Changeset 11335 for NEMO/trunk/doc/latex/NEMO/subfiles/annex_B.tex
- Timestamp:
- 2019-07-24T12:16:18+02:00 (4 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/annex_B.tex
r11331 r11335 53 53 { 54 54 \begin{array}{*{20}l} 55 D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left. 56 {\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 57 &\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma_2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 58 &\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma_1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. 59 \left. {\left. {+\left( {\varepsilon +\sigma_1^2+\sigma_2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right] 55 D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i} \left. \left[ e_2\,e_3 \, A^{lT} 56 \left( \ \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s 57 -\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right] \right|_s \right. \\ 58 & \quad \ + \ \left. \frac{\partial }{\partial j} \left. \left[ e_1\,e_3 \, A^{lT} 59 \left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s 60 -\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right] \right|_s \right. \\ 61 & \quad \ + \ \left. e_1\,e_2\, \frac{\partial }{\partial s} \left[ A^{lT} \; \left( 62 -\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s 63 -\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s 64 +\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \; \right\} . 60 65 \end{array} 61 66 } … … 90 95 { 91 96 \begin{array}{*{20}l} 92 \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, itbecomes:}97 \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:} 93 98 % 94 & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\99 D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 95 100 & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 96 101 & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ … … 99 104 & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}} \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 100 105 & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 101 & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} 106 & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} . 102 107 \end{array} 103 108 } \\ … … 105 110 \begin{array}{*{20}l} 106 111 % 107 \intertext{Using the same remark as just above, itbecomes:}112 \intertext{Using the same remark as just above, $D^T$ becomes:} 108 113 % 109 &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\114 D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 110 115 & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 111 116 & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 112 & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }117 & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . } 113 118 \end{array} 114 119 } \\ … … 120 125 the third line reduces to a single vertical derivative, so it becomes:} 121 126 % 122 & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\127 D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 123 128 & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 124 129 % 125 130 \intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} 126 131 \end{array} 127 } \\ 132 } \\ 128 133 % 129 134 {\frac{1}{e_1\,e_2\,e_3}} … … 228 233 The isopycnal diffusion operator \autoref{apdx:B4}, 229 234 \autoref{apdx:B_ldfiso} conserves tracer quantity and dissipates its square. 230 The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes. 231 Let us demonstrate the second one:235 As \autoref{apdx:B4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero 236 (as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one: 232 237 \[ 233 238 \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv … … 248 253 j}-a_2 \frac{\partial T}{\partial k}} \right)^2} 249 254 +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right] \\ 250 & \geq 0 255 & \geq 0 . 251 256 \end{array} 252 257 } … … 365 370 the third component of the second vector is obviously zero and thus : 366 371 \[ 367 \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \ right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)372 \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) . 368 373 \] 369 374 … … 381 386 - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) 382 387 + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } 383 \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) \\388 \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\ 384 389 \end{equation} 385 390 that is, in expanded form: … … 388 393 & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi } \right)}{\partial i} 389 394 -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j} 390 +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right)\\395 +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right) , \\ 391 396 D^{\textbf{U}}_v 392 397 & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j} 393 398 +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i} 394 +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right)399 +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) . 395 400 \end{align*} 396 401
Note: See TracChangeset
for help on using the changeset viewer.