Ignore:
Timestamp:
2019-06-17T14:22:27+02:00 (2 years ago)
Author:
nicolasmartin
Message:

Modification of LaTeX subfiles accordingly to new citations keys

Location:
NEMO/trunk/doc/latex/NEMO/subfiles
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles

    • Property svn:ignore deleted
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex

    r10614 r11123  
    313313The only tricky point is therefore to specify the date at which we need to do the interpolation and 
    314314the date of the records read in the input files. 
    315 Following \citet{Leclair_Madec_OM09}, the date of a time step is set at the middle of the time step. 
     315Following \citet{leclair.madec_OM09}, the date of a time step is set at the middle of the time step. 
    316316For example, for an experiment starting at 0h00'00" with a one hour time-step, 
    317317a time interpolation will be performed at the following time: 0h30'00", 1h30'00", 2h30'00", etc. 
     
    632632%------------------------------------------------------------------------------------------------------------- 
    633633 
    634 The CORE bulk formulae have been developed by \citet{Large_Yeager_Rep04}. 
     634The CORE bulk formulae have been developed by \citet{large.yeager_rpt04}. 
    635635They have been designed to handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. 
    636636They use an inertial dissipative method to compute the turbulent transfer coefficients 
    637637(momentum, sensible heat and evaporation) from the 10 metre wind speed, air temperature and specific humidity. 
    638 This \citet{Large_Yeager_Rep04} dataset is available through 
     638This \citet{large.yeager_rpt04} dataset is available through 
    639639the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}{GFDL web site}. 
    640640 
    641641Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    642 This is the so-called DRAKKAR Forcing Set (DFS) \citep{Brodeau_al_OM09}. 
     642This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
    643643 
    644644Options are defined through the  \ngn{namsbc\_core} namelist variables. 
     
    696696 
    697697The CLIO bulk formulae were developed several years ago for the Louvain-la-neuve coupled ice-ocean model 
    698 (CLIO, \cite{Goosse_al_JGR99}).  
     698(CLIO, \cite{goosse.deleersnijder.ea_JGR99}).  
    699699They are simpler bulk formulae. 
    700700They assume the stress to be known and compute the radiative fluxes from a climatological cloud cover.  
     
    839839 
    840840The SAL term should in principle be computed online as it depends on 
    841 the model tidal prediction itself (see \citet{Arbic2004} for a 
     841the model tidal prediction itself (see \citet{arbic.garner.ea_DSR04} for a 
    842842discussion about the practical implementation of this term). 
    843843Nevertheless, the complex calculations involved would make this 
     
    871871%coastal modelling and becomes more and more often open ocean and climate modelling  
    872872%\footnote{At least a top cells thickness of 1~meter and a 3 hours forcing frequency are 
    873 %required to properly represent the diurnal cycle \citep{Bernie_al_JC05}. see also \autoref{fig:SBC_dcy}.}. 
     873%required to properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. see also \autoref{fig:SBC_dcy}.}. 
    874874 
    875875 
     
    892892\footnote{ 
    893893  At least a top cells thickness of 1~meter and a 3 hours forcing frequency are required to 
    894   properly represent the diurnal cycle \citep{Bernie_al_JC05}. 
     894  properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. 
    895895  see also \autoref{fig:SBC_dcy}.}. 
    896896 
     
    989989%-------------------------------------------------------------------------------------------------------- 
    990990The namelist variable in \ngn{namsbc}, \np{nn\_isf}, controls the ice shelf representation. 
    991 Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{Mathiot2017}.  
     991Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}.  
    992992The different options are illustrated in \autoref{fig:SBC_isf}. 
    993993 
     
    10011001   \item[\np{nn\_isfblk}\forcode{ = 1}]: 
    10021002     The melt rate is based on a balance between the upward ocean heat flux and 
    1003      the latent heat flux at the ice shelf base. A complete description is available in \citet{Hunter2006}. 
     1003     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 
    10041004   \item[\np{nn\_isfblk}\forcode{ = 2}]: 
    10051005     The melt rate and the heat flux are based on a 3 equations formulation 
    10061006     (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation).  
    1007      A complete description is available in \citet{Jenkins1991}. 
     1007     A complete description is available in \citet{jenkins_JGR91}. 
    10081008   \end{description} 
    10091009 
    1010      Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{Losch2008}.  
     1010     Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}.  
    10111011     Its thickness is defined by \np{rn\_hisf\_tbl}. 
    10121012     The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the the first \np{rn\_hisf\_tbl} m. 
     
    10381038\] 
    10391039     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 
    1040      See \citet{Jenkins2010} for all the details on this formulation. It is the recommended formulation for realistic application. 
     1040     See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 
    10411041   \item[\np{nn\_gammablk}\forcode{ = 2}]: 
    10421042     The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
     
    10471047     $\Gamma_{Turb}$ the contribution of the ocean stability and 
    10481048     $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
    1049      See \citet{Holland1999} for all the details on this formulation.  
     1049     See \citet{holland.jenkins_JPO99} for all the details on this formulation.  
    10501050     This formulation has not been extensively tested in NEMO (not recommended). 
    10511051   \end{description} 
    10521052 \item[\np{nn\_isf}\forcode{ = 2}]: 
    10531053   The ice shelf cavity is not represented. 
    1054    The fwf and heat flux are computed using the \citet{Beckmann2003} parameterisation of isf melting. 
     1054   The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    10551055   The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    10561056   (\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 
     
    11661166%------------------------------------------------------------------------------------------------------------- 
    11671167 
    1168 Icebergs are modelled as lagrangian particles in NEMO \citep{Marsh_GMD2015}. 
    1169 Their physical behaviour is controlled by equations as described in \citet{Martin_Adcroft_OM10} ). 
     1168Icebergs are modelled as lagrangian particles in NEMO \citep{marsh.ivchenko.ea_GMD15}. 
     1169Their physical behaviour is controlled by equations as described in \citet{martin.adcroft_OM10} ). 
    11701170(Note that the authors kindly provided a copy of their code to act as a basis for implementation in NEMO). 
    11711171Icebergs are initially spawned into one of ten classes which have specific mass and thickness as 
     
    12651265Then using the routine \rou{turb\_ncar} and starting from the neutral drag coefficent provided,  
    12661266the drag coefficient is computed according to the stable/unstable conditions of the  
    1267 air-sea interface following \citet{Large_Yeager_Rep04}.  
     1267air-sea interface following \citet{large.yeager_rpt04}.  
    12681268 
    12691269 
     
    12741274\label{subsec:SBC_wave_sdw} 
    12751275 
    1276 The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{Stokes_1847}.  
     1276The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{stokes_ibk09}.  
    12771277It is defined as the difference between the average velocity of a fluid parcel (Lagrangian velocity)  
    12781278and the current measured at a fixed point (Eulerian velocity).  
     
    13071307\begin{description} 
    13081308\item[\np{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by  
    1309 \citet{Breivik_al_JPO2014}: 
     1309\citet{breivik.janssen.ea_JPO14}: 
    13101310 
    13111311\[ 
     
    13271327\item[\np{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a  
    13281328reasonable estimate of the part of the spectrum most contributing to the Stokes drift velocity near the surface 
    1329 \citep{Breivik_al_OM2016}: 
     1329\citep{breivik.bidlot.ea_OM16}: 
    13301330 
    13311331\[ 
     
    13851385 
    13861386The surface stress felt by the ocean is the atmospheric stress minus the net stress going  
    1387 into the waves \citep{Janssen_al_TM13}. Therefore, when waves are growing, momentum and energy is spent and is not  
     1387into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not  
    13881388available for forcing the mean circulation, while in the opposite case of a decaying sea  
    13891389state more momentum is available for forcing the ocean.  
     
    14451445      the mean value of the analytical cycle (blue line) over a time step, 
    14461446      not as the mid time step value of the analytically cycle (red square). 
    1447       From \citet{Bernie_al_CD07}. 
     1447      From \citet{bernie.guilyardi.ea_CD07}. 
    14481448    } 
    14491449  \end{center} 
     
    14511451%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14521452 
    1453 \cite{Bernie_al_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
     1453\cite{bernie.woolnough.ea_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
    14541454Unfortunately high frequency forcing fields are rare, not to say inexistent. 
    14551455Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at 
    1456 high frequency \citep{Bernie_al_CD07}. 
     1456high frequency \citep{bernie.guilyardi.ea_CD07}. 
    14571457Furthermore, only the knowledge of daily mean value of SWF is needed, 
    14581458as higher frequency variations can be reconstructed from them, 
    14591459assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 
    1460 The \cite{Bernie_al_CD07} reconstruction algorithm is available in \NEMO by 
     1460The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO by 
    14611461setting \np{ln\_dm2dc}\forcode{ = .true.} (a \textit{\ngn{namsbc}} namelist variable) when 
    14621462using CORE bulk formulea (\np{ln\_blk\_core}\forcode{ = .true.}) or 
    14631463the flux formulation (\np{ln\_flx}\forcode{ = .true.}). 
    14641464The reconstruction is performed in the \mdl{sbcdcy} module. 
    1465 The detail of the algoritm used can be found in the appendix~A of \cite{Bernie_al_CD07}. 
     1465The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. 
    14661466The algorithm preserve the daily mean incoming SWF as the reconstructed SWF at 
    14671467a given time step is the mean value of the analytical cycle over this time step (\autoref{fig:SBC_diurnal}). 
     
    15461546(observed, climatological or an atmospheric model product), 
    15471547\textit{SSS}$_{Obs}$ is a sea surface salinity 
    1548 (usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{Steele2001}), 
     1548(usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{steele.morley.ea_JC01}), 
    15491549$\left.S\right|_{k=1}$ is the model surface layer salinity and 
    15501550$\gamma_s$ is a negative feedback coefficient which is provided as a namelist parameter. 
    15511551Unlike heat flux, there is no physical justification for the feedback term in \autoref{eq:sbc_dmp_emp} as 
    1552 the atmosphere does not care about ocean surface salinity \citep{Madec1997}. 
     1552the atmosphere does not care about ocean surface salinity \citep{madec.delecluse_IWN97}. 
    15531553The SSS restoring term should be viewed as a flux correction on freshwater fluxes to 
    15541554reduce the uncertainties we have on the observed freshwater budget. 
Note: See TracChangeset for help on using the changeset viewer.