2_flux} 75 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 76 =& \int_D { \frac{Q}{e_3} \partial_t \left( e_3 \, Q \right) dv } 75 77 - \frac{1}{2} \int_D { \frac{Q^2}{e_3} \partial_t (e_3) \;dv } 76 78 \end{flalign} … … 78 80 the quadratic quantity $\frac{1}{2}Q^2$ is conserved when: 79 81 \begin{flalign*} 80 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right)81 =& \int_D { \frac{1}{2} \partial_t \left( e_3 \, Q^2 \right) \;e_1e_2\;di\,dj\,dk } \\82 =& \int_D { Q \partial_t Q \;e_1e_2e_3\;di\,dj\,dk } 83 + \int_D { \frac{1}{2} Q^2 \, \partial_t e_3 \;e_1e_2\;di\,dj\,dk } \\82 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 83 =& \int_D { \frac{1}{2} \partial_t \left( e_3 \, Q^2 \right) \;e_1e_2\;di\,dj\,dk } \\ 84 =& \int_D { Q \partial_t Q \;e_1e_2e_3\;di\,dj\,dk } 85 + \int_D { \frac{1}{2} Q^2 \, \partial_t e_3 \;e_1e_2\;di\,dj\,dk } \\ 84 86 \end{flalign*} 85 87 that is in a more compact form: 86 \begin{flalign} \label{eq:Q2_vect} 87 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 88 =& \int_D { Q \,\partial_t Q \;dv } 89 + \frac{1}{2} \int_D { \frac{1}{e_3} Q^2 \partial_t e_3 \;dv } 88 \begin{flalign} 89 \label{eq:Q2_vect} 90 \partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 91 =& \int_D { Q \,\partial_t Q \;dv } 92 + \frac{1}{2} \int_D { \frac{1}{e_3} Q^2 \partial_t e_3 \;dv } 90 93 \end{flalign} 91 92 94 93 95 % ================================================================ … … 97 99 \label{sec:C.1} 98 100 99 100 101 The discretization of pimitive equation in $s$-coordinate ($i.e.$ time and space varying vertical coordinate) 101 102 must be chosen so that the discrete equation of the model satisfy integral constrains on energy and enstrophy. 102 103 103 104 104 Let us first establish those constraint in the continuous world. 105 105 The total energy ($i.e.$ kinetic plus potential energies) is conserved: 106 \begin{flalign} \label{eq:Tot_Energy} 106 \begin{flalign} 107 \label{eq:Tot_Energy} 107 108 \partial_t \left( \int_D \left( \frac{1}{2} {\textbf{U}_h}^2 + \rho \, g \, z \right) \;dv \right) = & 0 108 109 \end{flalign} … … 118 119 \autoref{eq:Tot_Energy} for the latter form leads to: 119 120 120 \begin{subequations} \label{eq:E_tot} 121 121 % \label{eq:E_tot} 122 122 advection term (vector invariant form): 123 \begin{equation} \label{eq:E_tot_vect_vor_1} 124 \int\limits_D \zeta \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\ 125 \end{equation} 123 \[ 124 % \label{eq:E_tot_vect_vor_1} 125 \int\limits_D \zeta \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\ 126 \] 126 127 % 127 \ begin{equation} \label{eq:E_tot_vect_adv_1}128 \int\limits_D \textbf{U}_h \cdot \nabla_h \left( \frac{{\textbf{U}_h}^2}{2} \right) dv129 + \int\limits_D \textbf{U}_h \cdot \nabla_z \textbf{U}_h \;dv 130 - \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0 \\ 131 \end{equation} 132 128 \[ 129 % \label{eq:E_tot_vect_adv_1} 130 \int\limits_D \textbf{U}_h \cdot \nabla_h \left( \frac{{\textbf{U}_h}^2}{2} \right) dv 131 + \int\limits_D \textbf{U}_h \cdot \nabla_z \textbf{U}_h \;dv 132 - \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0 133 \] 133 134 advection term (flux form): 134 \begin{equation} \label{eq:E_tot_flux_metric} 135 \int\limits_D \frac{1} {e_1 e_2 } \left( v \,\partial_i e_2 - u \,\partial_j e_1 \right)\; 136 \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\ 137 \end{equation} 138 139 \begin{equation} \label{eq:E_tot_flux_adv} 140 \int\limits_D \textbf{U}_h \cdot \left( {{\begin{array} {*{20}c} 141 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 142 \nabla \cdot \left( \textbf{U}\,v \right) \hfill \\ \end{array}} } \right) \;dv 143 + \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0 \\ 144 \end{equation} 145 135 \[ 136 % \label{eq:E_tot_flux_metric} 137 \int\limits_D \frac{1} {e_1 e_2 } \left( v \,\partial_i e_2 - u \,\partial_j e_1 \right)\; 138 \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 139 \] 140 \[ 141 % \label{eq:E_tot_flux_adv} 142 \int\limits_D \textbf{U}_h \cdot \left( {{ 143 \begin{array} {*{20}c} 144 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 145 \nabla \cdot \left( \textbf{U}\,v \right) \hfill 146 \end{array}} 147 } \right) \;dv 148 + \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0 149 \] 146 150 coriolis term 147 \ begin{equation} \label{eq:E_tot_cor}148 \int\limits_D f \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\ 149 \end{equation} 150 151 \[ 152 % \label{eq:E_tot_cor} 153 \int\limits_D f \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 154 \] 151 155 pressure gradient: 152 \begin{equation} \label{eq:E_tot_pg_1} 153 - \int\limits_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 154 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 155 + \int\limits_D g\, \rho \; \partial_t z \;dv \\ 156 \end{equation} 156 \[ 157 % \label{eq:E_tot_pg_1} 158 - \int\limits_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 159 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 160 + \int\limits_D g\, \rho \; \partial_t z \;dv 161 \] 162 163 where $\nabla_h = \left. \nabla \right|_k$ is the gradient along the $s$-surfaces. 164 165 blah blah.... 166 167 The prognostic ocean dynamics equation can be summarized as follows: 168 \[ 169 \text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} } 170 {\text{COR} + \text{ADV} } 171 + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF} 172 \] 173 174 Vector invariant form: 175 % \label{eq:E_tot_vect} 176 \[ 177 % \label{eq:E_tot_vect_vor_2} 178 \int\limits_D \textbf{U}_h \cdot \text{VOR} \;dv = 0 179 \] 180 \[ 181 % \label{eq:E_tot_vect_adv_2} 182 \int\limits_D \textbf{U}_h \cdot \text{KEG} \;dv 183 + \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv 184 - \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0 185 \] 186 \[ 187 % \label{eq:E_tot_pg_2} 188 - \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv 189 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 190 + \int\limits_D g\, \rho \; \partial_t z \;dv 191 \] 192 193 Flux form: 194 \begin{subequations} 195 \label{eq:E_tot_flux} 196 \[ 197 % \label{eq:E_tot_flux_metric_2} 198 \int\limits_D \textbf{U}_h \cdot \text {COR} \; dv = 0 199 \] 200 \[ 201 % \label{eq:E_tot_flux_adv_2} 202 \int\limits_D \textbf{U}_h \cdot \text{ADV} \;dv 203 + \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0 204 \] 205 \begin{equation} 206 \label{eq:E_tot_pg_3} 207 - \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv 208 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 209 + \int\limits_D g\, \rho \; \partial_t z \;dv 210 \end{equation} 157 211 \end{subequations} 158 159 where $\nabla_h = \left. \nabla \right|_k$ is the gradient along the $s$-surfaces.160 161 blah blah....162 $\ $\newline % force a new ligne163 The prognostic ocean dynamics equation can be summarized as follows:164 \begin{equation*}165 \text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }166 {\text{COR} + \text{ADV} }167 + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}168 \end{equation*}169 $\ $\newline % force a new ligne170 171 Vector invariant form:172 \begin{subequations} \label{eq:E_tot_vect}173 \begin{equation} \label{eq:E_tot_vect_vor_2}174 \int\limits_D \textbf{U}_h \cdot \text{VOR} \;dv = 0 \\175 \end{equation}176 \begin{equation} \label{eq:E_tot_vect_adv_2}177 \int\limits_D \textbf{U}_h \cdot \text{KEG} \;dv178 + \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv179 - \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0 \\180 \end{equation}181 \begin{equation} \label{eq:E_tot_pg_2}182 - \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv183 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv184 + \int\limits_D g\, \rho \; \partial_t z \;dv \\185 \end{equation}186 \end{subequations}187 188 Flux form:189 \begin{subequations} \label{eq:E_tot_flux}190 \begin{equation} \label{eq:E_tot_flux_metric_2}191 \int\limits_D \textbf{U}_h \cdot \text {COR} \; dv = 0 \\192 \end{equation}193 \begin{equation} \label{eq:E_tot_flux_adv_2}194 \int\limits_D \textbf{U}_h \cdot \text{ADV} \;dv195 + \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0 \\196 \end{equation}197 \begin{equation} \label{eq:E_tot_pg_3}198 - \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv199 = - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv200 + \int\limits_D g\, \rho \; \partial_t z \;dv \\201 \end{equation}202 \end{subequations}203 204 205 $\ $\newline % force a new ligne206 207 212 208 213 \autoref{eq:E_tot_pg_3} is the balance between the conversion KE to PE and PE to KE. 209 214 Indeed the left hand side of \autoref{eq:E_tot_pg_3} can be transformed as follows: 210 215 \begin{flalign*} 211 \partial_t \left( \int\limits_D { \rho \, g \, z \;dv} \right) 212 &= + \int\limits_D \frac{1}{e_3} \partial_t (e_3\,\rho) \;g\;z\;\;dv213 214 &= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv215 216 &= + \int\limits_D \rho \,g \left( \textbf {U}_h \cdot \nabla_h z + \omega \frac{1}{e_3} \partial_k z \right) \;dv217 218 &= + \int\limits_D \rho \,g \left( \omega + \partial_t z + \textbf {U}_h \cdot \nabla_h z \right) \;dv &&&\\219 &=+ \int\limits_D g\, \rho \; w \; dv &&&\\216 \partial_t \left( \int\limits_D { \rho \, g \, z \;dv} \right) 217 &= + \int\limits_D \frac{1}{e_3} \partial_t (e_3\,\rho) \;g\;z\;\;dv 218 + \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\ 219 &= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 220 + \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\ 221 &= + \int\limits_D \rho \,g \left( \textbf {U}_h \cdot \nabla_h z + \omega \frac{1}{e_3} \partial_k z \right) \;dv 222 + \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\ 223 &= + \int\limits_D \rho \,g \left( \omega + \partial_t z + \textbf {U}_h \cdot \nabla_h z \right) \;dv &&&\\ 224 &=+ \int\limits_D g\, \rho \; w \; dv &&&\\ 220 225 \end{flalign*} 221 226 where the last equality is obtained by noting that the brackets is exactly the expression of $w$, … … 224 229 The left hand side of \autoref{eq:E_tot_pg_3} can be transformed as follows: 225 230 \begin{flalign*} 226 - \int\limits_D \left. \nabla p \right|_z & \cdot \textbf{U}_h \;dv 227 = - \int\limits_D \left( \nabla_h p + \rho \, g \nabla_h z \right) \cdot \textbf{U}_h \;dv &&&\\ 228 \allowdisplaybreaks 229 &= - \int\limits_D \nabla_h p \cdot \textbf{U}_h \;dv - \int\limits_D \rho \, g \, \nabla_h z \cdot \textbf{U}_h \;dv &&&\\ 230 \allowdisplaybreaks 231 &= +\int\limits_D p \,\nabla_h \cdot \textbf{U}_h \;dv + \int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 232 \allowdisplaybreaks 233 &= -\int\limits_D p \left( \frac{1}{e_3} \partial_t e_3 + \frac{1}{e_3} \partial_k \omega \right) \;dv 234 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 235 \allowdisplaybreaks 236 &= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 237 +\int\limits_D \frac{1}{e_3} \partial_k p\; \omega \;dv 238 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 239 &= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 240 -\int\limits_D \rho \, g \, \omega \;dv 241 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 242 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \; \;dv 243 - \int\limits_D \rho \, g \, w \;dv 244 + \int\limits_D \rho \, g \, \partial_t z \;dv &&&\\ 245 \allowdisplaybreaks 246 \intertext{introducing the hydrostatic balance $\partial_k p=-\rho \,g\,e_3$ in the last term, 247 it becomes:} 248 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 249 - \int\limits_D \rho \, g \, w \;dv 250 - \int\limits_D \frac{1}{e_3} \partial_k p\, \partial_t z \;dv &&&\\ 251 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 252 - \int\limits_D \rho \, g \, w \;dv 253 + \int\limits_D \,\frac{p}{e_3}\partial_t ( \partial_k z ) dv &&&\\ 254 % 255 &= - \int\limits_D \rho \, g \, w \;dv &&&\\ 256 \end{flalign*} 257 231 - \int\limits_D \left. \nabla p \right|_z & \cdot \textbf{U}_h \;dv 232 = - \int\limits_D \left( \nabla_h p + \rho \, g \nabla_h z \right) \cdot \textbf{U}_h \;dv &&&\\ 233 \allowdisplaybreaks 234 &= - \int\limits_D \nabla_h p \cdot \textbf{U}_h \;dv - \int\limits_D \rho \, g \, \nabla_h z \cdot \textbf{U}_h \;dv &&&\\ 235 \allowdisplaybreaks 236 &= +\int\limits_D p \,\nabla_h \cdot \textbf{U}_h \;dv + \int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 237 \allowdisplaybreaks 238 &= -\int\limits_D p \left( \frac{1}{e_3} \partial_t e_3 + \frac{1}{e_3} \partial_k \omega \right) \;dv 239 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 240 \allowdisplaybreaks 241 &= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 242 +\int\limits_D \frac{1}{e_3} \partial_k p\; \omega \;dv 243 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 244 &= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 245 -\int\limits_D \rho \, g \, \omega \;dv 246 +\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\ 247 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \; \;dv 248 - \int\limits_D \rho \, g \, w \;dv 249 + \int\limits_D \rho \, g \, \partial_t z \;dv &&&\\ 250 \allowdisplaybreaks 251 \intertext{introducing the hydrostatic balance $\partial_k p=-\rho \,g\,e_3$ in the last term, 252 it becomes:} 253 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 254 - \int\limits_D \rho \, g \, w \;dv 255 - \int\limits_D \frac{1}{e_3} \partial_k p\, \partial_t z \;dv &&&\\ 256 &= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv 257 - \int\limits_D \rho \, g \, w \;dv 258 + \int\limits_D \,\frac{p}{e_3}\partial_t ( \partial_k z ) dv &&&\\ 259 % 260 &= - \int\limits_D \rho \, g \, w \;dv &&&\\ 261 \end{flalign*} 258 262 259 263 %gm comment … … 262 266 The last equality comes from the following equation, 263 267 \begin{flalign*} 264 \int\limits_D p \frac{1}{e_3} \frac{\partial e_3}{\partial t}\; \;dv 265 = \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv \quad, \\268 \int\limits_D p \frac{1}{e_3} \frac{\partial e_3}{\partial t}\; \;dv 269 = \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv \quad, 266 270 \end{flalign*} 267 271 that can be demonstrated as follows: 268 272 269 273 \begin{flalign*} 270 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 271 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 274 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 275 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 272 276 - \int\limits_D \rho \, g \, \frac{\partial}{\partial t} \left( \int\limits_k^{k_s} e_3 \;d\tilde{k} \right) \;dv &&&\\ 273 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 277 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 274 278 - \int\limits_D \rho \, g \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \;dv &&&\\ 275 % 276 \allowdisplaybreaks 277 \intertext{The second term of the right hand side can be transformed by applying the integration by part rule: 278 $\left[ a\,b \right]_{k_b}^{k_s} = \int_{k_b}^{k_s} a\,\frac{\partial b}{\partial k} \;dk 279 + \int_{k_b}^{k_s} \frac{\partial a}{\partial k} \,b \;dk $ 280 to the following function: $a= \int_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$ 281 and $b= \int_k^{k_s} \rho \, e_3 \;d\tilde{k}$ 282 (note that $\frac{\partial}{\partial k} \left( \int_k^{k_s} a \;d\tilde{k} \right) = - a$ as $k$ is the lower bound of the integral). 283 This leads to: } 284 \end{flalign*} 285 \begin{flalign*} 286 &\left[ \int\limits_{k}^{k_s} \frac{\partial e_3}{\partial t} \,dk \cdot \int\limits_{k}^{k_s} \rho \, e_3 \,dk \right]_{k_b}^{k_s} 287 =-\int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \rho \,e_3 \;dk 288 -\int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \left( \int\limits_k^{k_s} \rho \, e_3 \;d\tilde{k} \right) dk 289 &&&\\ 290 \allowdisplaybreaks 291 \intertext{Noting that $\frac{\partial \eta}{\partial t} 292 = \frac{\partial}{\partial t} \left( \int_{k_b}^{k_s} e_3 \;d\tilde{k} \right) 293 = \int_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$ 294 and 295 $p(k) = \int_k^{k_s} \rho \,g \, e_3 \;d\tilde{k} $, 296 but also that $\frac{\partial \eta}{\partial t}$ does not depends on $k$, it comes: 297 } 298 & - \int\limits_{k_b}^{k_s} \rho \, \frac{\partial \eta}{\partial t} \, e_3 \;dk 299 = - \int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \, \rho \, g e_3\;dk 300 - \int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \frac{p}{g} \;dk &&&\\ 279 % 280 \allowdisplaybreaks 281 \intertext{The second term of the right hand side can be transformed by applying the integration by part rule: 282 $\left[ a\,b \right]_{k_b}^{k_s} = \int_{k_b}^{k_s} a\,\frac{\partial b}{\partial k} \;dk 283 + \int_{k_b}^{k_s} \frac{\partial a}{\partial k} \,b \;dk $ 284 to the following function: $a= \int_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$ 285 and $b= \int_k^{k_s} \rho \, e_3 \;d\tilde{k}$ 286 (note that $\frac{\partial}{\partial k} \left( \int_k^{k_s} a \;d\tilde{k} \right) = - a$ as $k$ is the lower bound of the integral). 287 This leads to: } 288 \end{flalign*} 289 \begin{flalign*} 290 &\left[ \int\limits_{k}^{k_s} \frac{\partial e_3}{\partial t} \,dk \cdot \int\limits_{k}^{k_s} \rho \, e_3 \,dk \right]_{k_b}^{k_s} 291 =-\int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \rho \,e_3 \;dk 292 -\int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \left( \int\limits_k^{k_s} \rho \, e_3 \;d\tilde{k} \right) dk &&&\\ 293 \allowdisplaybreaks 294 \intertext{Noting that $\frac{\partial \eta}{\partial t} 295 = \frac{\partial}{\partial t} \left( \int_{k_b}^{k_s} e_3 \;d\tilde{k} \right) 296 = \int_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$ 297 and 298 $p(k) = \int_k^{k_s} \rho \,g \, e_3 \;d\tilde{k} $, 299 but also that $\frac{\partial \eta}{\partial t}$ does not depends on $k$, it comes: 300 } 301 & - \int\limits_{k_b}^{k_s} \rho \, \frac{\partial \eta}{\partial t} \, e_3 \;dk 302 = - \int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \, \rho \, g e_3\;dk 303 - \int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \frac{p}{g} \;dk &&&\\ 301 304 \end{flalign*} 302 305 Mutliplying by $g$ and integrating over the $(i,j)$ domain it becomes: 303 306 \begin{flalign*} 304 \int\limits_D \rho \, g \, \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \;dv305 = \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} dv307 \int\limits_D \rho \, g \, \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \;dv 308 = \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} dv 306 309 - \int\limits_D \frac{p}{e_3}\frac{\partial e_3}{\partial t} \;dv 307 310 \end{flalign*} 308 311 Using this property, we therefore have: 309 312 \begin{flalign*} 310 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 311 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 313 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 314 &= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv 312 315 - \left( \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} dv 313 314 %315 &=\int\limits_D \frac{p}{e_3} \frac{\partial (e_3\,\rho)}{\partial t}\; \;dv 316 - \int\limits_D \frac{p}{e_3}\frac{\partial e_3}{\partial t} \;dv \right) &&&\\ 317 % 318 &=\int\limits_D \frac{p}{e_3} \frac{\partial (e_3\,\rho)}{\partial t}\; \;dv 316 319 \end{flalign*} 317 320 % end gm comment … … 319 322 % 320 323 321 322 324 % ================================================================ 323 325 % Discrete Total energy Conservation : vector invariant form … … 334 336 The discrete form of the total energy conservation, \autoref{eq:Tot_Energy}, is given by: 335 337 \begin{flalign*} 336 \partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0 \\ 338 \partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0 337 339 \end{flalign*} 338 340 which in vector invariant forms, it leads to: 339 \begin{equation} \label{eq:KE+PE_vect_discrete} \begin{split} 340 \sum\limits_{i,j,k} \biggl\{ u\, \partial_t u \;b_u 341 + v\, \partial_t v \;b_v \biggr\} 342 + \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\partial_t e_{3u} \;b_u 343 + \frac{v^2}{e_{3v}}\partial_t e_{3v} \;b_v \biggr\} \\ 344 = - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}}\partial_t (e_{3t} \rho) \, g \, z_t \;b_t \biggr\} 345 - \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\} 346 \end{split} \end{equation} 341 \begin{equation} 342 \label{eq:KE+PE_vect_discrete} 343 \begin{split} 344 \sum\limits_{i,j,k} \biggl\{ u\, \partial_t u \;b_u 345 + v\, \partial_t v \;b_v \biggr\} 346 + \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\partial_t e_{3u} \;b_u 347 + \frac{v^2}{e_{3v}}\partial_t e_{3v} \;b_v \biggr\} \\ 348 = - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}}\partial_t (e_{3t} \rho) \, g \, z_t \;b_t \biggr\} 349 - \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\} 350 \end{split} 351 \end{equation} 347 352 348 353 Substituting the discrete expression of the time derivative of the velocity either in vector invariant, … … 365 370 366 371 For the ENE scheme, the two components of the vorticity term are given by: 367 \begin{equation*} 368 - e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h \equiv 369 \left( {{ \begin{array} {*{20}c} 370 + \frac{1} {e_{1u}} \; 371 \overline {\, q \ \overline {\left( e_{1v}\,e_{3v}\,v \right)}^{\,i+1/2}} ^{\,j} \hfill \\ 372 - \frac{1} {e_{2v}} \; 373 \overline {\, q \ \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i} \hfill \\ 374 \end{array}} } \right) 375 \end{equation*} 372 \[ 373 - e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h \equiv 374 \left( {{ 375 \begin{array} {*{20}c} 376 + \frac{1} {e_{1u}} \; 377 \overline {\, q \ \overline {\left( e_{1v}\,e_{3v}\,v \right)}^{\,i+1/2}} ^{\,j} \hfill \\ 378 - \frac{1} {e_{2v}} \; 379 \overline {\, q \ \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i} \hfill 380 \end{array} 381 } } \right) 382 \] 376 383 377 384 This formulation does not conserve the enstrophy but it does conserve the total kinetic energy. … … 379 386 averaged over the ocean domain can be transformed as follows: 380 387 \begin{flalign*} 381 &\int\limits_D - \left( e_3 \, q \;\textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv && \\ 382 & \qquad \qquad {\begin{array}{*{20}l} 383 &\equiv \sum\limits_{i,j,k} \biggl\{ 384 \frac{1} {e_{1u}} \overline { \,q\ \overline{ V }^{\,i+1/2}} ^{\,j} \, u \; b_u 385 - \frac{1} {e_{2v}}\overline { \, q\ \overline{ U }^{\,j+1/2}} ^{\,i} \, v \; b_v \; \biggr\} \\ 386 &\equiv \sum\limits_{i,j,k} \biggl\{ 387 \overline { \,q\ \overline{ V }^{\,i+1/2}}^{\,j} \; U 388 - \overline { \,q\ \overline{ U }^{\,j+1/2}}^{\,i} \; V \; \biggr\} \\ 389 &\equiv \sum\limits_{i,j,k} q \ \biggl\{ \overline{ V }^{\,i+1/2}\; \overline{ U }^{\,j+1/2} 390 - \overline{ U }^{\,j+1/2}\; \overline{ V }^{\,i+1/2} \biggr\} \quad \equiv 0 391 \end{array} } 388 &\int\limits_D - \left( e_3 \, q \;\textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv && \\ 389 & \qquad \qquad 390 { 391 \begin{array}{*{20}l} 392 &\equiv \sum\limits_{i,j,k} \biggl\{ 393 \frac{1} {e_{1u}} \overline { \,q\ \overline{ V }^{\,i+1/2}} ^{\,j} \, u \; b_u 394 - \frac{1} {e_{2v}}\overline { \, q\ \overline{ U }^{\,j+1/2}} ^{\,i} \, v \; b_v \; \biggr\} \\ 395 &\equiv \sum\limits_{i,j,k} \biggl\{ 396 \overline { \,q\ \overline{ V }^{\,i+1/2}}^{\,j} \; U 397 - \overline { \,q\ \overline{ U }^{\,j+1/2}}^{\,i} \; V \; \biggr\} \\ 398 &\equiv \sum\limits_{i,j,k} q \ \biggl\{ \overline{ V }^{\,i+1/2}\; \overline{ U }^{\,j+1/2} 399 - \overline{ U }^{\,j+1/2}\; \overline{ V }^{\,i+1/2} \biggr\} \quad \equiv 0 400 \end{array} 401 } 392 402 \end{flalign*} 393 403 In other words, the domain averaged kinetic energy does not change due to the vorticity term. 394 395 404 396 405 % ------------------------------------------------------------------------------------------------------------- … … 401 410 402 411 With the EEN scheme, the vorticity terms are represented as: 403 \begin{equation} \tag{\ref{eq:dynvor_een}} 404 \left\{ { \begin{aligned} 405 +q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}} 406 {^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\ 407 - q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}} 408 {^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2} \\ 409 \end{aligned} } \right. 412 \begin{equation} 413 \tag{\ref{eq:dynvor_een}} 414 \left\{ { 415 \begin{aligned} 416 +q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}} 417 {^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\ 418 - q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}} 419 {^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2} 420 \end{aligned} 421 } \right. 410 422 \end{equation} 411 423 where the indices $i_p$ and $j_p$ take the following value: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 412 424 and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by: 413 \begin{equation} \tag{\ref{eq:Q_triads}} 414 _i^j \mathbb{Q}^{i_p}_{j_p} 415 = \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right) 425 \begin{equation} 426 \tag{\ref{eq:Q_triads}} 427 _i^j \mathbb{Q}^{i_p}_{j_p} 428 = \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right) 416 429 \end{equation} 417 430 … … 419 432 Indeed, 420 433 \begin{flalign*} 421 &\int\limits_D - \textbf{U}_h \cdot \left( \zeta \;\textbf{k} \times \textbf{U}_h \right) \; dv && \\ 422 \equiv \sum\limits_{i,j,k} & \biggl\{ 423 \left[ \sum_{\substack{i_p,\,k_p}} 424 {^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \right] U^{i+1/2}_{j} % &&\\ 425 - \left[ \sum_{\substack{i_p,\,k_p}} 426 {^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \right] V^{i}_{j+1/2} \biggr\} && \\ 427 \\ 428 \equiv \sum\limits_{i,j,k} & \sum_{\substack{i_p,\,k_p}} \biggl\{ \ \ 429 {^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \, U^{i+1/2}_{j} % &&\\ 430 - {^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \, V^{i}_{j+1/2} \ \; \biggr\} && \\ 431 % 432 \allowdisplaybreaks 433 \intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:} 434 % 435 \equiv \sum\limits_{i,j,k} & \biggl\{ \ \ 436 {^{i+1}_j }\mathbb{Q}^{-1/2}_{+1/2} \;V^{i+1}_{j+1/2} \; U^{\,i+1/2}_{j} 437 - {^i_{j}\quad}\mathbb{Q}^{-1/2}_{+1/2} \; U^{i-1/2}_{j} \; V^{\,i}_{j+1/2} && \\ 438 & + {^{i+1}_j }\mathbb{Q}^{-1/2}_{-1/2} \; V^{i+1}_{j-1/2} \; U^{\,i+1/2}_{j} 439 - {^i_{j+1} }\mathbb{Q}^{-1/2}_{-1/2} \; U^{i-1/2}_{j+1} \; V^{\,i}_{j+1/2} \biggr. && \\ 440 & + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2} \; U^{\,i+1/2}_{j} 441 - {^i_{j}\quad}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j} \; V^{\,i}_{j+1/2} \biggr. && \\ 442 & + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{-1/2} \; V^{i}_{j-1/2} \; U^{\,i+1/2}_{j} 443 - {^i_{j+1} }\mathbb{Q}^{+1/2}_{-1/2} \; U^{i+1/2}_{j+1}\; V^{\,i}_{j+1/2} \ \; \biggr\} && \\ 444 % 445 \allowdisplaybreaks 446 \intertext{The summation is done over all $i$ and $j$ indices, it is therefore possible to introduce 447 a shift of $-1$ either in $i$ or $j$ direction in some of the term of the summation (first term of the 448 first and second lines, second term of the second and fourth lines). By doning so, we can regroup 449 all the terms of the summation by triad at a ($i$,$j$) point. In other words, we regroup all the terms 450 in the neighbourhood that contain a triad at the same ($i$,$j$) indices. It becomes: } 451 \allowdisplaybreaks 452 % 453 \equiv \sum\limits_{i,j,k} & \biggl\{ \ \ 454 {^{i}_j}\mathbb{Q}^{-1/2}_{+1/2} \left[ V^{i}_{j+1/2}\, U^{\,i-1/2}_{j} 455 - U^{i-1/2}_{j} \, V^{\,i}_{j+1/2} \right] && \\ 456 & + {^{i}_j}\mathbb{Q}^{-1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i-1/2}_{j} 457 - U^{i-1/2}_{j} \, V^{\,i}_{j-1/2} \right] \biggr. && \\ 458 & + {^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} \left[ V^{i}_{j+1/2} \, U^{\,i+1/2}_{j} 459 - U^{i+1/2}_{j} \, V^{\,i}_{j+1/2} \right] \biggr. && \\ 460 & + {^{i}_j}\mathbb{Q}^{+1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i+1/2}_{j} 461 - U^{i+1/2}_{j-1} \, V^{\,i}_{j-1/2} \right] \ \; \biggr\} \qquad 462 \equiv \ 0 && 463 \end{flalign*} 464 434 &\int\limits_D - \textbf{U}_h \cdot \left( \zeta \;\textbf{k} \times \textbf{U}_h \right) \; dv && \\ 435 \equiv \sum\limits_{i,j,k} & \biggl\{ 436 \left[ \sum_{\substack{i_p,\,k_p}} 437 {^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \right] U^{i+1/2}_{j} % &&\\ 438 - \left[ \sum_{\substack{i_p,\,k_p}} 439 {^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \right] V^{i}_{j+1/2} \biggr\} && \\ \\ 440 \equiv \sum\limits_{i,j,k} & \sum_{\substack{i_p,\,k_p}} \biggl\{ \ \ 441 {^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \, U^{i+1/2}_{j} % &&\\ 442 - {^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \, V^{i}_{j+1/2} \ \; \biggr\} && \\ 443 % 444 \allowdisplaybreaks 445 \intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:} 446 % 447 \equiv \sum\limits_{i,j,k} & \biggl\{ \ \ 448 {^{i+1}_j }\mathbb{Q}^{-1/2}_{+1/2} \;V^{i+1}_{j+1/2} \; U^{\,i+1/2}_{j} 449 - {^i_{j}\quad}\mathbb{Q}^{-1/2}_{+1/2} \; U^{i-1/2}_{j} \; V^{\,i}_{j+1/2} && \\ 450 & + {^{i+1}_j }\mathbb{Q}^{-1/2}_{-1/2} \; V^{i+1}_{j-1/2} \; U^{\,i+1/2}_{j} 451 - {^i_{j+1} }\mathbb{Q}^{-1/2}_{-1/2} \; U^{i-1/2}_{j+1} \; V^{\,i}_{j+1/2} \biggr. && \\ 452 & + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2} \; U^{\,i+1/2}_{j} 453 - {^i_{j}\quad}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j} \; V^{\,i}_{j+1/2} \biggr. && \\ 454 & + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{-1/2} \; V^{i}_{j-1/2} \; U^{\,i+1/2}_{j} 455 - {^i_{j+1} }\mathbb{Q}^{+1/2}_{-1/2} \; U^{i+1/2}_{j+1}\; V^{\,i}_{j+1/2} \ \; \biggr\} && \\ 456 % 457 \allowdisplaybreaks 458 \intertext{The summation is done over all $i$ and $j$ indices, it is therefore possible to introduce 459 a shift of $-1$ either in $i$ or $j$ direction in some of the term of the summation (first term of the 460 first and second lines, second term of the second and fourth lines). By doning so, we can regroup 461 all the terms of the summation by triad at a ($i$,$j$) point. In other words, we regroup all the terms 462 in the neighbourhood that contain a triad at the same ($i$,$j$) indices. It becomes: } 463 \allowdisplaybreaks 464 % 465 \equiv \sum\limits_{i,j,k} & \biggl\{ \ \ 466 {^{i}_j}\mathbb{Q}^{-1/2}_{+1/2} \left[ V^{i}_{j+1/2}\, U^{\,i-1/2}_{j} 467 - U^{i-1/2}_{j} \, V^{\,i}_{j+1/2} \right] && \\ 468 & + {^{i}_j}\mathbb{Q}^{-1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i-1/2}_{j} 469 - U^{i-1/2}_{j} \, V^{\,i}_{j-1/2} \right] \biggr. && \\ 470 & + {^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} \left[ V^{i}_{j+1/2} \, U^{\,i+1/2}_{j} 471 - U^{i+1/2}_{j} \, V^{\,i}_{j+1/2} \right] \biggr. && \\ 472 & + {^{i}_j}\mathbb{Q}^{+1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i+1/2}_{j} 473 - U^{i+1/2}_{j-1} \, V^{\,i}_{j-1/2} \right] \ \; \biggr\} \qquad 474 \equiv \ 0 && 475 \end{flalign*} 465 476 466 477 % ------------------------------------------------------------------------------------------------------------- … … 471 482 472 483 The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due to the horizontal gradient of KE~: 473 \ begin{equation*}474 475 = - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv476 + \frac{1}{2} \int_D { \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv } \\477 \ end{equation*}484 \[ 485 \int_D \textbf{U}_h \cdot \frac{1}{e_3 } \omega \partial_k \textbf{U}_h \;dv 486 = - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv 487 + \frac{1}{2} \int_D { \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv } 488 \] 478 489 Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) 479 490 and the continuity equation, then \autoref{eq:DOM_di_adj} again, … … 482 493 applied in the horizontal and vertical directions, it becomes: 483 494 \begin{flalign*} 484 & - \int_D \textbf{U}_h \cdot \text{KEG}\;dv 485 = - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv &&&\\486 %487 \equiv & - \sum\limits_{i,j,k} \frac{1}{2} \biggl\{ 488 \frac{1} {e_{1u}} \delta_{i+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] u \ b_u 489 + \frac{1} {e_{2v}} \delta_{j+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] v \ b_v \biggr\} &&& \\490 %491 \equiv & + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right)\;492 \biggl\{ \delta_{i} \left[ U \right] + \delta_{j} \left[ V \right] \biggr\} &&& \\493 \allowdisplaybreaks494 %495 \equiv & - \sum\limits_{i,j,k} \frac{1}{2}496 \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) \; 497 498 \allowdisplaybreaks499 %500 \equiv & + \sum\limits_{i,j,k} \frac{1}{2} \delta_{k+1/2} \left[ \overline{ u^2}^{\,i} + \overline{ v^2}^{\,j} \right] \; W 501 502 \allowdisplaybreaks503 %504 \equiv & + \sum\limits_{i,j,k} \frac{1} {2} \left( \overline{\delta_{k+1/2} \left[ u^2 \right]}^{\,i} 505 + \overline{\delta_{k+1/2} \left[ v^2 \right]}^{\,j} \right) \; W 506 507 508 \allowdisplaybreaks509 \intertext{Assuming that $b_u= \overline{b_t}^{\,i+1/2}$ and $b_v= \overline{b_t}^{\,j+1/2}$, or at least that the time510 derivative of these two equations is satisfied, it becomes:}511 %512 \equiv & \sum\limits_{i,j,k} \frac{1} {2}513 \biggl\{ \; \overline{W}^{\,i+1/2}\;\delta_{k+1/2} \left[ u^2 \right] 514 + \overline{W}^{\,j+1/2}\;\delta_{k+1/2} \left[ v^2 \right] \; \biggr\} 515 516 517 \allowdisplaybreaks518 % 519 \equiv & \sum\limits_{i,j,k} 520 \biggl\{ \; \overline{W}^{\,i+1/2}\; \overline {u}^{\,k+1/2}\; \delta_{k+1/2}[ u ] 521 + \overline{W}^{\,j+1/2}\; \overline {v}^{\,k+1/2}\; \delta_{k+1/2}[ v ] \; \biggr\} 522 523 524 %525 \allowdisplaybreaks526 \equiv & \sum\limits_{i,j,k} 527 \biggl\{ \; \frac{1} {b_u } \; \overline { \overline{W}^{\,i+1/2}\,\delta_{k+1/2} \left[ u \right] }^{\,k} \;u\;b_u 528 + \frac{1} {b_v } \; \overline { \overline{W}^{\,j+1/2} \delta_{k+1/2} \left[ v \right] }^{\,k} \;v\;b_v \; \biggr\}529 530 531 %532 \intertext{The first term provides the discrete expression for the vertical advection of momentum (ZAD), 533 while the second term corresponds exactly to \autoref{eq:KE+PE_vect_discrete}, therefore:}534 \equiv& \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv 535 536 \equiv& \int\limits_D \textbf{U}_h \cdot w \partial_k \textbf{U}_h \;dv 537 495 & - \int_D \textbf{U}_h \cdot \text{KEG}\;dv 496 = - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv &&&\\ 497 % 498 \equiv & - \sum\limits_{i,j,k} \frac{1}{2} \biggl\{ 499 \frac{1} {e_{1u}} \delta_{i+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] u \ b_u 500 + \frac{1} {e_{2v}} \delta_{j+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] v \ b_v \biggr\} &&& \\ 501 % 502 \equiv & + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right)\; 503 \biggl\{ \delta_{i} \left[ U \right] + \delta_{j} \left[ V \right] \biggr\} &&& \\ 504 \allowdisplaybreaks 505 % 506 \equiv & - \sum\limits_{i,j,k} \frac{1}{2} 507 \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) \; 508 \biggl\{ \frac{b_t}{e_{3t}} \partial_t (e_{3t}) + \delta_k \left[ W \right] \biggr\} &&&\\ 509 \allowdisplaybreaks 510 % 511 \equiv & + \sum\limits_{i,j,k} \frac{1}{2} \delta_{k+1/2} \left[ \overline{ u^2}^{\,i} + \overline{ v^2}^{\,j} \right] \; W 512 - \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) \;\partial_t b_t &&& \\ 513 \allowdisplaybreaks 514 % 515 \equiv & + \sum\limits_{i,j,k} \frac{1} {2} \left( \overline{\delta_{k+1/2} \left[ u^2 \right]}^{\,i} 516 + \overline{\delta_{k+1/2} \left[ v^2 \right]}^{\,j} \right) \; W 517 - \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t \overline{b_t}^{\,{i+1/2}} 518 + \frac{v^2}{2}\,\partial_t \overline{b_t}^{\,{j+1/2}} \right) &&& \\ 519 \allowdisplaybreaks 520 \intertext{Assuming that $b_u= \overline{b_t}^{\,i+1/2}$ and $b_v= \overline{b_t}^{\,j+1/2}$, or at least that the time 521 derivative of these two equations is satisfied, it becomes:} 522 % 523 \equiv & \sum\limits_{i,j,k} \frac{1} {2} 524 \biggl\{ \; \overline{W}^{\,i+1/2}\;\delta_{k+1/2} \left[ u^2 \right] 525 + \overline{W}^{\,j+1/2}\;\delta_{k+1/2} \left[ v^2 \right] \; \biggr\} 526 - \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u 527 + \frac{v^2}{2}\,\partial_t b_v \right) &&& \\ 528 \allowdisplaybreaks 529 % 530 \equiv & \sum\limits_{i,j,k} 531 \biggl\{ \; \overline{W}^{\,i+1/2}\; \overline {u}^{\,k+1/2}\; \delta_{k+1/2}[ u ] 532 + \overline{W}^{\,j+1/2}\; \overline {v}^{\,k+1/2}\; \delta_{k+1/2}[ v ] \; \biggr\} 533 - \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u 534 + \frac{v^2}{2}\,\partial_t b_v \right) &&& \\ 535 % 536 \allowdisplaybreaks 537 \equiv & \sum\limits_{i,j,k} 538 \biggl\{ \; \frac{1} {b_u } \; \overline { \overline{W}^{\,i+1/2}\,\delta_{k+1/2} \left[ u \right] }^{\,k} \;u\;b_u 539 + \frac{1} {b_v } \; \overline { \overline{W}^{\,j+1/2} \delta_{k+1/2} \left[ v \right] }^{\,k} \;v\;b_v \; \biggr\} 540 - \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u 541 + \frac{v^2}{2}\,\partial_t b_v \right) &&& \\ 542 % 543 \intertext{The first term provides the discrete expression for the vertical advection of momentum (ZAD), 544 while the second term corresponds exactly to \autoref{eq:KE+PE_vect_discrete}, therefore:} 545 \equiv& \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv 546 + \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t (e_3) \;dv } &&&\\ 547 \equiv& \int\limits_D \textbf{U}_h \cdot w \partial_k \textbf{U}_h \;dv 548 + \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t (e_3) \;dv } &&&\\ 538 549 \end{flalign*} 539 550 … … 544 555 For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. 545 556 This leads to the following expression for the vertical advection: 546 \begin{equation*} 547 \frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h 548 \equiv \left( {{\begin{array} {*{20}c} 549 \frac{1} {e_{1u}\,e_{2u}\,e_{3u}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega\;\delta_{k+1/2} 550 \left[ \overline u^{\,i+1/2} \right]}}^{\,i+1/2,k} \hfill \\ 551 \frac{1} {e_{1v}\,e_{2v}\,e_{3v}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega \;\delta_{k+1/2} 552 \left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill \\ 553 \end{array}} } \right) 554 \end{equation*} 557 \[ 558 \frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h 559 \equiv \left( {{ 560 \begin{array} {*{20}c} 561 \frac{1} {e_{1u}\,e_{2u}\,e_{3u}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega\;\delta_{k+1/2} 562 \left[ \overline u^{\,i+1/2} \right]}}^{\,i+1/2,k} \hfill \\ 563 \frac{1} {e_{1v}\,e_{2v}\,e_{3v}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega \;\delta_{k+1/2} 564 \left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill 565 \end{array} 566 } } \right) 567 \] 555 568 a formulation that requires an additional horizontal mean in contrast with the one used in NEMO. 556 569 Nine velocity points have to be used instead of 3. … … 560 573 an extra constraint arises on the time derivative of the volume at $u$- and $v$-points: 561 574 \begin{flalign*} 562 e_{1u}\,e_{2u}\,\partial_t (e_{3u}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,i+1/2} \\563 e_{1v}\,e_{2v}\,\partial_t (e_{3v}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,j+1/2}575 e_{1u}\,e_{2u}\,\partial_t (e_{3u}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,i+1/2} \\ 576 e_{1v}\,e_{2v}\,\partial_t (e_{3v}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,j+1/2} 564 577 \end{flalign*} 565 578 which is (over-)satified by defining the vertical scale factor as follows: 566 \begin{flalign} \label{eq:e3u-e3v} 567 e_{3u} = \frac{1}{e_{1u}\,e_{2u}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,i+1/2} \\ 568 e_{3v} = \frac{1}{e_{1v}\,e_{2v}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,j+1/2} 569 \end{flalign} 579 \begin{flalign*} 580 % \label{eq:e3u-e3v} 581 e_{3u} = \frac{1}{e_{1u}\,e_{2u}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,i+1/2} \\ 582 e_{3v} = \frac{1}{e_{1v}\,e_{2v}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,j+1/2} 583 \end{flalign*} 570 584 571 585 Blah blah required on the the step representation of bottom topography..... … … 588 602 the change of KE due to the work of pressure forces is balanced by 589 603 the change of potential energy due to buoyancy forces: 590 \ begin{equation*}591 - \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 592 = - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right) \,g\,z \;dv604 \[ 605 - \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 606 = - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right) \,g\,z \;dv 593 607 + \int_D g\, \rho \; \partial_t (z) \;dv 594 \ end{equation*}608 \] 595 609 596 610 This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates. … … 599 613 the work of pressure forces can be written as: 600 614 \begin{flalign*} 601 &- \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 602 \equiv \sum\limits_{i,j,k} \biggl\{ \; - \frac{1} {e_{1u}} \Bigl( 603 \delta_{i+1/2} [p_t] - g\;\overline \rho^{\,i+1/2}\;\delta_{i+1/2} [z_t] \Bigr) \; u\;b_u 604 && \\& \qquad \qquad \qquad \qquad \qquad \quad \ \,605 - \frac{1} {e_{2v}} \Bigl( 606 \delta_{j+1/2} [p_t] - g\;\overline \rho^{\,j+1/2}\delta_{j+1/2} [z_t] \Bigr) \; v\;b_v \; \biggr\} && \\ 607 %608 \allowdisplaybreaks609 \intertext{Using successively \autoref{eq:DOM_di_adj}, $i.e.$ the skew symmetry property of 610 the $\delta$ operator, \autoref{eq:wzv}, the continuity equation, \autoref{eq:dynhpg_sco}, 611 the hydrostatic equation in the $s$-coordinate, and $\delta_{k+1/2} \left[ z_t \right] \equiv e_{3w} $,612 which comes from the definition of $z_t$, it becomes: }613 \allowdisplaybreaks614 %615 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 616 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 617 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 618 619 %620 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 621 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 622 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 623 - \left( \frac{b_t}{e_{3t}} \partial_t (e_{3t}) + \delta_k \left[ W \right] \right) \frac{p_t}{g} \biggr\} &&&\\ 624 %625 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 626 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 627 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 628 + \frac{W}{g}\;\delta_{k+1/2} [p_t] 629 630 %631 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 632 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 633 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 634 - W\;e_{3w} \overline \rho^{\,k+1/2} 635 636 %637 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 638 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 639 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 640 + W\; \overline \rho^{\,k+1/2}\;\delta_{k+1/2} [z_t] 641 642 %643 \allowdisplaybreaks644 %645 \equiv& - \sum\limits_{i,j,k} g \; z_t \biggl\{ 646 647 648 + \delta_k \left[ W\; \overline \rho^{\,k+1/2} \right] \biggr\} 649 - \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\650 %651 \equiv& + \sum\limits_{i,j,k} g \; z_t \biggl\{ \partial_t ( e_{3t} \,\rho) \biggr\} \; b_t 652 - \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\653 %615 &- \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv 616 \equiv \sum\limits_{i,j,k} \biggl\{ \; - \frac{1} {e_{1u}} \Bigl( 617 \delta_{i+1/2} [p_t] - g\;\overline \rho^{\,i+1/2}\;\delta_{i+1/2} [z_t] \Bigr) \; u\;b_u && \\ 618 & \qquad \qquad \qquad \qquad \qquad \quad \ \, 619 - \frac{1} {e_{2v}} \Bigl( 620 \delta_{j+1/2} [p_t] - g\;\overline \rho^{\,j+1/2}\delta_{j+1/2} [z_t] \Bigr) \; v\;b_v \; \biggr\} && \\ 621 % 622 \allowdisplaybreaks 623 \intertext{Using successively \autoref{eq:DOM_di_adj}, $i.e.$ the skew symmetry property of 624 the $\delta$ operator, \autoref{eq:wzv}, the continuity equation, \autoref{eq:dynhpg_sco}, 625 the hydrostatic equation in the $s$-coordinate, and $\delta_{k+1/2} \left[ z_t \right] \equiv e_{3w} $, 626 which comes from the definition of $z_t$, it becomes: } 627 \allowdisplaybreaks 628 % 629 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 630 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 631 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 632 +\Bigl( \delta_i[U] + \delta_j [V] \Bigr)\;\frac{p_t}{g} \biggr\} &&\\ 633 % 634 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 635 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 636 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 637 - \left( \frac{b_t}{e_{3t}} \partial_t (e_{3t}) + \delta_k \left[ W \right] \right) \frac{p_t}{g} \biggr\} &&&\\ 638 % 639 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 640 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 641 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 642 + \frac{W}{g}\;\delta_{k+1/2} [p_t] 643 - \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\ 644 % 645 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 646 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 647 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 648 - W\;e_{3w} \overline \rho^{\,k+1/2} 649 - \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\ 650 % 651 \equiv& + \sum\limits_{i,j,k} g \biggl\{ 652 \overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t] 653 + \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t] 654 + W\; \overline \rho^{\,k+1/2}\;\delta_{k+1/2} [z_t] 655 - \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\ 656 % 657 \allowdisplaybreaks 658 % 659 \equiv& - \sum\limits_{i,j,k} g \; z_t \biggl\{ 660 \delta_i \left[ U\; \overline \rho^{\,i+1/2} \right] 661 + \delta_j \left[ V\; \overline \rho^{\,j+1/2} \right] 662 + \delta_k \left[ W\; \overline \rho^{\,k+1/2} \right] \biggr\} 663 - \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\ 664 % 665 \equiv& + \sum\limits_{i,j,k} g \; z_t \biggl\{ \partial_t ( e_{3t} \,\rho) \biggr\} \; b_t 666 - \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\ 667 % 654 668 \end{flalign*} 655 669 The first term is exactly the first term of the right-hand-side of \autoref{eq:KE+PE_vect_discrete}. … … 659 673 In other words, the following property must be satisfied: 660 674 \begin{flalign*} 661 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\}662 \equiv \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\} 675 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} 676 \equiv \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\} 663 677 \end{flalign*} 664 678 … … 667 681 668 682 \begin{flalign*} 669 \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\}670 &\equiv - \sum\limits_{i,j,k} \biggl\{ \delta_k [p_w]\,\partial_t (z_t) \,e_{1t}\,e_{2t} \biggr\} &&&\\671 %672 &\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \delta_{k+1/2} [\partial_t (z_t)] \,e_{1t}\,e_{2t} \biggr\} 683 \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\} 684 &\equiv - \sum\limits_{i,j,k} \biggl\{ \delta_k [p_w]\,\partial_t (z_t) \,e_{1t}\,e_{2t} \biggr\} &&&\\ 685 % 686 &\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \delta_{k+1/2} [\partial_t (z_t)] \,e_{1t}\,e_{2t} \biggr\} 673 687 \equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (e_{3w}) \,e_{1t}\,e_{2t} \biggr\} &&&\\ 674 &\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\} 675 %676 % & \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \right) \biggr\} &&&\\677 % & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_k [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\678 % & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\} 688 &\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\} 689 % 690 % & \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \right) \biggr\} &&&\\ 691 % & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_k [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\ 692 % & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\} 679 693 \end{flalign*} 680 694 therefore, the balance to be satisfied is: 681 695 \begin{flalign*} 682 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t (b_t) \biggr\} \equiv \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\}696 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t (b_t) \biggr\} \equiv \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\} 683 697 \end{flalign*} 684 698 which is a purely vertical balance: 685 699 \begin{flalign*} 686 \sum\limits_{k} \biggl\{ p_t\;\partial_t (e_{3t}) \biggr\} \equiv \sum\limits_{k} \biggl\{ p_w\, \partial_t (e_{3w}) \biggr\}700 \sum\limits_{k} \biggl\{ p_t\;\partial_t (e_{3t}) \biggr\} \equiv \sum\limits_{k} \biggl\{ p_w\, \partial_t (e_{3w}) \biggr\} 687 701 \end{flalign*} 688 702 Defining $p_w = \overline{p_t}^{\,k+1/2}$ … … 690 704 %gm comment 691 705 \gmcomment{ 692 \begin{flalign*} 693 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\ 694 % 695 & \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \biggr\} &&&\\ 696 & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_{k+1/2} [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\ 697 & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\} 698 \end{flalign*} 699 700 701 \begin{flalign*} 702 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 703 \equiv& \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} p \biggr\} \; b_t &&&\\ 704 \equiv& \sum\limits_{i,j,k} \biggl\{ \biggr\} \; b_t &&&\\ 705 \end{flalign*} 706 707 % 708 \begin{flalign*} 709 \equiv& - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 710 + \int\limits_D g\, \rho \; \frac{\partial z}{\partial t} \;dv &&& \\ 711 \end{flalign*} 712 % 706 \begin{flalign*} 707 \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\ 708 % 709 & \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \biggr\} &&&\\ 710 & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_{k+1/2} [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\ 711 & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\} 712 \end{flalign*} 713 714 \begin{flalign*} 715 \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv 716 \equiv& \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} p \biggr\} \; b_t &&&\\ 717 \equiv& \sum\limits_{i,j,k} \biggl\{ \biggr\} \; b_t &&&\\ 718 \end{flalign*} 719 720 % 721 \begin{flalign*} 722 \equiv& - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv 723 + \int\limits_D g\, \rho \; \frac{\partial z}{\partial t} \;dv &&& \\ 724 \end{flalign*} 725 % 713 726 } 714 727 %end gm comment 715 716 728 717 729 Note that this property strongly constrains the discrete expression of both the depth of $T-$points and … … 719 731 Nevertheless, it is almost never satisfied since a linear equation of state is rarely used. 720 732 721 722 723 724 725 726 727 733 % ================================================================ 728 734 % Discrete Total energy Conservation : flux form … … 739 745 The discrete form of the total energy conservation, \autoref{eq:Tot_Energy}, is given by: 740 746 \begin{flalign*} 741 \partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0 \\747 \partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0 \\ 742 748 \end{flalign*} 743 749 which in flux form, it leads to: 744 750 \begin{flalign*} 745 \sum\limits_{i,j,k} \biggl\{ \frac{u }{e_{3u}}\,\frac{\partial (e_{3u}u)}{\partial t} \,b_u746 747 & - \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\frac{\partial e_{3u} }{\partial t} \,b_u 748 + \frac{v^2}{e_{3v}}\frac{\partial e_{3v} }{\partial t} \,b_v \biggr\}\\749 &= - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_3t}\frac{\partial e_{3t} \rho}{\partial t} \, g \, z_t \,b_t \biggr\} 750 - \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\frac{\partial z_t}{\partial t} \,b_t \biggr\}\\751 \sum\limits_{i,j,k} \biggl\{ \frac{u }{e_{3u}}\,\frac{\partial (e_{3u}u)}{\partial t} \,b_u 752 + \frac{v }{e_{3v}}\,\frac{\partial (e_{3v}v)}{\partial t} \,b_v \biggr\} 753 & - \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\frac{\partial e_{3u} }{\partial t} \,b_u 754 + \frac{v^2}{e_{3v}}\frac{\partial e_{3v} }{\partial t} \,b_v \biggr\} \\ 755 &= - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_3t}\frac{\partial e_{3t} \rho}{\partial t} \, g \, z_t \,b_t \biggr\} 756 - \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\frac{\partial z_t}{\partial t} \,b_t \biggr\} \\ 751 757 \end{flalign*} 752 758 … … 771 777 This altered Coriolis parameter is discretised at an f-point. 772 778 It is given by: 773 \ begin{equation*}774 f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\;775 \equiv \;776 f+\frac{1} {e_{1f}\,e_{2f}} \left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right] 777 778 \ end{equation*}779 \[ 780 f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\; 781 \equiv \; 782 f+\frac{1} {e_{1f}\,e_{2f}} \left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right] 783 -\overline u^{\,j+1/2} \delta_{j+1/2} \left[ e_{1u} \right] \right) 784 \] 779 785 780 786 Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form. … … 793 799 Because of the centered second order scheme, it conserves the horizontal kinetic energy, that is: 794 800 795 \begin{equation} \label{eq:C_ADV_KE_flux} 796 - \int_D \textbf{U}_h \cdot \left( {{\begin{array} {*{20}c} 797 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 798 \nabla \cdot \left( \textbf{U}\,v \right) \hfill \\ \end{array}} } \right) \;dv 799 - \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv } =\;0 801 \begin{equation} 802 \label{eq:C_ADV_KE_flux} 803 - \int_D \textbf{U}_h \cdot \left( {{ 804 \begin{array} {*{20}c} 805 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 806 \nabla \cdot \left( \textbf{U}\,v \right) \hfill \\ 807 \end{array} 808 } } \right) \;dv 809 - \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv } =\;0 800 810 \end{equation} 801 811 … … 803 813 ($i.e.$ just the the terms associated with the i-component of the advection): 804 814 \begin{flalign*} 805 & - \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv \\806 %807 \equiv& - \sum\limits_{i,j,k} \biggl\{ \frac{1} {b_u} \biggl( 808 \delta_{i+1/2} \left[ \overline {U}^{\,i} \;\overline u^{\,i} \right]809 + \delta_j \left[ \overline {V}^{\,i+1/2}\;\overline u^{\,j+1/2} \right]810 + \delta_k \left[ \overline {W}^{\,i+1/2}\;\overline u^{\,k+1/2} \right] \biggr) \; \biggr\} \, b_u \;u &&& \\811 %812 \equiv& - \sum\limits_{i,j,k} 813 \biggl\{ 814 815 816 817 818 %819 \equiv& + \sum\limits_{i,j,k}820 \biggl\{ 821 \overline {U}^{\,i}\; \overline u^{\,i} \delta_i \left[ u \right] 822 + \overline {V}^{\,i+1/2}\; \overline u^{\,j+1/2} \delta_{j+1/2} \left[ u \right]823 824 %825 \equiv& + \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ 826 \overline{U}^{\,i} \delta_i \left[ u^2 \right] 827 828 829 %830 \equiv& - \sum\limits_{i,j,k} \frac{1}{2} \bigg\{ 831 832 833 834 %835 \equiv& - \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i} \biggl\{ 836 837 838 839 %840 \equiv& + \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i} 841 815 & - \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv \\ 816 % 817 \equiv& - \sum\limits_{i,j,k} \biggl\{ \frac{1} {b_u} \biggl( 818 \delta_{i+1/2} \left[ \overline {U}^{\,i} \;\overline u^{\,i} \right] 819 + \delta_j \left[ \overline {V}^{\,i+1/2}\;\overline u^{\,j+1/2} \right] 820 + \delta_k \left[ \overline {W}^{\,i+1/2}\;\overline u^{\,k+1/2} \right] \biggr) \; \biggr\} \, b_u \;u &&& \\ 821 % 822 \equiv& - \sum\limits_{i,j,k} 823 \biggl\{ 824 \delta_{i+1/2} \left[ \overline {U}^{\,i}\; \overline u^{\,i} \right] 825 + \delta_j \left[ \overline {V}^{\,i+1/2}\;\overline u^{\,j+1/2} \right] 826 + \delta_k \left[ \overline {W}^{\,i+12}\;\overline u^{\,k+1/2} \right] 827 \; \biggr\} \; u \\ 828 % 829 \equiv& + \sum\limits_{i,j,k} 830 \biggl\{ 831 \overline {U}^{\,i}\; \overline u^{\,i} \delta_i \left[ u \right] 832 + \overline {V}^{\,i+1/2}\; \overline u^{\,j+1/2} \delta_{j+1/2} \left[ u \right] 833 + \overline {W}^{\,i+1/2}\; \overline u^{\,k+1/2} \delta_{k+1/2} \left[ u \right] \biggr\} && \\ 834 % 835 \equiv& + \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ 836 \overline{U}^{\,i} \delta_i \left[ u^2 \right] 837 + \overline{V}^{\,i+1/2} \delta_{j+/2} \left[ u^2 \right] 838 + \overline{W}^{\,i+1/2} \delta_{k+1/2} \left[ u^2 \right] \biggr\} && \\ 839 % 840 \equiv& - \sum\limits_{i,j,k} \frac{1}{2} \bigg\{ 841 U \; \delta_{i+1/2} \left[ \overline {u^2}^{\,i} \right] 842 + V \; \delta_{j+1/2} \left[ \overline {u^2}^{\,i} \right] 843 + W \; \delta_{k+1/2} \left[ \overline {u^2}^{\,i} \right] \biggr\} &&& \\ 844 % 845 \equiv& - \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i} \biggl\{ 846 \delta_{i+1/2} \left[ U \right] 847 + \delta_{j+1/2} \left[ V \right] 848 + \delta_{k+1/2} \left[ W \right] \biggr\} &&& \\ 849 % 850 \equiv& + \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i} 851 \biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\} &&& \\ 842 852 \end{flalign*} 843 853 Applying similar manipulation applied to the second term of the scalar product leads to: 844 \begin{equation*} 845 - \int_D \textbf{U}_h \cdot \left( {{\begin{array} {*{20}c} 846 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 847 \nabla \cdot \left( \textbf{U}\,v \right) \hfill \\ \end{array}} } \right) \;dv 848 \equiv + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) 849 \biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\} 850 \end{equation*} 854 \[ 855 - \int_D \textbf{U}_h \cdot \left( {{ 856 \begin{array} {*{20}c} 857 \nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 858 \nabla \cdot \left( \textbf{U}\,v \right) \hfill \\ 859 \end{array} 860 } } \right) \;dv 861 \equiv + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) 862 \biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\} 863 \] 851 864 which is the discrete form of $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv $. 852 865 \autoref{eq:C_ADV_KE_flux} is thus satisfied. 853 854 866 855 867 When the UBS scheme is used to evaluate the flux form momentum advection, … … 857 869 The horizontal kinetic energy is not conserved, but forced to decay ($i.e.$ the scheme is diffusive). 858 870 859 860 861 862 863 864 865 866 867 868 871 % ================================================================ 869 872 % Discrete Enstrophy Conservation … … 872 875 \label{sec:C.4} 873 876 874 875 877 % ------------------------------------------------------------------------------------------------------------- 876 878 % Vorticity Term with ENS scheme … … 880 882 881 883 In the ENS scheme, the vorticity term is descretized as follows: 882 \begin{equation} \tag{\ref{eq:dynvor_ens}} 883 \left\{ \begin{aligned} 884 +\frac{1}{e_{1u}} & \overline{q}^{\,i} & {\overline{ \overline{\left( e_{1v}\,e_{3v}\; v \right) } } }^{\,i, j+1/2} \\ 885 - \frac{1}{e_{2v}} & \overline{q}^{\,j} & {\overline{ \overline{\left( e_{2u}\,e_{3u}\; u \right) } } }^{\,i+1/2, j} 886 \end{aligned} \right. 884 \begin{equation} 885 \tag{\ref{eq:dynvor_ens}} 886 \left\{ 887 \begin{aligned} 888 +\frac{1}{e_{1u}} & \overline{q}^{\,i} & {\overline{ \overline{\left( e_{1v}\,e_{3v}\; v \right) } } }^{\,i, j+1/2} \\ 889 - \frac{1}{e_{2v}} & \overline{q}^{\,j} & {\overline{ \overline{\left( e_{2u}\,e_{3u}\; u \right) } } }^{\,i+1/2, j} 890 \end{aligned} 891 \right. 887 892 \end{equation} 888 893 … … 892 897 ( \autoref{eq:DOM_mi_adj} and \autoref{eq:DOM_di_adj}), 893 898 it can be shown that: 894 \begin{equation} \label{eq:C_1.1} 895 \int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0 899 \begin{equation} 900 \label{eq:C_1.1} 901 \int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0 896 902 \end{equation} 897 903 where $dv=e_1\,e_2\,e_3 \; di\,dj\,dk$ is the volume element. 898 904 Indeed, using \autoref{eq:dynvor_ens}, 899 905 the discrete form of the right hand side of \autoref{eq:C_1.1} can be transformed as follow: 900 \begin{flalign*} 901 &\int_D q \,\; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times 902 \left( e_3 \, q \; \textbf{k} \times \textbf{U}_h \right)\; dv \\ 903 % 904 & \qquad {\begin{array}{*{20}l} 905 &\equiv \sum\limits_{i,j,k} 906 q \ \left\{ \delta_{i+1/2} \left[ - \,\overline {q}^{\,i}\; \overline{\overline U }^{\,i,j+1/ 2} \right] 907 - \delta_{j+1/2} \left[ \overline {q}^{\,j}\; \overline{\overline V }^{\,i+1/2, j} \right] \right\} \\ 908 % 909 &\equiv \sum\limits_{i,j,k} 910 \left\{ \delta_i [q] \; \overline{q}^{\,i} \; \overline{ \overline U }^{\,i,j+1/2} 911 + \delta_j [q] \; \overline{q}^{\,j} \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\ 912 % 913 &\equiv \,\frac{1} {2} \sum\limits_{i,j,k} 914 \left\{ \delta_i \left[ q^2 \right] \; \overline{\overline U }^{\,i,j+1/2} 915 + \delta_j \left[ q^2 \right] \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\ 916 % 917 &\equiv - \frac{1} {2} \sum\limits_{i,j,k} q^2 \; 918 \left\{ \delta_{i+1/2} \left[ \overline{\overline{ U }}^{\,i,j+1/2} \right] 919 + \delta_{j+1/2} \left[ \overline{\overline{ V }}^{\,i+1/2,j} \right] \right\} && \\ 920 \end{array} } 921 % 922 \allowdisplaybreaks 923 \intertext{ Since $\overline {\;\cdot \;} $ and $\delta $ operators commute: $\delta_{i+1/2} 924 \left[ {\overline a^{\,i}} \right] = \overline {\delta_i \left[ a \right]}^{\,i+1/2}$, 925 and introducing the horizontal divergence $\chi $, it becomes: } 926 \allowdisplaybreaks 927 % 928 & \qquad {\begin{array}{*{20}l} 929 &\equiv \sum\limits_{i,j,k} - \frac{1} {2} q^2 \; \overline{\overline{ e_{1t}\,e_{2t}\,e_{3t}^{}\, \chi}}^{\,i+1/2,j+1/2} 930 \quad \equiv 0 && 931 \end{array} } 906 \begin{flalign*} 907 &\int_D q \,\; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times 908 \left( e_3 \, q \; \textbf{k} \times \textbf{U}_h \right)\; dv \\ 909 % 910 & \qquad 911 { 912 \begin{array}{*{20}l} 913 &\equiv \sum\limits_{i,j,k} 914 q \ \left\{ \delta_{i+1/2} \left[ - \,\overline {q}^{\,i}\; \overline{\overline U }^{\,i,j+1/ 2} \right] 915 - \delta_{j+1/2} \left[ \overline {q}^{\,j}\; \overline{\overline V }^{\,i+1/2, j} \right] \right\} \\ 916 % 917 &\equiv \sum\limits_{i,j,k} 918 \left\{ \delta_i [q] \; \overline{q}^{\,i} \; \overline{ \overline U }^{\,i,j+1/2} 919 + \delta_j [q] \; \overline{q}^{\,j} \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\ 920 % 921 &\equiv \,\frac{1} {2} \sum\limits_{i,j,k} 922 \left\{ \delta_i \left[ q^2 \right] \; \overline{\overline U }^{\,i,j+1/2} 923 + \delta_j \left[ q^2 \right] \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\ 924 % 925 &\equiv - \frac{1} {2} \sum\limits_{i,j,k} q^2 \; 926 \left\{ \delta_{i+1/2} \left[ \overline{\overline{ U }}^{\,i,j+1/2} \right] 927 + \delta_{j+1/2} \left[ \overline{\overline{ V }}^{\,i+1/2,j} \right] \right\} && \\ 928 \end{array} 929 } 930 % 931 \allowdisplaybreaks 932 \intertext{ Since $\overline {\;\cdot \;} $ and $\delta $ operators commute: $\delta_{i+1/2} 933 \left[ {\overline a^{\,i}} \right] = \overline {\delta_i \left[ a \right]}^{\,i+1/2}$, 934 and introducing the horizontal divergence $\chi $, it becomes: } 935 \allowdisplaybreaks 936 % 937 & \qquad { 938 \begin{array}{*{20}l} 939 &\equiv \sum\limits_{i,j,k} - \frac{1} {2} q^2 \; \overline{\overline{ e_{1t}\,e_{2t}\,e_{3t}^{}\, \chi}}^{\,i+1/2,j+1/2} 940 \quad \equiv 0 && 941 \end{array} 942 } 932 943 \end{flalign*} 933 944 The later equality is obtain only when the flow is horizontally non-divergent, $i.e.$ $\chi$=$0$. 934 935 945 936 946 % ------------------------------------------------------------------------------------------------------------- … … 941 951 942 952 With the EEN scheme, the vorticity terms are represented as: 943 \begin{equation} \tag{\ref{eq:dynvor_een}} 944 \left\{ { \begin{aligned} 945 +q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}} 946 {^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\ 947 - q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}} 948 {^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2} \\ 949 \end{aligned} } \right. 953 \begin{equation} 954 \tag{\ref{eq:dynvor_een}} 955 \left\{ { 956 \begin{aligned} 957 +q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}} 958 {^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\ 959 - q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}} 960 {^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2} \\ 961 \end{aligned} 962 } \right. 950 963 \end{equation} 951 964 where the indices $i_p$ and $k_p$ take the following values: 952 965 $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 953 966 and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by: 954 \begin{equation} \tag{\ref{eq:Q_triads}} 955 _i^j \mathbb{Q}^{i_p}_{j_p} 956 = \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right) 967 \begin{equation} 968 \tag{\ref{eq:Q_triads}} 969 _i^j \mathbb{Q}^{i_p}_{j_p} 970 = \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right) 957 971 \end{equation} 958 959 972 960 973 This formulation does conserve the potential enstrophy for a horizontally non-divergent flow ($i.e.$ $\chi=0$). … … 965 978 this triad only can be transformed as follow: 966 979 967 \begin{flalign*} 968 &\int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \\ 969 % 970 \equiv& \sum\limits_{i,j,k} 971 {q} \ \biggl\{ \;\; 972 \delta_{i+1/2} \left[ -\, {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}} \right] 973 - \delta_{j+1/2} \left[ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \right] 974 \;\;\biggr\} && \\ 975 % 976 \equiv& \sum\limits_{i,j,k} 977 \biggl\{ \delta_i [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}} 978 + \delta_j [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \biggr\} 979 && \\ 980 % 981 ... & &&\\ 982 &Demonstation \ to \ be \ done... &&\\ 983 ... & &&\\ 984 % 985 \equiv& \frac{1} {2} \sum\limits_{i,j,k} 986 \biggl\{ \delta_i \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\; 987 \overline{\overline {U}}^{\,i,j+1/2} 988 + \delta_j \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\; 989 \overline{\overline {V}}^{\,i+1/2,j} 990 \biggr\} 991 && \\ 992 % 993 \equiv& - \frac{1} {2} \sum\limits_{i,j,k} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2\; 994 \biggl\{ \delta_{i+1/2} 995 \left[ \overline{\overline {U}}^{\,i,j+1/2} \right] 996 + \delta_{j+1/2} 997 \left[ \overline{\overline {V}}^{\,i+1/2,j} \right] 998 \biggr\} && \\ 999 % 1000 \equiv& \sum\limits_{i,j,k} - \frac{1} {2} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 1001 \; \overline{\overline{ b_t^{}\, \chi}}^{\,i+1/2,\,j+1/2} &&\\ 1002 % 1003 \ \ \equiv& \ 0 &&\\ 1004 \end{flalign*} 1005 1006 1007 1008 980 \begin{flalign*} 981 &\int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \\ 982 % 983 \equiv& \sum\limits_{i,j,k} 984 {q} \ \biggl\{ \;\; 985 \delta_{i+1/2} \left[ -\, {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}} \right] 986 - \delta_{j+1/2} \left[ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \right] 987 \;\;\biggr\} && \\ 988 % 989 \equiv& \sum\limits_{i,j,k} 990 \biggl\{ \delta_i [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}} 991 + \delta_j [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \biggr\} 992 && \\ 993 % 994 ... & &&\\ 995 &Demonstation \ to \ be \ done... &&\\ 996 ... & &&\\ 997 % 998 \equiv& \frac{1} {2} \sum\limits_{i,j,k} 999 \biggl\{ \delta_i \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\; 1000 \overline{\overline {U}}^{\,i,j+1/2} 1001 + \delta_j \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\; 1002 \overline{\overline {V}}^{\,i+1/2,j} 1003 \biggr\} 1004 && \\ 1005 % 1006 \equiv& - \frac{1} {2} \sum\limits_{i,j,k} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2\; 1007 \biggl\{ \delta_{i+1/2} 1008 \left[ \overline{\overline {U}}^{\,i,j+1/2} \right] 1009 + \delta_{j+1/2} 1010 \left[ \overline{\overline {V}}^{\,i+1/2,j} \right] 1011 \biggr\} && \\ 1012 % 1013 \equiv& \sum\limits_{i,j,k} - \frac{1} {2} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 1014 \; \overline{\overline{ b_t^{}\, \chi}}^{\,i+1/2,\,j+1/2} &&\\ 1015 % 1016 \ \ \equiv& \ 0 &&\\ 1017 \end{flalign*} 1009 1018 1010 1019 % ================================================================ … … 1013 1022 \section{Conservation properties on tracers} 1014 1023 \label{sec:C.5} 1015 1016 1024 1017 1025 All the numerical schemes used in NEMO are written such that the tracer content is conserved by … … 1032 1040 1033 1041 conservation of a tracer, $T$: 1034 \ begin{equation*}1035 \frac{\partial }{\partial t} \left( \int_D {T\;dv} \right) 1036 = \int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv }=01037 \ end{equation*}1042 \[ 1043 \frac{\partial }{\partial t} \left( \int_D {T\;dv} \right) 1044 = \int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv }=0 1045 \] 1038 1046 1039 1047 conservation of its variance: 1040 \begin{flalign*} 1041 \frac{\partial }{\partial t} \left( \int_D {\frac{1}{2} T^2\;dv} \right) 1042 =& \int_D { \frac{1}{e_3} Q \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv } 1043 - \frac{1}{2} \int_D { T^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv } 1044 \end{flalign*} 1045 1048 \begin{flalign*} 1049 \frac{\partial }{\partial t} \left( \int_D {\frac{1}{2} T^2\;dv} \right) 1050 =& \int_D { \frac{1}{e_3} Q \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv } 1051 - \frac{1}{2} \int_D { T^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv } 1052 \end{flalign*} 1046 1053 1047 1054 Whatever the advection scheme considered it conserves of the tracer content as … … 1051 1058 the conservation of the tracer content due to the advection tendency is obtained as follows: 1052 1059 \begin{flalign*} 1053 &\int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv } = - \int_D \nabla \cdot \left( T \textbf{U} \right)\;dv &&&\\1054 &\equiv - \sum\limits_{i,j,k} \biggl\{1055 1056 + \delta_j \left[ V \;\tau_v \right] \right) 1057 1058 %1059 &\equiv - \sum\limits_{i,j,k} \left\{1060 1061 1060 &\int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv } = - \int_D \nabla \cdot \left( T \textbf{U} \right)\;dv &&&\\ 1061 &\equiv - \sum\limits_{i,j,k} \biggl\{ 1062 \frac{1} {b_t} \left( \delta_i \left[ U \;\tau_u \right] 1063 + \delta_j \left[ V \;\tau_v \right] \right) 1064 + \frac{1} {e_{3t}} \delta_k \left[ w\;\tau_w \right] \biggl\} b_t &&&\\ 1065 % 1066 &\equiv - \sum\limits_{i,j,k} \left\{ 1067 \delta_i \left[ U \;\tau_u \right] 1068 + \delta_j \left[ V \;\tau_v \right] 1062 1069 + \delta_k \left[ W \;\tau_w \right] \right\} && \\ 1063 &\equiv 0 &&&1070 &\equiv 0 &&& 1064 1071 \end{flalign*} 1065 1072 … … 1068 1075 It can be demonstarted as follows: 1069 1076 \begin{flalign*} 1070 &\int_D { \frac{1}{e_3} Q \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv }1071 = - \int\limits_D \tau\;\nabla \cdot \left( T\; \textbf{U} \right)\;dv &&&\\1072 \equiv& - \sum\limits_{i,j,k} T\;1073 1074 1075 1076 1077 \equiv& + \sum\limits_{i,j,k} 1078 \left\{ U \overline T^{\,i+1/2} \,\delta_{i+1/2} \left[ T \right] 1079 1080 1081 \equiv& + \frac{1} {2} \sum\limits_{i,j,k}1082 1083 1084 + W \;\delta_{k+1/2} \left[ T^2 \right] \Bigr\} && \\1085 \equiv& - \frac{1} {2} \sum\limits_{i,j,k} T^21086 1087 1088 1089 \equiv& + \frac{1} {2} \sum\limits_{i,j,k} T^21090 1077 &\int_D { \frac{1}{e_3} Q \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv } 1078 = - \int\limits_D \tau\;\nabla \cdot \left( T\; \textbf{U} \right)\;dv &&&\\ 1079 \equiv& - \sum\limits_{i,j,k} T\; 1080 \left\{ 1081 \delta_i \left[ U \overline T^{\,i+1/2} \right] 1082 + \delta_j \left[ V \overline T^{\,j+1/2} \right] 1083 + \delta_k \left[ W \overline T^{\,k+1/2} \right] \right\} && \\ 1084 \equiv& + \sum\limits_{i,j,k} 1085 \left\{ U \overline T^{\,i+1/2} \,\delta_{i+1/2} \left[ T \right] 1086 + V \overline T^{\,j+1/2} \;\delta_{j+1/2} \left[ T \right] 1087 + W \overline T^{\,k+1/2}\;\delta_{k+1/2} \left[ T \right] \right\} &&\\ 1088 \equiv& + \frac{1} {2} \sum\limits_{i,j,k} 1089 \Bigl\{ U \;\delta_{i+1/2} \left[ T^2 \right] 1090 + V \;\delta_{j+1/2} \left[ T^2 \right] 1091 + W \;\delta_{k+1/2} \left[ T^2 \right] \Bigr\} && \\ 1092 \equiv& - \frac{1} {2} \sum\limits_{i,j,k} T^2 1093 \Bigl\{ \delta_i \left[ U \right] 1094 + \delta_j \left[ V \right] 1095 + \delta_k \left[ W \right] \Bigr\} &&& \\ 1096 \equiv& + \frac{1} {2} \sum\limits_{i,j,k} T^2 1097 \Bigl\{ \frac{1}{e_{3t}} \frac{\partial e_{3t}\,T }{\partial t} \Bigr\} &&& \\ 1091 1098 \end{flalign*} 1092 1099 which is the discrete form of $ \frac{1}{2} \int_D { T^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv }$. … … 1097 1104 \section{Conservation properties on lateral momentum physics} 1098 1105 \label{sec:dynldf_properties} 1099 1100 1106 1101 1107 The discrete formulation of the horizontal diffusion of momentum ensures … … 1122 1128 The lateral momentum diffusion term conserves the potential vorticity: 1123 1129 \begin{flalign*} 1124 &\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1125 1126 - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right) \Bigr]\;dv \\ 1127 %\end{flalign*}1128 %%%%%%%%%%recheck here.... (gm)1129 %\begin{flalign*}1130 =& \int \limits_D -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1131 \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right) \Bigr]\;dv \\ 1132 %\end{flalign*}1133 %\begin{flalign*}1134 \equiv& \sum\limits_{i,j}1135 1136 1137 1138 \right\} \\ 1139 %1140 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}1141 %1142 \equiv& \sum\limits_{i,j,k} 1143 1144 1130 &\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1131 \Bigl[ \nabla_h \left( A^{\,lm}\;\chi \right) 1132 - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right) \Bigr]\;dv \\ 1133 % \end{flalign*} 1134 %%%%%%%%%% recheck here.... (gm) 1135 % \begin{flalign*} 1136 =& \int \limits_D -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1137 \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right) \Bigr]\;dv \\ 1138 % \end{flalign*} 1139 % \begin{flalign*} 1140 \equiv& \sum\limits_{i,j} 1141 \left\{ 1142 \delta_{i+1/2} \left[ \frac {e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ A_f^{\,lm} e_{3f} \zeta \right] \right] 1143 + \delta_{j+1/2} \left[ \frac {e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ A_f^{\,lm} e_{3f} \zeta \right] \right] 1144 \right\} \\ 1145 % 1146 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:} 1147 % 1148 \equiv& \sum\limits_{i,j,k} 1149 -\,\left\{ 1150 \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ A_f^{\,lm} e_{3f} \zeta \right]\;\delta_i \left[ 1\right] 1145 1151 + \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ A_f^{\,lm} e_{3f} \zeta \right]\;\delta_j \left[ 1\right] 1146 \right\} \quad \equiv 0 1147 \\ 1152 \right\} \quad \equiv 0 1153 \\ 1148 1154 \end{flalign*} 1149 1155 … … 1156 1162 The lateral momentum diffusion term dissipates the horizontal kinetic energy: 1157 1163 %\begin{flalign*} 1158 \ begin{equation*}1159 \begin{split}1160 \int_D \textbf{U}_h \cdot 1161 \left[ \nabla_h \right. & \left. \left( A^{\,lm}\;\chi \right) 1162 1163 \\ %%%1164 \equiv& \sum\limits_{i,j,k} 1165 1166 1167 1168 1169 &\;\; + \left\{1170 \frac{1} {e_{2u}} \delta_{j+1/2} \left[ A_T^{\,lm} \chi \right] 1171 + \frac{1} {e_{1v}\,e_{3v}} \delta_i \left[ A_f^{\,lm} e_{3f} \zeta \right] 1172 \right\} \; e_{1v}\,e_{2u}\,e_{3v} \;v \qquad \\ 1173 \\ %%%1174 \equiv& \sum\limits_{i,j,k} 1175 1176 1177 1178 \Bigl\} 1179 \\ 1180 &\;\; + \Bigl\{1181 1182 1183 \Bigl\} \\ 1184 \\ %%%1185 \equiv& \sum\limits_{i,j,k} 1186 1187 1188 + \delta_j \left[ e_{1v}\,e_{3v} \;v \right] 1189 \Bigr) \; A_T^{\,lm} \chi \\ 1190 &\;\; - \Bigl(1191 1192 - \delta_{j+1/2} \left[ e_{1u} \;u \right] 1193 \Bigr)\; A_f^{\,lm} e_{3f} \zeta \\ 1194 \\ %%%1195 \equiv& \sum\limits_{i,j,k} 1196 1197 - A_f ^{\,lm} \,\zeta^2 \;e_{1f }\,e_{2f }\,e_{3f} 1198 \quad \leq 0 \\1199 \end{split}1200 \ end{equation*}1164 \[ 1165 \begin{split} 1166 \int_D \textbf{U}_h \cdot 1167 \left[ \nabla_h \right. & \left. \left( A^{\,lm}\;\chi \right) 1168 - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right) \right] \; dv \\ 1169 \\ %%% 1170 \equiv& \sum\limits_{i,j,k} 1171 \left\{ 1172 \frac{1} {e_{1u}} \delta_{i+1/2} \left[ A_T^{\,lm} \chi \right] 1173 - \frac{1} {e_{2u}\,e_{3u}} \delta_j \left[ A_f^{\,lm} e_{3f} \zeta \right] 1174 \right\} \; e_{1u}\,e_{2u}\,e_{3u} \;u \\ 1175 &\;\; + \left\{ 1176 \frac{1} {e_{2u}} \delta_{j+1/2} \left[ A_T^{\,lm} \chi \right] 1177 + \frac{1} {e_{1v}\,e_{3v}} \delta_i \left[ A_f^{\,lm} e_{3f} \zeta \right] 1178 \right\} \; e_{1v}\,e_{2u}\,e_{3v} \;v \qquad \\ 1179 \\ %%% 1180 \equiv& \sum\limits_{i,j,k} 1181 \Bigl\{ 1182 e_{2u}\,e_{3u} \;u\; \delta_{i+1/2} \left[ A_T^{\,lm} \chi \right] 1183 - e_{1u} \;u\; \delta_j \left[ A_f^{\,lm} e_{3f} \zeta \right] 1184 \Bigl\} 1185 \\ 1186 &\;\; + \Bigl\{ 1187 e_{1v}\,e_{3v} \;v\; \delta_{j+1/2} \left[ A_T^{\,lm} \chi \right] 1188 + e_{2v} \;v\; \delta_i \left[ A_f^{\,lm} e_{3f} \zeta \right] 1189 \Bigl\} \\ 1190 \\ %%% 1191 \equiv& \sum\limits_{i,j,k} 1192 - \Bigl( 1193 \delta_i \left[ e_{2u}\,e_{3u} \;u \right] 1194 + \delta_j \left[ e_{1v}\,e_{3v} \;v \right] 1195 \Bigr) \; A_T^{\,lm} \chi \\ 1196 &\;\; - \Bigl( 1197 \delta_{i+1/2} \left[ e_{2v} \;v \right] 1198 - \delta_{j+1/2} \left[ e_{1u} \;u \right] 1199 \Bigr)\; A_f^{\,lm} e_{3f} \zeta \\ 1200 \\ %%% 1201 \equiv& \sum\limits_{i,j,k} 1202 - A_T^{\,lm} \,\chi^2 \;e_{1t}\,e_{2t}\,e_{3t} 1203 - A_f ^{\,lm} \,\zeta^2 \;e_{1f }\,e_{2f }\,e_{3f} 1204 \quad \leq 0 \\ 1205 \end{split} 1206 \] 1201 1207 1202 1208 % ------------------------------------------------------------------------------------------------------------- … … 1208 1214 The lateral momentum diffusion term dissipates the enstrophy when the eddy coefficients are horizontally uniform: 1209 1215 \begin{flalign*} 1210 &\int\limits_D \zeta \; \textbf{k} \cdot \nabla \times 1211 1212 1213 &\quad = A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times 1214 1215 &\quad \equiv A^{\,lm} \sum\limits_{i,j,k} \zeta \;e_{3f} 1216 1217 + \delta_{j+1/2} \left[ \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta \right] \right] \right\} &&&\\ 1218 %1219 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}1220 %1221 &\quad \equiv - A^{\,lm} \sum\limits_{i,j,k} 1222 1223 1216 &\int\limits_D \zeta \; \textbf{k} \cdot \nabla \times 1217 \left[ \nabla_h \left( A^{\,lm}\;\chi \right) 1218 - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right) \right]\;dv &&&\\ 1219 &\quad = A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times 1220 \left[ \nabla_h \times \left( \zeta \; \textbf{k} \right) \right]\;dv &&&\\ 1221 &\quad \equiv A^{\,lm} \sum\limits_{i,j,k} \zeta \;e_{3f} 1222 \left\{ \delta_{i+1/2} \left[ \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ e_{3f} \zeta \right] \right] 1223 + \delta_{j+1/2} \left[ \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta \right] \right] \right\} &&&\\ 1224 % 1225 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:} 1226 % 1227 &\quad \equiv - A^{\,lm} \sum\limits_{i,j,k} 1228 \left\{ \left( \frac{1} {e_{1v}\,e_{3v}} \delta_i \left[ e_{3f} \zeta \right] \right)^2 b_v 1229 + \left( \frac{1} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta \right] \right)^2 b_u \right\} \quad \leq \;0 &&&\\ 1224 1230 \end{flalign*} 1225 1231 … … 1234 1240 The resulting term conserves the $\chi$ and dissipates $\chi^2$ when the eddy coefficients are horizontally uniform. 1235 1241 \begin{flalign*} 1236 & \int\limits_D \nabla_h \cdot 1237 1238 1239 = \int\limits_D \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi \right) dv \\1240 %1241 &\equiv \sum\limits_{i,j,k} 1242 1243 + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[ \chi \right] \right] \right\} \\ 1244 %1245 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}1246 %1247 &\equiv \sum\limits_{i,j,k} 1248 - \left\{ \frac{e_{2u}\,e_{3u}} {e_{1u}} A_u^{\,lm} \delta_{i+1/2} \left[ \chi \right] \delta_{i+1/2} \left[ 1 \right] 1249 + \frac{e_{1v}\,e_{3v}} {e_{2v}} A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right] \right\} 1250 \quad \equiv 0 \\ 1242 & \int\limits_D \nabla_h \cdot 1243 \Bigl[ \nabla_h \left( A^{\,lm}\;\chi \right) 1244 - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right) \Bigr] dv 1245 = \int\limits_D \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi \right) dv \\ 1246 % 1247 &\equiv \sum\limits_{i,j,k} 1248 \left\{ \delta_i \left[ A_u^{\,lm} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[ \chi \right] \right] 1249 + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[ \chi \right] \right] \right\} \\ 1250 % 1251 \intertext{Using \autoref{eq:DOM_di_adj}, it follows:} 1252 % 1253 &\equiv \sum\limits_{i,j,k} 1254 - \left\{ \frac{e_{2u}\,e_{3u}} {e_{1u}} A_u^{\,lm} \delta_{i+1/2} \left[ \chi \right] \delta_{i+1/2} \left[ 1 \right] 1255 + \frac{e_{1v}\,e_{3v}} {e_{2v}} A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right] \right\} 1256 \quad \equiv 0 1251 1257 \end{flalign*} 1252 1258 … … 1258 1264 1259 1265 \begin{flalign*} 1260 &\int\limits_D \chi \;\nabla_h \cdot 1261 1262 1263 = A^{\,lm} \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\; dv \\1264 %1265 &\equiv A^{\,lm} \sum\limits_{i,j,k} \frac{1} {e_{1t}\,e_{2t}\,e_{3t}} \chi 1266 1267 1268 1269 \right\} \; e_{1t}\,e_{2t}\,e_{3t} \\ 1270 %1271 \intertext{Using \autoref{eq:DOM_di_adj}, it turns out to be:}1272 %1273 &\equiv - A^{\,lm} \sum\limits_{i,j,k}1274 1275 + \left( \frac{1} {e_{2v}} \delta_{j+1/2} \left[ \chi \right] \right)^2 b_v \right\}1276 \quad \leq 0 \\ 1266 &\int\limits_D \chi \;\nabla_h \cdot 1267 \left[ \nabla_h \left( A^{\,lm}\;\chi \right) 1268 - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right) \right]\; dv 1269 = A^{\,lm} \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\; dv \\ 1270 % 1271 &\equiv A^{\,lm} \sum\limits_{i,j,k} \frac{1} {e_{1t}\,e_{2t}\,e_{3t}} \chi 1272 \left\{ 1273 \delta_i \left[ \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[ \chi \right] \right] 1274 + \delta_j \left[ \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[ \chi \right] \right] 1275 \right\} \; e_{1t}\,e_{2t}\,e_{3t} \\ 1276 % 1277 \intertext{Using \autoref{eq:DOM_di_adj}, it turns out to be:} 1278 % 1279 &\equiv - A^{\,lm} \sum\limits_{i,j,k} 1280 \left\{ \left( \frac{1} {e_{1u}} \delta_{i+1/2} \left[ \chi \right] \right)^2 b_u 1281 + \left( \frac{1} {e_{2v}} \delta_{j+1/2} \left[ \chi \right] \right)^2 b_v \right\} 1282 \quad \leq 0 1277 1283 \end{flalign*} 1278 1284 … … 1287 1293 The first two are associated with the conservation of momentum and the dissipation of horizontal kinetic energy: 1288 1294 \begin{align*} 1289 \int\limits_D \frac{1} {e_3 }\; \frac{\partial } {\partial k}1290 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)\; dv1291 \qquad \quad &= \vec{\textbf{0}} \\ 1292 %1293 \intertext{and}1294 %1295 \int\limits_D 1296 1297 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)\; dv \quad &\leq 0 \\ 1295 \int\limits_D \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1296 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)\; dv 1297 \qquad \quad &= \vec{\textbf{0}} 1298 % 1299 \intertext{and} 1300 % 1301 \int\limits_D 1302 \textbf{U}_h \cdot \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1303 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)\; dv \quad &\leq 0 1298 1304 \end{align*} 1299 1305 … … 1301 1307 The second results from: 1302 1308 \begin{flalign*} 1303 \int\limits_D 1304 1305 1306 \end{flalign*} 1307 \begin{flalign*} 1308 &\equiv \sum\limits_{i,j,k} 1309 \left( 1310 u\; \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ u \right] \right]\; e_{1u}\,e_{2u} 1311 + v\; \delta_k \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} \left[ v \right] \right]\; e_{1v}\,e_{2v} \right) &&&\\ 1312 %1313 \intertext{since the horizontal scale factor does not depend on $k$, it follows:}1314 %1315 &\equiv - \sum\limits_{i,j,k} 1316 \left( \frac{A_u^{\,vm}} {e_{3uw}} \left( \delta_{k+1/2} \left[ u \right] \right)^2\; e_{1u}\,e_{2u} 1317 1318 \quad \leq 0 &&&\\ 1309 \int\limits_D 1310 \textbf{U}_h \cdot \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1311 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)\;dv &&&\\ 1312 \end{flalign*} 1313 \begin{flalign*} 1314 &\equiv \sum\limits_{i,j,k} 1315 \left( 1316 u\; \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ u \right] \right]\; e_{1u}\,e_{2u} 1317 + v\; \delta_k \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} \left[ v \right] \right]\; e_{1v}\,e_{2v} \right) &&& 1318 % 1319 \intertext{since the horizontal scale factor does not depend on $k$, it follows:} 1320 % 1321 &\equiv - \sum\limits_{i,j,k} 1322 \left( \frac{A_u^{\,vm}} {e_{3uw}} \left( \delta_{k+1/2} \left[ u \right] \right)^2\; e_{1u}\,e_{2u} 1323 + \frac{A_v^{\,vm}} {e_{3vw}} \left( \delta_{k+1/2} \left[ v \right] \right)^2\; e_{1v}\,e_{2v} \right) 1324 \quad \leq 0 &&& 1319 1325 \end{flalign*} 1320 1326 … … 1322 1328 Indeed: 1323 1329 \begin{flalign*} 1324 \int \limits_D 1325 \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1326 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k} \left( 1327 \frac{A^{\,vm}} {e_3}\; \frac{\partial \textbf{U}_h } {\partial k} 1328 \right) \right)\; dv &&&\\ 1329 \end{flalign*} 1330 \begin{flalign*} 1331 \equiv \sum\limits_{i,j,k} \frac{1} {e_{3f}}\; \frac{1} {e_{1f}\,e_{2f}}1332 1333 \delta_{i+1/2} 1334 1335 \biggl. 1336 - \delta_{j+1/2} 1337 1338 1339 e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0 && \\ 1330 \int \limits_D 1331 \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 1332 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k} \left( 1333 \frac{A^{\,vm}} {e_3}\; \frac{\partial \textbf{U}_h } {\partial k} 1334 \right) \right)\; dv &&& 1335 \end{flalign*} 1336 \begin{flalign*} 1337 \equiv \sum\limits_{i,j,k} \frac{1} {e_{3f}}\; \frac{1} {e_{1f}\,e_{2f}} 1338 \bigg\{ \biggr. \quad 1339 \delta_{i+1/2} 1340 &\left( \frac{e_{2v}} {e_{3v}} \delta_k \left[ \frac{1} {e_{3vw}} \delta_{k+1/2} \left[ v \right] \right] \right) &&\\ 1341 \biggl. 1342 - \delta_{j+1/2} 1343 &\left( \frac{e_{1u}} {e_{3u}} \delta_k \left[ \frac{1} {e_{3uw}}\delta_{k+1/2} \left[ u \right] \right] \right) 1344 \biggr\} \; 1345 e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0 && 1340 1346 \end{flalign*} 1341 1347 1342 1348 If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, $i.e.$ 1343 1349 \begin{flalign*} 1344 \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 1345 1346 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&&\\ 1350 \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 1351 \left( \frac{1} {e_3}\; \frac{\partial } {\partial k} 1352 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&& 1347 1353 \end{flalign*} 1348 1354 1349 1355 This property is only satisfied in $z$-coordinates: 1350 1356 \begin{flalign*} 1351 \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 1352 1353 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv &&& \\ 1354 \end{flalign*} 1355 \begin{flalign*} 1356 \equiv \sum\limits_{i,j,k} \zeta \;e_{3f} \;1357 1358 \delta_{i+1/2} 1359 1360 - \delta_{j+1/2} 1361 1362 \left( \frac{e_{1u}} {e_{3u}} \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u] \right] \right) \biggr\} &&\\ 1363 \end{flalign*} 1364 \begin{flalign*} 1365 \equiv \sum\limits_{i,j,k} \zeta \;e_{3f} 1366 1367 \frac{1} {e_{3v}} \delta_k 1368 &\left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} \left[ \delta_{i+1/2} \left[ e_{2v}\,v \right] \right] \right] &&\\ 1369 \biggl.1370 - \frac{1} {e_{3u}} \delta_k 1371 &\left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ \delta_{j+1/2} \left[ e_{1u}\,u \right] \right] \right] \biggr\} &&\\ 1357 \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 1358 \left( \frac{1} {e_3}\; \frac{\partial } {\partial k} 1359 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv &&& 1360 \end{flalign*} 1361 \begin{flalign*} 1362 \equiv \sum\limits_{i,j,k} \zeta \;e_{3f} \; 1363 \biggl\{ \biggr. \quad 1364 \delta_{i+1/2} 1365 &\left( \frac{e_{2v}} {e_{3v}} \delta_k \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2}[v] \right] \right) &&\\ 1366 - \delta_{j+1/2} 1367 &\biggl. 1368 \left( \frac{e_{1u}} {e_{3u}} \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u] \right] \right) \biggr\} && 1369 \end{flalign*} 1370 \begin{flalign*} 1371 \equiv \sum\limits_{i,j,k} \zeta \;e_{3f} 1372 \biggl\{ \biggr. \quad 1373 \frac{1} {e_{3v}} \delta_k 1374 &\left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} \left[ \delta_{i+1/2} \left[ e_{2v}\,v \right] \right] \right] &&\\ 1375 \biggl. 1376 - \frac{1} {e_{3u}} \delta_k 1377 &\left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ \delta_{j+1/2} \left[ e_{1u}\,u \right] \right] \right] \biggr\} && 1372 1378 \end{flalign*} 1373 1379 Using the fact that the vertical diffusion coefficients are uniform, … … 1375 1381 $e_{3f} =e_{3u} =e_{3v} =e_{3t} $ and $e_{3w} =e_{3uw} =e_{3vw} $, it follows: 1376 1382 \begin{flalign*} 1377 \equiv A^{\,vm} \sum\limits_{i,j,k} \zeta \;\delta_k 1378 1379 - \delta_{j+1/ 2} \left[ e_{1u}\,u \right] \Bigr] \right] &&&\\ 1380 \end{flalign*} 1381 \begin{flalign*} 1382 \equiv - A^{\,vm} \sum\limits_{i,j,k} \frac{1} {e_{3w}}1383 \left( \delta_{k+1/2} \left[ \zeta \right] \right)^2 \; e_{1f}\,e_{2f} \; \leq 0 &&&\\ 1383 \equiv A^{\,vm} \sum\limits_{i,j,k} \zeta \;\delta_k 1384 \left[ \frac{1} {e_{3w}} \delta_{k+1/2} \Bigl[ \delta_{i+1/2} \left[ e_{2v}\,v \right] 1385 - \delta_{j+1/ 2} \left[ e_{1u}\,u \right] \Bigr] \right] &&& 1386 \end{flalign*} 1387 \begin{flalign*} 1388 \equiv - A^{\,vm} \sum\limits_{i,j,k} \frac{1} {e_{3w}} 1389 \left( \delta_{k+1/2} \left[ \zeta \right] \right)^2 \; e_{1f}\,e_{2f} \; \leq 0 &&& 1384 1390 \end{flalign*} 1385 1391 Similarly, the horizontal divergence is obviously conserved: 1386 1392 1387 1393 \begin{flalign*} 1388 \int\limits_D \nabla \cdot 1389 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}1390 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&&\\ 1394 \int\limits_D \nabla \cdot 1395 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1396 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&& 1391 1397 \end{flalign*} 1392 1398 and the square of the horizontal divergence decreases ($i.e.$ the horizontal divergence is dissipated) if … … 1394 1400 1395 1401 \begin{flalign*} 1396 \int\limits_D \chi \;\nabla \cdot 1397 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}1398 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&&\\ 1402 \int\limits_D \chi \;\nabla \cdot 1403 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1404 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0 &&& 1399 1405 \end{flalign*} 1400 1406 This property is only satisfied in the $z$-coordinate: 1401 1407 \begin{flalign*} 1402 \int\limits_D \chi \;\nabla \cdot 1403 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}1404 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv &&&\\ 1405 \end{flalign*} 1406 \begin{flalign*} 1407 \equiv \sum\limits_{i,j,k} \frac{\chi } {e_{1t}\,e_{2t}}1408 1409 \delta_{i+1/2} 1410 &\left( \frac{e_{2u}} {e_{3u}} \delta_k 1411 \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u] \right] \right) &&\\ 1412 \Biggl.1413 + \delta_{j+1/2} 1414 &\left( \frac{e_{1v}} {e_{3v}} \delta_k 1415 1416 \Biggr\} \; e_{1t}\,e_{2t}\,e_{3t} &&\\ 1417 \end{flalign*} 1418 1419 \begin{flalign*} 1420 \equiv A^{\,vm} \sum\limits_{i,j,k} \chi \,1421 1422 1423 &\left( 1424 \delta_k \left[ 1425 \frac{1} {e_{3uw}} \delta_{k+1/2} \left[ e_{2u}\,u \right] \right] \right) && \\ 1426 \biggl. 1427 + \delta_{j+1/2} 1428 &\left( \delta_k \left[ 1429 \frac{1} {e_{3vw}} \delta_{k+1/2} \left[ e_{1v}\,v \right] \right] \right) \biggr\} && \\ 1430 \end{flalign*} 1431 1432 \begin{flalign*} 1433 \equiv -A^{\,vm} \sum\limits_{i,j,k} 1434 \frac{\delta_{k+1/2} \left[ \chi \right]} {e_{3w}}\; \biggl\{ 1435 1436 1437 + \delta_{j+1/2} \left[ e_{1v}\,v \right] \Bigr] \biggr\} &&&\\ 1438 \end{flalign*} 1439 1440 \begin{flalign*} 1441 \equiv -A^{\,vm} \sum\limits_{i,j,k}1442 \frac{1} {e_{3w}} \delta_{k+1/2} \left[ \chi \right]\; \delta_{k+1/2} \left[ e_{1t}\,e_{2t} \;\chi \right] &&&\\1443 \end{flalign*} 1444 1445 \begin{flalign*} 1446 \equiv -A^{\,vm} \sum\limits_{i,j,k} 1447 \frac{e_{1t}\,e_{2t}} {e_{3w}}\; \left( \delta_{k+1/2} \left[ \chi \right] \right)^2 \quad \equiv 0 &&&\\ 1408 \int\limits_D \chi \;\nabla \cdot 1409 \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k} 1410 \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv &&& 1411 \end{flalign*} 1412 \begin{flalign*} 1413 \equiv \sum\limits_{i,j,k} \frac{\chi } {e_{1t}\,e_{2t}} 1414 \biggl\{ \Biggr. \quad 1415 \delta_{i+1/2} 1416 &\left( \frac{e_{2u}} {e_{3u}} \delta_k 1417 \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u] \right] \right) &&\\ 1418 \Biggl. 1419 + \delta_{j+1/2} 1420 &\left( \frac{e_{1v}} {e_{3v}} \delta_k 1421 \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} [v] \right] \right) 1422 \Biggr\} \; e_{1t}\,e_{2t}\,e_{3t} && 1423 \end{flalign*} 1424 1425 \begin{flalign*} 1426 \equiv A^{\,vm} \sum\limits_{i,j,k} \chi \, 1427 \biggl\{ \biggr. \quad 1428 \delta_{i+1/2} 1429 &\left( 1430 \delta_k \left[ 1431 \frac{1} {e_{3uw}} \delta_{k+1/2} \left[ e_{2u}\,u \right] \right] \right) && \\ 1432 \biggl. 1433 + \delta_{j+1/2} 1434 &\left( \delta_k \left[ 1435 \frac{1} {e_{3vw}} \delta_{k+1/2} \left[ e_{1v}\,v \right] \right] \right) \biggr\} && 1436 \end{flalign*} 1437 1438 \begin{flalign*} 1439 \equiv -A^{\,vm} \sum\limits_{i,j,k} 1440 \frac{\delta_{k+1/2} \left[ \chi \right]} {e_{3w}}\; \biggl\{ 1441 \delta_{k+1/2} \Bigl[ 1442 \delta_{i+1/2} \left[ e_{2u}\,u \right] 1443 + \delta_{j+1/2} \left[ e_{1v}\,v \right] \Bigr] \biggr\} &&& 1444 \end{flalign*} 1445 1446 \begin{flalign*} 1447 \equiv -A^{\,vm} \sum\limits_{i,j,k} 1448 \frac{1} {e_{3w}} \delta_{k+1/2} \left[ \chi \right]\; \delta_{k+1/2} \left[ e_{1t}\,e_{2t} \;\chi \right] &&& 1449 \end{flalign*} 1450 1451 \begin{flalign*} 1452 \equiv -A^{\,vm} \sum\limits_{i,j,k} 1453 \frac{e_{1t}\,e_{2t}} {e_{3w}}\; \left( \delta_{k+1/2} \left[ \chi \right] \right)^2 \quad \equiv 0 &&& 1448 1454 \end{flalign*} 1449 1455 … … 1468 1474 constraint of conservation of tracers: 1469 1475 \begin{flalign*} 1470 &\int\limits_D \nabla \cdot \left( A\;\nabla T \right)\;dv &&&\\ 1471 \\ 1472 &\equiv \sum\limits_{i,j,k} 1473 \biggl\{ \biggr. 1474 \delta_i 1475 \left[ 1476 A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} 1477 \left[ T \right] 1478 \right] 1479 + \delta_j 1480 \left[ 1481 A_v^{\,lT} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} 1482 \left[ T \right] 1483 \right] 1484 &&\\ & \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\; 1485 + \delta_k 1486 \left[ 1487 A_w^{\,vT} \frac{e_{1t}\,e_{2t}} {e_{3t}} \delta_{k+1/2} 1488 \left[ T \right] 1489 \right] 1490 \biggr\} \quad \equiv 0 1491 &&\\ 1476 &\int\limits_D \nabla \cdot \left( A\;\nabla T \right)\;dv &&& \\ \\ 1477 &\equiv \sum\limits_{i,j,k} 1478 \biggl\{ \biggr. 1479 \delta_i 1480 \left[ 1481 A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} 1482 \left[ T \right] 1483 \right] 1484 + \delta_j 1485 \left[ 1486 A_v^{\,lT} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} 1487 \left[ T \right] 1488 \right] && \\ 1489 & \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\; 1490 + \delta_k 1491 \left[ 1492 A_w^{\,vT} \frac{e_{1t}\,e_{2t}} {e_{3t}} \delta_{k+1/2} 1493 \left[ T \right] 1494 \right] 1495 \biggr\} \quad \equiv 0 1496 && 1492 1497 \end{flalign*} 1493 1498 … … 1502 1507 constraint on the dissipation of tracer variance: 1503 1508 \begin{flalign*} 1504 \int\limits_D T\;\nabla & \cdot \left( A\;\nabla T \right)\;dv &&&\\ 1505 &\equiv \sum\limits_{i,j,k} \; T 1506 \biggl\{ \biggr. 1507 \delta_i \left[ A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[T\right] \right] 1508 & + \delta_j \left[ A_v^{\,lT} \frac{e_{1v} \,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[T\right] \right] 1509 \quad&& \\ 1510 \biggl. 1511 &&+ \delta_k \left[A_w^{\,vT}\frac{e_{1t}\,e_{2t}} {e_{3t}}\delta_{k+1/2}\left[T\right]\right] 1512 \biggr\} && 1513 \end{flalign*} 1514 \begin{flalign*} 1515 \equiv - \sum\limits_{i,j,k} 1516 \biggl\{ \biggr. \quad 1517 & A_u^{\,lT} \left( \frac{1} {e_{1u}} \delta_{i+1/2} \left[ T \right] \right)^2 e_{1u}\,e_{2u}\,e_{3u} && \\ 1518 & + A_v^{\,lT} \left( \frac{1} {e_{2v}} \delta_{j+1/2} \left[ T \right] \right)^2 e_{1v}\,e_{2v}\,e_{3v} && \\ \biggl. 1519 & + A_w^{\,vT} \left( \frac{1} {e_{3w}} \delta_{k+1/2} \left[ T \right] \right)^2 e_{1w}\,e_{2w}\,e_{3w} \biggr\} 1520 \quad \leq 0 && \\ 1521 \end{flalign*} 1522 1509 \int\limits_D T\;\nabla & \cdot \left( A\;\nabla T \right)\;dv &&&\\ 1510 &\equiv \sum\limits_{i,j,k} \; T 1511 \biggl\{ \biggr. 1512 \delta_i \left[ A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[T\right] \right] 1513 & + \delta_j \left[ A_v^{\,lT} \frac{e_{1v} \,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[T\right] \right] 1514 \quad&& \\ 1515 \biggl. 1516 &&+ \delta_k \left[A_w^{\,vT}\frac{e_{1t}\,e_{2t}} {e_{3t}}\delta_{k+1/2}\left[T\right]\right] 1517 \biggr\} && 1518 \end{flalign*} 1519 \begin{flalign*} 1520 \equiv - \sum\limits_{i,j,k} 1521 \biggl\{ \biggr. \quad 1522 & A_u^{\,lT} \left( \frac{1} {e_{1u}} \delta_{i+1/2} \left[ T \right] \right)^2 e_{1u}\,e_{2u}\,e_{3u} && \\ 1523 & + A_v^{\,lT} \left( \frac{1} {e_{2v}} \delta_{j+1/2} \left[ T \right] \right)^2 e_{1v}\,e_{2v}\,e_{3v} && \\ \biggl. 1524 & + A_w^{\,vT} \left( \frac{1} {e_{3w}} \delta_{k+1/2} \left[ T \right] \right)^2 e_{1w}\,e_{2w}\,e_{3w} \biggr\} 1525 \quad \leq 0 && 1526 \end{flalign*} 1523 1527 1524 1528 %%%% end of appendix in gm comment 1525 1529 %} 1530 \biblio 1531 1526 1532 \end{document} -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_D.tex
r10368 r10419 1 \documentclass[../tex_main/NEMO_manual]{subfiles} 1 \documentclass[../main/NEMO_manual]{subfiles} 2 2 3 \begin{document} 3 4 % ================================================================ 4 % Appendix D ÑCoding Rules5 % Appendix D Coding Rules 5 6 % ================================================================ 6 7 \chapter{Coding Rules} 7 8 \label{apdx:D} 9 8 10 \minitoc 9 11 10 12 \newpage 11 $\ $\newline % force a new ligne12 $\ $\newline % force a new ligne13 14 13 15 14 A "model life" is more than ten years. … … 102 101 - use call to ctl\_stop routine instead of just a STOP. 103 102 104 105 103 \newpage 104 106 105 % ================================================================ 107 106 % Naming Conventions … … 116 115 117 116 %--------------------------------------------------TABLE-------------------------------------------------- 118 \begin{table}[htbp] \label{tab:VarName} 119 \begin{center} 120 \begin{tabular}{|p{45pt}|p{35pt}|p{45pt}|p{40pt}|p{40pt}|p{40pt}|p{40pt}|p{40pt}|} 121 \hline Type \par / Status & integer& real& logical & character & structure & double \par precision& complex \\ 122 \hline 123 public \par or \par module variable& 124 \textbf{m n} \par \textit{but not} \par \textbf{nn\_ np\_}& 125 \textbf{a b e f g h o q r} \par \textbf{t} \textit{to} \textbf{x} \par but not \par \textbf{fs rn\_}& 126 \textbf{l} \par \textit{but not} \par \textbf{lp ld} \par \textbf{ ll ln\_}& 127 \textbf{c} \par \textit{but not} \par \textbf{cp cd} \par \textbf{cl cn\_}& 128 \textbf{s} \par \textit{but not} \par \textbf{sd sd} \par \textbf{sl sn\_}& 129 \textbf{d} \par \textit{but not} \par \textbf{dp dd} \par \textbf{dl dn\_}& 130 \textbf{y} \par \textit{but not} \par \textbf{yp yd} \par \textbf{yl yn} \\ 131 \hline 132 dummy \par argument& 133 \textbf{k} \par \textit{but not} \par \textbf{kf}& 134 \textbf{p} \par \textit{but not} \par \textbf{pp pf}& 135 \textbf{ld}& 136 \textbf{cd}& 137 \textbf{sd}& 138 \textbf{dd}& 139 \textbf{yd} \\ 140 \hline 141 local \par variable& 142 \textbf{i}& 143 \textbf{z}& 144 \textbf{ll}& 145 \textbf{cl}& 146 \textbf{sl}& 147 \textbf{dl}& 148 \textbf{yl} \\ 149 \hline 150 loop \par control& 151 \textbf{j} \par \textit{but not} \par \textbf{jp}& 152 & 153 & 154 & 155 & 156 & 157 \\ 158 \hline 159 parameter& 160 \textbf{jp np\_}& 161 \textbf{pp}& 162 \textbf{lp}& 163 \textbf{cp}& 164 \textbf{sp}& 165 \textbf{dp}& 166 \textbf{yp} \\ 167 \hline 168 169 namelist& 170 \textbf{nn\_}& 171 \textbf{rn\_}& 172 \textbf{ln\_}& 173 \textbf{cn\_}& 174 \textbf{sn\_}& 175 \textbf{dn\_}& 176 \textbf{yn\_} 177 \\ 178 \hline 179 CPP \par macro& 180 \textbf{kf}& 181 \textbf{fs} \par & 182 & 183 & 184 & 185 & 186 \\ 187 \hline 188 \end{tabular} 189 \label{tab:tab1} 190 \end{center} 117 \begin{table}[htbp] 118 \label{tab:VarName} 119 \begin{center} 120 \begin{tabular}{|p{45pt}|p{35pt}|p{45pt}|p{40pt}|p{40pt}|p{40pt}|p{40pt}|p{40pt}|} 121 \hline 122 Type \par / Status 123 & integer 124 & real 125 & logical 126 & character 127 & structure 128 & double \par precision 129 & complex \\ 130 \hline 131 public \par or \par module variable 132 & \textbf{m n} \par \textit{but not} \par \textbf{nn\_ np\_} 133 & \textbf{a b e f g h o q r} \par \textbf{t} \textit{to} \textbf{x} \par but not \par \textbf{fs rn\_} 134 & \textbf{l} \par \textit{but not} \par \textbf{lp ld} \par \textbf{ ll ln\_} 135 & \textbf{c} \par \textit{but not} \par \textbf{cp cd} \par \textbf{cl cn\_} 136 & \textbf{s} \par \textit{but not} \par \textbf{sd sd} \par \textbf{sl sn\_} 137 & \textbf{d} \par \textit{but not} \par \textbf{dp dd} \par \textbf{dl dn\_} 138 & \textbf{y} \par \textit{but not} \par \textbf{yp yd} \par \textbf{yl yn} \\ 139 \hline 140 dummy \par argument 141 & \textbf{k} \par \textit{but not} \par \textbf{kf} 142 & \textbf{p} \par \textit{but not} \par \textbf{pp pf} 143 & \textbf{ld} 144 & \textbf{cd} 145 & \textbf{sd} 146 & \textbf{dd} 147 & \textbf{yd} \\ 148 \hline 149 local \par variable 150 & \textbf{i} 151 & \textbf{z} 152 & \textbf{ll} 153 & \textbf{cl} 154 & \textbf{sl} 155 & \textbf{dl} 156 & \textbf{yl} \\ 157 \hline 158 loop \par control 159 & \textbf{j} \par \textit{but not} \par \textbf{jp} &&&&&& \\ 160 \hline 161 parameter 162 & \textbf{jp np\_} 163 & \textbf{pp} 164 & \textbf{lp} 165 & \textbf{cp} 166 & \textbf{sp} 167 & \textbf{dp} 168 & \textbf{yp} \\ 169 \hline 170 namelist 171 & \textbf{nn\_} 172 & \textbf{rn\_} 173 & \textbf{ln\_} 174 & \textbf{cn\_} 175 & \textbf{sn\_} 176 & \textbf{dn\_} 177 & \textbf{yn\_} 178 \\ 179 \hline 180 CPP \par macro 181 & \textbf{kf} 182 & \textbf{fs} \par &&&&& \\ 183 \hline 184 \end{tabular} 185 \label{tab:tab1} 186 \end{center} 191 187 \end{table} 192 188 %-------------------------------------------------------------------------------------------------------------- … … 197 193 198 194 \newpage 195 199 196 % ================================================================ 200 197 % The program structure 201 198 % ================================================================ 202 199 %\section{Program structure} 203 % abel{sec:Apdx_D_structure}200 %\label{sec:Apdx_D_structure} 204 201 205 202 %To be done.... 203 \biblio 204 206 205 \end{document} -
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_E.tex
r10368 r10419 1 \documentclass[../tex_main/NEMO_manual]{subfiles} 1 \documentclass[../main/NEMO_manual]{subfiles} 2 2 3 \begin{document} 3 4 % ================================================================ … … 6 7 \chapter{Note on some algorithms} 7 8 \label{apdx:E} 9 8 10 \minitoc 9 11 10 12 \newpage 11 $\ $\newline % force a new ligne12 13 13 14 This appendix some on going consideration on algorithms used or planned to be used in \NEMO. 14 15 $\ $\newline % force a new ligne16 15 17 16 % ------------------------------------------------------------------------------------------------------------- … … 25 24 It is also known as Cell Averaged QUICK scheme (Quadratic Upstream Interpolation for Convective Kinematics). 26 25 For example, in the $i$-direction: 27 \begin{equation} \label{eq:tra_adv_ubs2} 28 \tau _u^{ubs} = \left\{ \begin{aligned} 29 & \tau _u^{cen4} + \frac{1}{12} \,\tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 30 & \tau _u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 31 \end{aligned} \right. 26 \begin{equation} 27 \label{eq:tra_adv_ubs2} 28 \tau_u^{ubs} = \left\{ 29 \begin{aligned} 30 & \tau_u^{cen4} + \frac{1}{12} \,\tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 31 & \tau_u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 32 \end{aligned} 33 \right. 32 34 \end{equation} 33 35 or equivalently, the advective flux is 34 \begin{equation} \label{eq:tra_adv_ubs2} 35 U_{i+1/2} \ \tau _u^{ubs} 36 =U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2} 37 - \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 36 \begin{equation} 37 \label{eq:tra_adv_ubs2} 38 U_{i+1/2} \ \tau_u^{ubs} 39 =U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2} 40 - \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 38 41 \end{equation} 39 42 where $U_{i+1/2} = e_{1u}\,e_{3u}\,u_{i+1/2}$ and 40 $\tau "_i =\delta _i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$.43 $\tau "_i =\delta_i \left[ {\delta_{i+1/2} \left[ \tau \right]} \right]$. 41 44 By choosing this expression for $\tau "$ we consider a fourth order approximation of $\partial_i^2$ with 42 45 a constant i-grid spacing ($\Delta i=1$). 43 46 44 47 Alternative choice: introduce the scale factors: 45 $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta _{i+1/2}[\tau] \right]$. 46 48 $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta_{i+1/2}[\tau] \right]$. 47 49 48 50 This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error … … 76 78 77 79 NB 2: In a forthcoming release four options will be proposed for the vertical component used in the UBS scheme. 78 $\tau 80 $\tau_w^{ubs}$ will be evaluated using either \textit{(a)} a centered $2^{nd}$ order scheme, 79 81 or \textit{(b)} a TVD scheme, or \textit{(c)} an interpolation based on conservative parabolic splines following 80 82 \citet{Shchepetkin_McWilliams_OM05} implementation of UBS in ROMS, or \textit{(d)} an UBS. … … 82 84 83 85 NB 3: It is straight forward to rewrite \autoref{eq:tra_adv_ubs} as follows: 84 \begin{equation} \label{eq:tra_adv_ubs2} 85 \tau _u^{ubs} = \left\{ \begin{aligned} 86 & \tau _u^{cen4} + \frac{1}{12} \tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 87 & \tau _u^{cen4} - \frac{1}{12} \tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 88 \end{aligned} \right. 86 \begin{equation} 87 \label{eq:tra_adv_ubs2} 88 \tau_u^{ubs} = \left\{ 89 \begin{aligned} 90 & \tau_u^{cen4} + \frac{1}{12} \tau"_i & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\ 91 & \tau_u^{cen4} - \frac{1}{12} \tau"_{i+1} & \quad \text{if }\ u_{i+1/2} < 0 92 \end{aligned} 93 \right. 89 94 \end{equation} 90 95 or equivalently 91 \begin{equation} \label{eq:tra_adv_ubs2} 92 \begin{split} 93 e_{2u} e_{3u}\,u_{i+1/2} \ \tau _u^{ubs} 94 &= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\ 95 & - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 96 \end{split} 96 \begin{equation} 97 \label{eq:tra_adv_ubs2} 98 \begin{split} 99 e_{2u} e_{3u}\,u_{i+1/2} \ \tau_u^{ubs} 100 &= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\ 101 & - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 102 \end{split} 97 103 \end{equation} 98 104 \autoref{eq:tra_adv_ubs2} has several advantages. … … 105 111 106 112 laplacian diffusion: 107 \begin{equation} \label{eq:tra_ldf_lap}108 \begin{split}109 D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\; e_{3T} } &\left[ {\quad \delta _i 110 \left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 111 \left[ T \right]} \right]} \right. 112 \\113 &\ \left. {+\; \delta _j \left[ 114 {A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta _{j+1/2} \left[ T 115 \right]} \right)} \right]\quad } \right]116 \end{split}113 \begin{equation} 114 \label{eq:tra_ldf_lap} 115 \begin{split} 116 D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\; e_{3T} } &\left[ {\quad \delta_i 117 \left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta_{i+1/2} 118 \left[ T \right]} \right]} \right. \\ 119 &\ \left. {+\; \delta_j \left[ 120 {A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta_{j+1/2} \left[ T 121 \right]} \right)} \right]\quad } \right] 122 \end{split} 117 123 \end{equation} 118 124 119 125 bilaplacian: 120 \begin{equation} \label{eq:tra_ldf_lap} 121 \begin{split} 122 D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 123 & \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 124 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 125 \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 126 [T] \right] \right] \right] 127 \end{split} 126 \begin{equation} 127 \label{eq:tra_ldf_lap} 128 \begin{split} 129 D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 130 & \delta_i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2} 131 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 132 \delta_i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta_{i+1/2} 133 [T] \right] \right] \right] 134 \end{split} 128 135 \end{equation} 129 136 with ${A_u^{lT}}^2 = \frac{1}{12} {e_{1u}}^3\ |u|$, 130 137 $i.e.$ $A_u^{lT} = \frac{1}{\sqrt{12}} \,e_{1u}\ \sqrt{ e_{1u}\,|u|\,}$ 131 138 it comes: 132 \begin{equation} \label{eq:tra_ldf_lap} 133 \begin{split} 134 D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 135 & \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 136 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 137 \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 138 [T] \right] \right] \right] 139 \end{split} 139 \begin{equation} 140 \label{eq:tra_ldf_lap} 141 \begin{split} 142 D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\; e_{3T}} \\ 143 & \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2} 144 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 145 \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta_{i+1/2} 146 [T] \right] \right] \right] 147 \end{split} 140 148 \end{equation} 141 149 if the velocity is uniform ($i.e.$ $|u|=cst$) then the diffusive flux is 142 \begin{equation} \label{eq:tra_ldf_lap} 143 \begin{split} 144 F_u^{lT} = - \frac{1}{12} 145 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta _{i+1/2} 146 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 147 \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta _{i+1/2} 148 [T] \right] \right] 149 \end{split} 150 \begin{equation} 151 \label{eq:tra_ldf_lap} 152 \begin{split} 153 F_u^{lT} = - \frac{1}{12} 154 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta_{i+1/2} 155 \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 156 \delta_i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta_{i+1/2} 157 [T] \right] \right] 158 \end{split} 150 159 \end{equation} 151 160 beurk.... reverte the logic: starting from the diffusive part of the advective flux it comes: 152 161 153 \begin{equation} \label{eq:tra_adv_ubs2}154 \begin{split}155 F_u^{lT}156 &= - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]157 \end{split}162 \begin{equation} 163 \label{eq:tra_adv_ubs2} 164 \begin{split} 165 F_u^{lT} &= - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i] 166 \end{split} 158 167 \end{equation} 159 168 if the velocity is uniform ($i.e.$ $|u|=cst$) and 160 choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right]$169 choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right]$ 161 170 162 171 sol 1 coefficient at T-point ( add $e_{1u}$ and $e_{1T}$ on both side of first $\delta$): 163 \begin{equation} \label{eq:tra_adv_ubs2}164 \begin{split}165 F_u^{lT}166 &= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right]167 \end{split}172 \begin{equation} 173 \label{eq:tra_adv_ubs2} 174 \begin{split} 175 F_u^{lT} &= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta_i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] 176 \end{split} 168 177 \end{equation} 169 178 which leads to ${A_T^{lT}}^2 = \frac{1}{12} {e_{1T}}^3\ \overline{|u|}^{\,i+1/2}$ 170 179 171 180 sol 2 coefficient at u-point: split $|u|$ into $\sqrt{|u|}$ and $e_{1T}$ into $\sqrt{e_{1u}}$ 172 \begin{equation} \label{eq:tra_adv_ubs2}173 \begin{split}174 F_u^{lT}175 &= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta _i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] \\176 &= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta _i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta_{i+1/2}[\tau] \right] \right]177 \end{split}181 \begin{equation} 182 \label{eq:tra_adv_ubs2} 183 \begin{split} 184 F_u^{lT} &= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta_i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta_{i+1/2}[\tau] \right] \right] \\ 185 &= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta_i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta_{i+1/2}[\tau] \right] \right] 186 \end{split} 178 187 \end{equation} 179 188 which leads to ${A_u^{lT}} = \frac{1}{12} {e_{1u}}^3\ |u|$ 180 181 189 182 190 % ------------------------------------------------------------------------------------------------------------- … … 189 197 Given the values of a variable $q$ at successive time step, 190 198 the time derivation and averaging operators at the mid time step are: 191 \begin{subequations} \label{eq:dt_mt} 192 \begin{align} 193 \delta _{t+\rdt/2} [q] &= \ \ \, q^{t+\rdt} - q^{t} \\ 194 \overline q^{\,t+\rdt/2} &= \left\{ q^{t+\rdt} + q^{t} \right\} \; / \; 2 195 \end{align} 196 \end{subequations} 199 \[ 200 % \label{eq:dt_mt} 201 \begin{split} 202 \delta_{t+\rdt/2} [q] &= \ \ \, q^{t+\rdt} - q^{t} \\ 203 \overline q^{\,t+\rdt/2} &= \left\{ q^{t+\rdt} + q^{t} \right\} \; / \; 2 204 \end{split} 205 \] 197 206 As for space operator, 198 207 the adjoint of the derivation and averaging time operators are $\delta_t^*=\delta_{t+\rdt/2}$ and … … 200 209 201 210 The Leap-frog time stepping given by \autoref{eq:DOM_nxt} can be defined as: 202 \begin{equation} \label{eq:LF} 203 \frac{\partial q}{\partial t} 204 \equiv \frac{1}{\rdt} \overline{ \delta _{t+\rdt/2}[q]}^{\,t} 205 = \frac{q^{t+\rdt}-q^{t-\rdt}}{2\rdt} 206 \end{equation} 211 \[ 212 % \label{eq:LF} 213 \frac{\partial q}{\partial t} 214 \equiv \frac{1}{\rdt} \overline{ \delta_{t+\rdt/2}[q]}^{\,t} 215 = \frac{q^{t+\rdt}-q^{t-\rdt}}{2\rdt} 216 \] 207 217 Note that \autoref{chap:LF} shows that the leapfrog time step is $\rdt$, 208 218 not $2\rdt$ as it can be found sometimes in literature. 209 219 The leap-Frog time stepping is a second order centered scheme. 210 220 As such it respects the quadratic invariant in integral forms, $i.e.$ the following continuous property, 211 \begin{equation} \label{eq:Energy} 212 \int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 213 =\int_{t_0}^{t_1} {\frac{1}{2}\, \frac{\partial q^2}{\partial t} \;dt} 214 = \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) , 215 \end{equation} 221 \[ 222 % \label{eq:Energy} 223 \int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 224 =\int_{t_0}^{t_1} {\frac{1}{2}\, \frac{\partial q^2}{\partial t} \;dt} 225 = \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) , 226 \] 216 227 is satisfied in discrete form. 217 228 Indeed, 218 \begin{equation} \begin{split} 219 \int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 220 &\equiv \sum\limits_{0}^{N} 221 {\frac{1}{\rdt} q^t \ \overline{ \delta _{t+\rdt/2}[q]}^{\,t} \ \rdt} 222 \equiv \sum\limits_{0}^{N} { q^t \ \overline{ \delta _{t+\rdt/2}[q]}^{\,t} } \\ 223 &\equiv \sum\limits_{0}^{N} { \overline{q}^{\,t+\Delta/2}{ \delta _{t+\rdt/2}[q]}} 224 \equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta _{t+\rdt/2}[q^2] }\\ 225 &\equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta _{t+\rdt/2}[q^2] } 226 \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) 227 \end{split} \end{equation} 229 \[ 230 \begin{split} 231 \int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 232 &\equiv \sum\limits_{0}^{N} 233 {\frac{1}{\rdt} q^t \ \overline{ \delta_{t+\rdt/2}[q]}^{\,t} \ \rdt} 234 \equiv \sum\limits_{0}^{N} { q^t \ \overline{ \delta_{t+\rdt/2}[q]}^{\,t} } \\ 235 &\equiv \sum\limits_{0}^{N} { \overline{q}^{\,t+\Delta/2}{ \delta_{t+\rdt/2}[q]}} 236 \equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta_{t+\rdt/2}[q^2] }\\ 237 &\equiv \sum\limits_{0}^{N} { \frac{1}{2} \delta_{t+\rdt/2}[q^2] } 238 \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) 239 \end{split} 240 \] 228 241 NB here pb of boundary condition when applying the adjoint! 229 242 In space, setting to 0 the quantity in land area is sufficient to get rid of the boundary condition 230 243 (equivalently of the boundary value of the integration by part). 231 244 In time this boundary condition is not physical and \textbf{add something here!!!} 232 233 234 235 236 237 245 238 246 % ================================================================ … … 269 277 a derivative in the same direction by considering triads. 270 278 For example in the (\textbf{i},\textbf{k}) plane, the four triads are defined at the $(i,k)$ $T$-point as follows: 271 \begin{equation} \label{eq:Gf_triads} 272 _i^k \mathbb{T}_{i_p}^{k_p} (T) 273 = \frac{1}{4} \ {b_u}_{\,i+i_p}^{\,k} \ A_i^k \left( 274 \frac{ \delta_{i + i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 275 -\ {_i^k \mathbb{R}_{i_p}^{k_p}} \ \frac{ \delta_{k+k_p} [T^i] }{ {e_{3w}}_{\,i}^{\,k+k_p} } 276 \right) 279 \begin{equation} 280 \label{eq:Gf_triads} 281 _i^k \mathbb{T}_{i_p}^{k_p} (T) 282 = \frac{1}{4} \ {b_u}_{\,i+i_p}^{\,k} \ A_i^k \left( 283 \frac{ \delta_{i + i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 284 -\ {_i^k \mathbb{R}_{i_p}^{k_p}} \ \frac{ \delta_{k+k_p} [T^i] }{ {e_{3w}}_{\,i}^{\,k+k_p} } 285 \right) 277 286 \end{equation} 278 287 where the indices $i_p$ and $k_p$ define the four triads and take the following value: … … 281 290 $A_i^k$ is the lateral eddy diffusivity coefficient defined at $T$-point, 282 291 and $_i^k \mathbb{R}_{i_p}^{k_p}$ is the slope associated with each triad: 283 \begin{equation} \label{eq:Gf_slopes} 284 _i^k \mathbb{R}_{i_p}^{k_p} 285 =\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}} \ \frac 286 {\left(\alpha / \beta \right)_i^k \ \delta_{i + i_p}[T^k] - \delta_{i + i_p}[S^k] } 287 {\left(\alpha / \beta \right)_i^k \ \delta_{k+k_p}[T^i ] - \delta_{k+k_p}[S^i ] } 292 \begin{equation} 293 \label{eq:Gf_slopes} 294 _i^k \mathbb{R}_{i_p}^{k_p} 295 =\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}} \ \frac 296 {\left(\alpha / \beta \right)_i^k \ \delta_{i + i_p}[T^k] - \delta_{i + i_p}[S^k] } 297 {\left(\alpha / \beta \right)_i^k \ \delta_{k+k_p}[T^i ] - \delta_{k+k_p}[S^i ] } 288 298 \end{equation} 289 299 Note that in \autoref{eq:Gf_slopes} we use the ratio $\alpha / \beta$ instead of … … 296 306 297 307 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 298 \begin{figure}[!ht] \begin{center} 299 \includegraphics[width=0.70\textwidth]{Fig_ISO_triad} 300 \caption{ \protect\label{fig:ISO_triad} 301 Triads used in the Griffies's like iso-neutral diffision scheme for 302 $u$-component (upper panel) and $w$-component (lower panel).} 303 \end{center} 308 \begin{figure}[!ht] 309 \begin{center} 310 \includegraphics[width=0.70\textwidth]{Fig_ISO_triad} 311 \caption{ 312 \protect\label{fig:ISO_triad} 313 Triads used in the Griffies's like iso-neutral diffision scheme for 314 $u$-component (upper panel) and $w$-component (lower panel). 315 } 316 \end{center} 304 317 \end{figure} 305 318 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 307 320 The four iso-neutral fluxes associated with the triads are defined at $T$-point. 308 321 They take the following expression: 309 \begin{flalign} \label{eq:Gf_fluxes} 310 \begin{split} 311 {_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) 312 &= \ \; \qquad \quad { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+i_p}^{\,k}} \\ 313 {_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T) 314 &= -\; { _i^k \mathbb{R}_{i_p}^{k_p} } 315 \ \; { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+k_p}} 316 \end{split} 317 \end{flalign} 322 \begin{flalign*} 323 % \label{eq:Gf_fluxes} 324 \begin{split} 325 {_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) 326 &= \ \; \qquad \quad { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+i_p}^{\,k}} \\ 327 {_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T) 328 &= -\; { _i^k \mathbb{R}_{i_p}^{k_p} } 329 \ \; { _i^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+k_p}} 330 \end{split} 331 \end{flalign*} 318 332 319 333 The resulting iso-neutral fluxes at $u$- and $w$-points are then given by 320 334 the sum of the fluxes that cross the $u$- and $w$-face (\autoref{fig:ISO_triad}): 321 \begin{flalign} \label{eq:iso_flux}322 \textbf{F}_{iso}(T) 323 &\equiv \sum_{\substack{i_p,\,k_p}} 324 \begin{pmatrix}325 {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) \\326 327 {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T) \\328 \end{pmatrix} \notag \\329 &\notag \\330 &\equiv \sum_{\substack{i_p,\,k_p}} 331 \begin{pmatrix}332 && { _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+1/2}^{\,k} } \\333 334 335 & {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+1/2} } \\336 337 % &\\338 % &\equiv \sum_{\substack{i_p,\,k_p}} 339 % \begin{pmatrix} 340 % \qquad \qquad \qquad 341 % \frac{1}{ {e_{1u}}_{\,i+1/2}^{\,k} } \ \; 342 %{ _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T)\\343 %\\344 % -\frac{1}{ {e_{3w}}_{\,i}^{\,k+1/2} } \ \; 345 % { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 346 % {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T)\\ 347 % \end{pmatrix} 335 \begin{flalign} 336 \label{eq:iso_flux} 337 \textbf{F}_{iso}(T) 338 &\equiv \sum_{\substack{i_p,\,k_p}} 339 \begin{pmatrix} 340 {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) \\ \\ 341 {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T) 342 \end{pmatrix} 343 \notag \\ 344 & \notag \\ 345 &\equiv \sum_{\substack{i_p,\,k_p}} 346 \begin{pmatrix} 347 && { _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{1u}}_{\,i+1/2}^{\,k} } \\ \\ 348 & -\; { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } 349 & {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T) \;\ / \ { {e_{3w}}_{\,i}^{\,k+1/2} } 350 \end{pmatrix} % \\ 351 % &\\ 352 % &\equiv \sum_{\substack{i_p,\,k_p}} 353 % \begin{pmatrix} 354 % \qquad \qquad \qquad 355 % \frac{1}{ {e_{1u}}_{\,i+1/2}^{\,k} } \ \; 356 % { _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} }(T)\\ 357 % \\ 358 % -\frac{1}{ {e_{3w}}_{\,i}^{\,k+1/2} } \ \; 359 % { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 360 % {_i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} }(T)\\ 361 % \end{pmatrix} 348 362 \end{flalign} 349 363 resulting in a iso-neutral diffusion tendency on temperature given by 350 364 the divergence of the sum of all the four triad fluxes: 351 \begin{equation} \label{eq:Gf_operator} 352 D_l^T = \frac{1}{b_T} \sum_{\substack{i_p,\,k_p}} \left\{ 353 \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 354 + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right] \right\} 365 \begin{equation} 366 \label{eq:Gf_operator} 367 D_l^T = \frac{1}{b_T} \sum_{\substack{i_p,\,k_p}} \left\{ 368 \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 369 + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right] \right\} 355 370 \end{equation} 356 371 where $b_T= e_{1T}\,e_{2T}\,e_{3T}$ is the volume of $T$-cells. … … 361 376 The discretization of the diffusion operator recovers the traditional five-point Laplacian in 362 377 the limit of flat iso-neutral direction: 363 \begin{equation} \label{eq:Gf_property1a} 364 D_l^T = \frac{1}{b_T} \ \delta_{i} 365 \left[ \frac{e_{2u}\,e_{3u}}{e_{1u}} \; \overline{A}^{\,i} \; \delta_{i+1/2}[T] \right] 366 \qquad \text{when} \quad 367 { _i^k \mathbb{R}_{i_p}^{k_p} }=0 368 \end{equation} 378 \[ 379 % \label{eq:Gf_property1a} 380 D_l^T = \frac{1}{b_T} \ \delta_{i} 381 \left[ \frac{e_{2u}\,e_{3u}}{e_{1u}} \; \overline{A}^{\,i} \; \delta_{i+1/2}[T] \right] 382 \qquad \text{when} \quad 383 { _i^k \mathbb{R}_{i_p}^{k_p} }=0 384 \] 369 385 370 386 \item[$\bullet$ implicit treatment in the vertical] … … 374 390 This is of paramount importance since it means that 375 391 the implicit in time algorithm for solving the vertical diffusion equation can be used to evaluate this term. 376 It is a necessity since the vertical eddy diffusivity associated with this term, 377 \begin{equation} 378 \sum_{\substack{i_p, \,k_p}} \left\{ 392 It is a necessity since the vertical eddy diffusivity associated with this term, 393 \[ 394 \sum_{\substack{i_p, \,k_p}} \left\{ 379 395 A_i^k \; \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2 380 \right\} 381 \end{equation} 382 can be quite large.396 \right\} 397 \] 398 can be quite large. 383 399 384 400 \item[$\bullet$ pure iso-neutral operator] 385 401 The iso-neutral flux of locally referenced potential density is zero, $i.e.$ 386 \begin{align} \label{eq:Gf_property2} 387 \begin{matrix} 388 &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} (\rho)} 389 &= &\alpha_i^k &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) 390 &- \ \; \beta _i^k &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (S) & = \ 0 \\ 391 &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} (\rho)} 392 &= &\alpha_i^k &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T) 393 &- \ \; \beta _i^k &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (S) &= \ 0 394 \end{matrix} 395 \end{align} 396 This result is trivially obtained using the \autoref{eq:Gf_triads} applied to $T$ and $S$ and 397 the definition of the triads' slopes \autoref{eq:Gf_slopes}. 402 \begin{align*} 403 % \label{eq:Gf_property2} 404 \begin{matrix} 405 &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} (\rho)} 406 &= &\alpha_i^k &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (T) 407 &- \ \; \beta _i^k &{_i^k {\mathbb{F}_u}_{i_p}^{k_p} } (S) & = \ 0 \\ 408 &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} (\rho)} 409 &= &\alpha_i^k &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (T) 410 &- \ \; \beta _i^k &{_i^k {\mathbb{F}_w}_{i_p}^{k_p} } (S) &= \ 0 411 \end{matrix} 412 \end{align*} 413 This result is trivially obtained using the \autoref{eq:Gf_triads} applied to $T$ and $S$ and 414 the definition of the triads' slopes \autoref{eq:Gf_slopes}. 398 415 399 416 \item[$\bullet$ conservation of tracer] 400 417 The iso-neutral diffusion term conserve the total tracer content, $i.e.$ 401 \begin{equation} \label{eq:Gf_property1} 402 \sum_{i,j,k} \left\{ D_l^T \ b_T \right\} = 0 403 \end{equation} 418 \[ 419 % \label{eq:Gf_property1} 420 \sum_{i,j,k} \left\{ D_l^T \ b_T \right\} = 0 421 \] 404 422 This property is trivially satisfied since the iso-neutral diffusive operator is written in flux form. 405 423 406 424 \item[$\bullet$ decrease of tracer variance] 407 425 The iso-neutral diffusion term does not increase the total tracer variance, $i.e.$ 408 \begin{equation} \label{eq:Gf_property1} 409 \sum_{i,j,k} \left\{ T \ D_l^T \ b_T \right\} \leq 0 410 \end{equation} 426 \[ 427 % \label{eq:Gf_property1} 428 \sum_{i,j,k} \left\{ T \ D_l^T \ b_T \right\} \leq 0 429 \] 411 430 The property is demonstrated in the \autoref{apdx:Gf_operator}. 412 431 It is a key property for a diffusion term. … … 418 437 \item[$\bullet$ self-adjoint operator] 419 438 The iso-neutral diffusion operator is self-adjoint, $i.e.$ 420 \begin{equation} \label{eq:Gf_property1} 421 \sum_{i,j,k} \left\{ S \ D_l^T \ b_T \right\} = \sum_{i,j,k} \left\{ D_l^S \ T \ b_T \right\} 422 \end{equation} 439 \[ 440 % \label{eq:Gf_property1} 441 \sum_{i,j,k} \left\{ S \ D_l^T \ b_T \right\} = \sum_{i,j,k} \left\{ D_l^S \ T \ b_T \right\} 442 \] 423 443 In other word, there is no needs to develop a specific routine from the adjoint of this operator. 424 444 We just have to apply the same routine. … … 427 447 \end{description} 428 448 429 430 $\ $\newline %force an empty line431 449 % ================================================================ 432 450 % Skew flux formulation for Eddy Induced Velocity : … … 443 461 444 462 The eddy induced velocity is given by: 445 \begin{equation} \label{eq:eiv_v} 446 \begin{split} 447 u^* & = - \frac{1}{e_2\,e_{3}} \;\partial_k \left( e_2 \, A_e \; r_i \right) 448 = - \frac{1}{e_3} \;\partial_k \left( A_e \; r_i \right) \\ 449 v^* & = - \frac{1}{e_1\,e_3}\; \partial_k \left( e_1 \, A_e \; r_j \right) 450 = - \frac{1}{e_3} \;\partial_k \left( A_e \; r_j \right) \\ 451 w^* & = \frac{1}{e_1\,e_2}\; \left\{ \partial_i \left( e_2 \, A_e \; r_i \right) 452 + \partial_j \left( e_1 \, A_e \;r_j \right) \right\} \\ 453 \end{split} 463 \begin{equation} 464 \label{eq:eiv_v} 465 \begin{split} 466 u^* & = - \frac{1}{e_2\,e_{3}} \;\partial_k \left( e_2 \, A_e \; r_i \right) 467 = - \frac{1}{e_3} \;\partial_k \left( A_e \; r_i \right) \\ 468 v^* & = - \frac{1}{e_1\,e_3}\; \partial_k \left( e_1 \, A_e \; r_j \right) 469 = - \frac{1}{e_3} \;\partial_k \left( A_e \; r_j \right) \\ 470 w^* & = \frac{1}{e_1\,e_2}\; \left\{ \partial_i \left( e_2 \, A_e \; r_i \right) 471 + \partial_j \left( e_1 \, A_e \;r_j \right) \right\} 472 \end{split} 454 473 \end{equation} 455 474 where $A_{e}$ is the eddy induced velocity coefficient, … … 475 494 %\end{split} 476 495 %\end{equation} 477 \begin{equation} \label{eq:eiv_vd} 478 \textbf{F}_{eiv}^T \equiv \left( \begin{aligned} 479 \sum_{\substack{i_p,\,k_p}} & 480 +{e_{2u}}_{i+1/2-i_p}^{k} \ \ {A_{e}}_{i+1/2-i_p}^{k} 481 \ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} } \ \ \delta_{k+k_p}[T_{i+1/2-i_p}] \\ 482 \\ 483 \sum_{\substack{i_p,\,k_p}} & 484 - {e_{2u}}_i^{k+1/2-k_p} \ {A_{e}}_i^{k+1/2-k_p} 485 \ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \delta_{i+i_p}[T^{k+1/2-k_p}] \\ 486 \end{aligned} \right) 487 \end{equation} 496 \[ 497 % \label{eq:eiv_vd} 498 \textbf{F}_{eiv}^T \equiv \left( 499 \begin{aligned} 500 \sum_{\substack{i_p,\,k_p}} & 501 +{e_{2u}}_{i+1/2-i_p}^{k} \ \ {A_{e}}_{i+1/2-i_p}^{k} 502 \ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} } \ \ \delta_{k+k_p}[T_{i+1/2-i_p}] \\ \\ 503 \sum_{\substack{i_p,\,k_p}} & 504 - {e_{2u}}_i^{k+1/2-k_p} \ {A_{e}}_i^{k+1/2-k_p} 505 \ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \delta_{i+i_p}[T^{k+1/2-k_p}] 506 \end{aligned} 507 \right) 508 \] 488 509 489 510 \citep{Griffies_JPO98} introduces another way to implement the eddy induced advection, the so-called skew form. … … 491 512 For example in the (\textbf{i},\textbf{k}) plane, the tracer advective fluxes can be transformed as follows: 492 513 \begin{flalign*} 493 \begin{split} 494 \textbf{F}_{eiv}^T = 495 \begin{pmatrix} 496 {e_{2}\,e_{3}\; u^*} \\ 497 {e_{1}\,e_{2}\; w^*} \\ 498 \end{pmatrix} \; T 499 &= 500 \begin{pmatrix} 501 { - \partial_k \left( e_{2} \, A_{e} \; r_i \right) \; T \;} \\ 502 {+ \partial_i \left( e_{2} \, A_{e} \; r_i \right) \; T \;} \\ 503 \end{pmatrix} \\ 504 &= 505 \begin{pmatrix} 506 { - \partial_k \left( e_{2} \, A_{e} \; r_i \; T \right) \;} \\ 507 {+ \partial_i \left( e_{2} \, A_{e} \; r_i \; T \right) \;} \\ 508 \end{pmatrix} 509 + 510 \begin{pmatrix} 511 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 512 { - e_{2} \, A_{e} \; r_i \; \partial_i T} \\ 513 \end{pmatrix} 514 \end{split} 514 \begin{split} 515 \textbf{F}_{eiv}^T = 516 \begin{pmatrix} 517 {e_{2}\,e_{3}\; u^*} \\ 518 {e_{1}\,e_{2}\; w^*} 519 \end{pmatrix} 520 \; T 521 &= 522 \begin{pmatrix} 523 { - \partial_k \left( e_{2} \, A_{e} \; r_i \right) \; T \;} \\ 524 {+ \partial_i \left( e_{2} \, A_{e} \; r_i \right) \; T \;} 525 \end{pmatrix} 526 \\ 527 &= 528 \begin{pmatrix} 529 { - \partial_k \left( e_{2} \, A_{e} \; r_i \; T \right) \;} \\ 530 {+ \partial_i \left( e_{2} \, A_{e} \; r_i \; T \right) \;} 531 \end{pmatrix} 532 + 533 \begin{pmatrix} 534 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 535 { - e_{2} \, A_{e} \; r_i \; \partial_i T} 536 \end{pmatrix} 537 \end{split} 515 538 \end{flalign*} 516 539 and since the eddy induces velocity field is no-divergent, 517 540 we end up with the skew form of the eddy induced advective fluxes: 518 \begin{equation} \label{eq:eiv_skew_continuous} 519 \textbf{F}_{eiv}^T = \begin{pmatrix} 520 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 521 { - e_{2} \, A_{e} \; r_i \; \partial_i T} \\ 522 \end{pmatrix} 541 \begin{equation} 542 \label{eq:eiv_skew_continuous} 543 \textbf{F}_{eiv}^T = 544 \begin{pmatrix} 545 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 546 { - e_{2} \, A_{e} \; r_i \; \partial_i T} 547 \end{pmatrix} 523 548 \end{equation} 524 549 The tendency associated with eddy induced velocity is then simply the divergence of … … 528 553 Another interesting property of \autoref{eq:eiv_skew_continuous} form is that when $A=A_e$, 529 554 a simplification occurs in the sum of the iso-neutral diffusion and eddy induced velocity terms: 530 \begin{flalign} \label{eq:eiv_skew+eiv_continuous} 531 \textbf{F}_{iso}^T + \textbf{F}_{eiv}^T &= 532 \begin{pmatrix} 533 + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T - e_2 \, A \; r_i \;\partial_k T \\ 534 - e_2 \, A_{e} \; r_i \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T \\ 535 \end{pmatrix} 536 + 537 \begin{pmatrix} 538 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 539 { - e_{2} \, A_{e} \; r_i \; \partial_i T} \\ 540 \end{pmatrix} \\ 541 &= \begin{pmatrix} 542 + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T \\ 543 - 2\; e_2 \, A_{e} \; r_i \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T \\ 544 \end{pmatrix} 545 \end{flalign} 555 \begin{flalign*} 556 % \label{eq:eiv_skew+eiv_continuous} 557 \textbf{F}_{iso}^T + \textbf{F}_{eiv}^T &= 558 \begin{pmatrix} 559 + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T - e_2 \, A \; r_i \;\partial_k T \\ 560 - e_2 \, A_{e} \; r_i \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T 561 \end{pmatrix} 562 + 563 \begin{pmatrix} 564 {+ e_{2} \, A_{e} \; r_i \; \partial_k T} \\ 565 { - e_{2} \, A_{e} \; r_i \; \partial_i T} 566 \end{pmatrix} 567 \\ 568 &= 569 \begin{pmatrix} 570 + \frac{e_2\,e_3\,}{e_1} A \;\partial_i T \\ 571 - 2\; e_2 \, A_{e} \; r_i \;\partial_i T + \frac{e_1\,e_2}{e_3} \, A \; r_i^2 \;\partial_k T 572 \end{pmatrix} 573 \end{flalign*} 546 574 The horizontal component reduces to the one use for an horizontal laplacian operator and 547 575 the vertical one keeps the same complexity, but not more. … … 552 580 Using the slopes \autoref{eq:Gf_slopes} and defining $A_e$ at $T$-point($i.e.$ as $A$, 553 581 the eddy diffusivity coefficient), the resulting discret form is given by: 554 \begin{equation} \label{eq:eiv_skew} 555 \textbf{F}_{eiv}^T \equiv \frac{1}{4} \left( \begin{aligned} 556 \sum_{\substack{i_p,\,k_p}} & 557 +{e_{2u}}_{i+1/2-i_p}^{k} \ \ {A_{e}}_{i+1/2-i_p}^{k} 558 \ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} } \ \ \delta_{k+k_p}[T_{i+1/2-i_p}] \\ 559 \\ 560 \sum_{\substack{i_p,\,k_p}} & 561 - {e_{2u}}_i^{k+1/2-k_p} \ {A_{e}}_i^{k+1/2-k_p} 562 \ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \delta_{i+i_p}[T^{k+1/2-k_p}] \\ 563 \end{aligned} \right) 582 \begin{equation} 583 \label{eq:eiv_skew} 584 \textbf{F}_{eiv}^T \equiv \frac{1}{4} \left( 585 \begin{aligned} 586 \sum_{\substack{i_p,\,k_p}} & 587 +{e_{2u}}_{i+1/2-i_p}^{k} \ \ {A_{e}}_{i+1/2-i_p}^{k} 588 \ \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} } \ \ \delta_{k+k_p}[T_{i+1/2-i_p}] \\ \\ 589 \sum_{\substack{i_p,\,k_p}} & 590 - {e_{2u}}_i^{k+1/2-k_p} \ {A_{e}}_i^{k+1/2-k_p} 591 \ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \delta_{i+i_p}[T^{k+1/2-k_p}] 592 \end{aligned} 593 \right) 564 594 \end{equation} 565 595 Note that \autoref{eq:eiv_skew} is valid in $z$-coordinate with or without partial cells. … … 572 602 $i.e.$ it does not include a diffusive component but is a "pure" advection term. 573 603 574 575 576 577 604 $\ $\newpage %force an empty line 578 605 % ================================================================ … … 587 614 588 615 The continuous property to be demonstrated is: 616 \[ 617 \int_D D_l^T \; T \;dv \leq 0 618 \] 619 The discrete form of its left hand side is obtained using \autoref{eq:iso_flux} 620 589 621 \begin{align*} 590 \int_D D_l^T \; T \;dv \leq 0 591 \end{align*} 592 The discrete form of its left hand side is obtained using \autoref{eq:iso_flux} 593 594 \begin{align*} 595 &\int_D D_l^T \; T \;dv \equiv \sum_{i,k} \left\{ T \ D_l^T \ b_T \right\} \\ 596 &\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 597 \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 598 + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right] \ T \right\} \\ 599 &\equiv - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 600 {_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \ \delta_{i+1/2} [T] 601 + {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \ \delta_{k+1/2} [T] \right\} \\ 602 &\equiv -\sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 603 \frac{ _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{1u}}_{\,i+1/2}^{\,k} } \ \delta_{i+1/2} [T] 604 - { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 605 \frac{ _i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{3w}}_{\,i}^{\,k+1/2} } \ \delta_{k+1/2} [T] 606 \right\} \\ 607 % 608 \allowdisplaybreaks 609 \intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:} 610 % 611 &\equiv -\sum_{i,k} 612 \begin{Bmatrix} 613 &\ \ \Bigl( { _{i+1}^{k} \mathbb{T}_{-1/2}^{-1/2} (T) } 614 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 615 & -\ \ {_{i}^{k+1} \mathbb{R}_{-1/2}^{-1/2}} 616 & {_{i}^{k+1} \mathbb{T}_{-1/2}^{-1/2} (T) } 617 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 618 & \\ 619 &+\Bigl( \ \;\; { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 620 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 621 & -\ \ {_i^{k+1} \mathbb{R}_{+1/2}^{-1/2}} 622 & { _i^{k+1} \mathbb{T}_{+1/2}^{-1/2} (T) } 623 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 624 & \\ 625 &+\Bigl( { _{i+1}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) } 626 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 627 & -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{-1/2}^{+1/2}} 628 & \ \;\;{_{i}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) } 629 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 630 & \\ 631 &+\Bigl( \ \;\; { _{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) } 632 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 633 & -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{+1/2}^{+1/2}} 634 & \ \;\;{_{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) } 635 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) \\ 636 \end{Bmatrix} 637 % 638 \allowdisplaybreaks 639 \intertext{The summation is done over all $i$ and $k$ indices, 622 &\int_D D_l^T \; T \;dv \equiv \sum_{i,k} \left\{ T \ D_l^T \ b_T \right\} \\ 623 &\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 624 \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 625 + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right] \ T \right\} \\ 626 &\equiv - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 627 {_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \ \delta_{i+1/2} [T] 628 + {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \ \delta_{k+1/2} [T] \right\} \\ 629 &\equiv -\sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 630 \frac{ _{i+1/2-i_p}^k \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{1u}}_{\,i+1/2}^{\,k} } \ \delta_{i+1/2} [T] 631 - { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} } \ \; 632 \frac{ _i^{k+1/2-k_p} \mathbb{T}_{i_p}^{k_p} (T) }{ {e_{3w}}_{\,i}^{\,k+1/2} } \ \delta_{k+1/2} [T] 633 \right\} \\ 634 % 635 \allowdisplaybreaks 636 \intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:} 637 % 638 &\equiv -\sum_{i,k} 639 \begin{Bmatrix} 640 &\ \ \Bigl( { _{i+1}^{k} \mathbb{T}_{-1/2}^{-1/2} (T) } 641 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 642 & -\ \ {_{i}^{k+1} \mathbb{R}_{-1/2}^{-1/2}} 643 & {_{i}^{k+1} \mathbb{T}_{-1/2}^{-1/2} (T) } 644 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 645 & \\ 646 &+\Bigl( \ \;\; { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 647 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 648 & -\ \ {_i^{k+1} \mathbb{R}_{+1/2}^{-1/2}} 649 & { _i^{k+1} \mathbb{T}_{+1/2}^{-1/2} (T) } 650 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 651 & \\ 652 &+\Bigl( { _{i+1}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) } 653 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 654 & -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{-1/2}^{+1/2}} 655 & \ \;\;{_{i}^{k} \mathbb{T}_{-1/2}^{+1/2} (T) } 656 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) 657 & \\ 658 &+\Bigl( \ \;\; { _{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) } 659 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 660 & -\ \ \ \;\;{_{i}^{k} \mathbb{R}_{+1/2}^{+1/2}} 661 & \ \;\;{_{i}^{k} \mathbb{T}_{+1/2}^{+1/2} (T) } 662 &\frac{ \delta_{k+1/2} [T] }{{e_{3w}}_{\,i}^{\,k+1/2}} \Bigr) \\ 663 \end{Bmatrix} 664 % 665 \allowdisplaybreaks 666 \intertext{ 667 The summation is done over all $i$ and $k$ indices, 640 668 it is therefore possible to introduce a shift of $-1$ either in $i$ or $k$ direction in order to 641 669 regroup all the terms of the summation by triad at a ($i$,$k$) point. 642 670 In other words, we regroup all the terms in the neighbourhood that contain a triad at the same ($i$,$k$) indices. 643 It becomes: } 644 % 645 &\equiv -\sum_{i,k} 646 \begin{Bmatrix} 647 &\ \ \Bigl( {_i^k \mathbb{T}_{-1/2}^{-1/2} (T) } 648 &\frac{ \delta_{i -1/2} [T] }{{e_{1u} }_{\,i-1/2}^{\,k}} 649 & -\ \ {_i^k \mathbb{R}_{-1/2}^{-1/2}} 650 & {_i^k \mathbb{T}_{-1/2}^{-1/2} (T) } 651 &\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}} \Bigr) 652 & \\ 653 &+\Bigl( { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 654 &\frac{ \delta_{i +1/2} [T] }{{e_{1u} }_{\,i+1/2}^{\,k}} 655 & -\ \ {_i^k \mathbb{R}_{+1/2}^{-1/2}} 656 & { _i^k \mathbb{T}_{+1/2}^{-1/2} (T) } 657 &\frac{ \delta_{k-1/2} [T] }{{e_{3w}}_{\,i}^{\,k-1/2}} \Bigr) 658 & \\ 659 &+\Bigl( {_i^k \mathbb{T}_{-1/2}^{+1/2} (T) } 660 <