Changeset 11151
- Timestamp:
- 2019-06-20T14:59:58+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO
- Files:
-
- 22 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/main/NEMO_manual.tex
r11128 r11151 8 8 9 9 %% Document layout 10 \documentclass {book}10 \documentclass[draft]{scrreport} 11 11 12 12 %% Custom style (.sty) 13 \usepackage{../../ styles/NEMO}13 \usepackage{../../global/packages} 14 14 \hypersetup{ 15 15 pdftitle={NEMO ocean engine}, 16 pdfauthor={Gurvan Madec ,and NEMO System Team},16 pdfauthor={Gurvan Madec and NEMO System Team}, 17 17 colorlinks 18 18 } … … 26 26 %% End of common preamble between main and sub-files 27 27 \begin{document} 28 \pagenumbering{gobble} 28 29 29 30 %% Override custom cmds for full manual compilation … … 35 36 %% ============================================================================== 36 37 37 \graphicspath{{../../figures/logos/}} 38 39 %% Frontpage 40 \title{ 41 \includegraphics[height=0.05\textheight]{CMCC}\hfill 42 \includegraphics[height=0.05\textheight]{CNRS}\hfill 43 \includegraphics[height=0.05\textheight]{MOI} \hfill 44 \includegraphics[height=0.05\textheight]{UKMO}\hfill 45 \includegraphics[height=0.05\textheight]{NERC} \\ 46 \includegraphics[ width=0.8\textwidth ]{NEMO_grey} \\ 47 {\Huge NEMO ocean engine} \\ 48 } 49 \author{ 50 \Large Gurvan Madec and NEMO System Team 51 % \thanks{ 52 % 53 % } \\ 54 \textit{Issue 27, Notes du P\^{o}le de mod\'{e}lisation} \\ 55 \textit{Institut Pierre-Simon Laplace (IPSL)} \\ 56 \textit{ISSN 1288-1619} 38 \title{NEMO ocean engine} 39 \author{Gurvan Madec \and NEMO System Team\thanks{ 40 TBD 41 } 57 42 } 58 43 \date{\today} 59 44 60 \maketitle 61 \frontmatter 45 %% Title and information pages 46 \input{../../global/frontpages} 47 48 %% Citation embedded 49 \textsf{ 50 ``{\bfseries NEMO ocean engine}'', 51 Madec Gurvan and NEMO System Team, 52 {\em Scientific Notes of Climate Modelling Center (27)}, ISSN 1288-1619, 53 Institut Pierre-Simon Laplace (IPSL), 54 } 55 56 \newpage 57 %\frontmatter %% Chapter numbering off and Roman numerals for page numbers 58 \pagenumbering{roman} 59 60 \subfile{../subfiles/foreword} %% Foreword 61 62 62 63 63 %% ToC i.e. Table of Contents 64 \newpage 64 65 \dominitoc 65 66 \tableofcontents 66 67 68 \clearpage 69 %\end{document} 67 70 68 71 %% Mainmatter 69 72 %% ============================================================================== 70 73 71 \mainmatter 74 %\mainmatter %% Chapter numbering on, page numbering is reset with Arabic numerals 75 \pagenumbering{arabic} 72 76 73 77 \graphicspath{{../../figures/NEMO/}} 74 78 75 %% Foreword 76 \subfile{../subfiles/foreword} 77 78 %% Introduction 79 \subfile{../subfiles/introduction} 79 \subfile{../subfiles/introduction} %% Introduction 80 80 81 81 %% Chapters 82 82 \subfile{../subfiles/chap_model_basics} 83 \subfile{../subfiles/chap_time_domain} % Time discretisation (time stepping strategy)84 \subfile{../subfiles/chap_DOM} % Space discretisation85 \subfile{../subfiles/chap_TRA} % Tracer advection/diffusion equation86 \subfile{../subfiles/chap_DYN} % Dynamics : momentum equation87 \subfile{../subfiles/chap_SBC} % Surface Boundary Conditions88 \subfile{../subfiles/chap_LBC} % Lateral Boundary Conditions89 \subfile{../subfiles/chap_LDF} % Lateral diffusion90 \subfile{../subfiles/chap_ZDF} % Vertical diffusion91 \subfile{../subfiles/chap_DIA} % Outputs and Diagnostics92 \subfile{../subfiles/chap_OBS} % Observation operator93 \subfile{../subfiles/chap_ASM} % Assimilation increments94 \subfile{../subfiles/chap_STO} % Stochastic param.95 \subfile{../subfiles/chap_misc} % Miscellaneous topics96 \subfile{../subfiles/chap_CONFIG} % Predefined configurations83 \subfile{../subfiles/chap_time_domain} %% Time discretisation (time stepping strategy) 84 \subfile{../subfiles/chap_DOM} %% Space discretisation 85 \subfile{../subfiles/chap_TRA} %% Tracer advection/diffusion equation 86 \subfile{../subfiles/chap_DYN} %% Dynamics : momentum equation 87 \subfile{../subfiles/chap_SBC} %% Surface Boundary Conditions 88 \subfile{../subfiles/chap_LBC} %% Lateral Boundary Conditions 89 \subfile{../subfiles/chap_LDF} %% Lateral diffusion 90 \subfile{../subfiles/chap_ZDF} %% Vertical diffusion 91 \subfile{../subfiles/chap_DIA} %% Outputs and Diagnostics 92 \subfile{../subfiles/chap_OBS} %% Observation operator 93 \subfile{../subfiles/chap_ASM} %% Assimilation increments 94 \subfile{../subfiles/chap_STO} %% Stochastic param. 95 \subfile{../subfiles/chap_misc} %% Miscellaneous topics 96 \subfile{../subfiles/chap_CONFIG} %% Predefined configurations 97 97 98 98 %% Appendix 99 \appendix 100 \subfile{../subfiles/annex_A} % Generalised vertical coordinate 101 \subfile{../subfiles/annex_B} % Diffusive operator 102 \subfile{../subfiles/annex_C} % Discrete invariants of the eqs. 103 \subfile{../subfiles/annex_iso} % Isoneutral diffusion using triads 104 \subfile{../subfiles/annex_D} % Coding rules 99 %% ============================================================================== 100 101 \appendix % Chapter numbering is reset with letters now 102 103 \subfile{../subfiles/annex_A} %% Generalised vertical coordinate 104 \subfile{../subfiles/annex_B} %% Diffusive operator 105 \subfile{../subfiles/annex_C} %% Discrete invariants of the eqs. 106 \subfile{../subfiles/annex_iso} %% Isoneutral diffusion using triads 107 \subfile{../subfiles/annex_D} %% Coding rules 105 108 106 109 %% Not included … … 108 111 %\subfile{../subfiles/chap_DIU} 109 112 %\subfile{../subfiles/chap_conservation} 110 %\subfile{../subfiles/annex_E} % Notes on some on going staff113 %\subfile{../subfiles/annex_E} %% Notes on some on going staff 111 114 112 115 %% Backmatter 113 116 %% ============================================================================== 114 117 115 \backmatter 118 %\backmatter %% Chapter numbering off 116 119 117 120 %% Bibliography 118 \cleardoublepage119 121 \phantomsection 120 122 \addcontentsline{toc}{chapter}{Bibliography} … … 122 124 123 125 %% Index 124 \clear doublepage126 \clearpage 125 127 \phantomsection 126 128 \addcontentsline{toc}{chapter}{Index} -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_A.tex
r11123 r11151 79 79 { 80 80 \begin{array}{*{20}l} 81 \nabla \cdot {\ rm {\bf U}}81 \nabla \cdot {\mathrm {\mathbf U}} 82 82 &= \frac{1}{e_1 \,e_2 } \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z 83 83 +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_z \right] … … 115 115 $, it becomes:} 116 116 % 117 \nabla \cdot {\ rm {\bf U}}117 \nabla \cdot {\mathrm {\mathbf U}} 118 118 & = \frac{1}{e_1 \,e_2 \,e_3 } \left[ 119 119 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s … … 144 144 { 145 145 \begin{array}{*{20}l} 146 \nabla \cdot {\ rm {\bf U}}146 \nabla \cdot {\mathrm {\mathbf U}} 147 147 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ 148 148 \left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s … … 346 346 % 347 347 &= \left. {\frac{\partial u }{\partial t}} \right|_s 348 &+ \left. \nabla \cdot \left( {{\ rm {\bf U}}\,u} \right) \right|_s348 &+ \left. \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right) \right|_s 349 349 + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t} 350 350 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} … … 359 359 \label{apdx:A_sco_Dt_flux} 360 360 \left. \frac{D u}{D t} \right|_s = \frac{1}{e_3} \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s 361 + \left. \nabla \cdot \left( {{\ rm {\bf U}}\,u} \right) \right|_s361 + \left. \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right) \right|_s 362 362 - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 363 363 -u \;\frac{\partial e_1 }{\partial j} \right) … … 483 483 \label{apdx:A_PE_dyn_flux_u} 484 484 \frac{1}{e_3} \frac{\partial \left( e_3\,u \right) }{\partial t} = 485 \nabla \cdot \left( {{\ rm {\bf U}}\,u} \right)485 \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right) 486 486 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 487 487 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,v \\ … … 493 493 \label{apdx:A_dyn_flux_v} 494 494 \frac{1}{e_3}\frac{\partial \left( e_3\,v \right) }{\partial t}= 495 - \nabla \cdot \left( {{\ rm {\bf U}}\,v} \right)495 - \nabla \cdot \left( {{\mathrm {\mathbf U}}\,v} \right) 496 496 + \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i} 497 497 -u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,u \\ -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_B.tex
r11123 r11151 236 236 { 237 237 \begin{array}{*{20}l} 238 \nabla T\;.\left( {{\ rm {\bf A}}_{\rm {\bf I}} \nabla T}238 \nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T} 239 239 \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1 240 240 \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left( … … 379 379 - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) 380 380 + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } 381 \frac{\partial {\ rm {\bf U}}_h }{\partial k}} \right) \\381 \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) \\ 382 382 \end{equation} 383 383 that is, in expanded form: -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_E.tex
r11123 r11151 308 308 \begin{figure}[!ht] 309 309 \begin{center} 310 \includegraphics[width= 0.70\textwidth]{Fig_ISO_triad}310 \includegraphics[width=\textwidth]{Fig_ISO_triad} 311 311 \caption{ 312 312 \protect\label{fig:ISO_triad} -
NEMO/trunk/doc/latex/NEMO/subfiles/annex_iso.tex
r11123 r11151 201 201 \begin{figure}[tb] 202 202 \begin{center} 203 \includegraphics[width= 1.05\textwidth]{Fig_GRIFF_triad_fluxes}203 \includegraphics[width=\textwidth]{Fig_GRIFF_triad_fluxes} 204 204 \caption{ 205 205 \protect\label{fig:ISO_triad} … … 265 265 \begin{figure}[tb] 266 266 \begin{center} 267 \includegraphics[width= 0.80\textwidth]{Fig_GRIFF_qcells}267 \includegraphics[width=\textwidth]{Fig_GRIFF_qcells} 268 268 \caption{ 269 269 \protect\label{fig:qcells} … … 658 658 \begin{figure}[h] 659 659 \begin{center} 660 \includegraphics[width= 0.60\textwidth]{Fig_GRIFF_bdry_triads}660 \includegraphics[width=\textwidth]{Fig_GRIFF_bdry_triads} 661 661 \caption{ 662 662 \protect\label{fig:bdry_triads} … … 732 732 \[ 733 733 % \label{eq:iso_tensor_ML} 734 D^{lT}=\nabla {\ rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad734 D^{lT}=\nabla {\mathrm {\mathbf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad 735 735 \mbox{with}\quad \;\;\Re =\left( {{ 736 736 \begin{array}{*{20}c} … … 829 829 (\eg the green triad $i_p=1/2,k_p=-1/2$) are tapered to the appropriate basal triad.} 830 830 % } 831 \includegraphics[width= 0.60\textwidth]{Fig_GRIFF_MLB_triads}831 \includegraphics[width=\textwidth]{Fig_GRIFF_MLB_triads} 832 832 \end{figure} 833 833 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 847 847 \[ 848 848 % \label{eq:iso_tensor_ML2} 849 D^{lT}=\nabla {\ rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad849 D^{lT}=\nabla {\mathrm {\mathbf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad 850 850 \mbox{with}\quad \;\;\Re =\left( {{ 851 851 \begin{array}{*{20}c} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r11123 r11151 41 41 IAU is used when \np{ln\_asmiau} is set to true. 42 42 43 With IAU, the model state trajectory ${\ bf x}$ in the assimilation window ($t_{0} \leq t_{i} \leq t_{N}$)43 With IAU, the model state trajectory ${\mathbf x}$ in the assimilation window ($t_{0} \leq t_{i} \leq t_{N}$) 44 44 is corrected by adding the analysis increments for temperature, salinity, horizontal velocity and SSH as 45 45 additional tendency terms to the prognostic equations: 46 46 \begin{align*} 47 47 % \label{eq:wa_traj_iau} 48 {\ bf x}^{a}(t_{i}) = M(t_{i}, t_{0})[{\bf x}^{b}(t_{0})] \; + \; F_{i} \delta \tilde{\bf x}^{a}48 {\mathbf x}^{a}(t_{i}) = M(t_{i}, t_{0})[{\mathbf x}^{b}(t_{0})] \; + \; F_{i} \delta \tilde{\mathbf x}^{a} 49 49 \end{align*} 50 where $F_{i}$ is a weighting function for applying the increments $\delta\tilde{\ bf x}^{a}$ defined such that50 where $F_{i}$ is a weighting function for applying the increments $\delta\tilde{\mathbf x}^{a}$ defined such that 51 51 $\sum_{i=1}^{N} F_{i}=1$. 52 ${\ bf x}^b$ denotes the model initial state and ${\bf x}^a$ is the model state after the increments are applied.52 ${\mathbf x}^b$ denotes the model initial state and ${\mathbf x}^a$ is the model state after the increments are applied. 53 53 To control the adjustment time of the model to the increment, 54 54 the increment can be applied over an arbitrary sub-window, $t_{m} \leq t_{i} \leq t_{n}$, … … 62 62 =\left\{ 63 63 \begin{array}{ll} 64 0 & {\ rm if} \; \; \; t_{i} < t_{m} \\65 1/M & {\ rm if} \; \; \; t_{m} < t_{i} \leq t_{n} \\66 0 & {\ rm if} \; \; \; t_{i} > t_{n}64 0 & {\mathrm if} \; \; \; t_{i} < t_{m} \\ 65 1/M & {\mathrm if} \; \; \; t_{m} < t_{i} \leq t_{n} \\ 66 0 & {\mathrm if} \; \; \; t_{i} > t_{n} 67 67 \end{array} 68 68 \right. … … 76 76 =\left\{ 77 77 \begin{array}{ll} 78 0 & {\ rm if} \; \; \; t_{i} < t_{m} \\79 \alpha \, i & {\ rm if} \; \; \; t_{m} \leq t_{i} \leq t_{M/2} \\80 \alpha \, (M - i +1) & {\ rm if} \; \; \; t_{M/2} < t_{i} \leq t_{n} \\81 0 & {\ rm if} \; \; \; t_{i} > t_{n}78 0 & {\mathrm if} \; \; \; t_{i} < t_{m} \\ 79 \alpha \, i & {\mathrm if} \; \; \; t_{m} \leq t_{i} \leq t_{M/2} \\ 80 \alpha \, (M - i +1) & {\mathrm if} \; \; \; t_{M/2} < t_{i} \leq t_{n} \\ 81 0 & {\mathrm if} \; \; \; t_{i} > t_{n} 82 82 \end{array} 83 83 \right. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_CONFIG.tex
r11128 r11151 89 89 \begin{figure}[!t] 90 90 \begin{center} 91 \includegraphics[width= 0.98\textwidth]{Fig_ORCA_NH_mesh}91 \includegraphics[width=\textwidth]{Fig_ORCA_NH_mesh} 92 92 \caption{ 93 93 \protect\label{fig:MISC_ORCA_msh} … … 121 121 \begin{figure}[!tbp] 122 122 \begin{center} 123 \includegraphics[width= 1.0\textwidth]{Fig_ORCA_NH_msh05_e1_e2}124 \includegraphics[width= 0.80\textwidth]{Fig_ORCA_aniso}123 \includegraphics[width=\textwidth]{Fig_ORCA_NH_msh05_e1_e2} 124 \includegraphics[width=\textwidth]{Fig_ORCA_aniso} 125 125 \caption { 126 126 \protect\label{fig:MISC_ORCA_e1e2} … … 280 280 \begin{figure}[!t] 281 281 \begin{center} 282 \includegraphics[width= 1.0\textwidth]{Fig_GYRE}282 \includegraphics[width=\textwidth]{Fig_GYRE} 283 283 \caption{ 284 284 \protect\label{fig:GYRE} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11123 r11151 168 168 \xmlline|<variable id="using_server" type="bool"></variable>| 169 169 170 The {\tt using\_server} setting determines whether or not the server will be used in \textit{attached mode}171 (as a library) [{\tt > false <}] or in \textit{detached mode}172 (as an external executable on N additional, dedicated cpus) [{\tt > true <}].170 The {\ttfamily using\_server} setting determines whether or not the server will be used in \textit{attached mode} 171 (as a library) [{\ttfamily> false <}] or in \textit{detached mode} 172 (as an external executable on N additional, dedicated cpus) [{\ttfamily > true <}]. 173 173 The \textit{attached mode} is simpler to use but much less efficient for massively parallel applications. 174 174 The type of each file can be either ''multiple\_file'' or ''one\_file''. … … 207 207 \subsubsection{Control of XIOS: the context in iodef.xml} 208 208 209 As well as the {\tt using\_server} flag, other controls on the use of XIOS are set in the XIOS context in iodef.xml.209 As well as the {\ttfamily using\_server} flag, other controls on the use of XIOS are set in the XIOS context in iodef.xml. 210 210 See the XML basics section below for more details on XML syntax and rules. 211 211 … … 938 938 \hline 939 939 \end{tabularx} 940 \caption{Field tags ("\tt {field\_*}")}940 \caption{Field tags ("\ttfamily{field\_*}")} 941 941 \end{table} 942 942 … … 974 974 \hline 975 975 \end{tabularx} 976 \caption{File tags ("\tt {file\_*}")}976 \caption{File tags ("\ttfamily{file\_*}")} 977 977 \end{table} 978 978 … … 1007 1007 \hline 1008 1008 \end{tabularx} 1009 \caption{Axis tags ("\tt {axis\_*}")}1009 \caption{Axis tags ("\ttfamily{axis\_*}")} 1010 1010 \end{table} 1011 1011 … … 1040 1040 \hline 1041 1041 \end{tabularx} 1042 \caption{Domain tags ("\tt {domain\_*)}"}1042 \caption{Domain tags ("\ttfamily{domain\_*)}"} 1043 1043 \end{table} 1044 1044 … … 1073 1073 \hline 1074 1074 \end{tabularx} 1075 \caption{Grid tags ("\tt {grid\_*}")}1075 \caption{Grid tags ("\ttfamily{grid\_*}")} 1076 1076 \end{table} 1077 1077 … … 1114 1114 \hline 1115 1115 \end{tabularx} 1116 \caption{Reference attributes ("\tt {*\_ref}")}1116 \caption{Reference attributes ("\ttfamily{*\_ref}")} 1117 1117 \end{table} 1118 1118 … … 1150 1150 \hline 1151 1151 \end{tabularx} 1152 \caption{Domain attributes ("\tt {zoom\_*}")}1152 \caption{Domain attributes ("\ttfamily{zoom\_*}")} 1153 1153 \end{table} 1154 1154 … … 1389 1389 \end{forlines} 1390 1390 1391 \noindent for a standard ORCA2\_LIM configuration gives chunksizes of {\small\tt 46x38x1} respectively in1392 the mono-processor case (\ie global domain of {\small\tt 182x149x31}).1391 \noindent for a standard ORCA2\_LIM configuration gives chunksizes of {\small\ttfamily 46x38x1} respectively in 1392 the mono-processor case (\ie global domain of {\small\ttfamily 182x149x31}). 1393 1393 An illustration of the potential space savings that NetCDF4 chunking and compression provides is given in 1394 1394 table \autoref{tab:NC4} which compares the results of two short runs of the ORCA2\_LIM reference configuration with … … 2016 2016 \begin{figure}[!t] 2017 2017 \begin{center} 2018 \includegraphics[width= 1.0\textwidth]{Fig_mask_subasins}2018 \includegraphics[width=\textwidth]{Fig_mask_subasins} 2019 2019 \caption{ 2020 2020 \protect\label{fig:mask_subasins} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex
r11123 r11151 33 33 (\ie from the temperature of the top few model levels) or from some other source. 34 34 It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature 35 ($\Delta T_{\ rm{cs}}$ and $\Delta T_{\rm{wl}}$) and35 ($\Delta T_{\mathrm{cs}}$ and $\Delta T_{\mathrm{wl}}$) and 36 36 both must be added to a foundation SST to obtain the true skin temperature. 37 37 … … 63 63 This is a simple flux based model that is defined by the equations 64 64 \begin{align} 65 \frac{\partial{\Delta T_{\ rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p65 \frac{\partial{\Delta T_{\mathrm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 66 66 \nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,} 67 67 \label{eq:ecmwf1} \\ 68 68 L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:ecmwf2} 69 69 \end{align} 70 where $\Delta T_{\ rm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal.70 where $\Delta T_{\mathrm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 71 71 In equation (\autoref{eq:ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water, 72 72 $\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water, 73 73 $\rho_w$ is the water density, and $L$ is the Monin-Obukhov length. 74 74 The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via 75 $T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\ rm{wl}}$,75 $T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\mathrm{wl}}$, 76 76 where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer. 77 77 The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$, … … 82 82 the diurnal layer, \ie 83 83 \[ 84 Q = Q_{\ rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,}84 Q = Q_{\mathrm{sol}} + Q_{\mathrm{lw}} + Q_{\mathrm{h}}\mbox{,} 85 85 % \label{eq:e_flux_eqn} 86 86 \] 87 where $Q_{\ rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long wave flux,88 and $Q_{\ rm{sol}}$ is the solar flux absorbed within the diurnal warm layer.89 For $Q_{\ rm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used.87 where $Q_{\mathrm{h}}$ is the sensible and latent heat flux, $Q_{\mathrm{lw}}$ is the long wave flux, 88 and $Q_{\mathrm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 89 For $Q_{\mathrm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used. 90 90 In equation \autoref{eq:ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$, 91 91 where $L_a=0.3$\footnote{ … … 119 119 120 120 The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 121 As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\ rm{cs}}$ becomes121 As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\mathrm{cs}}$ becomes 122 122 \[ 123 123 % \label{eq:sunders_eqn} 124 \Delta T_{\ rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,}124 \Delta T_{\mathrm{cs}}=\frac{Q_{\mathrm{ns}}\delta}{k_t} \mbox{,} 125 125 \] 126 where $Q_{\ rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and126 where $Q_{\mathrm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 127 127 $k_t$ is the thermal conductivity of sea water. 128 128 $\delta$ is the thickness of the skin layer and is given by -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r11123 r11151 40 40 \begin{figure}[!tb] 41 41 \begin{center} 42 \includegraphics[ ]{Fig_cell}42 \includegraphics[width=\textwidth]{Fig_cell} 43 43 \caption{ 44 44 \protect\label{fig:cell} … … 218 218 \begin{figure}[!tb] 219 219 \begin{center} 220 \includegraphics[ ]{Fig_index_hor}220 \includegraphics[width=\textwidth]{Fig_index_hor} 221 221 \caption{ 222 222 \protect\label{fig:index_hor} … … 272 272 \begin{figure}[!pt] 273 273 \begin{center} 274 \includegraphics[ ]{Fig_index_vert}274 \includegraphics[width=\textwidth]{Fig_index_vert} 275 275 \caption{ 276 276 \protect\label{fig:index_vert} … … 410 410 \begin{figure}[!t] 411 411 \begin{center} 412 \includegraphics[ ]{Fig_zgr_e3}412 \includegraphics[width=\textwidth]{Fig_zgr_e3} 413 413 \caption{ 414 414 \protect\label{fig:zgr_e3} … … 471 471 \begin{figure}[!tb] 472 472 \begin{center} 473 \includegraphics[ ]{Fig_z_zps_s_sps}473 \includegraphics[width=\textwidth]{Fig_z_zps_s_sps} 474 474 \caption{ 475 475 \protect\label{fig:z_zps_s_sps} … … 593 593 \begin{figure}[!tb] 594 594 \begin{center} 595 \includegraphics[ ]{Fig_zgr}595 \includegraphics[width=\textwidth]{Fig_zgr} 596 596 \caption{ 597 597 \protect\label{fig:zgr} … … 859 859 \begin{figure}[!ht] 860 860 \begin{center} 861 \includegraphics[ ]{Fig_sco_function}861 \includegraphics[width=\textwidth]{Fig_sco_function} 862 862 \caption{ 863 863 \protect\label{fig:sco_function} … … 911 911 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 912 912 \begin{figure}[!ht] 913 \includegraphics[ ]{Fig_DOM_compare_coordinates_surface}913 \includegraphics[width=\textwidth]{Fig_DOM_compare_coordinates_surface} 914 914 \caption{ 915 915 A comparison of the \citet{song.haidvogel_JCP94} $S$-coordinate (solid lines), -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11123 r11151 309 309 \begin{figure}[!ht] 310 310 \begin{center} 311 \includegraphics[width= 0.70\textwidth]{Fig_DYN_een_triad}311 \includegraphics[width=\textwidth]{Fig_DYN_een_triad} 312 312 \caption{ 313 313 \protect\label{fig:DYN_een_triad} … … 862 862 \begin{equation} 863 863 \label{eq:BT_dyn} 864 \frac{\partial {\ rm \overline{{\bf U}}_h} }{\partial t}=865 -f\;{\ rm {\bf k}}\times {\rm \overline{{\bf U}}_h}866 -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \ rm {\overline{{\bf U}}_h} + \rm {\overline{\bf G}}864 \frac{\partial {\mathrm \overline{{\mathbf U}}_h} }{\partial t}= 865 -f\;{\mathrm {\mathbf k}}\times {\mathrm \overline{{\mathbf U}}_h} 866 -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \mathrm {\overline{{\mathbf U}}_h} + \mathrm {\overline{\mathbf G}} 867 867 \end{equation} 868 868 \[ 869 869 % \label{eq:BT_ssh} 870 \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\ rm{\bf \overline{U}}}_h \,} \right]+P-E870 \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\mathrm{\mathbf \overline{U}}}_h \,} \right]+P-E 871 871 \] 872 872 % \end{subequations} 873 where $\ rm {\overline{\bf G}}$ is a forcing term held constant, containing coupling term between modes,873 where $\mathrm {\overline{\mathbf G}}$ is a forcing term held constant, containing coupling term between modes, 874 874 surface atmospheric forcing as well as slowly varying barotropic terms not explicitly computed to gain efficiency. 875 875 The third term on the right hand side of \autoref{eq:BT_dyn} represents the bottom stress … … 884 884 \begin{figure}[!t] 885 885 \begin{center} 886 \includegraphics[width= 0.7\textwidth]{Fig_DYN_dynspg_ts}886 \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 887 887 \caption{ 888 888 \protect\label{fig:DYN_dynspg_ts} … … 1092 1092 \[ 1093 1093 % \label{eq:spg_flt} 1094 \frac{\partial {\ rm {\bf U}}_h }{\partial t}= {\rm {\bf M}}1094 \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= {\mathrm {\mathbf M}} 1095 1095 - g \nabla \left( \tilde{\rho} \ \eta \right) 1096 1096 - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right) … … 1098 1098 where $T_c$, is a parameter with dimensions of time which characterizes the force, 1099 1099 $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, 1100 and $\ rm {\bf M}$ represents the collected contributions of the Coriolis, hydrostatic pressure gradient,1100 and $\mathrm {\mathbf M}$ represents the collected contributions of the Coriolis, hydrostatic pressure gradient, 1101 1101 non-linear and viscous terms in \autoref{eq:PE_dyn}. 1102 1102 } %end gmcomment … … 1152 1152 \left\{ 1153 1153 \begin{aligned} 1154 D_u^{l{\ rm {\bf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm}1154 D_u^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm} 1155 1155 \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta_j \left[ 1156 1156 {A_f^{lm} \;e_{3f} \zeta } \right] \\ \\ 1157 D_v^{l{\ rm {\bf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm}1157 D_v^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm} 1158 1158 \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta_i \left[ 1159 1159 {A_f^{lm} \;e_{3f} \zeta } \right] … … 1494 1494 \end{equation} 1495 1495 1496 Note a small tolerance ($\mathrm{rn\_wdmin2}$) has been introduced here {\it [Q: Why is1496 Note a small tolerance ($\mathrm{rn\_wdmin2}$) has been introduced here {\itshape [Q: Why is 1497 1497 this necessary/desirable?]}. Substituting from (\ref{dyn_wd_continuity_coef}) gives an 1498 1498 expression for the coefficient needed to multiply the outward flux at this cell in order … … 1541 1541 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1542 1542 \begin{figure}[!ht] \begin{center} 1543 \includegraphics[width= 0.8\textwidth]{Fig_WAD_dynhpg}1543 \includegraphics[width=\textwidth]{Fig_WAD_dynhpg} 1544 1544 \caption{ \label{Fig_WAD_dynhpg} 1545 1545 Illustrations of the three possible combinations of the logical variables controlling the -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11123 r11151 56 56 \begin{figure}[!t] 57 57 \begin{center} 58 \includegraphics[width= 0.90\textwidth]{Fig_LBC_uv}58 \includegraphics[width=\textwidth]{Fig_LBC_uv} 59 59 \caption{ 60 60 \protect\label{fig:LBC_uv} … … 85 85 \begin{figure}[!p] 86 86 \begin{center} 87 \includegraphics[width= 0.90\textwidth]{Fig_LBC_shlat}87 \includegraphics[width=\textwidth]{Fig_LBC_shlat} 88 88 \caption{ 89 89 \protect\label{fig:LBC_shlat} … … 194 194 \begin{figure}[!t] 195 195 \begin{center} 196 \includegraphics[width= 1.0\textwidth]{Fig_LBC_jperio}196 \includegraphics[width=\textwidth]{Fig_LBC_jperio} 197 197 \caption{ 198 198 \protect\label{fig:LBC_jperio} … … 218 218 \begin{figure}[!t] 219 219 \begin{center} 220 \includegraphics[width= 0.90\textwidth]{Fig_North_Fold_T}220 \includegraphics[width=\textwidth]{Fig_North_Fold_T} 221 221 \caption{ 222 222 \protect\label{fig:North_Fold_T} … … 280 280 \begin{figure}[!t] 281 281 \begin{center} 282 \includegraphics[width= 0.90\textwidth]{Fig_mpp}282 \includegraphics[width=\textwidth]{Fig_mpp} 283 283 \caption{ 284 284 \protect\label{fig:mpp} … … 360 360 \begin{figure}[!ht] 361 361 \begin{center} 362 \includegraphics[width= 0.90\textwidth]{Fig_mppini2}362 \includegraphics[width=\textwidth]{Fig_mppini2} 363 363 \caption { 364 364 \protect\label{fig:mppini2} … … 636 636 \begin{figure}[!t] 637 637 \begin{center} 638 \includegraphics[width= 1.0\textwidth]{Fig_LBC_bdy_geom}638 \includegraphics[width=\textwidth]{Fig_LBC_bdy_geom} 639 639 \caption { 640 640 \protect\label{fig:LBC_bdy_geom} … … 670 670 These restrictions mean that data files used with versions of the 671 671 model prior to Version 3.4 may not work with Version 3.4 onwards. 672 A \fortran utility {\it bdy\_reorder} exists in the TOOLS directory which672 A \fortran utility {\itshape bdy\_reorder} exists in the TOOLS directory which 673 673 will re-order the data in old BDY data files. 674 674 … … 676 676 \begin{figure}[!t] 677 677 \begin{center} 678 \includegraphics[width= 1.0\textwidth]{Fig_LBC_nc_header}678 \includegraphics[width=\textwidth]{Fig_LBC_nc_header} 679 679 \caption { 680 680 \protect\label{fig:LBC_nc_header} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11123 r11151 217 217 \begin{figure}[!ht] 218 218 \begin{center} 219 \includegraphics[width= 0.70\textwidth]{Fig_LDF_ZDF1}219 \includegraphics[width=\textwidth]{Fig_LDF_ZDF1} 220 220 \caption { 221 221 \protect\label{fig:LDF_ZDF1} … … 249 249 \begin{figure}[!ht] 250 250 \begin{center} 251 \includegraphics[width= 0.70\textwidth]{Fig_eiv_slp}251 \includegraphics[width=\textwidth]{Fig_eiv_slp} 252 252 \caption{ 253 253 \protect\label{fig:eiv_slp} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex
r11123 r11151 573 573 \subsubsection{Horizontal interpolation} 574 574 575 Consider an observation point ${\ rm P}$ with with longitude and latitude $({\lambda_{}}_{\rm P}, \phi_{\rm P})$ and576 the four nearest neighbouring model grid points ${\ rm A}$, ${\rm B}$, ${\rm C}$ and ${\rm D}$ with577 longitude and latitude ($\lambda_{\ rm A}$, $\phi_{\rm A}$),($\lambda_{\rm B}$, $\phi_{\rm B}$) etc.575 Consider an observation point ${\mathrm P}$ with with longitude and latitude $({\lambda_{}}_{\mathrm P}, \phi_{\mathrm P})$ and 576 the four nearest neighbouring model grid points ${\mathrm A}$, ${\mathrm B}$, ${\mathrm C}$ and ${\mathrm D}$ with 577 longitude and latitude ($\lambda_{\mathrm A}$, $\phi_{\mathrm A}$),($\lambda_{\mathrm B}$, $\phi_{\mathrm B}$) etc. 578 578 All horizontal interpolation methods implemented in NEMO estimate the value of a model variable $x$ at point $P$ as 579 a weighted linear combination of the values of the model variables at the grid points ${\ rm A}$, ${\rm B}$ etc.:579 a weighted linear combination of the values of the model variables at the grid points ${\mathrm A}$, ${\mathrm B}$ etc.: 580 580 \begin{align*} 581 {x_{}}_{\ rm P} & \hspace{-2mm} = \hspace{-2mm} &582 \frac{1}{w} \left( {w_{}}_{\ rm A} {x_{}}_{\rm A} +583 {w_{}}_{\ rm B} {x_{}}_{\rm B} +584 {w_{}}_{\ rm C} {x_{}}_{\rm C} +585 {w_{}}_{\ rm D} {x_{}}_{\rm D} \right)581 {x_{}}_{\mathrm P} & \hspace{-2mm} = \hspace{-2mm} & 582 \frac{1}{w} \left( {w_{}}_{\mathrm A} {x_{}}_{\mathrm A} + 583 {w_{}}_{\mathrm B} {x_{}}_{\mathrm B} + 584 {w_{}}_{\mathrm C} {x_{}}_{\mathrm C} + 585 {w_{}}_{\mathrm D} {x_{}}_{\mathrm D} \right) 586 586 \end{align*} 587 where ${w_{}}_{\ rm A}$, ${w_{}}_{\rm B}$ etc. are the respective weights for the model field at588 points ${\ rm A}$, ${\rm B}$ etc., and $w = {w_{}}_{\rm A} + {w_{}}_{\rm B} + {w_{}}_{\rm C} + {w_{}}_{\rm D}$.587 where ${w_{}}_{\mathrm A}$, ${w_{}}_{\mathrm B}$ etc. are the respective weights for the model field at 588 points ${\mathrm A}$, ${\mathrm B}$ etc., and $w = {w_{}}_{\mathrm A} + {w_{}}_{\mathrm B} + {w_{}}_{\mathrm C} + {w_{}}_{\mathrm D}$. 589 589 590 590 Four different possibilities are available for computing the weights. … … 592 592 \begin{enumerate} 593 593 594 \item[1.] {\bf Great-Circle distance-weighted interpolation.}594 \item[1.] {\bfseries Great-Circle distance-weighted interpolation.} 595 595 The weights are computed as a function of the great-circle distance $s(P, \cdot)$ between $P$ and 596 596 the model grid points $A$, $B$ etc. 597 For example, the weight given to the field ${x_{}}_{\ rm A}$ is specified as the product of the distances598 from ${\ rm P}$ to the other points:597 For example, the weight given to the field ${x_{}}_{\mathrm A}$ is specified as the product of the distances 598 from ${\mathrm P}$ to the other points: 599 599 \begin{align*} 600 {w_{}}_{\ rm A} = s({\rm P}, {\rm B}) \, s({\rm P}, {\rm C}) \, s({\rm P}, {\rm D})600 {w_{}}_{\mathrm A} = s({\mathrm P}, {\mathrm B}) \, s({\mathrm P}, {\mathrm C}) \, s({\mathrm P}, {\mathrm D}) 601 601 \end{align*} 602 602 where 603 603 \begin{align*} 604 s\left ({\ rm P}, {\rm M} \right )604 s\left ({\mathrm P}, {\mathrm M} \right ) 605 605 & \hspace{-2mm} = \hspace{-2mm} & 606 606 \cos^{-1} \! \left\{ 607 \sin {\phi_{}}_{\ rm P} \sin {\phi_{}}_{\rm M}608 + \cos {\phi_{}}_{\ rm P} \cos {\phi_{}}_{\rm M}609 \cos ({\lambda_{}}_{\ rm M} - {\lambda_{}}_{\rm P})607 \sin {\phi_{}}_{\mathrm P} \sin {\phi_{}}_{\mathrm M} 608 + \cos {\phi_{}}_{\mathrm P} \cos {\phi_{}}_{\mathrm M} 609 \cos ({\lambda_{}}_{\mathrm M} - {\lambda_{}}_{\mathrm P}) 610 610 \right\} 611 611 \end{align*} … … 614 614 involves the arcsine function (\eg see p.~101 of \citet{daley.barker_bk01}: 615 615 \begin{align*} 616 s\left( {\ rm P}, {\rm M} \right) & \hspace{-2mm} = \hspace{-2mm} & \sin^{-1} \! \left\{ \sqrt{ 1 - x^2 } \right\}616 s\left( {\mathrm P}, {\mathrm M} \right) & \hspace{-2mm} = \hspace{-2mm} & \sin^{-1} \! \left\{ \sqrt{ 1 - x^2 } \right\} 617 617 \end{align*} 618 618 where 619 619 \begin{align*} 620 620 x & \hspace{-2mm} = \hspace{-2mm} & 621 {a_{}}_{\ rm M} {a_{}}_{\rm P} + {b_{}}_{\rm M} {b_{}}_{\rm P} + {c_{}}_{\rm M} {c_{}}_{\rm P}621 {a_{}}_{\mathrm M} {a_{}}_{\mathrm P} + {b_{}}_{\mathrm M} {b_{}}_{\mathrm P} + {c_{}}_{\mathrm M} {c_{}}_{\mathrm P} 622 622 \end{align*} 623 623 and 624 624 \begin{align*} 625 {a_{}}_{\ rm M} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\rm M}, \\626 {a_{}}_{\ rm P} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\rm P}, \\627 {b_{}}_{\ rm M} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\rm M} \cos {\phi_{}}_{\rm M}, \\628 {b_{}}_{\ rm P} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\rm P} \cos {\phi_{}}_{\rm P}, \\629 {c_{}}_{\ rm M} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\rm M} \sin {\phi_{}}_{\rm M}, \\630 {c_{}}_{\ rm P} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\rm P} \sin {\phi_{}}_{\rm P}.625 {a_{}}_{\mathrm M} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\mathrm M}, \\ 626 {a_{}}_{\mathrm P} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\mathrm P}, \\ 627 {b_{}}_{\mathrm M} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\mathrm M} \cos {\phi_{}}_{\mathrm M}, \\ 628 {b_{}}_{\mathrm P} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\mathrm P} \cos {\phi_{}}_{\mathrm P}, \\ 629 {c_{}}_{\mathrm M} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\mathrm M} \sin {\phi_{}}_{\mathrm M}, \\ 630 {c_{}}_{\mathrm P} & \hspace{-2mm} = \hspace{-2mm} & \cos {\phi_{}}_{\mathrm P} \sin {\phi_{}}_{\mathrm P}. 631 631 \end{align*} 632 632 633 \item[2.] {\bf Great-Circle distance-weighted interpolation with small angle approximation.}633 \item[2.] {\bfseries Great-Circle distance-weighted interpolation with small angle approximation.} 634 634 Similar to the previous interpolation but with the distance $s$ computed as 635 635 \begin{align*} 636 s\left( {\ rm P}, {\rm M} \right)636 s\left( {\mathrm P}, {\mathrm M} \right) 637 637 & \hspace{-2mm} = \hspace{-2mm} & 638 \sqrt{ \left( {\phi_{}}_{\ rm M} - {\phi_{}}_{\rm P} \right)^{2}639 + \left( {\lambda_{}}_{\ rm M} - {\lambda_{}}_{\rm P} \right)^{2}640 \cos^{2} {\phi_{}}_{\ rm M} }638 \sqrt{ \left( {\phi_{}}_{\mathrm M} - {\phi_{}}_{\mathrm P} \right)^{2} 639 + \left( {\lambda_{}}_{\mathrm M} - {\lambda_{}}_{\mathrm P} \right)^{2} 640 \cos^{2} {\phi_{}}_{\mathrm M} } 641 641 \end{align*} 642 642 where $M$ corresponds to $A$, $B$, $C$ or $D$. 643 643 644 \item[3.] {\bf Bilinear interpolation for a regular spaced grid.}644 \item[3.] {\bfseries Bilinear interpolation for a regular spaced grid.} 645 645 The interpolation is split into two 1D interpolations in the longitude and latitude directions, respectively. 646 646 647 \item[4.] {\bf Bilinear remapping interpolation for a general grid.}647 \item[4.] {\bfseries Bilinear remapping interpolation for a general grid.} 648 648 An iterative scheme that involves first mapping a quadrilateral cell into 649 649 a cell with coordinates (0,0), (1,0), (0,1) and (1,1). … … 678 678 \begin{figure} 679 679 \begin{center} 680 \includegraphics[width= 0.90\textwidth]{Fig_OBS_avg_rec}680 \includegraphics[width=\textwidth]{Fig_OBS_avg_rec} 681 681 \caption{ 682 682 \protect\label{fig:obsavgrec} … … 691 691 \begin{figure} 692 692 \begin{center} 693 \includegraphics[width= 0.90\textwidth]{Fig_OBS_avg_rad}693 \includegraphics[width=\textwidth]{Fig_OBS_avg_rad} 694 694 \caption{ 695 695 \protect\label{fig:obsavgrad} … … 710 710 This is the most difficult and time consuming part of the 2D interpolation procedure. 711 711 A robust test for determining if an observation falls within a given quadrilateral cell is as follows. 712 Let ${\ rm P}({\lambda_{}}_{\rm P} ,{\phi_{}}_{\rm P} )$ denote the observation point,713 and let ${\ rm A}({\lambda_{}}_{\rm A} ,{\phi_{}}_{\rm A} )$, ${\rm B}({\lambda_{}}_{\rm B} ,{\phi_{}}_{\rm B} )$,714 ${\ rm C}({\lambda_{}}_{\rm C} ,{\phi_{}}_{\rm C} )$ and ${\rm D}({\lambda_{}}_{\rm D} ,{\phi_{}}_{\rm D} )$712 Let ${\mathrm P}({\lambda_{}}_{\mathrm P} ,{\phi_{}}_{\mathrm P} )$ denote the observation point, 713 and let ${\mathrm A}({\lambda_{}}_{\mathrm A} ,{\phi_{}}_{\mathrm A} )$, ${\mathrm B}({\lambda_{}}_{\mathrm B} ,{\phi_{}}_{\mathrm B} )$, 714 ${\mathrm C}({\lambda_{}}_{\mathrm C} ,{\phi_{}}_{\mathrm C} )$ and ${\mathrm D}({\lambda_{}}_{\mathrm D} ,{\phi_{}}_{\mathrm D} )$ 715 715 denote the bottom left, bottom right, top left and top right corner points of the cell, respectively. 716 716 To determine if P is inside the cell, we verify that the cross-products 717 717 \begin{align*} 718 718 \begin{array}{lllll} 719 {{\ bf r}_{}}_{\rm PA} \times {{\bf r}_{}}_{\rm PC}720 & = & [({\lambda_{}}_{\ rm A}\; -\; {\lambda_{}}_{\rm P} )721 ({\phi_{}}_{\ rm C} \; -\; {\phi_{}}_{\rm P} )722 - ({\lambda_{}}_{\ rm C}\; -\; {\lambda_{}}_{\rm P} )723 ({\phi_{}}_{\ rm A} \; -\; {\phi_{}}_{\rm P} )] \; \widehat{\bf k} \\724 {{\ bf r}_{}}_{\rm PB} \times {{\bf r}_{}}_{\rm PA}725 & = & [({\lambda_{}}_{\ rm B}\; -\; {\lambda_{}}_{\rm P} )726 ({\phi_{}}_{\ rm A} \; -\; {\phi_{}}_{\rm P} )727 - ({\lambda_{}}_{\ rm A}\; -\; {\lambda_{}}_{\rm P} )728 ({\phi_{}}_{\ rm B} \; -\; {\phi_{}}_{\rm P} )] \; \widehat{\bf k} \\729 {{\ bf r}_{}}_{\rm PC} \times {{\bf r}_{}}_{\rm PD}730 & = & [({\lambda_{}}_{\ rm C}\; -\; {\lambda_{}}_{\rm P} )731 ({\phi_{}}_{\ rm D} \; -\; {\phi_{}}_{\rm P} )732 - ({\lambda_{}}_{\ rm D}\; -\; {\lambda_{}}_{\rm P} )733 ({\phi_{}}_{\ rm C} \; -\; {\phi_{}}_{\rm P} )] \; \widehat{\bf k} \\734 {{\ bf r}_{}}_{\rm PD} \times {{\bf r}_{}}_{\rm PB}735 & = & [({\lambda_{}}_{\ rm D}\; -\; {\lambda_{}}_{\rm P} )736 ({\phi_{}}_{\ rm B} \; -\; {\phi_{}}_{\rm P} )737 - ({\lambda_{}}_{\ rm B}\; -\; {\lambda_{}}_{\rm P} )738 ({\phi_{}}_{\ rm D} \; - \; {\phi_{}}_{\rm P} )] \; \widehat{\bf k} \\719 {{\mathbf r}_{}}_{\mathrm PA} \times {{\mathbf r}_{}}_{\mathrm PC} 720 & = & [({\lambda_{}}_{\mathrm A}\; -\; {\lambda_{}}_{\mathrm P} ) 721 ({\phi_{}}_{\mathrm C} \; -\; {\phi_{}}_{\mathrm P} ) 722 - ({\lambda_{}}_{\mathrm C}\; -\; {\lambda_{}}_{\mathrm P} ) 723 ({\phi_{}}_{\mathrm A} \; -\; {\phi_{}}_{\mathrm P} )] \; \widehat{\mathbf k} \\ 724 {{\mathbf r}_{}}_{\mathrm PB} \times {{\mathbf r}_{}}_{\mathrm PA} 725 & = & [({\lambda_{}}_{\mathrm B}\; -\; {\lambda_{}}_{\mathrm P} ) 726 ({\phi_{}}_{\mathrm A} \; -\; {\phi_{}}_{\mathrm P} ) 727 - ({\lambda_{}}_{\mathrm A}\; -\; {\lambda_{}}_{\mathrm P} ) 728 ({\phi_{}}_{\mathrm B} \; -\; {\phi_{}}_{\mathrm P} )] \; \widehat{\mathbf k} \\ 729 {{\mathbf r}_{}}_{\mathrm PC} \times {{\mathbf r}_{}}_{\mathrm PD} 730 & = & [({\lambda_{}}_{\mathrm C}\; -\; {\lambda_{}}_{\mathrm P} ) 731 ({\phi_{}}_{\mathrm D} \; -\; {\phi_{}}_{\mathrm P} ) 732 - ({\lambda_{}}_{\mathrm D}\; -\; {\lambda_{}}_{\mathrm P} ) 733 ({\phi_{}}_{\mathrm C} \; -\; {\phi_{}}_{\mathrm P} )] \; \widehat{\mathbf k} \\ 734 {{\mathbf r}_{}}_{\mathrm PD} \times {{\mathbf r}_{}}_{\mathrm PB} 735 & = & [({\lambda_{}}_{\mathrm D}\; -\; {\lambda_{}}_{\mathrm P} ) 736 ({\phi_{}}_{\mathrm B} \; -\; {\phi_{}}_{\mathrm P} ) 737 - ({\lambda_{}}_{\mathrm B}\; -\; {\lambda_{}}_{\mathrm P} ) 738 ({\phi_{}}_{\mathrm D} \; - \; {\phi_{}}_{\mathrm P} )] \; \widehat{\mathbf k} \\ 739 739 \end{array} 740 740 % \label{eq:cross} 741 741 \end{align*} 742 point in the opposite direction to the unit normal $\widehat{\ bf k}$743 (\ie that the coefficients of $\widehat{\ bf k}$ are negative),744 where ${{\ bf r}_{}}_{\rm PA}$, ${{\bf r}_{}}_{\rm PB}$, etc. correspond to742 point in the opposite direction to the unit normal $\widehat{\mathbf k}$ 743 (\ie that the coefficients of $\widehat{\mathbf k}$ are negative), 744 where ${{\mathbf r}_{}}_{\mathrm PA}$, ${{\mathbf r}_{}}_{\mathrm PB}$, etc. correspond to 745 745 the vectors between points P and A, P and B, etc.. 746 746 The method used is similar to the method used in the \href{https://github.com/SCRIP-Project/SCRIP}{SCRIP interpolation package}. … … 772 772 \begin{figure} 773 773 \begin{center} 774 \includegraphics[width= 10cm,height=12cm,angle=-90.]{Fig_ASM_obsdist_local}774 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_local} 775 775 \caption{ 776 776 \protect\label{fig:obslocal} … … 801 801 \begin{figure} 802 802 \begin{center} 803 \includegraphics[width= 10cm,height=12cm,angle=-90.]{Fig_ASM_obsdist_global}803 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_global} 804 804 \caption{ 805 805 \protect\label{fig:obsglobal} … … 1370 1370 \begin{figure} 1371 1371 \begin{center} 1372 % \includegraphics[width= 10cm,height=12cm,angle=-90.]{Fig_OBS_dataplot_main}1373 \includegraphics[width= 9cm,angle=-90.]{Fig_OBS_dataplot_main}1372 % \includegraphics[width=\textwidth]{Fig_OBS_dataplot_main} 1373 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_main} 1374 1374 \caption{ 1375 1375 \protect\label{fig:obsdataplotmain} … … 1386 1386 \begin{figure} 1387 1387 \begin{center} 1388 % \includegraphics[width= 10cm,height=12cm,angle=-90.]{Fig_OBS_dataplot_prof}1389 \includegraphics[width= 7cm,angle=-90.]{Fig_OBS_dataplot_prof}1388 % \includegraphics[width=\textwidth]{Fig_OBS_dataplot_prof} 1389 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_prof} 1390 1390 \caption{ 1391 1391 \protect\label{fig:obsdataplotprofile} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11123 r11151 819 819 \[ 820 820 % \label{eq:PE_dyn_tides} 821 \frac{\partial {\ rm {\bf U}}_h }{\partial t}= ...821 \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= ... 822 822 +g\nabla (\Pi_{eq} + \Pi_{sal}) 823 823 \] … … 1089 1089 \begin{figure}[!t] 1090 1090 \begin{center} 1091 \includegraphics[width= 0.8\textwidth]{Fig_SBC_isf}1091 \includegraphics[width=\textwidth]{Fig_SBC_isf} 1092 1092 \caption{ 1093 1093 \protect\label{fig:SBC_isf} … … 1438 1438 \begin{figure}[!t] 1439 1439 \begin{center} 1440 \includegraphics[width= 0.8\textwidth]{Fig_SBC_diurnal}1440 \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 1441 1441 \caption{ 1442 1442 \protect\label{fig:SBC_diurnal} … … 1476 1476 \begin{figure}[!t] 1477 1477 \begin{center} 1478 \includegraphics[width= 0.7\textwidth]{Fig_SBC_dcy}1478 \includegraphics[width=\textwidth]{Fig_SBC_dcy} 1479 1479 \caption{ 1480 1480 \protect\label{fig:SBC_dcy} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11123 r11151 90 90 \begin{figure}[!t] 91 91 \begin{center} 92 \includegraphics[ ]{Fig_adv_scheme}92 \includegraphics[width=\textwidth]{Fig_adv_scheme} 93 93 \caption{ 94 94 \protect\label{fig:adv_scheme} … … 856 856 \begin{figure}[!t] 857 857 \begin{center} 858 \includegraphics[ ]{Fig_TRA_Irradiance}858 \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 859 859 \caption{ 860 860 \protect\label{fig:traqsr_irradiance} … … 883 883 \begin{figure}[!t] 884 884 \begin{center} 885 \includegraphics[ ]{Fig_TRA_geoth}885 \includegraphics[width=\textwidth]{Fig_TRA_geoth} 886 886 \caption{ 887 887 \protect\label{fig:geothermal} … … 994 994 \begin{figure}[!t] 995 995 \begin{center} 996 \includegraphics[ ]{Fig_BBL_adv}996 \includegraphics[width=\textwidth]{Fig_BBL_adv} 997 997 \caption{ 998 998 \protect\label{fig:bbl} … … 1379 1379 \begin{figure}[!p] 1380 1380 \begin{center} 1381 \includegraphics[ ]{Fig_partial_step_scheme}1381 \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 1382 1382 \caption{ 1383 1383 \protect\label{fig:Partial_step_scheme} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11123 r11151 237 237 \begin{figure}[!t] 238 238 \begin{center} 239 \includegraphics[width= 1.00\textwidth]{Fig_mixing_length}239 \includegraphics[width=\textwidth]{Fig_mixing_length} 240 240 \caption{ 241 241 \protect\label{fig:mixing_length} … … 414 414 \begin{figure}[!t] 415 415 \begin{center} 416 \includegraphics[width= 1.00\textwidth]{Fig_ZDF_TKE_time_scheme}416 \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 417 417 \caption{ 418 418 \protect\label{fig:TKE_time_scheme} … … 676 676 \begin{figure}[!htb] 677 677 \begin{center} 678 \includegraphics[width= 0.90\textwidth]{Fig_npc}678 \includegraphics[width=\textwidth]{Fig_npc} 679 679 \caption{ 680 680 \protect\label{fig:npc} … … 839 839 \begin{figure}[!t] 840 840 \begin{center} 841 \includegraphics[width= 0.99\textwidth]{Fig_zdfddm}841 \includegraphics[width=\textwidth]{Fig_zdfddm} 842 842 \caption{ 843 843 \protect\label{fig:zdfddm} … … 1041 1041 the last wet layer in each column by: 1042 1042 \[ 1043 C_D = \left ( {\kappa \over {\ rm log}\left ( 0.5e_{3t}/rn\_bfrz0 \right ) } \right )^21043 C_D = \left ( {\kappa \over {\mathrm log}\left ( 0.5e_{3t}/rn\_bfrz0 \right ) } \right )^2 1044 1044 \] 1045 1045 … … 1285 1285 \begin{figure}[!t] 1286 1286 \begin{center} 1287 \includegraphics[width= 0.90\textwidth]{Fig_ZDF_M2_K1_tmx}1287 \includegraphics[width=\textwidth]{Fig_ZDF_M2_K1_tmx} 1288 1288 \caption{ 1289 1289 \protect\label{fig:ZDF_M2_K1_tmx} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex
r11123 r11151 65 65 % \label{eq:vor_vorticity} 66 66 \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 67 \;{\ rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =067 \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0 68 68 \] 69 69 … … 189 189 \[ 190 190 % \label{eq:dynldf_dyn} 191 \int\limits_D {\frac{1}{e_3 }{\ rm {\bf k}}\cdot \nabla \times \left[ {\nabla191 \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla 192 192 _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 193 \;{\ rm {\bf k}}} \right)} \right]\;dv} =0193 \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0 194 194 \] 195 195 … … 197 197 % \label{eq:dynldf_div} 198 198 \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 199 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\ rm {\bf k}}} \right)}199 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 200 200 \right]\;dv} =0 201 201 \] … … 203 203 \[ 204 204 % \label{eq:dynldf_curl} 205 \int_D {{\ rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }206 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\ rm {\bf k}}} \right)}205 \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 206 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 207 207 \right]\;dv} \leqslant 0 208 208 \] … … 210 210 \[ 211 211 % \label{eq:dynldf_curl2} 212 \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\ rm {\bf k}}\cdot212 \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot 213 213 \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h 214 \times \left( {A^{lm}\;\zeta \;{\ rm {\bf k}}} \right)} \right]\;dv}214 \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} 215 215 \leqslant 0 216 216 \] … … 220 220 \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[ 221 221 {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( 222 {A^{lm}\;\zeta \;{\ rm {\bf k}}} \right)} \right]\;dv} \leqslant 0222 {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0 223 223 \] 224 224 … … 260 260 % \label{eq:dynzdf_vor} 261 261 \begin{aligned} 262 & \int_D {\frac{1}{e_3 }{\ rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3263 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\ rm264 {\ bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\265 & \int_D {\zeta \,{\ rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3266 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\ rm267 {\ bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\262 & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3 263 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm 264 {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 265 & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3 266 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm 267 {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 268 268 \end{aligned} 269 269 \] … … 273 273 \begin{aligned} 274 274 &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 275 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\ rm {\bf U}}_h }{\partial k}}275 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} 276 276 \right)} \right)\;dv} =0 \\ 277 277 & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 278 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\ rm {\bf U}}_h }{\partial k}}278 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} 279 279 \right)} \right)\;dv} \leq 0 \\ 280 280 \end{aligned} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_misc.tex
r11123 r11151 63 63 \begin{figure}[!tbp] 64 64 \begin{center} 65 \includegraphics[width= 0.80\textwidth]{Fig_Gibraltar}66 \includegraphics[width= 0.80\textwidth]{Fig_Gibraltar2}65 \includegraphics[width=\textwidth]{Fig_Gibraltar} 66 \includegraphics[width=\textwidth]{Fig_Gibraltar2} 67 67 \caption{ 68 68 \protect\label{fig:MISC_strait_hand} … … 84 84 \begin{figure}[!tbp] 85 85 \begin{center} 86 \includegraphics[width= 1.0\textwidth]{Fig_closea_mask_example}86 \includegraphics[width=\textwidth]{Fig_closea_mask_example} 87 87 \caption{ 88 88 \protect\label{fig:closea_mask_example} … … 122 122 123 123 \begin{enumerate} 124 \item{{\bf No ``closea\_mask'' field is included in domain configuration124 \item{{\bfseries No ``closea\_mask'' field is included in domain configuration 125 125 file.} In this case the closea module does nothing.} 126 126 127 \item{{\bf A field called closea\_mask is included in the domain127 \item{{\bfseries A field called closea\_mask is included in the domain 128 128 configuration file and ln\_closea=.false. in namelist namcfg.} In this 129 129 case the inland seas defined by the closea\_mask field are filled in … … 131 131 closea\_mask that is nonzero is set to be a land point.} 132 132 133 \item{{\bf A field called closea\_mask is included in the domain133 \item{{\bfseries A field called closea\_mask is included in the domain 134 134 configuration file and ln\_closea=.true. in namelist namcfg.} Each 135 135 inland sea or group of inland seas is set to a positive integer value … … 140 140 closea\_mask is zero).} 141 141 142 \item{{\bf Fields called closea\_mask and closea\_mask\_rnf are142 \item{{\bfseries Fields called closea\_mask and closea\_mask\_rnf are 143 143 included in the domain configuration file and ln\_closea=.true. in 144 144 namelist namcfg.} This option works as for option 3, except that if … … 154 154 ocean.} 155 155 156 \item{{\bf Fields called closea\_mask and closea\_mask\_emp are156 \item{{\bfseries Fields called closea\_mask and closea\_mask\_emp are 157 157 included in the domain configuration file and ln\_closea=.true. in 158 158 namelist namcfg.} This option works the same as option 4 except that … … 223 223 \begin{figure}[!ht] 224 224 \begin{center} 225 \includegraphics[width= 0.90\textwidth]{Fig_LBC_zoom}225 \includegraphics[width=\textwidth]{Fig_LBC_zoom} 226 226 \caption{ 227 227 \protect\label{fig:LBC_zoom} … … 314 314 This alternative method should give identical results to the default \textsc{ALLGATHER} method and 315 315 is recommended for large values of \np{jpni}. 316 The new method is activated by setting \np{ln\_nnogather} to be true ( {\bfnammpp}).316 The new method is activated by setting \np{ln\_nnogather} to be true (\ngn{nammpp}). 317 317 The reproducibility of results using the two methods should be confirmed for each new, 318 318 non-reference configuration. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex
r11123 r11151 120 120 \begin{figure}[!ht] 121 121 \begin{center} 122 \includegraphics[ ]{Fig_I_ocean_bc}122 \includegraphics[width=\textwidth]{Fig_I_ocean_bc} 123 123 \caption{ 124 124 \protect\label{fig:ocean_bc} … … 323 323 \begin{figure}[!tb] 324 324 \begin{center} 325 \includegraphics[ ]{Fig_I_earth_referential}325 \includegraphics[width=\textwidth]{Fig_I_earth_referential} 326 326 \caption{ 327 327 \protect\label{fig:referential} … … 738 738 \begin{figure}[!b] 739 739 \begin{center} 740 \includegraphics[ ]{Fig_z_zstar}740 \includegraphics[width=\textwidth]{Fig_z_zstar} 741 741 \caption{ 742 742 \protect\label{fig:z_zstar} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11123 r11151 147 147 \begin{figure}[!t] 148 148 \begin{center} 149 \includegraphics[width= 0.90\textwidth]{Fig_DYN_dynspg_ts}149 \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 150 150 \caption{ 151 151 \protect\label{fig:DYN_dynspg_ts} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11123 r11151 197 197 \begin{figure}[!t] 198 198 \begin{center} 199 \includegraphics[ ]{Fig_TimeStepping_flowchart}199 \includegraphics[width=\textwidth]{Fig_TimeStepping_flowchart} 200 200 \caption{ 201 201 \protect\label{fig:TimeStep_flowchart} … … 261 261 \begin{figure}[!t] 262 262 \begin{center} 263 \includegraphics[ ]{Fig_MLF_forcing}263 \includegraphics[width=\textwidth]{Fig_MLF_forcing} 264 264 \caption{ 265 265 \protect\label{fig:MLF_forcing}
Note: See TracChangeset
for help on using the changeset viewer.