Changeset 11213
- Timestamp:
- 2019-07-04T11:29:44+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/main/bibliography.bib
r11170 r11213 2320 2320 } 2321 2321 2322 @article{ reffray.guillaume.ea_GMD15, 2323 title = "Modelling turbulent vertical mixing sensitivity using 2324 a 1-D version of NEMO", 2325 pages = "69--86", 2326 journal = "Geoscientific Model Development", 2327 volume = "8", 2328 number = "1", 2329 author = "G. Reffray. and R. Bourdalle-Badie and C. Calone", 2330 year = "2015", 2331 month = "jan", 2332 publisher = "Copernicus GmbH", 2333 issn = "1991-9603", 2334 doi = "10.5194/gmd-8-69-2015" 2335 } 2336 2322 2337 @book{ richtmyer.morton_bk67, 2323 2338 pages = "405", … … 2484 2499 } 2485 2500 2501 @article{ shchepetkin_OM15, 2502 title = "An Adaptive, Courant-number-dependent implicit 2503 scheme for vertical advection in oceanic modeling", 2504 pages = "38--69", 2505 journal = "Ocean Modelling", 2506 volume = "91", 2507 author = "A. F. Shchepetkin", 2508 year = "2015", 2509 month = "july", 2510 publisher = "Elsevier BV", 2511 issn = "1463-5003", 2512 doi = "10.1016/j.ocemod.2015.03.006" 2513 } 2514 2486 2515 @article{ siddorn.furner_OM13, 2487 2516 title = "An analytical stretching function that combines the best -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11179 r11213 25 25 At the surface they are prescribed from the surface forcing (see \autoref{chap:SBC}), 26 26 while at the bottom they are set to zero for heat and salt, 27 unless a geothermal flux forcing is prescribed as a bottom boundary condition (\ie \ key{trabbl} defined,27 unless a geothermal flux forcing is prescribed as a bottom boundary condition (\ie \np{ln\_trabbc} defined, 28 28 see \autoref{subsec:TRA_bbc}), and specified through a bottom friction parameterisation for momentum 29 (see \autoref{sec:ZDF_ bfr}).29 (see \autoref{sec:ZDF_drg}). 30 30 31 31 In this section we briefly discuss the various choices offered to compute the vertical eddy viscosity and … … 33 33 respectively (see \autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}). 34 34 These coefficients can be assumed to be either constant, or a function of the local Richardson number, 35 or computed from a turbulent closure model (either TKE or GLS formulation).36 The computation of these coefficients is initialized in the \mdl{zdf ini} module and performed in37 the \mdl{zdfric}, \mdl{zdftke} or \mdl{zdfgls} modules.35 or computed from a turbulent closure model (either TKE or GLS or OSMOSIS formulation). 36 The computation of these coefficients is initialized in the \mdl{zdfphy} module and performed in 37 the \mdl{zdfric}, \mdl{zdftke} or \mdl{zdfgls} or \mdl{zdfosm} modules. 38 38 The trends due to the vertical momentum and tracer diffusion, including the surface forcing, 39 39 are computed and added to the general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively. 40 These trends can be computed using either a forward time stepping scheme 41 (namelist parameter \np{ln\_zdfexp}\forcode{ = .true.}) or a backward time stepping scheme 42 (\np{ln\_zdfexp}\forcode{ = .false.}) depending on the magnitude of the mixing coefficients, 43 and thus of the formulation used (see \autoref{chap:STP}). 44 45 % ------------------------------------------------------------------------------------------------------------- 46 % Constant 47 % ------------------------------------------------------------------------------------------------------------- 48 \subsection[Constant (\texttt{\textbf{key\_zdfcst}})] 49 {Constant (\protect\key{zdfcst})} 50 \label{subsec:ZDF_cst} 51 %--------------------------------------------namzdf--------------------------------------------------------- 40 %These trends can be computed using either a forward time stepping scheme 41 %(namelist parameter \np{ln\_zdfexp}\forcode{ = .true.}) or a backward time stepping scheme 42 %(\np{ln\_zdfexp}\forcode{ = .false.}) depending on the magnitude of the mixing coefficients, 43 %and thus of the formulation used (see \autoref{chap:STP}). 44 45 %--------------------------------------------namzdf-------------------------------------------------------- 52 46 53 47 \nlst{namzdf} 54 48 %-------------------------------------------------------------------------------------------------------------- 55 49 50 % ------------------------------------------------------------------------------------------------------------- 51 % Constant 52 % ------------------------------------------------------------------------------------------------------------- 53 \subsection[Constant (\forcode{ln_zdfcst = .true.})] 54 {Constant (\protect\np{ln\_zdfcst}\forcode{ = .true.})} 55 \label{subsec:ZDF_cst} 56 56 57 Options are defined through the \ngn{namzdf} namelist variables. 57 When \ key{zdfcst} is defined, the momentum and tracer vertical eddy coefficients are set to58 When \np{ln\_zdfcst} is defined, the momentum and tracer vertical eddy coefficients are set to 58 59 constant values over the whole ocean. 59 60 This is the crudest way to define the vertical ocean physics. 60 It is recommended t hat this option is only usedin process studies, not in basin scale simulations.61 It is recommended to use this option only in process studies, not in basin scale simulations. 61 62 Typical values used in this case are: 62 63 \begin{align*} … … 73 74 % Richardson Number Dependent 74 75 % ------------------------------------------------------------------------------------------------------------- 75 \subsection[Richardson number dependent (\ texttt{\textbf{key\_zdfric}})]76 {Richardson number dependent (\protect\ key{zdfric})}76 \subsection[Richardson number dependent (\forcode{ln_zdfric = .true.})] 77 {Richardson number dependent (\protect\np{ln\_zdfric}\forcode{ = .true.})} 77 78 \label{subsec:ZDF_ric} 78 79 … … 82 83 %-------------------------------------------------------------------------------------------------------------- 83 84 84 When \ key{zdfric} is defined, a local Richardson number dependent formulation for the vertical momentum and85 When \np{ln\_zdfric}\forcode{ = .true.}, a local Richardson number dependent formulation for the vertical momentum and 85 86 tracer eddy coefficients is set through the \ngn{namzdf\_ric} namelist variables. 86 87 The vertical mixing coefficients are diagnosed from the large scale variables computed by the model. … … 131 132 % TKE Turbulent Closure Scheme 132 133 % ------------------------------------------------------------------------------------------------------------- 133 \subsection[TKE turbulent closure scheme (\ texttt{\textbf{key\_zdftke}})]134 {TKE turbulent closure scheme (\protect\ key{zdftke})}134 \subsection[TKE turbulent closure scheme (\forcode{ln_zdftke = .true.})] 135 {TKE turbulent closure scheme (\protect\np{ln\_zdftke}\forcode{ = .true.})} 135 136 \label{subsec:ZDF_tke} 136 137 137 %--------------------------------------------namzdf_tke-------------------------------------------------- 138 138 … … 183 183 \end{cases} 184 184 \end{align*} 185 Options are defined through the \ngn{namzdfy\_tke} namelist variables.186 185 The choice of $P_{rt}$ is controlled by the \np{nn\_pdl} namelist variable. 187 186 … … 200 199 too weak vertical diffusion. 201 200 They must be specified at least larger than the molecular values, and are set through \np{rn\_avm0} and 202 \np{rn\_avt0} ( namzdfnamelist, see \autoref{subsec:ZDF_cst}).201 \np{rn\_avt0} (\ngn{namzdf} namelist, see \autoref{subsec:ZDF_cst}). 203 202 204 203 \subsubsection{Turbulent length scale} … … 218 217 it makes no sense for locally unstable stratification and the computation no longer uses all 219 218 the information contained in the vertical density profile. 220 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np{nn\_mxl}\forcode{ = 2 ..3} cases,219 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np{nn\_mxl}\forcode{ = 2, 3} cases, 221 220 which add an extra assumption concerning the vertical gradient of the computed length scale. 222 221 So, the length scales are first evaluated as in \autoref{eq:tke_mxl0_1} and then bounded such that: … … 285 284 The \citet{mellor.blumberg_JPO04} modifications acts on surface length scale and TKE values and 286 285 air-sea drag coefficient. 287 The latter concerns the bulk formul eaand is not discussed here.286 The latter concerns the bulk formulae and is not discussed here. 288 287 289 288 Following \citet{craig.banner_JPO94}, the boundary condition on surface TKE value is : … … 306 305 with $e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}\forcode{ = 67.83} corresponds 307 306 to $\alpha_{CB} = 100$. 308 Further setting \np{ln\_mxl0 } to true applies \autoref{eq:ZDF_Lsbc} as surface boundary condition onlength scale,307 Further setting \np{ln\_mxl0=.true.}, applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, 309 308 with $\beta$ hard coded to the Stacey's value. 310 Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on 309 Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the 311 310 surface $\bar{e}$ value. 312 311 … … 325 324 \citep{axell_JGR02} for a $k-\epsilon$ turbulent closure. 326 325 The parameterization, tuned against large-eddy simulation, includes the whole effect of LC in 327 an extra source term sof TKE, $P_{LC}$.326 an extra source term of TKE, $P_{LC}$. 328 327 The presence of $P_{LC}$ in \autoref{eq:zdftke_e}, the TKE equation, is controlled by setting \np{ln\_lc} to 329 \forcode{.true.} in the namtkenamelist.328 \forcode{.true.} in the \ngn{namzdf\_tke} namelist. 330 329 331 330 By making an analogy with the characteristic convective velocity scale (\eg, \citet{dalessio.abdella.ea_JPO98}), … … 359 358 360 359 The $H_{LC}$ is estimated in a similar way as the turbulent length scale of TKE equations: 361 $H_{LC}$ is depth to which a water parcel with kinetic energy due to Stoke drift can reach on its own by360 $H_{LC}$ is the depth to which a water parcel with kinetic energy due to Stoke drift can reach on its own by 362 361 converting its kinetic energy to potential energy, according to 363 362 \[ … … 386 385 \end{equation} 387 386 where $z$ is the depth, $e_s$ is TKE surface boundary condition, $f_r$ is the fraction of the surface TKE that 388 penetrate in the ocean, $h_\tau$ is a vertical mixing length scale that controls exponential shape of387 penetrates in the ocean, $h_\tau$ is a vertical mixing length scale that controls exponential shape of 389 388 the penetration, and $f_i$ is the ice concentration 390 (no penetration if $f_i=1$, that isif the ocean is entirely covered by sea-ice).389 (no penetration if $f_i=1$, \ie if the ocean is entirely covered by sea-ice). 391 390 The value of $f_r$, usually a few percents, is specified through \np{rn\_efr} namelist parameter. 392 391 The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np{nn\_etau}\forcode{ = 0}) or … … 394 393 (\np{nn\_etau}\forcode{ = 1}). 395 394 396 Note that two other option exist e, \np{nn\_etau}\forcode{ = 2..3}.395 Note that two other option exist, \np{nn\_etau}\forcode{ = 2, 3}. 397 396 They correspond to applying \autoref{eq:ZDF_Ehtau} only at the base of the mixed layer, 398 or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrate the ocean.397 or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrates the ocean. 399 398 Those two options are obsolescent features introduced for test purposes. 400 399 They will be removed in the next release. 400 401 % This should be explain better below what this rn_eice parameter is meant for: 402 In presence of Sea Ice, the value of this mixing can be modulated by the \np{rn\_eice} namelist parameter. 403 This parameter varies from \forcode{0} for no effect to \forcode{4} to suppress the TKE input into the ocean when Sea Ice concentration 404 is greater than 25\%. 401 405 402 406 % from Burchard et al OM 2008 : … … 409 413 410 414 % ------------------------------------------------------------------------------------------------------------- 411 % TKE discretization considerations412 % -------------------------------------------------------------------------------------------------------------413 \subsection[TKE discretization considerations (\texttt{\textbf{key\_zdftke}})]414 {TKE discretization considerations (\protect\key{zdftke})}415 \label{subsec:ZDF_tke_ene}416 417 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>418 \begin{figure}[!t]419 \begin{center}420 \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme}421 \caption{422 \protect\label{fig:TKE_time_scheme}423 Illustration of the TKE time integration and its links to the momentum and tracer time integration.424 }425 \end{center}426 \end{figure}427 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>428 429 The production of turbulence by vertical shear (the first term of the right hand side of430 \autoref{eq:zdftke_e}) should balance the loss of kinetic energy associated with the vertical momentum diffusion431 (first line in \autoref{eq:PE_zdf}).432 To do so a special care have to be taken for both the time and space discretization of433 the TKE equation \citep{burchard_OM02,marsaleix.auclair.ea_OM08}.434 435 Let us first address the time stepping issue. \autoref{fig:TKE_time_scheme} shows how436 the two-level Leap-Frog time stepping of the momentum and tracer equations interplays with437 the one-level forward time stepping of TKE equation.438 With this framework, the total loss of kinetic energy (in 1D for the demonstration) due to439 the vertical momentum diffusion is obtained by multiplying this quantity by $u^t$ and440 summing the result vertically:441 \begin{equation}442 \label{eq:energ1}443 \begin{split}444 \int_{-H}^{\eta} u^t \,\partial_z &\left( {K_m}^t \,(\partial_z u)^{t+\rdt} \right) \,dz \\445 &= \Bigl[ u^t \,{K_m}^t \,(\partial_z u)^{t+\rdt} \Bigr]_{-H}^{\eta}446 - \int_{-H}^{\eta}{ {K_m}^t \,\partial_z{u^t} \,\partial_z u^{t+\rdt} \,dz }447 \end{split}448 \end{equation}449 Here, the vertical diffusion of momentum is discretized backward in time with a coefficient, $K_m$,450 known at time $t$ (\autoref{fig:TKE_time_scheme}), as it is required when using the TKE scheme451 (see \autoref{sec:STP_forward_imp}).452 The first term of the right hand side of \autoref{eq:energ1} represents the kinetic energy transfer at453 the surface (atmospheric forcing) and at the bottom (friction effect).454 The second term is always negative.455 It is the dissipation rate of kinetic energy, and thus minus the shear production rate of $\bar{e}$.456 \autoref{eq:energ1} implies that, to be energetically consistent,457 the production rate of $\bar{e}$ used to compute $(\bar{e})^t$ (and thus ${K_m}^t$) should be expressed as458 ${K_m}^{t-\rdt}\,(\partial_z u)^{t-\rdt} \,(\partial_z u)^t$459 (and not by the more straightforward $K_m \left( \partial_z u \right)^2$ expression taken at time $t$ or $t-\rdt$).460 461 A similar consideration applies on the destruction rate of $\bar{e}$ due to stratification462 (second term of the right hand side of \autoref{eq:zdftke_e}).463 This term must balance the input of potential energy resulting from vertical mixing.464 The rate of change of potential energy (in 1D for the demonstration) due vertical mixing is obtained by465 multiplying vertical density diffusion tendency by $g\,z$ and and summing the result vertically:466 \begin{equation}467 \label{eq:energ2}468 \begin{split}469 \int_{-H}^{\eta} g\,z\,\partial_z &\left( {K_\rho}^t \,(\partial_k \rho)^{t+\rdt} \right) \,dz \\470 &= \Bigl[ g\,z \,{K_\rho}^t \,(\partial_z \rho)^{t+\rdt} \Bigr]_{-H}^{\eta}471 - \int_{-H}^{\eta}{ g \,{K_\rho}^t \,(\partial_k \rho)^{t+\rdt} } \,dz \\472 &= - \Bigl[ z\,{K_\rho}^t \,(N^2)^{t+\rdt} \Bigr]_{-H}^{\eta}473 + \int_{-H}^{\eta}{ \rho^{t+\rdt} \, {K_\rho}^t \,(N^2)^{t+\rdt} \,dz }474 \end{split}475 \end{equation}476 where we use $N^2 = -g \,\partial_k \rho / (e_3 \rho)$.477 The first term of the right hand side of \autoref{eq:energ2} is always zero because478 there is no diffusive flux through the ocean surface and bottom).479 The second term is minus the destruction rate of $\bar{e}$ due to stratification.480 Therefore \autoref{eq:energ1} implies that, to be energetically consistent,481 the product ${K_\rho}^{t-\rdt}\,(N^2)^t$ should be used in \autoref{eq:zdftke_e}, the TKE equation.482 483 Let us now address the space discretization issue.484 The vertical eddy coefficients are defined at $w$-point whereas the horizontal velocity components are in485 the centre of the side faces of a $t$-box in staggered C-grid (\autoref{fig:cell}).486 A space averaging is thus required to obtain the shear TKE production term.487 By redoing the \autoref{eq:energ1} in the 3D case, it can be shown that the product of eddy coefficient by488 the shear at $t$ and $t-\rdt$ must be performed prior to the averaging.489 Furthermore, the possible time variation of $e_3$ (\key{vvl} case) have to be taken into account.490 491 The above energetic considerations leads to the following final discrete form for the TKE equation:492 \begin{equation}493 \label{eq:zdftke_ene}494 \begin{split}495 \frac { (\bar{e})^t - (\bar{e})^{t-\rdt} } {\rdt} \equiv496 \Biggl\{ \Biggr.497 &\overline{ \left( \left(\overline{K_m}^{\,i+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[u^{t+\rdt}]}{{e_3u}^{t+\rdt} }498 \ \frac{\delta_{k+1/2}[u^ t ]}{{e_3u}^ t } \right) }^{\,i} \\499 +&\overline{ \left( \left(\overline{K_m}^{\,j+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[v^{t+\rdt}]}{{e_3v}^{t+\rdt} }500 \ \frac{\delta_{k+1/2}[v^ t ]}{{e_3v}^ t } \right) }^{\,j}501 \Biggr. \Biggr\} \\502 %503 - &{K_\rho}^{t-\rdt}\,{(N^2)^t} \\504 %505 +&\frac{1}{{e_3w}^{t+\rdt}} \;\delta_{k+1/2} \left[ {K_m}^{t-\rdt} \,\frac{\delta_{k}[(\bar{e})^{t+\rdt}]} {{e_3w}^{t+\rdt}} \right] \\506 %507 - &c_\epsilon \; \left( \frac{\sqrt{\bar {e}}}{l_\epsilon}\right)^{t-\rdt}\,(\bar {e})^{t+\rdt}508 \end{split}509 \end{equation}510 where the last two terms in \autoref{eq:zdftke_ene} (vertical diffusion and Kolmogorov dissipation)511 are time stepped using a backward scheme (see\autoref{sec:STP_forward_imp}).512 Note that the Kolmogorov term has been linearized in time in order to render the implicit computation possible.513 The restart of the TKE scheme requires the storage of $\bar {e}$, $K_m$, $K_\rho$ and $l_\epsilon$ as514 they all appear in the right hand side of \autoref{eq:zdftke_ene}.515 For the latter, it is in fact the ratio $\sqrt{\bar{e}}/l_\epsilon$ which is stored.516 517 % -------------------------------------------------------------------------------------------------------------518 415 % GLS Generic Length Scale Scheme 519 416 % ------------------------------------------------------------------------------------------------------------- 520 \subsection[GLS: Generic Length Scale (\ texttt{\textbf{key\_zdfgls}})]521 {GLS: Generic Length Scale (\protect\ key{zdfgls})}417 \subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls = .true.})] 418 {GLS: Generic Length Scale (\protect\np{ln\_zdfgls}\forcode{ = .true.})} 522 419 \label{subsec:ZDF_gls} 523 420 … … 573 470 The constants $C_1$, $C_2$, $C_3$, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function ($Fw$) depends of 574 471 the choice of the turbulence model. 575 Four different turbulent models are pre-defined ( Tab.\autoref{tab:GLS}).472 Four different turbulent models are pre-defined (\autoref{tab:GLS}). 576 473 They are made available through the \np{nn\_clo} namelist parameter. 577 474 … … 600 497 \protect\label{tab:GLS} 601 498 Set of predefined GLS parameters, or equivalently predefined turbulence models available with 602 \protect\ key{zdfgls} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\ngn{namzdf\_gls}.499 \protect\np{ln\_zdfgls}\forcode{ = .true.} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\ngn{namzdf\_gls}. 603 500 } 604 501 \end{center} … … 607 504 608 505 In the Mellor-Yamada model, the negativity of $n$ allows to use a wall function to force the convergence of 609 the mixing length towards $ K z_b$ ($K$: Kappa and $z_b$: rugosity length) value near physical boundaries506 the mixing length towards $\kappa z_b$ ($\kappa$ is the Von Karman constant and $z_b$ the rugosity length scale) value near physical boundaries 610 507 (logarithmic boundary layer law). 611 508 $C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88}, 612 509 or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01} 613 (\np{nn\_stab\_func}\forcode{ = 0 ..3}, resp.).614 The value of $C_{0\mu}$ depends o fthe choice of the stability function.510 (\np{nn\_stab\_func}\forcode{ = 0, 3}, resp.). 511 The value of $C_{0\mu}$ depends on the choice of the stability function. 615 512 616 513 The surface and bottom boundary condition on both $\bar{e}$ and $\psi$ can be calculated thanks to Dirichlet or … … 633 530 The time and space discretization of the GLS equations follows the same energetic consideration as for 634 531 the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{burchard_OM02}. 635 Examples of performance of the 4 turbulent closure scheme can be found in \citet{warner.sherwood.ea_OM05}. 532 Evaluation of the 4 GLS turbulent closure schemes can be found in \citet{warner.sherwood.ea_OM05} in ROMS model and 533 in \citet{reffray.guillaume.ea_GMD15} for the \NEMO model. 534 636 535 637 536 % ------------------------------------------------------------------------------------------------------------- 638 537 % OSM OSMOSIS BL Scheme 639 538 % ------------------------------------------------------------------------------------------------------------- 640 \subsection[OSM: OSMosis boundary layer scheme (\ texttt{\textbf{key\_zdfosm}})]641 {OSM: OSMosis boundary layer scheme (\protect\ key{zdfosm})}539 \subsection[OSM: OSMosis boundary layer scheme (\forcode{ln_zdfosm = .true.})] 540 {OSM: OSMosis boundary layer scheme (\protect\np{ln\_zdfosm}\forcode{ = .true.})} 642 541 \label{subsec:ZDF_osm} 643 644 542 %--------------------------------------------namzdf_osm--------------------------------------------------------- 645 543 … … 649 547 The OSMOSIS turbulent closure scheme is based on...... TBC 650 548 549 % ------------------------------------------------------------------------------------------------------------- 550 % TKE and GLS discretization considerations 551 % ------------------------------------------------------------------------------------------------------------- 552 \subsection[ Discrete energy conservation for TKE and GLS schemes] 553 {Discrete energy conservation for TKE and GLS schemes} 554 \label{subsec:ZDF_tke_ene} 555 556 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 557 \begin{figure}[!t] 558 \begin{center} 559 \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 560 \caption{ 561 \protect\label{fig:TKE_time_scheme} 562 Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and its links to the momentum and tracer time integration. 563 } 564 \end{center} 565 \end{figure} 566 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 567 568 The production of turbulence by vertical shear (the first term of the right hand side of 569 \autoref{eq:zdftke_e}) and \autoref{eq:zdfgls_e}) should balance the loss of kinetic energy associated with the vertical momentum diffusion 570 (first line in \autoref{eq:PE_zdf}). 571 To do so a special care has to be taken for both the time and space discretization of 572 the kinetic energy equation \citep{burchard_OM02,marsaleix.auclair.ea_OM08}. 573 574 Let us first address the time stepping issue. \autoref{fig:TKE_time_scheme} shows how 575 the two-level Leap-Frog time stepping of the momentum and tracer equations interplays with 576 the one-level forward time stepping of the equation for $\bar{e}$. 577 With this framework, the total loss of kinetic energy (in 1D for the demonstration) due to 578 the vertical momentum diffusion is obtained by multiplying this quantity by $u^t$ and 579 summing the result vertically: 580 \begin{equation} 581 \label{eq:energ1} 582 \begin{split} 583 \int_{-H}^{\eta} u^t \,\partial_z &\left( {K_m}^t \,(\partial_z u)^{t+\rdt} \right) \,dz \\ 584 &= \Bigl[ u^t \,{K_m}^t \,(\partial_z u)^{t+\rdt} \Bigr]_{-H}^{\eta} 585 - \int_{-H}^{\eta}{ {K_m}^t \,\partial_z{u^t} \,\partial_z u^{t+\rdt} \,dz } 586 \end{split} 587 \end{equation} 588 Here, the vertical diffusion of momentum is discretized backward in time with a coefficient, $K_m$, 589 known at time $t$ (\autoref{fig:TKE_time_scheme}), as it is required when using the TKE scheme 590 (see \autoref{sec:STP_forward_imp}). 591 The first term of the right hand side of \autoref{eq:energ1} represents the kinetic energy transfer at 592 the surface (atmospheric forcing) and at the bottom (friction effect). 593 The second term is always negative. 594 It is the dissipation rate of kinetic energy, and thus minus the shear production rate of $\bar{e}$. 595 \autoref{eq:energ1} implies that, to be energetically consistent, 596 the production rate of $\bar{e}$ used to compute $(\bar{e})^t$ (and thus ${K_m}^t$) should be expressed as 597 ${K_m}^{t-\rdt}\,(\partial_z u)^{t-\rdt} \,(\partial_z u)^t$ 598 (and not by the more straightforward $K_m \left( \partial_z u \right)^2$ expression taken at time $t$ or $t-\rdt$). 599 600 A similar consideration applies on the destruction rate of $\bar{e}$ due to stratification 601 (second term of the right hand side of \autoref{eq:zdftke_e} and \autoref{eq:zdfgls_e}). 602 This term must balance the input of potential energy resulting from vertical mixing. 603 The rate of change of potential energy (in 1D for the demonstration) due to vertical mixing is obtained by 604 multiplying the vertical density diffusion tendency by $g\,z$ and and summing the result vertically: 605 \begin{equation} 606 \label{eq:energ2} 607 \begin{split} 608 \int_{-H}^{\eta} g\,z\,\partial_z &\left( {K_\rho}^t \,(\partial_k \rho)^{t+\rdt} \right) \,dz \\ 609 &= \Bigl[ g\,z \,{K_\rho}^t \,(\partial_z \rho)^{t+\rdt} \Bigr]_{-H}^{\eta} 610 - \int_{-H}^{\eta}{ g \,{K_\rho}^t \,(\partial_k \rho)^{t+\rdt} } \,dz \\ 611 &= - \Bigl[ z\,{K_\rho}^t \,(N^2)^{t+\rdt} \Bigr]_{-H}^{\eta} 612 + \int_{-H}^{\eta}{ \rho^{t+\rdt} \, {K_\rho}^t \,(N^2)^{t+\rdt} \,dz } 613 \end{split} 614 \end{equation} 615 where we use $N^2 = -g \,\partial_k \rho / (e_3 \rho)$. 616 The first term of the right hand side of \autoref{eq:energ2} is always zero because 617 there is no diffusive flux through the ocean surface and bottom). 618 The second term is minus the destruction rate of $\bar{e}$ due to stratification. 619 Therefore \autoref{eq:energ1} implies that, to be energetically consistent, 620 the product ${K_\rho}^{t-\rdt}\,(N^2)^t$ should be used in \autoref{eq:zdftke_e} and \autoref{eq:zdfgls_e}. 621 622 Let us now address the space discretization issue. 623 The vertical eddy coefficients are defined at $w$-point whereas the horizontal velocity components are in 624 the centre of the side faces of a $t$-box in staggered C-grid (\autoref{fig:cell}). 625 A space averaging is thus required to obtain the shear TKE production term. 626 By redoing the \autoref{eq:energ1} in the 3D case, it can be shown that the product of eddy coefficient by 627 the shear at $t$ and $t-\rdt$ must be performed prior to the averaging. 628 Furthermore, the time variation of $e_3$ has be taken into account. 629 630 The above energetic considerations leads to the following final discrete form for the TKE equation: 631 \begin{equation} 632 \label{eq:zdftke_ene} 633 \begin{split} 634 \frac { (\bar{e})^t - (\bar{e})^{t-\rdt} } {\rdt} \equiv 635 \Biggl\{ \Biggr. 636 &\overline{ \left( \left(\overline{K_m}^{\,i+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[u^{t+\rdt}]}{{e_3u}^{t+\rdt} } 637 \ \frac{\delta_{k+1/2}[u^ t ]}{{e_3u}^ t } \right) }^{\,i} \\ 638 +&\overline{ \left( \left(\overline{K_m}^{\,j+1/2}\right)^{t-\rdt} \,\frac{\delta_{k+1/2}[v^{t+\rdt}]}{{e_3v}^{t+\rdt} } 639 \ \frac{\delta_{k+1/2}[v^ t ]}{{e_3v}^ t } \right) }^{\,j} 640 \Biggr. \Biggr\} \\ 641 % 642 - &{K_\rho}^{t-\rdt}\,{(N^2)^t} \\ 643 % 644 +&\frac{1}{{e_3w}^{t+\rdt}} \;\delta_{k+1/2} \left[ {K_m}^{t-\rdt} \,\frac{\delta_{k}[(\bar{e})^{t+\rdt}]} {{e_3w}^{t+\rdt}} \right] \\ 645 % 646 - &c_\epsilon \; \left( \frac{\sqrt{\bar {e}}}{l_\epsilon}\right)^{t-\rdt}\,(\bar {e})^{t+\rdt} 647 \end{split} 648 \end{equation} 649 where the last two terms in \autoref{eq:zdftke_ene} (vertical diffusion and Kolmogorov dissipation) 650 are time stepped using a backward scheme (see\autoref{sec:STP_forward_imp}). 651 Note that the Kolmogorov term has been linearized in time in order to render the implicit computation possible. 652 %The restart of the TKE scheme requires the storage of $\bar {e}$, $K_m$, $K_\rho$ and $l_\epsilon$ as 653 %they all appear in the right hand side of \autoref{eq:zdftke_ene}. 654 %For the latter, it is in fact the ratio $\sqrt{\bar{e}}/l_\epsilon$ which is stored. 655 651 656 % ================================================================ 652 657 % Convection … … 654 659 \section{Convection} 655 660 \label{sec:ZDF_conv} 656 657 %--------------------------------------------namzdf--------------------------------------------------------658 659 \nlst{namzdf}660 %--------------------------------------------------------------------------------------------------------------661 661 662 662 Static instabilities (\ie light potential densities under heavy ones) may occur at particular ocean grid points. … … 673 673 {Non-penetrative convective adjustment (\protect\np{ln\_tranpc}\forcode{ = .true.})} 674 674 \label{subsec:ZDF_npc} 675 676 %--------------------------------------------namzdf--------------------------------------------------------677 678 \nlst{namzdf}679 %--------------------------------------------------------------------------------------------------------------680 675 681 676 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 733 728 Two main differences have been introduced compared to the original algorithm: 734 729 $(i)$ the stability is now checked using the Brunt-V\"{a}is\"{a}l\"{a} frequency 735 (not the thedifference in potential density);730 (not the difference in potential density); 736 731 $(ii)$ when two levels are found unstable, their thermal and haline expansion coefficients are vertically mixed in 737 732 the same way their temperature and salinity has been mixed. … … 746 741 \label{subsec:ZDF_evd} 747 742 748 %--------------------------------------------namzdf--------------------------------------------------------749 750 \nlst{namzdf}751 %--------------------------------------------------------------------------------------------------------------752 753 743 Options are defined through the \ngn{namzdf} namelist variables. 754 744 The enhanced vertical diffusion parameterisation is used when \np{ln\_zdfevd}\forcode{ = .true.}. 755 In this case, the vertical eddy mixing coefficients are assigned very large values 756 (a typical value is $10\;m^2s^{-1})$in regions where the stratification is unstable745 In this case, the vertical eddy mixing coefficients are assigned very large values 746 in regions where the stratification is unstable 757 747 (\ie when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{lazar_phd97, lazar.madec.ea_JPO99}. 758 748 This is done either on tracers only (\np{nn\_evdm}\forcode{ = 0}) or … … 766 756 the convective adjustment algorithm presented above when mixing both tracers and 767 757 momentum in the case of static instabilities. 768 It requires the use of an implicit time stepping on vertical diffusion terms769 (\ie np{ln\_zdfexp}\forcode{ = .false.}).770 758 771 759 Note that the stability test is performed on both \textit{before} and \textit{now} values of $N^2$. … … 776 764 % Turbulent Closure Scheme 777 765 % ------------------------------------------------------------------------------------------------------------- 778 \subsection[ Turbulent closure scheme (\texttt{\textbf{key\_zdf}}\texttt{\textbf{\{tke,gls,osm\}}})]779 { Turbulent Closure Scheme (\protect\key{zdftke}, \protect\key{zdfgls} or \protect\key{zdfosm})}766 \subsection[Handling convection with turbulent closure schemes (\forcode{ln_zdf/tke/gls/osm = .true.})] 767 {Handling convection with turbulent closure schemes (\protect\np{ln\_zdf/tke/gls/osm}\forcode{ = .true.})} 780 768 \label{subsec:ZDF_tcs} 781 769 782 The turbulent closure scheme presented in \autoref{subsec:ZDF_tke} and \autoref{subsec:ZDF_gls} 783 (\key{zdftke} or \key{zdftke} is defined) in theory solves the problem of statically unstable density profiles. 770 771 The turbulent closure schemes presented in \autoref{subsec:ZDF_tke}, \autoref{subsec:ZDF_gls} and 772 \autoref{subsec:ZDF_osm} (\ie \np{ln\_zdftke} or \np{ln\_zdftke} or \np{ln\_zdfosm} defined) deal, in theory, 773 with statically unstable density profiles. 784 774 In such a case, the term corresponding to the destruction of turbulent kinetic energy through stratification in 785 775 \autoref{eq:zdftke_e} or \autoref{eq:zdfgls_e} becomes a source term, since $N^2$ is negative. 786 It results in large values of $A_T^{vT}$ and $A_T^{vT}$, and also the four neighbouring $A_u^{vm} {and}\;A_v^{vm}$787 (up to $1\;m^2s^{-1}$).776 It results in large values of $A_T^{vT}$ and $A_T^{vT}$, and also of the four neighboring values at 777 velocity points $A_u^{vm} {and}\;A_v^{vm}$ (up to $1\;m^2s^{-1}$). 788 778 These large values restore the static stability of the water column in a way similar to that of 789 779 the enhanced vertical diffusion parameterisation (\autoref{subsec:ZDF_evd}). … … 793 783 It can thus be useful to combine the enhanced vertical diffusion with the turbulent closure scheme, 794 784 \ie setting the \np{ln\_zdfnpc} namelist parameter to true and 795 defining the turbulent closure CPP keyall together.796 797 The KPPturbulent closure scheme already includes enhanced vertical diffusion in the case of convection,798 as governed by the variables $bvsqcon$ and $difcon$ found in \mdl{zdfkpp},799 therefore \np{ln\_zdfevd}\forcode{ = .false.} should be used with the KPPscheme.785 defining the turbulent closure (\np{ln\_zdftke} or \np{ln\_zdfgls} = \forcode{.true.}) all together. 786 787 The OSMOSIS turbulent closure scheme already includes enhanced vertical diffusion in the case of convection, 788 %as governed by the variables $bvsqcon$ and $difcon$ found in \mdl{zdfkpp}, 789 therefore \np{ln\_zdfevd}\forcode{ = .false.} should be used with the OSMOSIS scheme. 800 790 % gm% + one word on non local flux with KPP scheme trakpp.F90 module... 801 791 … … 803 793 % Double Diffusion Mixing 804 794 % ================================================================ 805 \section[Double diffusion mixing (\texttt{\textbf{key\_zdfddm}})] 806 {Double diffusion mixing (\protect\key{zdfddm})} 807 \label{sec:ZDF_ddm} 795 \section[Double diffusion mixing (\forcode{ln_zdfddm = .true.})] 796 {Double diffusion mixing (\protect\np{ln\_zdfddm}\forcode{ = .true.})} 797 \label{subsec:ZDF_ddm} 798 808 799 809 800 %-------------------------------------------namzdf_ddm------------------------------------------------- … … 812 803 %-------------------------------------------------------------------------------------------------------------- 813 804 814 Options are defined through the \ngn{namzdf\_ddm} namelist variables. 805 This parameterisation has been introduced in \mdl{zdfddm} module and is controlled by the namelist parameter 806 \np{ln\_zdfddm} in \ngn{namzdf}. 815 807 Double diffusion occurs when relatively warm, salty water overlies cooler, fresher water, or vice versa. 816 808 The former condition leads to salt fingering and the latter to diffusive convection. … … 819 811 it leads to relatively minor changes in circulation but exerts significant regional influences on 820 812 temperature and salinity. 821 This parameterisation has been introduced in \mdl{zdfddm} module and is controlled by the \key{zdfddm} CPP key. 813 822 814 823 815 Diapycnal mixing of S and T are described by diapycnal diffusion coefficients … … 896 888 % Bottom Friction 897 889 % ================================================================ 898 \section[Bottom and top friction (\textit{zdfbfr.F90})]899 {Bottom and top friction (\protect\mdl{zdfbfr})}900 \label{sec:ZDF_bfr}890 \section[Bottom and top friction (\textit{zdfdrg.F90})] 891 {Bottom and top friction (\protect\mdl{zdfdrg})} 892 \label{sec:ZDF_drg} 901 893 902 894 %--------------------------------------------nambfr-------------------------------------------------------- 903 895 % 904 %\nlst{nambfr} 896 \nlst{namdrg} 897 \nlst{namdrg_top} 898 \nlst{namdrg_bot} 899 905 900 %-------------------------------------------------------------------------------------------------------------- 906 901 907 Options to define the top and bottom friction are defined through the \ngn{nam bfr} namelist variables.902 Options to define the top and bottom friction are defined through the \ngn{namdrg} namelist variables. 908 903 The bottom friction represents the friction generated by the bathymetry. 909 904 The top friction represents the friction generated by the ice shelf/ocean interface. 910 As the friction processes at the top and bottom are treated in similar way,911 only the bottom friction is described in detail below.905 As the friction processes at the top and the bottom are treated in and identical way, 906 the description below considers mostly the bottom friction case, if not stated otherwise. 912 907 913 908 … … 915 910 a condition on the vertical diffusive flux. 916 911 For the bottom boundary layer, one has: 917 \[918 % \label{eq:zdfbfr_flux}919 A^{vm} \left( \partial {\textbf U}_h / \partial z \right) = {{\cal F}}_h^{\textbf U}920 \]912 \[ 913 % \label{eq:zdfbfr_flux} 914 A^{vm} \left( \partial {\textbf U}_h / \partial z \right) = {{\cal F}}_h^{\textbf U} 915 \] 921 916 where ${\cal F}_h^{\textbf U}$ is represents the downward flux of horizontal momentum outside 922 917 the logarithmic turbulent boundary layer (thickness of the order of 1~m in the ocean). … … 932 927 To illustrate this, consider the equation for $u$ at $k$, the last ocean level: 933 928 \begin{equation} 934 \label{eq:zdf bfr_flux2}929 \label{eq:zdfdrg_flux2} 935 930 \frac{\partial u_k}{\partial t} = \frac{1}{e_{3u}} \left[ \frac{A_{uw}^{vm}}{e_{3uw}} \delta_{k+1/2}\;[u] - {\cal F}^u_h \right] \approx - \frac{{\cal F}^u_{h}}{e_{3u}} 936 931 \end{equation} … … 945 940 946 941 In the code, the bottom friction is imposed by adding the trend due to the bottom friction to 947 the general momentum trend in \mdl{dynbfr}.942 the general momentum trend in \mdl{dynzdf}. 948 943 For the time-split surface pressure gradient algorithm, the momentum trend due to 949 944 the barotropic component needs to be handled separately. 950 945 For this purpose it is convenient to compute and store coefficients which can be simply combined with 951 946 bottom velocities and geometric values to provide the momentum trend due to bottom friction. 952 These coefficients are computed in \mdl{zdfbfr} and generally take the form $c_b^{\textbf U}$ where:947 These coefficients are computed in \mdl{zdfdrg} and generally take the form $c_b^{\textbf U}$ where: 953 948 \begin{equation} 954 949 \label{eq:zdfbfr_bdef} … … 956 951 - \frac{{\cal F}^{\textbf U}_{h}}{e_{3u}} = \frac{c_b^{\textbf U}}{e_{3u}} \;{\textbf U}_h^b 957 952 \end{equation} 958 where $\textbf{U}_h^b = (u_b\;,\;v_b)$ is the near-bottom, horizontal, ocean velocity. 953 where $\textbf{U}_h^b = (u_b\;,\;v_b)$ is the near-bottom, horizontal, ocean velocity. 954 Note than from \NEMO 4.0, drag coefficients are only computed at cell centers (\ie at T-points) and refer to as $c_b^T$ in the following. These are then linearly interpolated in space to get $c_b^\textbf{U}$ at velocity points. 959 955 960 956 % ------------------------------------------------------------------------------------------------------------- 961 957 % Linear Bottom Friction 962 958 % ------------------------------------------------------------------------------------------------------------- 963 \subsection[Linear bottom friction (\forcode{nn_botfr = [01]})]964 {Linear bottom friction (\protect\np{nn\_botfr}\forcode{ = [01])}}965 \label{subsec:ZDF_bfr_linear}966 967 The linear bottomfriction parameterisation (including the special case of a free-slip condition) assumes that968 the bottom friction is proportional to the interior velocity (\ie the velocity of thelast model level):959 \subsection[Linear top/bottom friction (\forcode{ln_lin = .true.})] 960 {Linear top/bottom friction (\protect\np{ln\_lin}\forcode{ = .true.)}} 961 \label{subsec:ZDF_drg_linear} 962 963 The linear friction parameterisation (including the special case of a free-slip condition) assumes that 964 the friction is proportional to the interior velocity (\ie the velocity of the first/last model level): 969 965 \[ 970 966 % \label{eq:zdfbfr_linear} 971 967 {\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3} \; \frac{\partial \textbf{U}_h}{\partial k} = r \; \textbf{U}_h^b 972 968 \] 973 where $r$ is a friction coefficient expressed in ms$^{-1}$.969 where $r$ is a friction coefficient expressed in $m s^{-1}$. 974 970 This coefficient is generally estimated by setting a typical decay time $\tau$ in the deep ocean, 975 971 and setting $r = H / \tau$, where $H$ is the ocean depth. … … 981 977 and assuming an ocean depth $H = 4000$~m, the resulting friction coefficient is $r = 4\;10^{-4}$~m\;s$^{-1}$. 982 978 This is the default value used in \NEMO. It corresponds to a decay time scale of 115~days. 983 It can be changed by specifying \np{rn\_ bfri1} (namelist parameter).984 985 For the linear friction case the coefficients defined in the general expression \autoref{eq:zdfbfr_bdef} are:979 It can be changed by specifying \np{rn\_Uc0} (namelist parameter). 980 981 For the linear friction case the drag coefficient used in the general expression \autoref{eq:zdfbfr_bdef} is: 986 982 \[ 987 983 % \label{eq:zdfbfr_linbfr_b} 988 \begin{split} 989 c_b^u &= - r\\ 990 c_b^v &= - r\\ 991 \end{split} 992 \] 993 When \np{nn\_botfr}\forcode{ = 1}, the value of $r$ used is \np{rn\_bfri1}. 994 Setting \np{nn\_botfr}\forcode{ = 0} is equivalent to setting $r=0$ and 995 leads to a free-slip bottom boundary condition. 996 These values are assigned in \mdl{zdfbfr}. 997 From v3.2 onwards there is support for local enhancement of these values via an externally defined 2D mask array 998 (\np{ln\_bfr2d}\forcode{ = .true.}) given in the \ifile{bfr\_coef} input NetCDF file. 984 c_b^T = - r 985 \] 986 When \forcode{ln_lin = .true.}, the value of $r$ used is \np{rn\_Uc0}*\np{rn\_Cd0}. 987 Setting \forcode{ln_OFF = .true.} (and \forcode{ln_lin = .true.}) is equivalent to setting $r=0$ and leads to a free-slip boundary condition. 988 These values are assigned in \mdl{zdfdrg}. 989 Note that there is support for local enhancement of these values via an externally defined 2D mask array 990 (\np{ln\_boost}\forcode{ = .true.}) given in the \ifile{bfr\_coef} input NetCDF file. 999 991 The mask values should vary from 0 to 1. 1000 992 Locations with a non-zero mask value will have the friction coefficient increased by 1001 $mask\_value$ *\np{rn\_bfrien}*\np{rn\_bfri1}.993 $mask\_value$ * \np{rn\_boost} * \np{rn\_Cd0}. 1002 994 1003 995 % ------------------------------------------------------------------------------------------------------------- 1004 996 % Non-Linear Bottom Friction 1005 997 % ------------------------------------------------------------------------------------------------------------- 1006 \subsection[Non-linear bottom friction (\forcode{nn_botfr = 2})]1007 {Non-linear bottom friction (\protect\np{nn\_botfr}\forcode{ = 2})}1008 \label{subsec:ZDF_bfr_nonlinear}1009 1010 The non-linear bottom friction parameterisation assumes that the bottom friction is quadratic:1011 \[ 1012 % \label{eq:zdf bfr_nonlinear}998 \subsection[Non-linear top/bottom friction (\forcode{ln_no_lin = .true.})] 999 {Non-linear top/bottom friction (\protect\np{ln\_no\_lin}\forcode{ = .true.})} 1000 \label{subsec:ZDF_drg_nonlinear} 1001 1002 The non-linear bottom friction parameterisation assumes that the top/bottom friction is quadratic: 1003 \[ 1004 % \label{eq:zdfdrg_nonlinear} 1013 1005 {\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3 }\frac{\partial \textbf {U}_h 1014 1006 }{\partial k}=C_D \;\sqrt {u_b ^2+v_b ^2+e_b } \;\; \textbf {U}_h^b 1015 1007 \] 1016 where $C_D$ is a drag coefficient, and $e_b $ a bottom turbulent kinetic energy due to tides,1008 where $C_D$ is a drag coefficient, and $e_b $ a top/bottom turbulent kinetic energy due to tides, 1017 1009 internal waves breaking and other short time scale currents. 1018 1010 A typical value of the drag coefficient is $C_D = 10^{-3} $. … … 1020 1012 $e_b = 2.5\;10^{-3}$m$^2$\;s$^{-2}$, while the FRAM experiment \citep{killworth_JPO92} uses $C_D = 1.4\;10^{-3}$ and 1021 1013 $e_b =2.5\;\;10^{-3}$m$^2$\;s$^{-2}$. 1022 The CME choices have been set as default values (\np{rn\_bfri2} and \np{rn\_bfeb2} namelist parameters). 1023 1024 As for the linear case, the bottom friction is imposed in the code by adding the trend due to 1025 the bottom friction to the general momentum trend in \mdl{dynbfr}. 1026 For the non-linear friction case the terms computed in \mdl{zdfbfr} are: 1027 \[ 1028 % \label{eq:zdfbfr_nonlinbfr} 1029 \begin{split} 1030 c_b^u &= - \; C_D\;\left[ u^2 + \left(\bar{\bar{v}}^{i+1,j}\right)^2 + e_b \right]^{1/2}\\ 1031 c_b^v &= - \; C_D\;\left[ \left(\bar{\bar{u}}^{i,j+1}\right)^2 + v^2 + e_b \right]^{1/2}\\ 1032 \end{split} 1033 \] 1034 1035 The coefficients that control the strength of the non-linear bottom friction are initialised as namelist parameters: 1036 $C_D$= \np{rn\_bfri2}, and $e_b$ =\np{rn\_bfeb2}. 1037 Note for applications which treat tides explicitly a low or even zero value of \np{rn\_bfeb2} is recommended. 1038 From v3.2 onwards a local enhancement of $C_D$ is possible via an externally defined 2D mask array 1039 (\np{ln\_bfr2d}\forcode{ = .true.}). 1040 This works in the same way as for the linear bottom friction case with non-zero masked locations increased by 1041 $mask\_value$*\np{rn\_bfrien}*\np{rn\_bfri2}. 1014 The CME choices have been set as default values (\np{rn\_Cd0} and \np{rn\_ke0} namelist parameters). 1015 1016 As for the linear case, the friction is imposed in the code by adding the trend due to 1017 the friction to the general momentum trend in \mdl{dynzdf}. 1018 For the non-linear friction case the term computed in \mdl{zdfdrg} is: 1019 \[ 1020 % \label{eq:zdfdrg_nonlinbfr} 1021 c_b^T = - \; C_D\;\left[ \left(\bar{u_b}^{i}\right)^2 + \left(\bar{v_b}^{j}\right)^2 + e_b \right]^{1/2} 1022 \] 1023 1024 The coefficients that control the strength of the non-linear friction are initialised as namelist parameters: 1025 $C_D$= \np{rn\_Cd0}, and $e_b$ =\np{rn\_bfeb2}. 1026 Note that for applications which consider tides explicitly, a low or even zero value of \np{rn\_bfeb2} is recommended. A local enhancement of $C_D$ is again possible via an externally defined 2D mask array 1027 (\np{ln\_boost}\forcode{ = .true.}). 1028 This works in the same way as for the linear friction case with non-zero masked locations increased by 1029 $mask\_value$ * \np{rn\_boost} * \np{rn\_Cd0}. 1042 1030 1043 1031 % ------------------------------------------------------------------------------------------------------------- 1044 1032 % Bottom Friction Log-layer 1045 1033 % ------------------------------------------------------------------------------------------------------------- 1046 \subsection[Log-layer bottom friction enhancement (\forcode{nn_botfr = 2}, \forcode{ln_loglayer = .true.})] 1047 {Log-layer bottom friction enhancement (\protect\np{nn\_botfr}\forcode{ = 2}, \protect\np{ln\_loglayer}\forcode{ = .true.})} 1048 \label{subsec:ZDF_bfr_loglayer} 1049 1050 In the non-linear bottom friction case, the drag coefficient, $C_D$, can be optionally enhanced using 1051 a "law of the wall" scaling. 1052 If \np{ln\_loglayer} = .true., $C_D$ is no longer constant but is related to the thickness of 1053 the last wet layer in each column by: 1054 \[ 1055 C_D = \left ( {\kappa \over {\mathrm log}\left ( 0.5e_{3t}/rn\_bfrz0 \right ) } \right )^2 1056 \] 1057 1058 \noindent where $\kappa$ is the von-Karman constant and \np{rn\_bfrz0} is a roughness length provided via 1059 the namelist. 1060 1061 For stability, the drag coefficient is bounded such that it is kept greater or equal to 1062 the base \np{rn\_bfri2} value and it is not allowed to exceed the value of an additional namelist parameter: 1063 \np{rn\_bfri2\_max}, \ie 1064 \[ 1065 rn\_bfri2 \leq C_D \leq rn\_bfri2\_max 1066 \] 1067 1068 \noindent Note also that a log-layer enhancement can also be applied to the top boundary friction if 1069 under ice-shelf cavities are in use (\np{ln\_isfcav}\forcode{ = .true.}). 1070 In this case, the relevant namelist parameters are \np{rn\_tfrz0}, \np{rn\_tfri2} and \np{rn\_tfri2\_max}. 1071 1072 % ------------------------------------------------------------------------------------------------------------- 1073 % Bottom Friction stability 1074 % ------------------------------------------------------------------------------------------------------------- 1075 \subsection{Bottom friction stability considerations} 1076 \label{subsec:ZDF_bfr_stability} 1077 1078 Some care needs to exercised over the choice of parameters to ensure that the implementation of 1079 bottom friction does not induce numerical instability. 1080 For the purposes of stability analysis, an approximation to \autoref{eq:zdfbfr_flux2} is: 1034 \subsection[Log-layer top/bottom friction (\forcode{ln_loglayer = .true.})] 1035 {Log-layer top/bottom friction (\protect\np{ln\_loglayer}\forcode{ = .true.})} 1036 \label{subsec:ZDF_drg_loglayer} 1037 1038 In the non-linear friction case, the drag coefficient, $C_D$, can be optionally enhanced using 1039 a "law of the wall" scaling. This assumes that the model vertical resolution can capture the logarithmic layer which typically occur for layers thinner than 1 m or so. 1040 If \np{ln\_loglayer} = .true., $C_D$ is no longer constant but is related to the distance to the wall (or equivalently to the half of the top/bottom layer thickness): 1041 \[ 1042 C_D = \left ( {\kappa \over {\mathrm log}\left ( 0.5 \; e_{3b} / rn\_{z0} \right ) } \right )^2 1043 \] 1044 1045 \noindent where $\kappa$ is the von-Karman constant and \np{rn\_z0} is a roughness length provided via the namelist. 1046 1047 The drag coefficient is bounded such that it is kept greater or equal to 1048 the base \np{rn\_Cd0} value which occurs where layer thicknesses become large and presumably logarithmic layers are not resolved at all. For stability reason, it is also not allowed to exceed the value of an additional namelist parameter: 1049 \np{rn\_Cdmax}, \ie 1050 \[ 1051 rn\_Cd0 \leq C_D \leq rn\_Cdmax 1052 \] 1053 1054 \noindent The log-layer enhancement can also be applied to the top boundary friction if 1055 under ice-shelf cavities are activated (\np{ln\_isfcav}\forcode{ = .true.}). 1056 %In this case, the relevant namelist parameters are \np{rn\_tfrz0}, \np{rn\_tfri2} and \np{rn\_tfri2\_max}. 1057 1058 % ------------------------------------------------------------------------------------------------------------- 1059 % Explicit bottom Friction 1060 % ------------------------------------------------------------------------------------------------------------- 1061 \subsection{Explicit top/bottom friction (\forcode{ln_drgimp = .false.})} 1062 \label{subsec:ZDF_drg_stability} 1063 1064 Setting \forcode{ln_drgimp = .false.} means that bottom friction is treated explicitly in time, which has the advantage of simplifying the interaction with the split-explicit free surface (see \autoref{subsec:ZDF_drg_ts}). The latter does indeed require the knowledge of bottom stresses in the course of the barotropic sub-iteration, which becomes less straightforward in the implicit case. In the explicit case, top/bottom stresses can be computed using \textit{before} velocities and inserted in the overall momentum tendency budget. This reads: 1065 1066 At the top (below an ice shelf cavity): 1067 \[ 1068 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{t} 1069 = c_{t}^{\textbf{U}}\textbf{u}^{n-1}_{t} 1070 \] 1071 1072 At the bottom (above the sea floor): 1073 \[ 1074 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{b} 1075 = c_{b}^{\textbf{U}}\textbf{u}^{n-1}_{b} 1076 \] 1077 1078 Since this is conditionally stable, some care needs to exercised over the choice of parameters to ensure that the implementation of explicit top/bottom friction does not induce numerical instability. 1079 For the purposes of stability analysis, an approximation to \autoref{eq:zdfdrg_flux2} is: 1081 1080 \begin{equation} 1082 \label{eq:Eqn_ bfrstab}1081 \label{eq:Eqn_drgstab} 1083 1082 \begin{split} 1084 1083 \Delta u &= -\frac{{{\cal F}_h}^u}{e_{3u}}\;2 \rdt \\ … … 1086 1085 \end{split} 1087 1086 \end{equation} 1088 \noindent where linear bottomfriction and a leapfrog timestep have been assumed.1089 To ensure that the bottomfriction cannot reverse the direction of flow it is necessary to have:1087 \noindent where linear friction and a leapfrog timestep have been assumed. 1088 To ensure that the friction cannot reverse the direction of flow it is necessary to have: 1090 1089 \[ 1091 1090 |\Delta u| < \;|u| 1092 1091 \] 1093 \noindent which, using \autoref{eq:Eqn_ bfrstab}, gives:1092 \noindent which, using \autoref{eq:Eqn_drgstab}, gives: 1094 1093 \[ 1095 1094 r\frac{2\rdt}{e_{3u}} < 1 \qquad \Rightarrow \qquad r < \frac{e_{3u}}{2\rdt}\\ … … 1105 1104 For most applications, with physically sensible parameters these restrictions should not be of concern. 1106 1105 But caution may be necessary if attempts are made to locally enhance the bottom friction parameters. 1107 To ensure stability limits are imposed on the bottom friction coefficients both1106 To ensure stability limits are imposed on the top/bottom friction coefficients both 1108 1107 during initialisation and at each time step. 1109 Checks at initialisation are made in \mdl{zdf bfr} (assuming a 1 m.s$^{-1}$ velocity in the non-linear case).1108 Checks at initialisation are made in \mdl{zdfdrg} (assuming a 1 m.s$^{-1}$ velocity in the non-linear case). 1110 1109 The number of breaches of the stability criterion are reported as well as 1111 1110 the minimum and maximum values that have been set. 1112 The criterion is also checked at each time step, using the actual velocity, in \mdl{dyn bfr}.1113 Values of the bottomfriction coefficient are reduced as necessary to ensure stability;1111 The criterion is also checked at each time step, using the actual velocity, in \mdl{dynzdf}. 1112 Values of the friction coefficient are reduced as necessary to ensure stability; 1114 1113 these changes are not reported. 1115 1114 1116 Limits on the bottom friction coefficient are not imposed if the user has elected to1117 handle the bottom friction implicitly (see \autoref{subsec:ZDF_bfr_imp}).1115 Limits on the top/bottom friction coefficient are not imposed if the user has elected to 1116 handle the friction implicitly (see \autoref{subsec:ZDF_drg_imp}). 1118 1117 The number of potential breaches of the explicit stability criterion are still reported for information purposes. 1119 1118 … … 1121 1120 % Implicit Bottom Friction 1122 1121 % ------------------------------------------------------------------------------------------------------------- 1123 \subsection[Implicit bottom friction (\forcode{ln_bfrimp = .true.})]1124 {Implicit bottom friction (\protect\np{ln\_bfrimp}\forcode{ = .true.})}1125 \label{subsec:ZDF_bfr_imp}1122 \subsection[Implicit top/bottom friction (\forcode{ln_drgimp = .true.})] 1123 {Implicit top/bottom friction (\protect\np{ln\_drgimp}\forcode{ = .true.})} 1124 \label{subsec:ZDF_drg_imp} 1126 1125 1127 1126 An optional implicit form of bottom friction has been implemented to improve model stability. 1128 We recommend this option for shelf sea and coastal ocean applications, especially for split-explicit time splitting. 1129 This option can be invoked by setting \np{ln\_bfrimp} to \forcode{.true.} in the \textit{nambfr} namelist. 1130 This option requires \np{ln\_zdfexp} to be \forcode{.false.} in the \textit{namzdf} namelist. 1131 1132 This implementation is realised in \mdl{dynzdf\_imp} and \mdl{dynspg\_ts}. In \mdl{dynzdf\_imp}, 1133 the bottom boundary condition is implemented implicitly. 1134 1135 \[ 1136 % \label{eq:dynzdf_bfr} 1137 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{mbk} 1138 = \binom{c_{b}^{u}u^{n+1}_{mbk}}{c_{b}^{v}v^{n+1}_{mbk}} 1139 \] 1140 1141 where $mbk$ is the layer number of the bottom wet layer. 1142 Superscript $n+1$ means the velocity used in the friction formula is to be calculated, so, it is implicit. 1143 1144 If split-explicit time splitting is used, care must be taken to avoid the double counting of the bottom friction in 1145 the 2-D barotropic momentum equations. 1146 As NEMO only updates the barotropic pressure gradient and Coriolis' forcing terms in the 2-D barotropic calculation, 1147 we need to remove the bottom friction induced by these two terms which has been included in the 3-D momentum trend 1148 and update it with the latest value. 1149 On the other hand, the bottom friction contributed by the other terms 1150 (\eg the advection term, viscosity term) has been included in the 3-D momentum equations and 1151 should not be added in the 2-D barotropic mode. 1152 1153 The implementation of the implicit bottom friction in \mdl{dynspg\_ts} is done in two steps as the following: 1154 1155 \[ 1156 % \label{eq:dynspg_ts_bfr1} 1157 \frac{\textbf{U}_{med}-\textbf{U}^{m-1}}{2\Delta t}=-g\nabla\eta-f\textbf{k}\times\textbf{U}^{m}+c_{b} 1158 \left(\textbf{U}_{med}-\textbf{U}^{m-1}\right) 1159 \] 1160 \[ 1161 \frac{\textbf{U}^{m+1}-\textbf{U}_{med}}{2\Delta t}=\textbf{T}+ 1162 \left(g\nabla\eta^{'}+f\textbf{k}\times\textbf{U}^{'}\right)- 1163 2\Delta t_{bc}c_{b}\left(g\nabla\eta^{'}+f\textbf{k}\times\textbf{u}_{b}\right) 1164 \] 1165 1166 where $\textbf{T}$ is the vertical integrated 3-D momentum trend. 1167 We assume the leap-frog time-stepping is used here. 1168 $\Delta t$ is the barotropic mode time step and $\Delta t_{bc}$ is the baroclinic mode time step. 1169 $c_{b}$ is the friction coefficient. 1170 $\eta$ is the sea surface level calculated in the barotropic loops while $\eta^{'}$ is the sea surface level used in 1171 the 3-D baroclinic mode. 1172 $\textbf{u}_{b}$ is the bottom layer horizontal velocity. 1173 1174 % ------------------------------------------------------------------------------------------------------------- 1175 % Bottom Friction with split-explicit time splitting 1176 % ------------------------------------------------------------------------------------------------------------- 1177 \subsection[Bottom friction with split-explicit time splitting (\texttt{ln\_bfrimp})] 1178 {Bottom friction with split-explicit time splitting (\protect\np{ln\_bfrimp})} 1179 \label{subsec:ZDF_bfr_ts} 1180 1181 When calculating the momentum trend due to bottom friction in \mdl{dynbfr}, 1182 the bottom velocity at the before time step is used. 1183 This velocity includes both the baroclinic and barotropic components which is appropriate when 1184 using either the explicit or filtered surface pressure gradient algorithms 1185 (\key{dynspg\_exp} or \key{dynspg\_flt}). 1186 Extra attention is required, however, when using split-explicit time stepping (\key{dynspg\_ts}). 1187 In this case the free surface equation is solved with a small time step \np{rn\_rdt}/\np{nn\_baro}, 1188 while the three dimensional prognostic variables are solved with the longer time step of \np{rn\_rdt} seconds. 1189 The trend in the barotropic momentum due to bottom friction appropriate to this method is that given by 1190 the selected parameterisation (\ie linear or non-linear bottom friction) computed with 1191 the evolving velocities at each barotropic timestep. 1192 1193 In the case of non-linear bottom friction, we have elected to partially linearise the problem by 1194 keeping the coefficients fixed throughout the barotropic time-stepping to those computed in 1195 \mdl{zdfbfr} using the now timestep. 1196 This decision allows an efficient use of the $c_b^{\vect{U}}$ coefficients to: 1197 1127 We recommend this option for shelf sea and coastal ocean applications. %, especially for split-explicit time splitting. 1128 This option can be invoked by setting \np{ln\_drgimp} to \forcode{.true.} in the \textit{namdrg} namelist. 1129 %This option requires \np{ln\_zdfexp} to be \forcode{.false.} in the \textit{namzdf} namelist. 1130 1131 This implementation is performed in \mdl{dynzdf} where the following boundary conditions are set while solving the fully implicit diffusion step: 1132 1133 At the top (below an ice shelf cavity): 1134 \[ 1135 % \label{eq:dynzdf_drg_top} 1136 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{t} 1137 = c_{t}^{\textbf{U}}\textbf{u}^{n+1}_{t} 1138 \] 1139 1140 At the bottom (above the sea floor): 1141 \[ 1142 % \label{eq:dynzdf_drg_bot} 1143 \left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{b} 1144 = c_{b}^{\textbf{U}}\textbf{u}^{n+1}_{b} 1145 \] 1146 1147 where $t$ and $b$ refers to top and bottom layers respectively. 1148 Superscript $n+1$ means the velocity used in the friction formula is to be calculated, so it is implicit. 1149 1150 % ------------------------------------------------------------------------------------------------------------- 1151 % Bottom Friction with split-explicit free surface 1152 % ------------------------------------------------------------------------------------------------------------- 1153 \subsection[Bottom friction with split-explicit free surface] 1154 {Bottom friction with split-explicit free surface} 1155 \label{subsec:ZDF_drg_ts} 1156 1157 With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration and equal to the value used to update the baroclinic momentum trend. Provided \forcode{ln_drgimp = .false.} and a centred or \textit{leap-frog} like integration of barotropic equations is used (\ie \forcode{ln_bt_fw = .false.}, cf \autoref{subsec:DYN_spg_ts}), this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step. However, if \forcode{ln_drgimp = .true.}, stresses depend on the \textit{after} value of the velocities which themselves depend on the barotropic iteration result. This cyclic dependency makes difficult obtaining consistent stresses in 2d and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized since it interferes with the adjustment to the boundary conditions. 1158 1159 1160 The strategy to handle top/bottom stresses with split-explicit free surface in \NEMO is as follows: 1198 1161 \begin{enumerate} 1199 \item On entry to \rou{dyn\_spg\_ts}, remove the contribution of the before barotropic velocity to 1200 the bottom friction component of the vertically integrated momentum trend. 1201 Note the same stability check that is carried out on the bottom friction coefficient in \mdl{dynbfr} has to 1202 be applied here to ensure that the trend removed matches that which was added in \mdl{dynbfr}. 1203 \item At each barotropic step, compute the contribution of the current barotropic velocity to 1204 the trend due to bottom friction. 1205 Add this contribution to the vertically integrated momentum trend. 1206 This contribution is handled implicitly which eliminates the need to impose a stability criteria on 1207 the values of the bottom friction coefficient within the barotropic loop. 1208 \end{enumerate} 1209 1210 Note that the use of an implicit formulation within the barotropic loop for the bottom friction trend means that 1211 any limiting of the bottom friction coefficient in \mdl{dynbfr} does not adversely affect the solution when 1212 using split-explicit time splitting. 1213 This is because the major contribution to bottom friction is likely to come from the barotropic component which 1214 uses the unrestricted value of the coefficient. 1215 However, if the limiting is thought to be having a major effect 1216 (a more likely prospect in coastal and shelf seas applications) then 1217 the fully implicit form of the bottom friction should be used (see \autoref{subsec:ZDF_bfr_imp}) 1218 which can be selected by setting \np{ln\_bfrimp} $=$ \forcode{.true.}. 1219 1220 Otherwise, the implicit formulation takes the form: 1221 \[ 1222 % \label{eq:zdfbfr_implicitts} 1223 \bar{U}^{t+ \rdt} = \; \left [ \bar{U}^{t-\rdt}\; + 2 \rdt\;RHS \right ] / \left [ 1 - 2 \rdt \;c_b^{u} / H_e \right ] 1224 \] 1225 where $\bar U$ is the barotropic velocity, $H_e$ is the full depth (including sea surface height), 1226 $c_b^u$ is the bottom friction coefficient as calculated in \rou{zdf\_bfr} and 1227 $RHS$ represents all the components to the vertically integrated momentum trend except for 1228 that due to bottom friction. 1229 1230 % ================================================================ 1231 % Tidal Mixing 1232 % ================================================================ 1233 \section[Tidal mixing (\texttt{\textbf{key\_zdftmx}})] 1234 {Tidal mixing (\protect\key{zdftmx})} 1235 \label{sec:ZDF_tmx} 1236 1237 %--------------------------------------------namzdf_tmx-------------------------------------------------- 1162 \item To extend the stability of the barotropic sub-stepping, bottom stresses are refreshed at each sub-iteration. The baroclinic part of the flow entering the stresses is frozen at the initial time of the barotropic iteration. In case of non-linear friction, the drag coefficient is also constant. 1163 \item In case of an implicit drag, specific computations are performed in \mdl{dynzdf} which renders the overall scheme mixed explicit/implicit: the barotropic components of 3d velocities are removed before seeking for the implicit vertical diffusion result. Top/bottom stresses due to the barotropic components are explicitly accounted for thanks to the updated values of barotropic velocities. Then the implicit solution of 3d velocities is obtained. Lastly, the residual barotropic component is replaced by the time split estimate. 1164 \end{enumerate} 1165 1166 Note that other strategies are possible, like considering vertical diffusion step in advance, \ie prior barotropic integration. 1167 1168 1169 % ================================================================ 1170 % Internal wave-driven mixing 1171 % ================================================================ 1172 \section[Internal wave-driven mixing (\forcode{ln_zdfiwm = .true.})] 1173 {Internal wave-driven mixing (\protect\np{ln\_zdfiwm}\forcode{ = .true.})} 1174 \label{subsec:ZDF_tmx_new} 1175 1176 %--------------------------------------------namzdf_iwm------------------------------------------ 1238 1177 % 1239 %\nlst{namzdf_tmx} 1240 %-------------------------------------------------------------------------------------------------------------- 1241 1242 1243 % ------------------------------------------------------------------------------------------------------------- 1244 % Bottom intensified tidal mixing 1245 % ------------------------------------------------------------------------------------------------------------- 1246 \subsection{Bottom intensified tidal mixing} 1247 \label{subsec:ZDF_tmx_bottom} 1248 1249 Options are defined through the \ngn{namzdf\_tmx} namelist variables. 1250 The parameterization of tidal mixing follows the general formulation for the vertical eddy diffusivity proposed by 1251 \citet{st-laurent.simmons.ea_GRL02} and first introduced in an OGCM by \citep{simmons.jayne.ea_OM04}. 1252 In this formulation an additional vertical diffusivity resulting from internal tide breaking, 1253 $A^{vT}_{tides}$ is expressed as a function of $E(x,y)$, 1254 the energy transfer from barotropic tides to baroclinic tides: 1255 \begin{equation} 1256 \label{eq:Ktides} 1257 A^{vT}_{tides} = q \,\Gamma \,\frac{ E(x,y) \, F(z) }{ \rho \, N^2 } 1258 \end{equation} 1259 where $\Gamma$ is the mixing efficiency, $N$ the Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}), 1260 $\rho$ the density, $q$ the tidal dissipation efficiency, and $F(z)$ the vertical structure function. 1261 1262 The mixing efficiency of turbulence is set by $\Gamma$ (\np{rn\_me} namelist parameter) and 1263 is usually taken to be the canonical value of $\Gamma = 0.2$ (Osborn 1980). 1264 The tidal dissipation efficiency is given by the parameter $q$ (\np{rn\_tfe} namelist parameter) 1265 represents the part of the internal wave energy flux $E(x, y)$ that is dissipated locally, 1266 with the remaining $1-q$ radiating away as low mode internal waves and 1267 contributing to the background internal wave field. 1268 A value of $q=1/3$ is typically used \citet{st-laurent.simmons.ea_GRL02}. 1269 The vertical structure function $F(z)$ models the distribution of the turbulent mixing in the vertical. 1270 It is implemented as a simple exponential decaying upward away from the bottom, 1271 with a vertical scale of $h_o$ (\np{rn\_htmx} namelist parameter, 1272 with a typical value of $500\,m$) \citep{st-laurent.nash_DSR04}, 1273 \[ 1274 % \label{eq:Fz} 1275 F(i,j,k) = \frac{ e^{ -\frac{H+z}{h_o} } }{ h_o \left( 1- e^{ -\frac{H}{h_o} } \right) } 1276 \] 1277 and is normalized so that vertical integral over the water column is unity. 1278 1279 The associated vertical viscosity is calculated from the vertical diffusivity assuming a Prandtl number of 1, 1280 \ie $A^{vm}_{tides}=A^{vT}_{tides}$. 1281 In the limit of $N \rightarrow 0$ (or becoming negative), the vertical diffusivity is capped at $300\,cm^2/s$ and 1282 impose a lower limit on $N^2$ of \np{rn\_n2min} usually set to $10^{-8} s^{-2}$. 1283 These bounds are usually rarely encountered. 1284 1285 The internal wave energy map, $E(x, y)$ in \autoref{eq:Ktides}, is derived from a barotropic model of 1286 the tides utilizing a parameterization of the conversion of barotropic tidal energy into internal waves. 1287 The essential goal of the parameterization is to represent the momentum exchange between the barotropic tides and 1288 the unrepresented internal waves induced by the tidal flow over rough topography in a stratified ocean. 1289 In the current version of \NEMO, the map is built from the output of 1290 the barotropic global ocean tide model MOG2D-G \citep{carrere.lyard_GRL03}. 1291 This model provides the dissipation associated with internal wave energy for the M2 and K1 tides component 1292 (\autoref{fig:ZDF_M2_K1_tmx}). 1293 The S2 dissipation is simply approximated as being $1/4$ of the M2 one. 1294 The internal wave energy is thus : $E(x, y) = 1.25 E_{M2} + E_{K1}$. 1295 Its global mean value is $1.1$ TW, 1296 in agreement with independent estimates \citep{egbert.ray_N00, egbert.ray_JGR01}. 1297 1298 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1299 \begin{figure}[!t] 1300 \begin{center} 1301 \includegraphics[width=\textwidth]{Fig_ZDF_M2_K1_tmx} 1302 \caption{ 1303 \protect\label{fig:ZDF_M2_K1_tmx} 1304 (a) M2 and (b) K1 internal wave drag energy from \citet{carrere.lyard_GRL03} ($W/m^2$). 1305 } 1306 \end{center} 1307 \end{figure} 1308 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1309 1310 % ------------------------------------------------------------------------------------------------------------- 1311 % Indonesian area specific treatment 1312 % ------------------------------------------------------------------------------------------------------------- 1313 \subsection[Indonesian area specific treatment (\texttt{ln\_zdftmx\_itf})] 1314 {Indonesian area specific treatment (\protect\np{ln\_zdftmx\_itf})} 1315 \label{subsec:ZDF_tmx_itf} 1316 1317 When the Indonesian Through Flow (ITF) area is included in the model domain, 1318 a specific treatment of tidal induced mixing in this area can be used. 1319 It is activated through the namelist logical \np{ln\_tmx\_itf}, and the user must provide an input NetCDF file, 1320 \ifile{mask\_itf}, which contains a mask array defining the ITF area where the specific treatment is applied. 1321 1322 When \np{ln\_tmx\_itf}\forcode{ = .true.}, the two key parameters $q$ and $F(z)$ are adjusted following 1323 the parameterisation developed by \citet{koch-larrouy.madec.ea_GRL07}: 1324 1325 First, the Indonesian archipelago is a complex geographic region with a series of 1326 large, deep, semi-enclosed basins connected via numerous narrow straits. 1327 Once generated, internal tides remain confined within this semi-enclosed area and hardly radiate away. 1328 Therefore all the internal tides energy is consumed within this area. 1329 So it is assumed that $q = 1$, \ie all the energy generated is available for mixing. 1330 Note that for test purposed, the ITF tidal dissipation efficiency is a namelist parameter (\np{rn\_tfe\_itf}). 1331 A value of $1$ or close to is this recommended for this parameter. 1332 1333 Second, the vertical structure function, $F(z)$, is no more associated with a bottom intensification of the mixing, 1334 but with a maximum of energy available within the thermocline. 1335 \citet{koch-larrouy.madec.ea_GRL07} have suggested that the vertical distribution of 1336 the energy dissipation proportional to $N^2$ below the core of the thermocline and to $N$ above. 1337 The resulting $F(z)$ is: 1338 \[ 1339 % \label{eq:Fz_itf} 1340 F(i,j,k) \sim \left\{ 1341 \begin{aligned} 1342 \frac{q\,\Gamma E(i,j) } {\rho N \, \int N dz} \qquad \text{when $\partial_z N < 0$} \\ 1343 \frac{q\,\Gamma E(i,j) } {\rho \, \int N^2 dz} \qquad \text{when $\partial_z N > 0$} 1344 \end{aligned} 1345 \right. 1346 \] 1347 1348 Averaged over the ITF area, the resulting tidal mixing coefficient is $1.5\,cm^2/s$, 1349 which agrees with the independent estimates inferred from observations. 1350 Introduced in a regional OGCM, the parameterization improves the water mass characteristics in 1351 the different Indonesian seas, suggesting that the horizontal and vertical distributions of 1352 the mixing are adequately prescribed \citep{koch-larrouy.madec.ea_GRL07, koch-larrouy.madec.ea_OD08*a, koch-larrouy.madec.ea_OD08*b}. 1353 Note also that such a parameterisation has a significant impact on the behaviour of 1354 global coupled GCMs \citep{koch-larrouy.lengaigne.ea_CD10}. 1355 1356 % ================================================================ 1357 % Internal wave-driven mixing 1358 % ================================================================ 1359 \section[Internal wave-driven mixing (\texttt{\textbf{key\_zdftmx\_new}})] 1360 {Internal wave-driven mixing (\protect\key{zdftmx\_new})} 1361 \label{sec:ZDF_tmx_new} 1362 1363 %--------------------------------------------namzdf_tmx_new------------------------------------------ 1364 % 1365 %\nlst{namzdf_tmx_new} 1178 \nlst{namzdf_iwm} 1366 1179 %-------------------------------------------------------------------------------------------------------------- 1367 1180 … … 1376 1189 where $R_f$ is the mixing efficiency and $\epsilon$ is a specified three dimensional distribution of 1377 1190 the energy available for mixing. 1378 If the \np{ln\_mevar} namelist parameter is set to false, the mixing efficiency is taken as constant and1191 If the \np{ln\_mevar} namelist parameter is set to \forcode{.false.}, the mixing efficiency is taken as constant and 1379 1192 equal to 1/6 \citep{osborn_JPO80}. 1380 1193 In the opposite (recommended) case, $R_f$ is instead a function of … … 1386 1199 1387 1200 In addition to the mixing efficiency, the ratio of salt to heat diffusivities can chosen to vary 1388 as a function of $Re_b$ by setting the \np{ln\_tsdiff} parameter to true, a recommended choice.1201 as a function of $Re_b$ by setting the \np{ln\_tsdiff} parameter to \forcode{.true.}, a recommended choice. 1389 1202 This parameterization of differential mixing, due to \cite{jackson.rehmann_JPO14}, 1390 1203 is implemented as in \cite{de-lavergne.madec.ea_JPO16}. … … 1392 1205 The three-dimensional distribution of the energy available for mixing, $\epsilon(i,j,k)$, 1393 1206 is constructed from three static maps of column-integrated internal wave energy dissipation, 1394 $E_{cri}(i,j)$, $E_{pyc}(i,j)$, and $E_{bot}(i,j)$, combined to three corresponding vertical structures 1395 (de Lavergne et al., in prep): 1207 $E_{cri}(i,j)$, $E_{pyc}(i,j)$, and $E_{bot}(i,j)$, combined to three corresponding vertical structures: 1208 1396 1209 \begin{align*} 1397 1210 F_{cri}(i,j,k) &\propto e^{-h_{ab} / h_{cri} }\\ 1398 F_{pyc}(i,j,k) &\propto N^{n \_p}\\1211 F_{pyc}(i,j,k) &\propto N^{n_p}\\ 1399 1212 F_{bot}(i,j,k) &\propto N^2 \, e^{- h_{wkb} / h_{bot} } 1400 1213 \end{align*} … … 1404 1217 h_{wkb} = H \, \frac{ \int_{-H}^{z} N \, dz' } { \int_{-H}^{\eta} N \, dz' } \; , 1405 1218 \] 1406 The $n_p$ parameter (given by \np{nn\_zpyc} in \ngn{namzdf\_ tmx\_new} namelist)1219 The $n_p$ parameter (given by \np{nn\_zpyc} in \ngn{namzdf\_iwm} namelist) 1407 1220 controls the stratification-dependence of the pycnocline-intensified dissipation. 1408 It can take values of 1 (recommended) or 2.1221 It can take values of $1$ (recommended) or $2$. 1409 1222 Finally, the vertical structures $F_{cri}$ and $F_{bot}$ require the specification of 1410 1223 the decay scales $h_{cri}(i,j)$ and $h_{bot}(i,j)$, which are defined by two additional input maps. … … 1412 1225 $h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of 1413 1226 the abyssal hill topography \citep{goff_JGR10} and the latitude. 1227 % 1228 % Jc: input files names ? 1229 1230 % ================================================================ 1231 % surface wave-induced mixing 1232 % ================================================================ 1233 \section[Surface wave-induced mixing (\forcode{ln_zdfswm = .true.})] 1234 {Surface wave-induced mixing (\protect\np{ln\_zdfswm}\forcode{ = .true.})} 1235 \label{subsec:ZDF_swm} 1236 1237 TBC ... 1238 1239 % ================================================================ 1240 % Adaptive-implicit vertical advection 1241 % ================================================================ 1242 \section[Adaptive-implicit vertical advection (\forcode{ln_zad_Aimp = .true.})] 1243 {Adaptive-implicit vertical advection(\protect\np{ln\_zad\_Aimp}\forcode{ = .true.})} 1244 \label{subsec:ZDF_aimp} 1245 1246 This refers to \citep{shchepetkin_OM15}. 1247 1248 TBC ... 1249 1250 1414 1251 1415 1252 % ================================================================
Note: See TracChangeset
for help on using the changeset viewer.