Changeset 11537
- Timestamp:
- 2019-09-12T10:24:48+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex
- Files:
-
- 26 edited
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r11435 r11537 64 64 Typically the increments are spread evenly over the full window. 65 65 In addition, two different weighting functions have been implemented. 66 The first function (namelist option \np{niaufn} =0) employs constant weights,66 The first function (namelist option \np{niaufn}=0) employs constant weights, 67 67 \begin{align} 68 68 \label{eq:F1_i} … … 77 77 \end{align} 78 78 where $M = m-n$. 79 The second function (namelist option \np{niaufn} =1) employs peaked hat-like weights in order to give maximum weight in the centre of the sub-window,79 The second function (namelist option \np{niaufn}=1) employs peaked hat-like weights in order to give maximum weight in the centre of the sub-window, 80 80 with the weighting reduced linearly to a small value at the window end-points: 81 81 \begin{align} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_CONFIG.tex
r11435 r11537 254 254 255 255 The GYRE configuration is set like an analytical configuration. 256 Through \np{ln\_read\_cfg}\forcode{ =.false.} in \nam{cfg} namelist defined in256 Through \np{ln\_read\_cfg}\forcode{=.false.} in \nam{cfg} namelist defined in 257 257 the reference configuration \path{./cfgs/GYRE_PISCES/EXPREF/namelist_cfg} 258 258 analytical definition of grid in GYRE is done in usrdef\_hrg, usrdef\_zgr routines. … … 266 266 Obviously, the namelist parameters have to be adjusted to the chosen resolution, 267 267 see the Configurations pages on the \NEMO\ web site (\NEMO\ Configurations). 268 In the vertical, GYRE uses the default 30 ocean levels (\jp{jpk}\forcode{ =31}) (\autoref{fig:zgr}).268 In the vertical, GYRE uses the default 30 ocean levels (\jp{jpk}\forcode{=31}) (\autoref{fig:zgr}). 269 269 270 270 The GYRE configuration is also used in benchmark test as it is very simple to increase its resolution and … … 272 272 For example, keeping a same model size on each processor while increasing the number of processor used is very easy, 273 273 even though the physical integrity of the solution can be compromised. 274 Benchmark is activate via \np{ln\_bench}\forcode{ =.true.} in \nam{usr\_def} in274 Benchmark is activate via \np{ln\_bench}\forcode{=.true.} in \nam{usr\_def} in 275 275 namelist \path{./cfgs/GYRE_PISCES/EXPREF/namelist_cfg}. 276 276 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11536 r11537 125 125 126 126 XIOS may be used to read single file restart produced by \NEMO. Currently only the variables written to 127 file \forcode{numror} can be handled by XIOS. To activate restart reading using XIOS, set \np{ln\_xios\_read}\forcode{ =.true. }127 file \forcode{numror} can be handled by XIOS. To activate restart reading using XIOS, set \np{ln\_xios\_read}\forcode{=.true. } 128 128 in \textit{namelist\_cfg}. This setting will be ignored when multiple restart files are present, and default \NEMO 129 129 functionality will be used for reading. There is no need to change iodef.xml file to use XIOS to read … … 143 143 type of restart \NEMO\ will write. If it is set to 0, default \NEMO\ functionality will be used - each 144 144 processor writes its own restart file; if it is set to 1 XIOS will write restart into a single file; 145 for \np{nn\_wxios}\forcode{ =2} the restart will be written by XIOS into multiple files, one for each XIOS server.146 Note, however, that \textbf{\NEMO\ will not read restart generated by XIOS when \np{nn\_wxios}\forcode{ =2}}. The restart will145 for \np{nn\_wxios}\forcode{=2} the restart will be written by XIOS into multiple files, one for each XIOS server. 146 Note, however, that \textbf{\NEMO\ will not read restart generated by XIOS when \np{nn\_wxios}\forcode{=2}}. The restart will 147 147 have to be rebuild before continuing the run. This option aims to reduce number of restart files generated by \NEMO\ only, 148 148 and may be useful when there is a need to change number of processors used to run simulation. … … 1508 1508 \textbf{Note that} in the current version (v3.6), many changes has been introduced but not fully tested. 1509 1509 In particular, options associated with \np{ln\_dyn\_mxl}, \np{ln\_vor\_trd}, and \np{ln\_tra\_mxl} are not working, 1510 and none of the options have been tested with variable volume (\ie\ \np{ln\_linssh}\forcode{ =.true.}).1510 and none of the options have been tested with variable volume (\ie\ \np{ln\_linssh}\forcode{=.true.}). 1511 1511 1512 1512 % ------------------------------------------------------------------------------------------------------------- … … 1525 1525 Options are defined by \nam{flo} namelist variables. 1526 1526 The algorithm used is based either on the work of \cite{blanke.raynaud_JPO97} (default option), 1527 or on a $4^th$ Runge-Hutta algorithm (\np{ln\_flork4}\forcode{ =.true.}).1527 or on a $4^th$ Runge-Hutta algorithm (\np{ln\_flork4}\forcode{=.true.}). 1528 1528 Note that the \cite{blanke.raynaud_JPO97} algorithm have the advantage of providing trajectories which 1529 1529 are consistent with the numeric of the code, so that the trajectories never intercept the bathymetry. … … 1532 1532 1533 1533 Initial coordinates can be given with Ariane Tools convention 1534 (IJK coordinates, (\np{ln\_ariane}\forcode{ =.true.}) ) or with longitude and latitude.1534 (IJK coordinates, (\np{ln\_ariane}\forcode{=.true.}) ) or with longitude and latitude. 1535 1535 1536 1536 In case of Ariane convention, input filename is \textit{init\_float\_ariane}. … … 1583 1583 1584 1584 \np{jpnfl} is the total number of floats during the run. 1585 When initial positions are read in a restart file (\np{ln\_rstflo}\forcode{ =.true.} ),1585 When initial positions are read in a restart file (\np{ln\_rstflo}\forcode{=.true.} ), 1586 1586 \np{jpnflnewflo} can be added in the initialization file. 1587 1587 … … 1591 1591 creation of the float restart file. 1592 1592 1593 Output data can be written in ascii files (\np{ln\_flo\_ascii}\forcode{ =.true.}).1593 Output data can be written in ascii files (\np{ln\_flo\_ascii}\forcode{=.true.}). 1594 1594 In that case, output filename is trajec\_float. 1595 1595 1596 Another possiblity of writing format is Netcdf (\np{ln\_flo\_ascii}\forcode{ =.false.}) with1596 Another possiblity of writing format is Netcdf (\np{ln\_flo\_ascii}\forcode{=.false.}) with 1597 1597 \key{iomput} and outputs selected in iodef.xml. 1598 1598 Here it is an example of specification to put in files description section: … … 1944 1944 1945 1945 Third, the discretisation of \autoref{eq:steric_Bq} depends on the type of free surface which is considered. 1946 In the non linear free surface case, \ie\ \np{ln\_linssh}\forcode{ =.true.}, it is given by1946 In the non linear free surface case, \ie\ \np{ln\_linssh}\forcode{=.true.}, it is given by 1947 1947 1948 1948 \[ … … 2039 2039 sea water pressure at sea floor (botpres), dynamic sea surface height (sshdyn). 2040 2040 2041 In \mdl{diaptr} when \np{ln\_diaptr}\forcode{ =.true.}2041 In \mdl{diaptr} when \np{ln\_diaptr}\forcode{=.true.} 2042 2042 (see the \nam{ptr} namelist below) can be computed on-line the poleward heat and salt transports, 2043 2043 their advective and diffusive component, and the meriodional stream function . 2044 When \np{ln\_subbas}\forcode{ =.true.}, transports and stream function are computed for the Atlantic, Indian,2044 When \np{ln\_subbas}\forcode{=.true.}, transports and stream function are computed for the Atlantic, Indian, 2045 2045 Pacific and Indo-Pacific Oceans (defined north of 30\deg{S}) as well as for the World Ocean. 2046 2046 The sub-basin decomposition requires an input file (\ifile{subbasins}) which contains three 2D mask arrays, -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r11435 r11537 492 492 (d) hybrid $s-z$ coordinate, 493 493 (e) hybrid $s-z$ coordinate with partial step, and 494 (f) same as (e) but in the non-linear free surface (\protect\np{ln\_linssh}\forcode{ =.false.}).494 (f) same as (e) but in the non-linear free surface (\protect\np{ln\_linssh}\forcode{=.false.}). 495 495 Note that the non-linear free surface can be used with any of the 5 coordinates (a) to (e). 496 496 } … … 508 508 a single configuration file can support both options. 509 509 510 By default a non-linear free surface is used (\np{ln\_linssh} set to \forcode{ =.false.} in \nam{dom}):510 By default a non-linear free surface is used (\np{ln\_linssh} set to \forcode{=.false.} in \nam{dom}): 511 511 the coordinate follow the time-variation of the free surface so that the transformation is time dependent: 512 512 $z(i,j,k,t)$ (\eg\ \autoref{fig:z_zps_s_sps}f). 513 When a linear free surface is assumed (\np{ln\_linssh} set to \forcode{ =.true.} in \nam{dom}),513 When a linear free surface is assumed (\np{ln\_linssh} set to \forcode{=.true.} in \nam{dom}), 514 514 the vertical coordinates are fixed in time, but the seawater can move up and down across the $z_0$ surface 515 515 (in other words, the top of the ocean in not a rigid lid). … … 530 530 531 531 \begin{itemize} 532 \item $z$-coordinate with full step bathymetry (\np{ln\_zco}\forcode{ =.true.}),533 \item $z$-coordinate with partial step ($zps$) bathymetry (\np{ln\_zps}\forcode{ =.true.}),534 \item Generalized, $s$-coordinate (\np{ln\_sco}\forcode{ =.true.}).532 \item $z$-coordinate with full step bathymetry (\np{ln\_zco}\forcode{=.true.}), 533 \item $z$-coordinate with partial step ($zps$) bathymetry (\np{ln\_zps}\forcode{=.true.}), 534 \item Generalized, $s$-coordinate (\np{ln\_sco}\forcode{=.true.}). 535 535 \end{itemize} 536 536 … … 550 550 They are updated at each model time step. 551 551 The initial fixed reference coordinate system is held in variable names with a $\_0$ suffix. 552 When the linear free surface option is used (\np{ln\_linssh}\forcode{ =.true.}),552 When the linear free surface option is used (\np{ln\_linssh}\forcode{=.true.}), 553 553 \textit{before}, \textit{now} and \textit{after} arrays are initially set to 554 554 their reference counterpart and remain fixed. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11435 r11537 192 192 193 193 Options are defined through the \nam{dyn\_vor} namelist variables. 194 Four discretisations of the vorticity term (\texttt{ln\_dynvor\_xxx}\forcode{ =.true.}) are available:194 Four discretisations of the vorticity term (\texttt{ln\_dynvor\_xxx}\forcode{=.true.}) are available: 195 195 conserving potential enstrophy of horizontally non-divergent flow (ENS scheme); 196 196 conserving horizontal kinetic energy (ENE scheme); … … 200 200 (EEN scheme) (see \autoref{subsec:C_vorEEN}). 201 201 In the case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the consistency of 202 vorticity term with analytical equations (\np{ln\_dynvor\_con}\forcode{ =.true.}).202 vorticity term with analytical equations (\np{ln\_dynvor\_con}\forcode{=.true.}). 203 203 The vorticity terms are all computed in dedicated routines that can be found in the \mdl{dynvor} module. 204 204 … … 206 206 % enstrophy conserving scheme 207 207 %------------------------------------------------------------- 208 \subsubsection[Enstrophy conserving scheme (\forcode{ln_dynvor_ens =.true.})]209 {Enstrophy conserving scheme (\protect\np{ln\_dynvor\_ens}\forcode{ =.true.})}208 \subsubsection[Enstrophy conserving scheme (\forcode{ln_dynvor_ens=.true.})] 209 {Enstrophy conserving scheme (\protect\np{ln\_dynvor\_ens}\forcode{=.true.})} 210 210 \label{subsec:DYN_vor_ens} 211 211 … … 230 230 % energy conserving scheme 231 231 %------------------------------------------------------------- 232 \subsubsection[Energy conserving scheme (\forcode{ln_dynvor_ene =.true.})]233 {Energy conserving scheme (\protect\np{ln\_dynvor\_ene}\forcode{ =.true.})}232 \subsubsection[Energy conserving scheme (\forcode{ln_dynvor_ene=.true.})] 233 {Energy conserving scheme (\protect\np{ln\_dynvor\_ene}\forcode{=.true.})} 234 234 \label{subsec:DYN_vor_ene} 235 235 … … 251 251 % mix energy/enstrophy conserving scheme 252 252 %------------------------------------------------------------- 253 \subsubsection[Mixed energy/enstrophy conserving scheme (\forcode{ln_dynvor_mix =.true.})]254 {Mixed energy/enstrophy conserving scheme (\protect\np{ln\_dynvor\_mix}\forcode{ =.true.})}253 \subsubsection[Mixed energy/enstrophy conserving scheme (\forcode{ln_dynvor_mix=.true.})] 254 {Mixed energy/enstrophy conserving scheme (\protect\np{ln\_dynvor\_mix}\forcode{=.true.})} 255 255 \label{subsec:DYN_vor_mix} 256 256 … … 277 277 % energy and enstrophy conserving scheme 278 278 %------------------------------------------------------------- 279 \subsubsection[Energy and enstrophy conserving scheme (\forcode{ln_dynvor_een =.true.})]280 {Energy and enstrophy conserving scheme (\protect\np{ln\_dynvor\_een}\forcode{ =.true.})}279 \subsubsection[Energy and enstrophy conserving scheme (\forcode{ln_dynvor_een=.true.})] 280 {Energy and enstrophy conserving scheme (\protect\np{ln\_dynvor\_een}\forcode{=.true.})} 281 281 \label{subsec:DYN_vor_een} 282 282 … … 328 328 A key point in \autoref{eq:een_e3f} is how the averaging in the \textbf{i}- and \textbf{j}- directions is made. 329 329 It uses the sum of masked t-point vertical scale factor divided either by the sum of the four t-point masks 330 (\np{nn\_een\_e3f}\forcode{ = 1}), or just by $4$ (\np{nn\_een\_e3f}\forcode{ =.true.}).330 (\np{nn\_een\_e3f}\forcode{=1}), or just by $4$ (\np{nn\_een\_e3f}\forcode{=.true.}). 331 331 The latter case preserves the continuity of $e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and 332 332 extends by continuity the value of $e_{3f}$ into the land areas. … … 410 410 \right. 411 411 \] 412 When \np{ln\_dynzad\_zts}\forcode{ =.true.},412 When \np{ln\_dynzad\_zts}\forcode{=.true.}, 413 413 a split-explicit time stepping with 5 sub-timesteps is used on the vertical advection term. 414 414 This option can be useful when the value of the timestep is limited by vertical advection \citep{lemarie.debreu.ea_OM15}. … … 495 495 % 2nd order centred scheme 496 496 %------------------------------------------------------------- 497 \subsubsection[CEN2: $2^{nd}$ order centred scheme (\forcode{ln_dynadv_cen2 =.true.})]498 {CEN2: $2^{nd}$ order centred scheme (\protect\np{ln\_dynadv\_cen2}\forcode{ =.true.})}497 \subsubsection[CEN2: $2^{nd}$ order centred scheme (\forcode{ln_dynadv_cen2=.true.})] 498 {CEN2: $2^{nd}$ order centred scheme (\protect\np{ln\_dynadv\_cen2}\forcode{=.true.})} 499 499 \label{subsec:DYN_adv_cen2} 500 500 … … 519 519 % UBS scheme 520 520 %------------------------------------------------------------- 521 \subsubsection[UBS: Upstream Biased Scheme (\forcode{ln_dynadv_ubs =.true.})]522 {UBS: Upstream Biased Scheme (\protect\np{ln\_dynadv\_ubs}\forcode{ =.true.})}521 \subsubsection[UBS: Upstream Biased Scheme (\forcode{ln_dynadv_ubs=.true.})] 522 {UBS: Upstream Biased Scheme (\protect\np{ln\_dynadv\_ubs}\forcode{=.true.})} 523 523 \label{subsec:DYN_adv_ubs} 524 524 … … 542 542 But the amplitudes of the false extrema are significantly reduced over those in the centred second order method. 543 543 As the scheme already includes a diffusion component, it can be used without explicit lateral diffusion on momentum 544 (\ie\ \np{ln\_dynldf\_lap}\forcode{ = }\np{ln\_dynldf\_bilap}\forcode{ =.false.}),544 (\ie\ \np{ln\_dynldf\_lap}\forcode{=}\np{ln\_dynldf\_bilap}\forcode{=.false.}), 545 545 and it is recommended to do so. 546 546 … … 596 596 % z-coordinate with full step 597 597 %-------------------------------------------------------------------------------------------------------------- 598 \subsection[Full step $Z$-coordinate (\forcode{ln_dynhpg_zco =.true.})]599 {Full step $Z$-coordinate (\protect\np{ln\_dynhpg\_zco}\forcode{ =.true.})}598 \subsection[Full step $Z$-coordinate (\forcode{ln_dynhpg_zco=.true.})] 599 {Full step $Z$-coordinate (\protect\np{ln\_dynhpg\_zco}\forcode{=.true.})} 600 600 \label{subsec:DYN_hpg_zco} 601 601 … … 642 642 % z-coordinate with partial step 643 643 %-------------------------------------------------------------------------------------------------------------- 644 \subsection[Partial step $Z$-coordinate (\forcode{ln_dynhpg_zps =.true.})]645 {Partial step $Z$-coordinate (\protect\np{ln\_dynhpg\_zps}\forcode{ =.true.})}644 \subsection[Partial step $Z$-coordinate (\forcode{ln_dynhpg_zps=.true.})] 645 {Partial step $Z$-coordinate (\protect\np{ln\_dynhpg\_zps}\forcode{=.true.})} 646 646 \label{subsec:DYN_hpg_zps} 647 647 … … 672 672 density Jacobian with cubic polynomial method is currently disabled whilst known bugs are under investigation. 673 673 674 $\bullet$ Traditional coding (see for example \citet{madec.delecluse.ea_JPO96}: (\np{ln\_dynhpg\_sco}\forcode{ =.true.})674 $\bullet$ Traditional coding (see for example \citet{madec.delecluse.ea_JPO96}: (\np{ln\_dynhpg\_sco}\forcode{=.true.}) 675 675 \begin{equation} 676 676 \label{eq:dynhpg_sco} … … 690 690 ($e_{3w}$). 691 691 692 $\bullet$ Traditional coding with adaptation for ice shelf cavities (\np{ln\_dynhpg\_isf}\forcode{ =.true.}).693 This scheme need the activation of ice shelf cavities (\np{ln\_isfcav}\forcode{ =.true.}).694 695 $\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np{ln\_dynhpg\_prj}\forcode{ =.true.})692 $\bullet$ Traditional coding with adaptation for ice shelf cavities (\np{ln\_dynhpg\_isf}\forcode{=.true.}). 693 This scheme need the activation of ice shelf cavities (\np{ln\_isfcav}\forcode{=.true.}). 694 695 $\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np{ln\_dynhpg\_prj}\forcode{=.true.}) 696 696 697 697 $\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{shchepetkin.mcwilliams_OM05} 698 (\np{ln\_dynhpg\_djc}\forcode{ =.true.}) (currently disabled; under development)698 (\np{ln\_dynhpg\_djc}\forcode{=.true.}) (currently disabled; under development) 699 699 700 700 Note that expression \autoref{eq:dynhpg_sco} is commonly used when the variable volume formulation is activated 701 701 (\texttt{vvl?}) because in that case, even with a flat bottom, 702 702 the coordinate surfaces are not horizontal but follow the free surface \citep{levier.treguier.ea_rpt07}. 703 The pressure jacobian scheme (\np{ln\_dynhpg\_prj}\forcode{ =.true.}) is available as704 an improved option to \np{ln\_dynhpg\_sco}\forcode{ =.true.} when \texttt{vvl?} is active.703 The pressure jacobian scheme (\np{ln\_dynhpg\_prj}\forcode{=.true.}) is available as 704 an improved option to \np{ln\_dynhpg\_sco}\forcode{=.true.} when \texttt{vvl?} is active. 705 705 The pressure Jacobian scheme uses a constrained cubic spline to 706 706 reconstruct the density profile across the water column. … … 713 713 \label{subsec:DYN_hpg_isf} 714 714 Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient due to the ice shelf load and 715 the pressure gradient due to the ocean load (\np{ln\_dynhpg\_isf}\forcode{ =.true.}).\\715 the pressure gradient due to the ocean load (\np{ln\_dynhpg\_isf}\forcode{=.true.}).\\ 716 716 717 717 The main hypothesis to compute the ice shelf load is that the ice shelf is in an isostatic equilibrium. … … 728 728 % Time-scheme 729 729 %-------------------------------------------------------------------------------------------------------------- 730 \subsection[Time-scheme (\forcode{ln_dynhpg_imp = .{true,false}.})]731 {Time-scheme (\protect\np{ln\_dynhpg\_imp}\forcode{ = .\{true,false\}}.)}730 \subsection[Time-scheme (\forcode{ln_dynhpg_imp={.true.,.false.}})] 731 {Time-scheme (\protect\np{ln\_dynhpg\_imp}\forcode{=.true.,.false.})} 732 732 \label{subsec:DYN_hpg_imp} 733 733 … … 745 745 rather than at the central time level $t$ only, as in the standard leapfrog scheme. 746 746 747 $\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}\forcode{ =.true.}):747 $\bullet$ leapfrog scheme (\np{ln\_dynhpg\_imp}\forcode{=.true.}): 748 748 749 749 \begin{equation} … … 753 753 \end{equation} 754 754 755 $\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}\forcode{ =.true.}):755 $\bullet$ semi-implicit scheme (\np{ln\_dynhpg\_imp}\forcode{=.true.}): 756 756 \begin{equation} 757 757 \label{eq:dynhpg_imp} … … 771 771 such as the stability limits associated with advection or diffusion. 772 772 773 In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}\forcode{ =.true.}.773 In practice, the semi-implicit scheme is used when \np{ln\_dynhpg\_imp}\forcode{=.true.}. 774 774 In this case, we choose to apply the time filter to temperature and salinity used in the equation of state, 775 775 instead of applying it to the hydrostatic pressure or to the density, … … 829 829 % Explicit free surface formulation 830 830 %-------------------------------------------------------------------------------------------------------------- 831 \subsection[Explicit free surface (\texttt{ln\_dynspg\_exp}\forcode{ =.true.})]832 {Explicit free surface (\protect\np{ln\_dynspg\_exp}\forcode{ =.true.})}831 \subsection[Explicit free surface (\texttt{ln\_dynspg\_exp}\forcode{=.true.})] 832 {Explicit free surface (\protect\np{ln\_dynspg\_exp}\forcode{=.true.})} 833 833 \label{subsec:DYN_spg_exp} 834 834 … … 856 856 % Split-explict free surface formulation 857 857 %-------------------------------------------------------------------------------------------------------------- 858 \subsection[Split-explicit free surface (\texttt{ln\_dynspg\_ts}\forcode{ =.true.})]859 {Split-explicit free surface (\protect\np{ln\_dynspg\_ts}\forcode{ =.true.})}858 \subsection[Split-explicit free surface (\texttt{ln\_dynspg\_ts}\forcode{=.true.})] 859 {Split-explicit free surface (\protect\np{ln\_dynspg\_ts}\forcode{=.true.})} 860 860 \label{subsec:DYN_spg_ts} 861 861 %------------------------------------------namsplit----------------------------------------------------------- … … 871 871 The size of the small time step, $\rdt_e$ (the external mode or barotropic time step) is provided through 872 872 the \np{nn\_baro} namelist parameter as: $\rdt_e = \rdt / nn\_baro$. 873 This parameter can be optionally defined automatically (\np{ln\_bt\_nn\_auto}\forcode{ =.true.}) considering that873 This parameter can be optionally defined automatically (\np{ln\_bt\_nn\_auto}\forcode{=.true.}) considering that 874 874 the stability of the barotropic system is essentially controled by external waves propagation. 875 875 Maximum Courant number is in that case time independent, and easily computed online from the input bathymetry. … … 916 916 The former are used to obtain time filtered quantities at $t+\rdt$ while 917 917 the latter are used to obtain time averaged transports to advect tracers. 918 a) Forward time integration: \protect\np{ln\_bt\_fw}\forcode{ =.true.},919 \protect\np{ln\_bt\_av}\forcode{ =.true.}.920 b) Centred time integration: \protect\np{ln\_bt\_fw}\forcode{ =.false.},921 \protect\np{ln\_bt\_av}\forcode{ =.true.}.918 a) Forward time integration: \protect\np{ln\_bt\_fw}\forcode{=.true.}, 919 \protect\np{ln\_bt\_av}\forcode{=.true.}. 920 b) Centred time integration: \protect\np{ln\_bt\_fw}\forcode{=.false.}, 921 \protect\np{ln\_bt\_av}\forcode{=.true.}. 922 922 c) Forward time integration with no time filtering (POM-like scheme): 923 \protect\np{ln\_bt\_fw}\forcode{ = .true.}, \protect\np{ln\_bt\_av}\forcode{ =.false.}.923 \protect\np{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln\_bt\_av}\forcode{=.false.}. 924 924 } 925 925 \end{center} … … 927 927 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > 928 928 929 In the default case (\np{ln\_bt\_fw}\forcode{ =.true.}),929 In the default case (\np{ln\_bt\_fw}\forcode{=.true.}), 930 930 the external mode is integrated between \textit{now} and \textit{after} baroclinic time-steps 931 931 (\autoref{fig:DYN_dynspg_ts}a). 932 932 To avoid aliasing of fast barotropic motions into three dimensional equations, 933 time filtering is eventually applied on barotropic quantities (\np{ln\_bt\_av}\forcode{ =.true.}).933 time filtering is eventually applied on barotropic quantities (\np{ln\_bt\_av}\forcode{=.true.}). 934 934 In that case, the integration is extended slightly beyond \textit{after} time step to 935 935 provide time filtered quantities. … … 938 938 asselin filtering is not applied to barotropic quantities.\\ 939 939 Alternatively, one can choose to integrate barotropic equations starting from \textit{before} time step 940 (\np{ln\_bt\_fw}\forcode{ =.false.}).940 (\np{ln\_bt\_fw}\forcode{=.false.}). 941 941 Although more computationaly expensive ( \np{nn\_baro} additional iterations are indeed necessary), 942 942 the baroclinic to barotropic forcing term given at \textit{now} time step become centred in … … 963 963 964 964 One can eventually choose to feedback instantaneous values by not using any time filter 965 (\np{ln\_bt\_av}\forcode{ =.false.}).965 (\np{ln\_bt\_av}\forcode{=.false.}). 966 966 In that case, external mode equations are continuous in time, 967 967 \ie\ they are not re-initialized when starting a new sub-stepping sequence. … … 1165 1165 1166 1166 % ================================================================ 1167 \subsection[Iso-level laplacian (\forcode{ln_dynldf_lap =.true.})]1168 {Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}\forcode{ =.true.})}1167 \subsection[Iso-level laplacian (\forcode{ln_dynldf_lap=.true.})] 1168 {Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}\forcode{=.true.})} 1169 1169 \label{subsec:DYN_ldf_lap} 1170 1170 … … 1191 1191 % Rotated laplacian operator 1192 1192 %-------------------------------------------------------------------------------------------------------------- 1193 \subsection[Rotated laplacian (\forcode{ln_dynldf_iso =.true.})]1194 {Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}\forcode{ =.true.})}1193 \subsection[Rotated laplacian (\forcode{ln_dynldf_iso=.true.})] 1194 {Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}\forcode{=.true.})} 1195 1195 \label{subsec:DYN_ldf_iso} 1196 1196 1197 1197 A rotation of the lateral momentum diffusion operator is needed in several cases: 1198 for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}\forcode{ =.true.}) and1199 for either iso-neutral (\np{ln\_dynldf\_iso}\forcode{ =.true.}) or1200 geopotential (\np{ln\_dynldf\_hor}\forcode{ =.true.}) diffusion in the $s$-coordinate.1198 for iso-neutral diffusion in the $z$-coordinate (\np{ln\_dynldf\_iso}\forcode{=.true.}) and 1199 for either iso-neutral (\np{ln\_dynldf\_iso}\forcode{=.true.}) or 1200 geopotential (\np{ln\_dynldf\_hor}\forcode{=.true.}) diffusion in the $s$-coordinate. 1201 1201 In the partial step case, coordinates are horizontal except at the deepest level and 1202 no rotation is performed when \np{ln\_dynldf\_hor}\forcode{ =.true.}.1202 no rotation is performed when \np{ln\_dynldf\_hor}\forcode{=.true.}. 1203 1203 The diffusion operator is defined simply as the divergence of down gradient momentum fluxes on 1204 1204 each momentum component. … … 1250 1250 % Iso-level bilaplacian operator 1251 1251 %-------------------------------------------------------------------------------------------------------------- 1252 \subsection[Iso-level bilaplacian (\forcode{ln_dynldf_bilap =.true.})]1253 {Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap}\forcode{ =.true.})}1252 \subsection[Iso-level bilaplacian (\forcode{ln_dynldf_bilap=.true.})] 1253 {Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap}\forcode{=.true.})} 1254 1254 \label{subsec:DYN_ldf_bilap} 1255 1255 … … 1277 1277 Two time stepping schemes can be used for the vertical diffusion term: 1278 1278 $(a)$ a forward time differencing scheme 1279 (\np{ln\_zdfexp}\forcode{ =.true.}) using a time splitting technique (\np{nn\_zdfexp} $>$ 1) or1280 $(b)$ a backward (or implicit) time differencing scheme (\np{ln\_zdfexp}\forcode{ =.false.})1279 (\np{ln\_zdfexp}\forcode{=.true.}) using a time splitting technique (\np{nn\_zdfexp} $>$ 1) or 1280 $(b)$ a backward (or implicit) time differencing scheme (\np{ln\_zdfexp}\forcode{=.false.}) 1281 1281 (see \autoref{chap:STP}). 1282 1282 Note that namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics. … … 1328 1328 three other forcings may enter the dynamical equations by affecting the surface pressure gradient. 1329 1329 1330 (1) When \np{ln\_apr\_dyn}\forcode{ =.true.} (see \autoref{sec:SBC_apr}),1330 (1) When \np{ln\_apr\_dyn}\forcode{=.true.} (see \autoref{sec:SBC_apr}), 1331 1331 the atmospheric pressure is taken into account when computing the surface pressure gradient. 1332 1332 1333 (2) When \np{ln\_tide\_pot}\forcode{ = .true.} and \np{ln\_tide}\forcode{ =.true.} (see \autoref{sec:SBC_tide}),1333 (2) When \np{ln\_tide\_pot}\forcode{=.true.} and \np{ln\_tide}\forcode{=.true.} (see \autoref{sec:SBC_tide}), 1334 1334 the tidal potential is taken into account when computing the surface pressure gradient. 1335 1335 1336 (3) When \np{nn\_ice\_embd}\forcode{ =2} and LIM or CICE is used1336 (3) When \np{nn\_ice\_embd}\forcode{=2} and LIM or CICE is used 1337 1337 (\ie\ when the sea-ice is embedded in the ocean), 1338 1338 the snow-ice mass is taken into account when computing the surface pressure gradient. … … 1409 1409 1410 1410 The flux across each $u$-face of a tracer cell is multiplied by a factor zuwdmask (an array which depends on ji and jj). 1411 If the user sets \np{ln\_wd\_dl\_ramp}\forcode{ =.false.} then zuwdmask is 1 when the1411 If the user sets \np{ln\_wd\_dl\_ramp}\forcode{=.false.} then zuwdmask is 1 when the 1412 1412 flux is from a cell with water depth greater than \np{rn\_wdmin1} and 0 otherwise. If the user sets 1413 \np{ln\_wd\_dl\_ramp}\forcode{ =.true.} the flux across the face is ramped down as the water depth decreases1413 \np{ln\_wd\_dl\_ramp}\forcode{=.true.} the flux across the face is ramped down as the water depth decreases 1414 1414 from 2 * \np{rn\_wdmin1} to \np{rn\_wdmin1}. The use of this ramp reduced grid-scale noise in idealised test cases. 1415 1415 … … 1428 1428 fields (tracers independent of $x$, $y$ and $z$). Our scheme conserves constant tracers because 1429 1429 the velocities used at the tracer cell faces on the baroclinic timesteps are carefully calculated by dynspg\_ts 1430 to equal their mean value during the barotropic steps. If the user sets \np{ln\_wd\_dl\_bc}\forcode{ =.true.}, the1430 to equal their mean value during the barotropic steps. If the user sets \np{ln\_wd\_dl\_bc}\forcode{=.true.}, the 1431 1431 baroclinic velocities are also multiplied by a suitably weighted average of zuwdmask. 1432 1432 … … 1655 1655 1656 1656 $\bullet$ vector invariant form or linear free surface 1657 (\np{ln\_dynhpg\_vec}\forcode{ =.true.} ; \texttt{vvl?} not defined):1657 (\np{ln\_dynhpg\_vec}\forcode{=.true.} ; \texttt{vvl?} not defined): 1658 1658 \[ 1659 1659 % \label{eq:dynnxt_vec} … … 1667 1667 1668 1668 $\bullet$ flux form and nonlinear free surface 1669 (\np{ln\_dynhpg\_vec}\forcode{ =.false.} ; \texttt{vvl?} defined):1669 (\np{ln\_dynhpg\_vec}\forcode{=.false.} ; \texttt{vvl?} defined): 1670 1670 \[ 1671 1671 % \label{eq:dynnxt_flux} … … 1681 1681 the subscript $f$ denotes filtered values and $\gamma$ is the Asselin coefficient. 1682 1682 $\gamma$ is initialized as \np{nn\_atfp} (namelist parameter). 1683 Its default value is \np{nn\_atfp}\forcode{ =10.e-3}.1683 Its default value is \np{nn\_atfp}\forcode{=10.e-3}. 1684 1684 In both cases, the modified Asselin filter is not applied since perfect conservation is not an issue for 1685 1685 the momentum equations. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11536 r11537 171 171 % Closed, cyclic (\jp{jperio}\forcode{ = 0..2}) 172 172 % ------------------------------------------------------------------------------------------------------------- 173 \subsection[Closed, cyclic (\forcode{jperio =[0127]})]174 {Closed, cyclic (\protect\jp{jperio}\forcode{ =[0127]})}173 \subsection[Closed, cyclic (\forcode{jperio=[0127]})] 174 {Closed, cyclic (\protect\jp{jperio}\forcode{=[0127]})} 175 175 \label{subsec:LBC_jperio012} 176 176 … … 185 185 \begin{description} 186 186 187 \item[For closed boundary (\jp{jperio}\forcode{ =0})],187 \item[For closed boundary (\jp{jperio}\forcode{=0})], 188 188 solid walls are imposed at all model boundaries: 189 189 first and last rows and columns are set to zero. 190 190 191 \item[For cyclic east-west boundary (\jp{jperio}\forcode{ =1})],191 \item[For cyclic east-west boundary (\jp{jperio}\forcode{=1})], 192 192 first and last rows are set to zero (closed) whilst the first column is set to 193 193 the value of the last-but-one column and the last column to the value of the second one … … 195 195 Whatever flows out of the eastern (western) end of the basin enters the western (eastern) end. 196 196 197 \item[For cyclic north-south boundary (\jp{jperio}\forcode{ =2})],197 \item[For cyclic north-south boundary (\jp{jperio}\forcode{=2})], 198 198 first and last columns are set to zero (closed) whilst the first row is set to 199 199 the value of the last-but-one row and the last row to the value of the second one … … 201 201 Whatever flows out of the northern (southern) end of the basin enters the southern (northern) end. 202 202 203 \item[Bi-cyclic east-west and north-south boundary (\jp{jperio}\forcode{ =7})] combines cases 1 and 2.203 \item[Bi-cyclic east-west and north-south boundary (\jp{jperio}\forcode{=7})] combines cases 1 and 2. 204 204 205 205 \end{description} … … 220 220 % North fold (\textit{jperio = 3 }to $6)$ 221 221 % ------------------------------------------------------------------------------------------------------------- 222 \subsection[North-fold (\forcode{jperio =[3-6]})]223 {North-fold (\protect\jp{jperio}\forcode{ =[3-6]})}222 \subsection[North-fold (\forcode{jperio=[3-6]})] 223 {North-fold (\protect\jp{jperio}\forcode{=[3-6]})} 224 224 \label{subsec:LBC_north_fold} 225 225 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11435 r11537 24 24 (see the \nam{tra\_ldf} and \nam{dyn\_ldf} below). 25 25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 26 Griffies's implementation, which is used if \np{ln\_traldf\_triad}\forcode{ =.true.},26 Griffies's implementation, which is used if \np{ln\_traldf\_triad}\forcode{=.true.}, 27 27 is described in \autoref{apdx:triad} 28 28 … … 45 45 {No lateral mixing (\protect\np{ln\_traldf\_OFF}, \protect\np{ln\_dynldf\_OFF})} 46 46 47 It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{ =.true.}) and/or48 momentum (\protect\np{ln\_dynldf\_OFF}\forcode{ =.true.}). The latter option is even recommended if using the49 UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ =.true.},47 It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{=.true.}) and/or 48 momentum (\protect\np{ln\_dynldf\_OFF}\forcode{=.true.}). The latter option is even recommended if using the 49 UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{=.true.}, 50 50 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 51 51 52 52 \subsection[Laplacian mixing (\forcode{ln_traldf_lap}, \forcode{ln_dynldf_lap})] 53 53 {Laplacian mixing (\protect\np{ln\_traldf\_lap}, \protect\np{ln\_dynldf\_lap})} 54 Setting \protect\np{ln\_traldf\_lap}\forcode{ = .true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{ =.true.} enables54 Setting \protect\np{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{=.true.} enables 55 55 a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 56 56 Laplacian and Bilaplacian operators for the same variable. … … 58 58 \subsection[Bilaplacian mixing (\forcode{ln_traldf_blp}, \forcode{ln_dynldf_blp})] 59 59 {Bilaplacian mixing (\protect\np{ln\_traldf\_blp}, \protect\np{ln\_dynldf\_blp})} 60 Setting \protect\np{ln\_traldf\_blp}\forcode{ = .true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{ =.true.} enables60 Setting \protect\np{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{=.true.} enables 61 61 a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 62 62 We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. … … 115 115 %gm% caution I'm not sure the simplification was a good idea! 116 116 117 These slopes are computed once in \rou{ldf\_slp\_init} when \np{ln\_sco}\forcode{ =.true.},118 and either \np{ln\_traldf\_hor}\forcode{ = .true.} or \np{ln\_dynldf\_hor}\forcode{ =.true.}.117 These slopes are computed once in \rou{ldf\_slp\_init} when \np{ln\_sco}\forcode{=.true.}, 118 and either \np{ln\_traldf\_hor}\forcode{=.true.} or \np{ln\_dynldf\_hor}\forcode{=.true.}. 119 119 120 120 \subsection{Slopes for tracer iso-neutral mixing} … … 172 172 \item[$s$- or hybrid $s$-$z$- coordinate: ] 173 173 in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 174 the Griffies scheme is used (\np{ln\_traldf\_triad}\forcode{ =.true.};174 the Griffies scheme is used (\np{ln\_traldf\_triad}\forcode{=.true.}; 175 175 see \autoref{apdx:triad}). 176 176 In other words, iso-neutral mixing will only be accurately represented with a linear equation of state 177 (\np{ln\_seos}\forcode{ =.true.}).177 (\np{ln\_seos}\forcode{=.true.}). 178 178 In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:ldfslp_iso} 179 179 will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. … … 230 230 To overcome this problem, several techniques have been proposed in which the numerical schemes of 231 231 the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}. 232 Griffies's scheme is now available in \NEMO\ if \np{ln\_traldf\_triad}\forcode{ =.true.}; see \autoref{apdx:triad}.232 Griffies's scheme is now available in \NEMO\ if \np{ln\_traldf\_triad}\forcode{=.true.}; see \autoref{apdx:triad}. 233 233 Here, another strategy is presented \citep{lazar_phd97}: 234 234 a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of … … 337 337 The way the mixing coefficients are set in the reference version can be described as follows: 338 338 339 \subsection[Mixing coefficients read from file (\forcode{nn_aht_ijk_t = -20, -30}, \forcode{nn_ahm_ijk_t =-20,-30})]340 { Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{ = -20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =-20, -30})}339 \subsection[Mixing coefficients read from file (\forcode{nn_aht_ijk_t=-20, -30}, \forcode{nn_ahm_ijk_t=-20,-30})] 340 { Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{=-20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=-20, -30})} 341 341 342 342 Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, … … 344 344 decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 345 345 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 346 The provided fields can either be 2d (\np{nn\_aht\_ijk\_t}\forcode{ = -20}, \np{nn\_ahm\_ijk\_t}\forcode{ = -20}) or 3d (\np{nn\_aht\_ijk\_t}\forcode{ = -30}, \np{nn\_ahm\_ijk\_t}\forcode{ =-30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}).346 The provided fields can either be 2d (\np{nn\_aht\_ijk\_t}\forcode{=-20}, \np{nn\_ahm\_ijk\_t}\forcode{=-20}) or 3d (\np{nn\_aht\_ijk\_t}\forcode{=-30}, \np{nn\_ahm\_ijk\_t}\forcode{=-30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 347 347 348 348 %-------------------------------------------------TABLE--------------------------------------------------- … … 352 352 \hline 353 353 Namelist parameter & Input filename & dimensions & variable names \\ \hline 354 \np{nn\_ahm\_ijk\_t}\forcode{ =-20} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline355 \np{nn\_aht\_ijk\_t}\forcode{ =-20} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline356 \np{nn\_ahm\_ijk\_t}\forcode{ =-30} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline357 \np{nn\_aht\_ijk\_t}\forcode{ =-30} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline354 \np{nn\_ahm\_ijk\_t}\forcode{=-20} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline 355 \np{nn\_aht\_ijk\_t}\forcode{=-20} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline 356 \np{nn\_ahm\_ijk\_t}\forcode{=-30} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline 357 \np{nn\_aht\_ijk\_t}\forcode{=-30} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline 358 358 \end{tabular} 359 359 \caption{ … … 365 365 %-------------------------------------------------------------------------------------------------------------- 366 366 367 \subsection[Constant mixing coefficients (\forcode{nn_aht_ijk_t = 0}, \forcode{nn_ahm_ijk_t =0})]368 { Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 0}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =0})}367 \subsection[Constant mixing coefficients (\forcode{nn_aht_ijk_t=0}, \forcode{nn_ahm_ijk_t=0})] 368 { Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=0}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=0})} 369 369 370 370 If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: … … 382 382 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn\_Ud}, \np{rn\_Uv}, \np{rn\_Ld} and \np{rn\_Lv}. 383 383 384 \subsection[Vertically varying mixing coefficients (\forcode{nn_aht_ijk_t = 10}, \forcode{nn_ahm_ijk_t =10})]385 {Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 10}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =10})}384 \subsection[Vertically varying mixing coefficients (\forcode{nn_aht_ijk_t=10}, \forcode{nn_ahm_ijk_t=10})] 385 {Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=10}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=10})} 386 386 387 387 In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which … … 390 390 This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 391 391 392 \subsection[Mesh size dependent mixing coefficients (\forcode{nn_aht_ijk_t = 20}, \forcode{nn_ahm_ijk_t =20})]393 {Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 20}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =20})}392 \subsection[Mesh size dependent mixing coefficients (\forcode{nn_aht_ijk_t=20}, \forcode{nn_ahm_ijk_t=20})] 393 {Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=20}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=20})} 394 394 395 395 In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and … … 416 416 \colorbox{yellow}{CASE \np{nn\_aht\_ijk\_t} = 21 to be added} 417 417 418 \subsection[Mesh size and depth dependent mixing coefficients (\forcode{nn_aht_ijk_t = 30}, \forcode{nn_ahm_ijk_t =30})]419 {Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =30})}418 \subsection[Mesh size and depth dependent mixing coefficients (\forcode{nn_aht_ijk_t=30}, \forcode{nn_ahm_ijk_t=30})] 419 {Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=30})} 420 420 421 421 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, … … 423 423 the magnitude of the coefficient. 424 424 425 \subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t = 31}, \forcode{nn_ahm_ijk_t =31})]426 {Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 31}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ =31})}425 \subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t=31}, \forcode{nn_ahm_ijk_t=31})] 426 {Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=31}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=31})} 427 427 In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re = \lvert U \rvert e / A_l$ is constant (and here hardcoded to $12$): 428 428 \colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} … … 438 438 \end{equation} 439 439 440 \subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t =32})]441 {Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{ =32})}440 \subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})] 441 {Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{=32})} 442 442 443 443 This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a … … 491 491 % Eddy Induced Mixing 492 492 % ================================================================ 493 \section[Eddy induced velocity (\forcode{ln_ldfeiv =.true.})]494 {Eddy induced velocity (\protect\np{ln\_ldfeiv}\forcode{ =.true.})}493 \section[Eddy induced velocity (\forcode{ln_ldfeiv=.true.})] 494 {Eddy induced velocity (\protect\np{ln\_ldfeiv}\forcode{=.true.})} 495 495 496 496 \label{sec:LDF_eiv} … … 523 523 } 524 524 525 When \citet{gent.mcwilliams_JPO90} diffusion is used (\np{ln\_ldfeiv}\forcode{ =.true.}),525 When \citet{gent.mcwilliams_JPO90} diffusion is used (\np{ln\_ldfeiv}\forcode{=.true.}), 526 526 an eddy induced tracer advection term is added, 527 527 the formulation of which depends on the slopes of iso-neutral surfaces. … … 530 530 and the sum \autoref{eq:ldfslp_geo} + \autoref{eq:ldfslp_iso} in $s$-coordinates. 531 531 532 If isopycnal mixing is used in the standard way, \ie\ \np{ln\_traldf\_triad}\forcode{ =.false.}, the eddy induced velocity is given by:532 If isopycnal mixing is used in the standard way, \ie\ \np{ln\_traldf\_triad}\forcode{=.false.}, the eddy induced velocity is given by: 533 533 \begin{equation} 534 534 \label{eq:ldfeiv} … … 554 554 \colorbox{yellow}{CASE \np{nn\_aei\_ijk\_t} = 21 to be added} 555 555 556 In case of setting \np{ln\_traldf\_triad}\forcode{ =.true.}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:triad}.556 In case of setting \np{ln\_traldf\_triad}\forcode{=.true.}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:triad}. 557 557 558 558 % ================================================================ 559 559 % Mixed layer eddies 560 560 % ================================================================ 561 \section[Mixed layer eddies (\forcode{ln_mle =.true.})]562 {Mixed layer eddies (\protect\np{ln\_mle}\forcode{ =.true.})}561 \section[Mixed layer eddies (\forcode{ln_mle=.true.})] 562 {Mixed layer eddies (\protect\np{ln\_mle}\forcode{=.true.})} 563 563 564 564 \label{sec:LDF_mle} … … 570 570 %-------------------------------------------------------------------------------------------------------------- 571 571 572 If \np{ln\_mle}\forcode{ =.true.} in \nam{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection.572 If \np{ln\_mle}\forcode{=.true.} in \nam{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 573 573 574 574 \colorbox{yellow}{TBC} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11435 r11537 37 37 \begin{itemize} 38 38 \item 39 a bulk formulation (\np{ln\_blk}\forcode{ =.true.} with four possible bulk algorithms),40 \item 41 a flux formulation (\np{ln\_flx}\forcode{ =.true.}),39 a bulk formulation (\np{ln\_blk}\forcode{=.true.} with four possible bulk algorithms), 40 \item 41 a flux formulation (\np{ln\_flx}\forcode{=.true.}), 42 42 \item 43 43 a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler), 44 (\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{ =.true.}),45 \item 46 a user defined formulation (\np{ln\_usr}\forcode{ =.true.}).44 (\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{=.true.}), 45 \item 46 a user defined formulation (\np{ln\_usr}\forcode{=.true.}). 47 47 \end{itemize} 48 48 … … 65 65 the local grid directions in the model, 66 66 \item 67 the use of a land/sea mask for input fields (\np{nn\_lsm}\forcode{ =.true.}),68 \item 69 the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{ =.true.}),67 the use of a land/sea mask for input fields (\np{nn\_lsm}\forcode{=.true.}), 68 \item 69 the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{=.true.}), 70 70 \item 71 71 the modification of fluxes below ice-covered areas (using climatological ice-cover or a sea-ice model) 72 (\np{nn\_ice}\forcode{ =0..3}),73 \item 74 the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{ =.true.}),72 (\np{nn\_ice}\forcode{=0..3}), 73 \item 74 the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{=.true.}), 75 75 \item 76 76 the addition of ice-shelf melting as lateral inflow (parameterisation) or 77 as fluxes applied at the land-ice ocean interface (\np{ln\_isf}\forcode{ =.true.}),77 as fluxes applied at the land-ice ocean interface (\np{ln\_isf}\forcode{=.true.}), 78 78 \item 79 79 the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift 80 (\np{nn\_fwb}\forcode{ =0..2}),80 (\np{nn\_fwb}\forcode{=0..2}), 81 81 \item 82 82 the transformation of the solar radiation (if provided as daily mean) into an analytical diurnal cycle 83 (\np{ln\_dm2dc}\forcode{ =.true.}),84 \item 85 the activation of wave effects from an external wave model (\np{ln\_wave}\forcode{ =.true.}),86 \item 87 a neutral drag coefficient is read from an external wave model (\np{ln\_cdgw}\forcode{ =.true.}),88 \item 89 the Stokes drift from an external wave model is accounted for (\np{ln\_sdw}\forcode{ =.true.}),90 \item 91 the choice of the Stokes drift profile parameterization (\np{nn\_sdrift}\forcode{ =0..2}),92 \item 93 the surface stress given to the ocean is modified by surface waves (\np{ln\_tauwoc}\forcode{ =.true.}),94 \item 95 the surface stress given to the ocean is read from an external wave model (\np{ln\_tauw}\forcode{ =.true.}),96 \item 97 the Stokes-Coriolis term is included (\np{ln\_stcor}\forcode{ =.true.}),98 \item 99 the light penetration in the ocean (\np{ln\_traqsr}\forcode{ =.true.} with namelist \nam{tra\_qsr}),100 \item 101 the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np{ln\_apr\_dyn}\forcode{ =.true.} with namelist \nam{sbc\_apr}),102 \item 103 the effect of sea-ice pressure on the ocean (\np{ln\_ice\_embd}\forcode{ =.true.}).83 (\np{ln\_dm2dc}\forcode{=.true.}), 84 \item 85 the activation of wave effects from an external wave model (\np{ln\_wave}\forcode{=.true.}), 86 \item 87 a neutral drag coefficient is read from an external wave model (\np{ln\_cdgw}\forcode{=.true.}), 88 \item 89 the Stokes drift from an external wave model is accounted for (\np{ln\_sdw}\forcode{=.true.}), 90 \item 91 the choice of the Stokes drift profile parameterization (\np{nn\_sdrift}\forcode{=0..2}), 92 \item 93 the surface stress given to the ocean is modified by surface waves (\np{ln\_tauwoc}\forcode{=.true.}), 94 \item 95 the surface stress given to the ocean is read from an external wave model (\np{ln\_tauw}\forcode{=.true.}), 96 \item 97 the Stokes-Coriolis term is included (\np{ln\_stcor}\forcode{=.true.}), 98 \item 99 the light penetration in the ocean (\np{ln\_traqsr}\forcode{=.true.} with namelist \nam{tra\_qsr}), 100 \item 101 the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np{ln\_apr\_dyn}\forcode{=.true.} with namelist \nam{sbc\_apr}), 102 \item 103 the effect of sea-ice pressure on the ocean (\np{ln\_ice\_embd}\forcode{=.true.}). 104 104 \end{itemize} 105 105 … … 138 138 The latter is the penetrative part of the heat flux. 139 139 It is applied as a 3D trend of the temperature equation (\mdl{traqsr} module) when 140 \np{ln\_traqsr}\forcode{ =.true.}.140 \np{ln\_traqsr}\forcode{=.true.}. 141 141 The way the light penetrates inside the water column is generally a sum of decreasing exponentials 142 142 (see \autoref{subsec:TRA_qsr}). … … 273 273 \hline 274 274 & daily or weekLL & monthly & yearly \\ \hline 275 \np{clim}\forcode{ =.false.} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\ \hline276 \np{clim}\forcode{ =.true.} & not possible & fn\_m??.nc & fn \\ \hline275 \np{clim}\forcode{=.false.} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\ \hline 276 \np{clim}\forcode{=.true.} & not possible & fn\_m??.nc & fn \\ \hline 277 277 \end{tabular} 278 278 \end{center} … … 342 342 However, for forcing data related to the surface module, 343 343 values are not needed at every time-step but at every \np{nn\_fsbc} time-step. 344 For example with \np{nn\_fsbc}\forcode{ =3}, the surface module will be called at time-steps 1, 4, 7, etc.344 For example with \np{nn\_fsbc}\forcode{=3}, the surface module will be called at time-steps 1, 4, 7, etc. 345 345 The date used for the time interpolation is thus redefined to the middle of \np{nn\_fsbc} time-step period. 346 346 In the previous example, this leads to: 1h30'00", 4h30'00", 7h30'00", etc. \\ … … 537 537 Spinup of the iceberg floats 538 538 \item 539 Ocean/sea-ice simulation with both models running in parallel (\np{ln\_mixcpl}\forcode{ =.true.})539 Ocean/sea-ice simulation with both models running in parallel (\np{ln\_mixcpl}\forcode{=.true.}) 540 540 \end{itemize} 541 541 … … 592 592 593 593 The user can also choose in the \nam{sbc\_sas} namelist to read the mean (nn\_fsbc time-step) fraction of solar net radiation absorbed in the 1st T level using 594 (\np{ln\_flx}\forcode{ = .true.}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln\_flx}\forcode{ =.true.}). In that last case, only the 1st level will be read in.594 (\np{ln\_flx}\forcode{=.true.}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln\_flx}\forcode{=.true.}). In that last case, only the 1st level will be read in. 595 595 596 596 … … 607 607 %------------------------------------------------------------------------------------------------------------- 608 608 609 In the flux formulation (\np{ln\_flx}\forcode{ =.true.}),609 In the flux formulation (\np{ln\_flx}\forcode{=.true.}), 610 610 the surface boundary condition fields are directly read from input files. 611 611 The user has to define in the namelist \nam{sbc\_flx} the name of the file, … … 706 706 \begin{itemize} 707 707 \item 708 NCAR (\np{ln\_NCAR}\forcode{ =.true.}):708 NCAR (\np{ln\_NCAR}\forcode{=.true.}): 709 709 The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 710 710 They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. … … 716 716 This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 717 717 \item 718 COARE 3.0 (\np{ln\_COARE\_3p0}\forcode{ =.true.}):718 COARE 3.0 (\np{ln\_COARE\_3p0}\forcode{=.true.}): 719 719 See \citet{fairall.bradley.ea_JC03} for more details 720 720 \item 721 COARE 3.5 (\np{ln\_COARE\_3p5}\forcode{ =.true.}):721 COARE 3.5 (\np{ln\_COARE\_3p5}\forcode{=.true.}): 722 722 See \citet{edson.jampana.ea_JPO13} for more details 723 723 \item 724 ECMWF (\np{ln\_ECMWF}\forcode{ =.true.}):724 ECMWF (\np{ln\_ECMWF}\forcode{=.true.}): 725 725 Based on \href{https://www.ecmwf.int/node/9221}{IFS (Cy31)} implementation and documentation. 726 726 Surface roughness lengths needed for the Obukhov length are computed following \citet{beljaars_QJRMS95}. … … 740 740 default constant value used for momentum and heat neutral transfer coefficients 741 741 \item 742 \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}\forcode{ =.true.}):742 \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}\forcode{=.true.}): 743 743 This scheme adds a dependency on edges at leads, melt ponds and flows 744 744 of the constant neutral air-ice drag. After some approximations, … … 748 748 It is theoretically applicable to all ice conditions (not only MIZ). 749 749 \item 750 \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}\forcode{ =.true.}):750 \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}\forcode{=.true.}): 751 751 Alternative turbulent transfer coefficients formulation between sea-ice 752 752 and atmosphere with distinct momentum and heat coefficients depending … … 811 811 812 812 The optional atmospheric pressure can be used to force ocean and ice dynamics 813 (\np{ln\_apr\_dyn}\forcode{ =.true.}, \nam{sbc} namelist).813 (\np{ln\_apr\_dyn}\forcode{=.true.}, \nam{sbc} namelist). 814 814 The input atmospheric forcing defined via \np{sn\_apr} structure (\nam{sbc\_apr} namelist) 815 815 can be interpolated in time to the model time step, and even in space when the interpolation on-the-fly is used. … … 867 867 Msqm, Mtm, S1, MU2, NU2, L2}, and \textit{T2}). Individual 868 868 constituents are selected by including their names in the array 869 \np{clname} in \nam{\_tide} (e.g., \np{clname}\forcode{(1) ='M2', }870 \np{clname}\forcode{(2) ='S2'} to select solely the tidal consituents \textit{M2}869 \np{clname} in \nam{\_tide} (e.g., \np{clname}\forcode{(1)='M2', } 870 \np{clname}\forcode{(2)='S2'} to select solely the tidal consituents \textit{M2} 871 871 and \textit{S2}). Optionally, when \np{ln\_tide\_ramp} is set to 872 872 \forcode{.true.}, the equilibrium tidal forcing can be ramped up … … 1036 1036 \begin{description} 1037 1037 1038 \item[\np{nn\_isf}\forcode{ =1}]:1039 The ice shelf cavity is represented (\np{ln\_isfcav}\forcode{ =.true.} needed).1038 \item[\np{nn\_isf}\forcode{=1}]: 1039 The ice shelf cavity is represented (\np{ln\_isfcav}\forcode{=.true.} needed). 1040 1040 The fwf and heat flux are depending of the local water properties. 1041 1041 … … 1043 1043 1044 1044 \begin{description} 1045 \item[\np{nn\_isfblk}\forcode{ =1}]:1045 \item[\np{nn\_isfblk}\forcode{=1}]: 1046 1046 The melt rate is based on a balance between the upward ocean heat flux and 1047 1047 the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 1048 \item[\np{nn\_isfblk}\forcode{ =2}]:1048 \item[\np{nn\_isfblk}\forcode{=2}]: 1049 1049 The melt rate and the heat flux are based on a 3 equations formulation 1050 1050 (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation). … … 1063 1063 There are 3 different ways to compute the exchange coeficient: 1064 1064 \begin{description} 1065 \item[\np{nn\_gammablk}\forcode{ =0}]:1065 \item[\np{nn\_gammablk}\forcode{=0}]: 1066 1066 The salt and heat exchange coefficients are constant and defined by \np{rn\_gammas0} and \np{rn\_gammat0}. 1067 1067 \[ … … 1073 1073 \] 1074 1074 This is the recommended formulation for ISOMIP. 1075 \item[\np{nn\_gammablk}\forcode{ =1}]:1075 \item[\np{nn\_gammablk}\forcode{=1}]: 1076 1076 The salt and heat exchange coefficients are velocity dependent and defined as 1077 1077 \[ … … 1083 1083 where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 1084 1084 See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 1085 \item[\np{nn\_gammablk}\forcode{ =2}]:1085 \item[\np{nn\_gammablk}\forcode{=2}]: 1086 1086 The salt and heat exchange coefficients are velocity and stability dependent and defined as: 1087 1087 \[ … … 1094 1094 This formulation has not been extensively tested in \NEMO\ (not recommended). 1095 1095 \end{description} 1096 \item[\np{nn\_isf}\forcode{ =2}]:1096 \item[\np{nn\_isf}\forcode{=2}]: 1097 1097 The ice shelf cavity is not represented. 1098 1098 The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 1099 1099 The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 1100 1100 (\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 1101 (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}\forcode{ =3}).1101 (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}\forcode{=3}). 1102 1102 The effective melting length (\np{sn\_Leff\_isf}) is read from a file. 1103 \item[\np{nn\_isf}\forcode{ =3}]:1103 \item[\np{nn\_isf}\forcode{=3}]: 1104 1104 The ice shelf cavity is not represented. 1105 1105 The fwf (\np{sn\_rnfisf}) is prescribed and distributed along the ice shelf edge between … … 1107 1107 the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}). 1108 1108 The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 1109 \item[\np{nn\_isf}\forcode{ =4}]:1110 The ice shelf cavity is opened (\np{ln\_isfcav}\forcode{ =.true.} needed).1109 \item[\np{nn\_isf}\forcode{=4}]: 1110 The ice shelf cavity is opened (\np{ln\_isfcav}\forcode{=.true.} needed). 1111 1111 However, the fwf is not computed but specified from file \np{sn\_fwfisf}). 1112 1112 The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 1113 As in \np{nn\_isf}\forcode{ =1}, the fluxes are spread over the top boundary layer thickness (\np{rn\_hisf\_tbl})\\1113 As in \np{nn\_isf}\forcode{=1}, the fluxes are spread over the top boundary layer thickness (\np{rn\_hisf\_tbl})\\ 1114 1114 \end{description} 1115 1115 1116 $\bullet$ \np{nn\_isf}\forcode{ = 1} and \np{nn\_isf}\forcode{ =2} compute a melt rate based on1116 $\bullet$ \np{nn\_isf}\forcode{=1} and \np{nn\_isf}\forcode{=2} compute a melt rate based on 1117 1117 the water mass properties, ocean velocities and depth. 1118 1118 This flux is thus highly dependent of the model resolution (horizontal and vertical), 1119 1119 realism of the water masses onto the shelf ...\\ 1120 1120 1121 $\bullet$ \np{nn\_isf}\forcode{ = 3} and \np{nn\_isf}\forcode{ =4} read the melt rate from a file.1121 $\bullet$ \np{nn\_isf}\forcode{=3} and \np{nn\_isf}\forcode{=4} read the melt rate from a file. 1122 1122 You have total control of the fwf forcing. 1123 1123 This can be useful if the water masses on the shelf are not realistic or … … 1165 1165 \end{description} 1166 1166 1167 If \np{ln\_iscpl}\forcode{ =.true.}, the isf draft is assume to be different at each restart step with1167 If \np{ln\_iscpl}\forcode{=.true.}, the isf draft is assume to be different at each restart step with 1168 1168 potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 1169 1169 The wetting and drying scheme applied on the restart is very simple and described below for the 6 different possible cases: … … 1201 1201 1202 1202 In order to remove the trend and keep the conservation level as close to 0 as possible, 1203 a simple conservation scheme is available with \np{ln\_hsb}\forcode{ =.true.}.1203 a simple conservation scheme is available with \np{ln\_hsb}\forcode{=.true.}. 1204 1204 The heat/salt/vol. gain/loss is diagnosed, as well as the location. 1205 1205 A correction increment is computed and apply each time step during the next \np{rn\_fiscpl} time steps. … … 1227 1227 which is an integer representing how many icebergs of this class are being described as one lagrangian point 1228 1228 (this reduces the numerical problem of tracking every single iceberg). 1229 They are enabled by setting \np{ln\_icebergs}\forcode{ =.true.}.1229 They are enabled by setting \np{ln\_icebergs}\forcode{=.true.}. 1230 1230 1231 1231 Two initialisation schemes are possible. … … 1238 1238 \np{nn\_test\_icebergs} is defined by four numbers in \np{nn\_test\_box} representing the corners of 1239 1239 the geographical box: lonmin,lonmax,latmin,latmax 1240 \item[\np{nn\_test\_icebergs}\forcode{ =-1}]1240 \item[\np{nn\_test\_icebergs}\forcode{=-1}] 1241 1241 In this scheme, the model reads a calving file supplied in the \np{sn\_icb} parameter. 1242 1242 This should be a file with a field on the configuration grid (typically ORCA) … … 1297 1297 1298 1298 Physical processes related to ocean surface waves can be accounted by setting the logical variable 1299 \np{ln\_wave}\forcode{ =.true.} in \nam{sbc} namelist. In addition, specific flags accounting for1299 \np{ln\_wave}\forcode{=.true.} in \nam{sbc} namelist. In addition, specific flags accounting for 1300 1300 different processes should be activated as explained in the following sections. 1301 1301 … … 1434 1434 In order to include this term, once evaluated the Stokes drift (using one of the 3 possible 1435 1435 approximations described in \autoref{subsec:SBC_wave_sdw}), 1436 \np{ln\_stcor}\forcode{ =.true.} has to be set.1436 \np{ln\_stcor}\forcode{=.true.} has to be set. 1437 1437 1438 1438 … … 1475 1475 1476 1476 The wave stress derived from an external wave model can be provided either through the normalized 1477 wave stress into the ocean by setting \np{ln\_tauwoc}\forcode{ =.true.}, or through the zonal and1478 meridional stress components by setting \np{ln\_tauw}\forcode{ =.true.}.1477 wave stress into the ocean by setting \np{ln\_tauwoc}\forcode{=.true.}, or through the zonal and 1478 meridional stress components by setting \np{ln\_tauw}\forcode{=.true.}. 1479 1479 1480 1480 … … 1521 1521 assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 1522 1522 The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO\ by 1523 setting \np{ln\_dm2dc}\forcode{ =.true.} (a \textit{\nam{sbc}} namelist variable) when1524 using a bulk formulation (\np{ln\_blk}\forcode{ =.true.}) or1525 the flux formulation (\np{ln\_flx}\forcode{ =.true.}).1523 setting \np{ln\_dm2dc}\forcode{=.true.} (a \textit{\nam{sbc}} namelist variable) when 1524 using a bulk formulation (\np{ln\_blk}\forcode{=.true.}) or 1525 the flux formulation (\np{ln\_flx}\forcode{=.true.}). 1526 1526 The reconstruction is performed in the \mdl{sbcdcy} module. 1527 1527 The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. … … 1560 1560 \label{subsec:SBC_rotation} 1561 1561 1562 When using a flux (\np{ln\_flx}\forcode{ = .true.}) or bulk (\np{ln\_blk}\forcode{ =.true.}) formulation,1562 When using a flux (\np{ln\_flx}\forcode{=.true.}) or bulk (\np{ln\_blk}\forcode{=.true.}) formulation, 1563 1563 pairs of vector components can be rotated from east-north directions onto the local grid directions. 1564 1564 This is particularly useful when interpolation on the fly is used since here any vectors are likely to … … 1586 1586 1587 1587 Options are defined through the \nam{sbc\_ssr} namelist variables. 1588 On forced mode using a flux formulation (\np{ln\_flx}\forcode{ =.true.}),1588 On forced mode using a flux formulation (\np{ln\_flx}\forcode{=.true.}), 1589 1589 a feedback term \emph{must} be added to the surface heat flux $Q_{ns}^o$: 1590 1590 \[ … … 1675 1675 (seek advice from UKMO if necessary). 1676 1676 Currently, the code is only designed to work when using the NCAR forcing option for \NEMO\ %GS: still true ? 1677 (with \textit{calc\_strair}\forcode{ = .true.} and \textit{calc\_Tsfc}\forcode{ =.true.} in the CICE name-list),1677 (with \textit{calc\_strair}\forcode{=.true.} and \textit{calc\_Tsfc}\forcode{=.true.} in the CICE name-list), 1678 1678 or alternatively when \NEMO\ is coupled to the HadGAM3 atmosphere model 1679 (with \textit{calc\_strair}\forcode{ = .false.} and \textit{calc\_Tsfc}\forcode{ =false}).1679 (with \textit{calc\_strair}\forcode{=.false.} and \textit{calc\_Tsfc}\forcode{=false}). 1680 1680 The code is intended to be used with \np{nn\_fsbc} set to 1 1681 1681 (although coupling ocean and ice less frequently should work, … … 1707 1707 1708 1708 \begin{description} 1709 \item[\np{nn\_fwb}\forcode{ =0}]1709 \item[\np{nn\_fwb}\forcode{=0}] 1710 1710 no control at all. 1711 1711 The mean sea level is free to drift, and will certainly do so. 1712 \item[\np{nn\_fwb}\forcode{ =1}]1712 \item[\np{nn\_fwb}\forcode{=1}] 1713 1713 global mean \textit{emp} set to zero at each model time step. 1714 1714 %GS: comment below still relevant ? 1715 1715 %Note that with a sea-ice model, this technique only controls the mean sea level with linear free surface and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling). 1716 \item[\np{nn\_fwb}\forcode{ =2}]1716 \item[\np{nn\_fwb}\forcode{=2}] 1717 1717 freshwater budget is adjusted from the previous year annual mean budget which 1718 1718 is read in the \textit{EMPave\_old.dat} file. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11524 r11537 55 55 56 56 The user has the option of extracting each tendency term on the RHS of the tracer equation for output 57 (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}\forcode{ =.true.}), as described in \autoref{chap:DIA}.57 (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}\forcode{=.true.}), as described in \autoref{chap:DIA}. 58 58 59 59 % ================================================================ … … 82 82 Indeed, it is obtained by using the following equality: $\nabla \cdot (\vect U \, T) = \vect U \cdot \nabla T$ which 83 83 results from the use of the continuity equation, $\partial_t e_3 + e_3 \; \nabla \cdot \vect U = 0$ 84 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie\ \np{ln\_linssh}\forcode{ =.true.}).84 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie\ \np{ln\_linssh}\forcode{=.true.}). 85 85 Therefore it is of paramount importance to design the discrete analogue of the advection tendency so that 86 86 it is consistent with the continuity equation in order to enforce the conservation properties of 87 87 the continuous equations. 88 In other words, by setting $\tau =1$ in (\autoref{eq:tra_adv}) we recover the discrete form of88 In other words, by setting $\tau=1$ in (\autoref{eq:tra_adv}) we recover the discrete form of 89 89 the continuity equation which is used to calculate the vertical velocity. 90 90 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 120 120 \begin{description} 121 121 \item[linear free surface:] 122 (\np{ln\_linssh}\forcode{ =.true.})122 (\np{ln\_linssh}\forcode{=.true.}) 123 123 the first level thickness is constant in time: 124 124 the vertical boundary condition is applied at the fixed surface $z = 0$ rather than on … … 128 128 the first level tracer value. 129 129 \item[non-linear free surface:] 130 (\np{ln\_linssh}\forcode{ =.false.})130 (\np{ln\_linssh}\forcode{=.false.}) 131 131 convergence/divergence in the first ocean level moves the free surface up/down. 132 132 There is no tracer advection through it so that the advective fluxes through the surface are also zero. … … 184 184 % 2nd and 4th order centred schemes 185 185 % ------------------------------------------------------------------------------------------------------------- 186 \subsection[CEN: Centred scheme (\forcode{ln_traadv_cen =.true.})]187 {CEN: Centred scheme (\protect\np{ln\_traadv\_cen}\forcode{ =.true.})}186 \subsection[CEN: Centred scheme (\forcode{ln_traadv_cen=.true.})] 187 {CEN: Centred scheme (\protect\np{ln\_traadv\_cen}\forcode{=.true.})} 188 188 \label{subsec:TRA_adv_cen} 189 189 190 190 % 2nd order centred scheme 191 191 192 The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}\forcode{ =.true.}.192 The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}\forcode{=.true.}. 193 193 Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 194 194 setting \np{nn\_cen\_h} and \np{nn\_cen\_v} to $2$ or $4$. … … 222 222 \tau_u^{cen4} = \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \, \Big]}^{\,i + 1/2} 223 223 \end{equation} 224 In the vertical direction (\np{nn\_cen\_v}\forcode{ =4}),224 In the vertical direction (\np{nn\_cen\_v}\forcode{=4}), 225 225 a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}. 226 226 In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion, … … 252 252 % FCT scheme 253 253 % ------------------------------------------------------------------------------------------------------------- 254 \subsection[FCT: Flux Corrected Transport scheme (\forcode{ln_traadv_fct =.true.})]255 {FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}\forcode{ =.true.})}254 \subsection[FCT: Flux Corrected Transport scheme (\forcode{ln_traadv_fct=.true.})] 255 {FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}\forcode{=.true.})} 256 256 \label{subsec:TRA_adv_tvd} 257 257 258 The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}\forcode{ =.true.}.258 The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}\forcode{=.true.}. 259 259 Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 260 260 setting \np{nn\_fct\_h} and \np{nn\_fct\_v} to $2$ or $4$. … … 296 296 % MUSCL scheme 297 297 % ------------------------------------------------------------------------------------------------------------- 298 \subsection[MUSCL: Monotone Upstream Scheme for Conservative Laws (\forcode{ln_traadv_mus =.true.})]299 {MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}\forcode{ =.true.})}298 \subsection[MUSCL: Monotone Upstream Scheme for Conservative Laws (\forcode{ln_traadv_mus=.true.})] 299 {MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}\forcode{=.true.})} 300 300 \label{subsec:TRA_adv_mus} 301 301 302 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}\forcode{ =.true.}.302 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}\forcode{=.true.}. 303 303 MUSCL implementation can be found in the \mdl{traadv\_mus} module. 304 304 … … 328 328 This choice ensure the \textit{positive} character of the scheme. 329 329 In addition, fluxes round a grid-point where a runoff is applied can optionally be computed using upstream fluxes 330 (\np{ln\_mus\_ups}\forcode{ =.true.}).330 (\np{ln\_mus\_ups}\forcode{=.true.}). 331 331 332 332 % ------------------------------------------------------------------------------------------------------------- 333 333 % UBS scheme 334 334 % ------------------------------------------------------------------------------------------------------------- 335 \subsection[UBS a.k.a. UP3: Upstream-Biased Scheme (\forcode{ln_traadv_ubs =.true.})]336 {UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}\forcode{ =.true.})}335 \subsection[UBS a.k.a. UP3: Upstream-Biased Scheme (\forcode{ln_traadv_ubs=.true.})] 336 {UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}\forcode{=.true.})} 337 337 \label{subsec:TRA_adv_ubs} 338 338 339 The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}\forcode{ =.true.}.339 The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}\forcode{=.true.}. 340 340 UBS implementation can be found in the \mdl{traadv\_mus} module. 341 341 … … 367 367 \citep{shchepetkin.mcwilliams_OM05, demange_phd14}. 368 368 Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme 369 (\np{nn\_ubs\_v}\forcode{ =2 or 4}).369 (\np{nn\_ubs\_v}\forcode{=2 or 4}). 370 370 371 371 For stability reasons (see \autoref{chap:STP}), the first term in \autoref{eq:tra_adv_ubs} … … 406 406 % QCK scheme 407 407 % ------------------------------------------------------------------------------------------------------------- 408 \subsection[QCK: QuiCKest scheme (\forcode{ln_traadv_qck =.true.})]409 {QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}\forcode{ =.true.})}408 \subsection[QCK: QuiCKest scheme (\forcode{ln_traadv_qck=.true.})] 409 {QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}\forcode{=.true.})} 410 410 \label{subsec:TRA_adv_qck} 411 411 412 412 The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme 413 proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}\forcode{ =.true.}.413 proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}\forcode{=.true.}. 414 414 QUICKEST implementation can be found in the \mdl{traadv\_qck} module. 415 415 … … 453 453 except for the pure vertical component that appears when a rotation tensor is used. 454 454 This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:STP}). 455 When \np{ln\_traldf\_msc}\forcode{ =.true.}, a Method of Stabilizing Correction is used in which455 When \np{ln\_traldf\_msc}\forcode{=.true.}, a Method of Stabilizing Correction is used in which 456 456 the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}. 457 457 … … 466 466 467 467 \begin{description} 468 \item[\np{ln\_traldf\_OFF}\forcode{ =.true.}:]468 \item[\np{ln\_traldf\_OFF}\forcode{=.true.}:] 469 469 no operator selected, the lateral diffusive tendency will not be applied to the tracer equation. 470 470 This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme for example). 471 \item[\np{ln\_traldf\_lap}\forcode{ =.true.}:]471 \item[\np{ln\_traldf\_lap}\forcode{=.true.}:] 472 472 a laplacian operator is selected. 473 473 This harmonic operator takes the following expression: $\mathcal{L}(T) = \nabla \cdot A_{ht} \; \nabla T $, 474 474 where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}), 475 475 and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}). 476 \item[\np{ln\_traldf\_blp}\forcode{ =.true.}]:476 \item[\np{ln\_traldf\_blp}\forcode{=.true.}]: 477 477 a bilaplacian operator is selected. 478 478 This biharmonic operator takes the following expression: … … 500 500 The choice of a direction of action determines the form of operator used. 501 501 The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane when 502 iso-level option is used (\np{ln\_traldf\_lev}\forcode{ =.true.}) or502 iso-level option is used (\np{ln\_traldf\_lev}\forcode{=.true.}) or 503 503 when a horizontal (\ie\ geopotential) operator is demanded in \textit{z}-coordinate 504 (\np{ln\_traldf\_hor} and \np{ln\_zco} equal \forcode{.true.}).504 (\np{ln\_traldf\_hor} and \np{ln\_zco}\forcode{=.true.}). 505 505 The associated code can be found in the \mdl{traldf\_lap\_blp} module. 506 506 The operator is a rotated (re-entrant) laplacian when 507 507 the direction along which it acts does not coincide with the iso-level surfaces, 508 508 that is when standard or triad iso-neutral option is used 509 (\np{ln\_traldf\_iso} or \np{ln\_traldf\_triad} equals\forcode{.true.},509 (\np{ln\_traldf\_iso} or \np{ln\_traldf\_triad} = \forcode{.true.}, 510 510 see \mdl{traldf\_iso} or \mdl{traldf\_triad} module, resp.), or 511 511 when a horizontal (\ie\ geopotential) operator is demanded in \textit{s}-coordinate 512 (\np{ln\_traldf\_hor} and \np{ln\_sco} equal\forcode{.true.})512 (\np{ln\_traldf\_hor} and \np{ln\_sco} = \forcode{.true.}) 513 513 \footnote{In this case, the standard iso-neutral operator will be automatically selected}. 514 514 In that case, a rotation is applied to the gradient(s) that appears in the operator so that … … 540 540 It is a \textit{horizontal} operator (\ie acting along geopotential surfaces) in 541 541 the $z$-coordinate with or without partial steps, but is simply an iso-level operator in the $s$-coordinate. 542 It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}\forcode{ =.true.},543 we have \np{ln\_traldf\_lev}\forcode{ = .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}\forcode{ =.true.}.542 It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}\forcode{=.true.}, 543 we have \np{ln\_traldf\_lev}\forcode{=.true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}\forcode{=.true.}. 544 544 In both cases, it significantly contributes to diapycnal mixing. 545 545 It is therefore never recommended, even when using it in the bilaplacian case. 546 546 547 Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ =.true.}),547 Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{=.true.}), 548 548 tracers in horizontally adjacent cells are located at different depths in the vicinity of the bottom. 549 549 In this case, horizontal derivatives in (\autoref{eq:tra_ldf_lap}) at the bottom level require a specific treatment. … … 578 578 $r_1$ and $r_2$ are the slopes between the surface of computation ($z$- or $s$-surfaces) and 579 579 the surface along which the diffusion operator acts (\ie\ horizontal or iso-neutral surfaces). 580 It is thus used when, in addition to \np{ln\_traldf\_lap}\forcode{ =.true.},581 we have \np{ln\_traldf\_iso}\forcode{ =.true.},582 or both \np{ln\_traldf\_hor}\forcode{ = .true.} and \np{ln\_zco}\forcode{ =.true.}.580 It is thus used when, in addition to \np{ln\_traldf\_lap}\forcode{=.true.}, 581 we have \np{ln\_traldf\_iso}\forcode{=.true.}, 582 or both \np{ln\_traldf\_hor}\forcode{=.true.} and \np{ln\_zco}\forcode{=.true.}. 583 583 The way these slopes are evaluated is given in \autoref{sec:LDF_slp}. 584 584 At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero using … … 596 596 any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}. 597 597 598 Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ =.true.}),598 Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{=.true.}), 599 599 the horizontal derivatives at the bottom level in \autoref{eq:tra_ldf_iso} require a specific treatment. 600 600 They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. … … 607 607 608 608 An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases 609 is also available in \NEMO\ (\np{ln\_traldf\_triad}\forcode{ =.true.}).609 is also available in \NEMO\ (\np{ln\_traldf\_triad}\forcode{=.true.}). 610 610 A complete description of the algorithm is given in \autoref{apdx:triad}. 611 611 … … 655 655 respectively. 656 656 Generally, $A_w^{vT} = A_w^{vS}$ except when double diffusive mixing is parameterised 657 (\ie\ \np{ln\_zdfddm} equals \forcode{.true.},).657 (\ie\ \np{ln\_zdfddm}\forcode{=.true.},). 658 658 The way these coefficients are evaluated is given in \autoref{chap:ZDF} (ZDF). 659 659 Furthermore, when iso-neutral mixing is used, both mixing coefficients are increased by … … 731 731 Such time averaging prevents the divergence of odd and even time step (see \autoref{chap:STP}). 732 732 733 In the linear free surface case (\np{ln\_linssh}\forcode{ =.true.}), an additional term has to be added on733 In the linear free surface case (\np{ln\_linssh}\forcode{=.true.}), an additional term has to be added on 734 734 both temperature and salinity. 735 735 On temperature, this term remove the heat content associated with mass exchange that has been added to $Q_{ns}$. … … 763 763 764 764 Options are defined through the \nam{tra\_qsr} namelist variables. 765 When the penetrative solar radiation option is used (\np{ln\_traqsr}\forcode{ =.true.}),765 When the penetrative solar radiation option is used (\np{ln\_traqsr}\forcode{=.true.}), 766 766 the solar radiation penetrates the top few tens of meters of the ocean. 767 If it is not used (\np{ln\_traqsr}\forcode{ =.false.}) all the heat flux is absorbed in the first ocean level.767 If it is not used (\np{ln\_traqsr}\forcode{=.false.}) all the heat flux is absorbed in the first ocean level. 768 768 Thus, in the former case a term is added to the time evolution equation of temperature \autoref{eq:PE_tra_T} and 769 769 the surface boundary condition is modified to take into account only the non-penetrative part of the surface … … 794 794 larger depths where it contributes to local heating. 795 795 The way this second part of the solar energy penetrates into the ocean depends on which formulation is chosen. 796 In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}\forcode{ =.true.})796 In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}\forcode{=.true.}) 797 797 a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths, 798 798 leading to the following expression \citep{paulson.simpson_JPO77}: … … 822 822 The 2-bands formulation does not reproduce the full model very well. 823 823 824 The RGB formulation is used when \np{ln\_qsr\_rgb}\forcode{ =.true.}.824 The RGB formulation is used when \np{ln\_qsr\_rgb}\forcode{=.true.}. 825 825 The RGB attenuation coefficients (\ie\ the inverses of the extinction length scales) are tabulated over 826 826 61 nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L … … 829 829 830 830 \begin{description} 831 \item[\np{nn\_chldta}\forcode{ =0}]831 \item[\np{nn\_chldta}\forcode{=0}] 832 832 a constant 0.05 g.Chl/L value everywhere ; 833 \item[\np{nn\_chldta}\forcode{ =1}]833 \item[\np{nn\_chldta}\forcode{=1}] 834 834 an observed time varying chlorophyll deduced from satellite surface ocean color measurement spread uniformly in 835 835 the vertical direction; 836 \item[\np{nn\_chldta}\forcode{ =2}]836 \item[\np{nn\_chldta}\forcode{=2}] 837 837 same as previous case except that a vertical profile of chlorophyl is used. 838 838 Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value; 839 \item[\np{ln\_qsr\_bio}\forcode{ =.true.}]839 \item[\np{ln\_qsr\_bio}\forcode{=.true.}] 840 840 simulated time varying chlorophyll by TOP biogeochemical model. 841 841 In this case, the RGB formulation is used to calculate both the phytoplankton light limitation in … … 876 876 % Bottom Boundary Condition 877 877 % ------------------------------------------------------------------------------------------------------------- 878 \subsection[Bottom boundary condition (\textit{trabbc.F90}) - \forcode{ln_trabbc =.true.})]878 \subsection[Bottom boundary condition (\textit{trabbc.F90}) - \forcode{ln_trabbc=.true.})] 879 879 {Bottom boundary condition (\protect\mdl{trabbc})} 880 880 \label{subsec:TRA_bbc} … … 915 915 % Bottom Boundary Layer 916 916 % ================================================================ 917 \section[Bottom boundary layer (\textit{trabbl.F90} - \forcode{ln_trabbl =.true.})]918 {Bottom boundary layer (\protect\mdl{trabbl} - \protect\np{ln\_trabbl}\forcode{ =.true.})}917 \section[Bottom boundary layer (\textit{trabbl.F90} - \forcode{ln_trabbl=.true.})] 918 {Bottom boundary layer (\protect\mdl{trabbl} - \protect\np{ln\_trabbl}\forcode{=.true.})} 919 919 \label{sec:TRA_bbl} 920 920 %--------------------------------------------nambbl--------------------------------------------------------- … … 948 948 % Diffusive BBL 949 949 % ------------------------------------------------------------------------------------------------------------- 950 \subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf =1})]951 {Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}\forcode{ =1})}950 \subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf=1})] 951 {Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}\forcode{=1})} 952 952 \label{subsec:TRA_bbl_diff} 953 953 954 When applying sigma-diffusion (\np{ln\_trabbl}\forcode{ =.true.} and \np{nn\_bbl\_ldf} set to 1),954 When applying sigma-diffusion (\np{ln\_trabbl}\forcode{=.true.} and \np{nn\_bbl\_ldf} set to 1), 955 955 the diffusive flux between two adjacent cells at the ocean floor is given by 956 956 \[ … … 988 988 % Advective BBL 989 989 % ------------------------------------------------------------------------------------------------------------- 990 \subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv =[12]})]991 {Advective bottom boundary layer (\protect\np{nn\_bbl\_adv}\forcode{ =[12]})}990 \subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv=[12]})] 991 {Advective bottom boundary layer (\protect\np{nn\_bbl\_adv}\forcode{=[12]})} 992 992 \label{subsec:TRA_bbl_adv} 993 993 … … 1020 1020 %%%gmcomment : this section has to be really written 1021 1021 1022 When applying an advective BBL (\np{nn\_bbl\_adv}\forcode{ =1..2}), an overturning circulation is added which1022 When applying an advective BBL (\np{nn\_bbl\_adv}\forcode{=1..2}), an overturning circulation is added which 1023 1023 connects two adjacent bottom grid-points only if dense water overlies less dense water on the slope. 1024 1024 The density difference causes dense water to move down the slope. 1025 1025 1026 \np{nn\_bbl\_adv}\forcode{ =1}:1026 \np{nn\_bbl\_adv}\forcode{=1}: 1027 1027 the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step 1028 1028 (see black arrow in \autoref{fig:bbl}) \citep{beckmann.doscher_JPO97}. … … 1031 1031 if the velocity is directed towards greater depth (\ie\ $\vect U \cdot \nabla H > 0$). 1032 1032 1033 \np{nn\_bbl\_adv}\forcode{ =2}:1033 \np{nn\_bbl\_adv}\forcode{=2}: 1034 1034 the downslope velocity is chosen to be proportional to $\Delta \rho$, 1035 1035 the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}. … … 1159 1159 (\ie\ fluxes plus content in mass exchanges). 1160 1160 $\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter). 1161 Its default value is \np{rn\_atfp}\forcode{ =10.e-3}.1161 Its default value is \np{rn\_atfp}\forcode{=10.e-3}. 1162 1162 Note that the forcing correction term in the filter is not applied in linear free surface 1163 (\jp{ln\_linssh}\forcode{ =.true.}) (see \autoref{subsec:TRA_sbc}).1163 (\jp{ln\_linssh}\forcode{=.true.}) (see \autoref{subsec:TRA_sbc}). 1164 1164 Not also that in constant volume case, the time stepping is performed on $T$, not on its content, $e_{3t}T$. 1165 1165 … … 1220 1220 1221 1221 \begin{description} 1222 \item[\np{ln\_teos10}\forcode{ =.true.}]1222 \item[\np{ln\_teos10}\forcode{=.true.}] 1223 1223 the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used. 1224 1224 The accuracy of this approximation is comparable to the TEOS-10 rational function approximation, … … 1239 1239 either computing the air-sea and ice-sea fluxes (forced mode) or 1240 1240 sending the SST field to the atmosphere (coupled mode). 1241 \item[\np{ln\_eos80}\forcode{ =.true.}]1241 \item[\np{ln\_eos80}\forcode{=.true.}] 1242 1242 the polyEOS80-bsq equation of seawater is used. 1243 1243 It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized to … … 1251 1251 Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which 1252 1252 is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value. 1253 \item[\np{ln\_seos}\forcode{ =.true.}]1253 \item[\np{ln\_seos}\forcode{=.true.}] 1254 1254 a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen, 1255 1255 the coefficients of which has been optimized to fit the behavior of TEOS10 … … 1376 1376 I've changed "derivative" to "difference" and "mean" to "average"} 1377 1377 1378 With partial cells (\np{ln\_zps}\forcode{ = .true.}) at bottom and top (\np{ln\_isfcav}\forcode{ =.true.}),1378 With partial cells (\np{ln\_zps}\forcode{=.true.}) at bottom and top (\np{ln\_isfcav}\forcode{=.true.}), 1379 1379 in general, tracers in horizontally adjacent cells live at different depths. 1380 1380 Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module) and 1381 1381 the hydrostatic pressure gradient calculations (\mdl{dynhpg} module). 1382 The partial cell properties at the top (\np{ln\_isfcav}\forcode{ =.true.}) are computed in the same way as1382 The partial cell properties at the top (\np{ln\_isfcav}\forcode{=.true.}) are computed in the same way as 1383 1383 for the bottom. 1384 1384 So, only the bottom interpolation is explained below. … … 1396 1396 \protect\label{fig:Partial_step_scheme} 1397 1397 Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate 1398 (\protect\np{ln\_zps}\forcode{ =.true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$.1398 (\protect\np{ln\_zps}\forcode{=.true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 1399 1399 A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 1400 1400 the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11435 r11537 39 39 are computed and added to the general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively. 40 40 %These trends can be computed using either a forward time stepping scheme 41 %(namelist parameter \np{ln\_zdfexp}\forcode{ =.true.}) or a backward time stepping scheme42 %(\np{ln\_zdfexp}\forcode{ =.false.}) depending on the magnitude of the mixing coefficients,41 %(namelist parameter \np{ln\_zdfexp}\forcode{=.true.}) or a backward time stepping scheme 42 %(\np{ln\_zdfexp}\forcode{=.false.}) depending on the magnitude of the mixing coefficients, 43 43 %and thus of the formulation used (see \autoref{chap:STP}). 44 44 … … 51 51 % Constant 52 52 % ------------------------------------------------------------------------------------------------------------- 53 \subsection[Constant (\forcode{ln_zdfcst =.true.})]54 {Constant (\protect\np{ln\_zdfcst}\forcode{ =.true.})}53 \subsection[Constant (\forcode{ln_zdfcst=.true.})] 54 {Constant (\protect\np{ln\_zdfcst}\forcode{=.true.})} 55 55 \label{subsec:ZDF_cst} 56 56 … … 74 74 % Richardson Number Dependent 75 75 % ------------------------------------------------------------------------------------------------------------- 76 \subsection[Richardson number dependent (\forcode{ln_zdfric =.true.})]77 {Richardson number dependent (\protect\np{ln\_zdfric}\forcode{ =.true.})}76 \subsection[Richardson number dependent (\forcode{ln_zdfric=.true.})] 77 {Richardson number dependent (\protect\np{ln\_zdfric}\forcode{=.true.})} 78 78 \label{subsec:ZDF_ric} 79 79 … … 83 83 %-------------------------------------------------------------------------------------------------------------- 84 84 85 When \np{ln\_zdfric}\forcode{ =.true.}, a local Richardson number dependent formulation for the vertical momentum and85 When \np{ln\_zdfric}\forcode{=.true.}, a local Richardson number dependent formulation for the vertical momentum and 86 86 tracer eddy coefficients is set through the \nam{zdf\_ric} namelist variables. 87 87 The vertical mixing coefficients are diagnosed from the large scale variables computed by the model. … … 109 109 110 110 A simple mixing-layer model to transfer and dissipate the atmospheric forcings 111 (wind-stress and buoyancy fluxes) can be activated setting the \np{ln\_mldw}\forcode{ =.true.} in the namelist.111 (wind-stress and buoyancy fluxes) can be activated setting the \np{ln\_mldw}\forcode{=.true.} in the namelist. 112 112 113 113 In this case, the local depth of turbulent wind-mixing or "Ekman depth" $h_{e}(x,y,t)$ is evaluated and … … 132 132 % TKE Turbulent Closure Scheme 133 133 % ------------------------------------------------------------------------------------------------------------- 134 \subsection[TKE turbulent closure scheme (\forcode{ln_zdftke =.true.})]135 {TKE turbulent closure scheme (\protect\np{ln\_zdftke}\forcode{ =.true.})}134 \subsection[TKE turbulent closure scheme (\forcode{ln_zdftke=.true.})] 135 {TKE turbulent closure scheme (\protect\np{ln\_zdftke}\forcode{=.true.})} 136 136 \label{subsec:ZDF_tke} 137 137 %--------------------------------------------namzdf_tke-------------------------------------------------- … … 213 213 which is valid in a stable stratified region with constant values of the Brunt-Vais\"{a}l\"{a} frequency. 214 214 The resulting length scale is bounded by the distance to the surface or to the bottom 215 (\np{nn\_mxl}\forcode{ = 0}) or by the local vertical scale factor (\np{nn\_mxl}\forcode{ =1}).215 (\np{nn\_mxl}\forcode{=0}) or by the local vertical scale factor (\np{nn\_mxl}\forcode{=1}). 216 216 \citet{blanke.delecluse_JPO93} notice that this simplification has two major drawbacks: 217 217 it makes no sense for locally unstable stratification and the computation no longer uses all 218 218 the information contained in the vertical density profile. 219 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np{nn\_mxl}\forcode{ =2, 3} cases,219 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np{nn\_mxl}\forcode{=2, 3} cases, 220 220 which add an extra assumption concerning the vertical gradient of the computed length scale. 221 221 So, the length scales are first evaluated as in \autoref{eq:tke_mxl0_1} and then bounded such that: … … 258 258 where $l^{(k)}$ is computed using \autoref{eq:tke_mxl0_1}, \ie\ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$. 259 259 260 In the \np{nn\_mxl}\forcode{ =2} case, the dissipation and mixing length scales take the same value:261 $ l_k= l_\epsilon = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)$, while in the \np{nn\_mxl}\forcode{ =3} case,260 In the \np{nn\_mxl}\forcode{=2} case, the dissipation and mixing length scales take the same value: 261 $ l_k= l_\epsilon = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)$, while in the \np{nn\_mxl}\forcode{=3} case, 262 262 the dissipation and mixing turbulent length scales are give as in \citet{gaspar.gregoris.ea_JGR90}: 263 263 \[ … … 376 376 (\ie\ near-inertial oscillations and ocean swells and waves). 377 377 378 When using this parameterization (\ie\ when \np{nn\_etau}\forcode{ =1}),378 When using this parameterization (\ie\ when \np{nn\_etau}\forcode{=1}), 379 379 the TKE input to the ocean ($S$) imposed by the winds in the form of near-inertial oscillations, 380 380 swell and waves is parameterized by \autoref{eq:ZDF_Esbc} the standard TKE surface boundary condition, … … 389 389 (no penetration if $f_i=1$, \ie\ if the ocean is entirely covered by sea-ice). 390 390 The value of $f_r$, usually a few percents, is specified through \np{rn\_efr} namelist parameter. 391 The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np{nn\_etau}\forcode{ =0}) or391 The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np{nn\_etau}\forcode{=0}) or 392 392 a latitude dependent value (varying from 0.5~m at the Equator to a maximum value of 30~m at high latitudes 393 (\np{nn\_etau}\forcode{ =1}).394 395 Note that two other option exist, \np{nn\_etau}\forcode{ =2, 3}.393 (\np{nn\_etau}\forcode{=1}). 394 395 Note that two other option exist, \np{nn\_etau}\forcode{=2, 3}. 396 396 They correspond to applying \autoref{eq:ZDF_Ehtau} only at the base of the mixed layer, 397 397 or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrates the ocean. … … 415 415 % GLS Generic Length Scale Scheme 416 416 % ------------------------------------------------------------------------------------------------------------- 417 \subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls =.true.})]418 {GLS: Generic Length Scale (\protect\np{ln\_zdfgls}\forcode{ =.true.})}417 \subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls=.true.})] 418 {GLS: Generic Length Scale (\protect\np{ln\_zdfgls}\forcode{=.true.})} 419 419 \label{subsec:ZDF_gls} 420 420 … … 497 497 \protect\label{tab:GLS} 498 498 Set of predefined GLS parameters, or equivalently predefined turbulence models available with 499 \protect\np{ln\_zdfgls}\forcode{ =.true.} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}.499 \protect\np{ln\_zdfgls}\forcode{=.true.} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}. 500 500 } 501 501 \end{center} … … 508 508 $C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88}, 509 509 or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01} 510 (\np{nn\_stab\_func}\forcode{ =0, 3}, resp.).510 (\np{nn\_stab\_func}\forcode{=0, 3}, resp.). 511 511 The value of $C_{0\mu}$ depends on the choice of the stability function. 512 512 … … 525 525 the entrainment depth predicted in stably stratified situations, 526 526 and that its value has to be chosen in accordance with the algebraic model for the turbulent fluxes. 527 The clipping is only activated if \np{ln\_length\_lim}\forcode{ =.true.},527 The clipping is only activated if \np{ln\_length\_lim}\forcode{=.true.}, 528 528 and the $c_{lim}$ is set to the \np{rn\_clim\_galp} value. 529 529 … … 537 537 % OSM OSMOSIS BL Scheme 538 538 % ------------------------------------------------------------------------------------------------------------- 539 \subsection[OSM: OSMosis boundary layer scheme (\forcode{ln_zdfosm =.true.})]540 {OSM: OSMosis boundary layer scheme (\protect\np{ln\_zdfosm}\forcode{ =.true.})}539 \subsection[OSM: OSMosis boundary layer scheme (\forcode{ln_zdfosm=.true.})] 540 {OSM: OSMosis boundary layer scheme (\protect\np{ln\_zdfosm}\forcode{=.true.})} 541 541 \label{subsec:ZDF_osm} 542 542 %--------------------------------------------namzdf_osm--------------------------------------------------------- … … 670 670 % Non-Penetrative Convective Adjustment 671 671 % ------------------------------------------------------------------------------------------------------------- 672 \subsection[Non-penetrative convective adjustment (\forcode{ln_tranpc =.true.})]673 {Non-penetrative convective adjustment (\protect\np{ln\_tranpc}\forcode{ =.true.})}672 \subsection[Non-penetrative convective adjustment (\forcode{ln_tranpc=.true.})] 673 {Non-penetrative convective adjustment (\protect\np{ln\_tranpc}\forcode{=.true.})} 674 674 \label{subsec:ZDF_npc} 675 675 … … 697 697 698 698 Options are defined through the \nam{zdf} namelist variables. 699 The non-penetrative convective adjustment is used when \np{ln\_zdfnpc}\forcode{ =.true.}.699 The non-penetrative convective adjustment is used when \np{ln\_zdfnpc}\forcode{=.true.}. 700 700 It is applied at each \np{nn\_npc} time step and mixes downwards instantaneously the statically unstable portion of 701 701 the water column, but only until the density structure becomes neutrally stable … … 737 737 % Enhanced Vertical Diffusion 738 738 % ------------------------------------------------------------------------------------------------------------- 739 \subsection[Enhanced vertical diffusion (\forcode{ln_zdfevd =.true.})]740 {Enhanced vertical diffusion (\protect\np{ln\_zdfevd}\forcode{ =.true.})}739 \subsection[Enhanced vertical diffusion (\forcode{ln_zdfevd=.true.})] 740 {Enhanced vertical diffusion (\protect\np{ln\_zdfevd}\forcode{=.true.})} 741 741 \label{subsec:ZDF_evd} 742 742 743 743 Options are defined through the \nam{zdf} namelist variables. 744 The enhanced vertical diffusion parameterisation is used when \np{ln\_zdfevd}\forcode{ =.true.}.744 The enhanced vertical diffusion parameterisation is used when \np{ln\_zdfevd}\forcode{=.true.}. 745 745 In this case, the vertical eddy mixing coefficients are assigned very large values 746 746 in regions where the stratification is unstable 747 747 (\ie\ when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{lazar_phd97, lazar.madec.ea_JPO99}. 748 This is done either on tracers only (\np{nn\_evdm}\forcode{ =0}) or749 on both momentum and tracers (\np{nn\_evdm}\forcode{ =1}).750 751 In practice, where $N^2\leq 10^{-12}$, $A_T^{vT}$ and $A_T^{vS}$, and if \np{nn\_evdm}\forcode{ =1},748 This is done either on tracers only (\np{nn\_evdm}\forcode{=0}) or 749 on both momentum and tracers (\np{nn\_evdm}\forcode{=1}). 750 751 In practice, where $N^2\leq 10^{-12}$, $A_T^{vT}$ and $A_T^{vS}$, and if \np{nn\_evdm}\forcode{=1}, 752 752 the four neighbouring $A_u^{vm} \;\mbox{and}\;A_v^{vm}$ values also, are set equal to 753 753 the namelist parameter \np{rn\_avevd}. … … 764 764 % Turbulent Closure Scheme 765 765 % ------------------------------------------------------------------------------------------------------------- 766 \subsection{Handling convection with turbulent closure schemes (\forcode{ln_zdf \{tke,gls,osm\} =.true.})}766 \subsection{Handling convection with turbulent closure schemes (\forcode{ln_zdf{tke,gls,osm}=.true.})} 767 767 \label{subsec:ZDF_tcs} 768 768 … … 786 786 The OSMOSIS turbulent closure scheme already includes enhanced vertical diffusion in the case of convection, 787 787 %as governed by the variables $bvsqcon$ and $difcon$ found in \mdl{zdfkpp}, 788 therefore \np{ln\_zdfevd}\forcode{ =.false.} should be used with the OSMOSIS scheme.788 therefore \np{ln\_zdfevd}\forcode{=.false.} should be used with the OSMOSIS scheme. 789 789 % gm% + one word on non local flux with KPP scheme trakpp.F90 module... 790 790 … … 792 792 % Double Diffusion Mixing 793 793 % ================================================================ 794 \section[Double diffusion mixing (\forcode{ln_zdfddm =.true.})]795 {Double diffusion mixing (\protect\np{ln\_zdfddm}\forcode{ =.true.})}794 \section[Double diffusion mixing (\forcode{ln_zdfddm=.true.})] 795 {Double diffusion mixing (\protect\np{ln\_zdfddm}\forcode{=.true.})} 796 796 \label{subsec:ZDF_ddm} 797 797 … … 956 956 % Linear Bottom Friction 957 957 % ------------------------------------------------------------------------------------------------------------- 958 \subsection[Linear top/bottom friction (\forcode{ln_lin =.true.})]959 {Linear top/bottom friction (\protect\np{ln\_lin}\forcode{ =.true.)}}958 \subsection[Linear top/bottom friction (\forcode{ln_lin=.true.})] 959 {Linear top/bottom friction (\protect\np{ln\_lin}\forcode{=.true.)}} 960 960 \label{subsec:ZDF_drg_linear} 961 961 … … 984 984 \] 985 985 When \np{ln\_lin} \forcode{= .true.}, the value of $r$ used is \np{rn\_Uc0}*\np{rn\_Cd0}. 986 Setting \np{ln\_OFF} \forcode{= .true.} (and \forcode{ln_lin =.true.}) is equivalent to setting $r=0$ and leads to a free-slip boundary condition.986 Setting \np{ln\_OFF} \forcode{= .true.} (and \forcode{ln_lin=.true.}) is equivalent to setting $r=0$ and leads to a free-slip boundary condition. 987 987 988 988 These values are assigned in \mdl{zdfdrg}. 989 989 Note that there is support for local enhancement of these values via an externally defined 2D mask array 990 (\np{ln\_boost}\forcode{ =.true.}) given in the \ifile{bfr\_coef} input NetCDF file.990 (\np{ln\_boost}\forcode{=.true.}) given in the \ifile{bfr\_coef} input NetCDF file. 991 991 The mask values should vary from 0 to 1. 992 992 Locations with a non-zero mask value will have the friction coefficient increased by … … 996 996 % Non-Linear Bottom Friction 997 997 % ------------------------------------------------------------------------------------------------------------- 998 \subsection[Non-linear top/bottom friction (\forcode{ln_non_lin =.true.})]999 {Non-linear top/bottom friction (\protect\np{ln\_non\_lin}\forcode{ =.true.})}998 \subsection[Non-linear top/bottom friction (\forcode{ln_non_lin=.true.})] 999 {Non-linear top/bottom friction (\protect\np{ln\_non\_lin}\forcode{=.true.})} 1000 1000 \label{subsec:ZDF_drg_nonlinear} 1001 1001 … … 1025 1025 $C_D$= \np{rn\_Cd0}, and $e_b$ =\np{rn\_bfeb2}. 1026 1026 Note that for applications which consider tides explicitly, a low or even zero value of \np{rn\_bfeb2} is recommended. A local enhancement of $C_D$ is again possible via an externally defined 2D mask array 1027 (\np{ln\_boost}\forcode{ =.true.}).1027 (\np{ln\_boost}\forcode{=.true.}). 1028 1028 This works in the same way as for the linear friction case with non-zero masked locations increased by 1029 1029 $mask\_value$ * \np{rn\_boost} * \np{rn\_Cd0}. … … 1032 1032 % Bottom Friction Log-layer 1033 1033 % ------------------------------------------------------------------------------------------------------------- 1034 \subsection[Log-layer top/bottom friction (\forcode{ln_loglayer =.true.})]1035 {Log-layer top/bottom friction (\protect\np{ln\_loglayer}\forcode{ =.true.})}1034 \subsection[Log-layer top/bottom friction (\forcode{ln_loglayer=.true.})] 1035 {Log-layer top/bottom friction (\protect\np{ln\_loglayer}\forcode{=.true.})} 1036 1036 \label{subsec:ZDF_drg_loglayer} 1037 1037 … … 1053 1053 1054 1054 \noindent The log-layer enhancement can also be applied to the top boundary friction if 1055 under ice-shelf cavities are activated (\np{ln\_isfcav}\forcode{ =.true.}).1055 under ice-shelf cavities are activated (\np{ln\_isfcav}\forcode{=.true.}). 1056 1056 %In this case, the relevant namelist parameters are \np{rn\_tfrz0}, \np{rn\_tfri2} and \np{rn\_tfri2\_max}. 1057 1057 … … 1059 1059 % Explicit bottom Friction 1060 1060 % ------------------------------------------------------------------------------------------------------------- 1061 \subsection{Explicit top/bottom friction (\forcode{ln_drgimp =.false.})}1061 \subsection{Explicit top/bottom friction (\forcode{ln_drgimp=.false.})} 1062 1062 \label{subsec:ZDF_drg_stability} 1063 1063 … … 1120 1120 % Implicit Bottom Friction 1121 1121 % ------------------------------------------------------------------------------------------------------------- 1122 \subsection[Implicit top/bottom friction (\forcode{ln_drgimp =.true.})]1123 {Implicit top/bottom friction (\protect\np{ln\_drgimp}\forcode{ =.true.})}1122 \subsection[Implicit top/bottom friction (\forcode{ln_drgimp=.true.})] 1123 {Implicit top/bottom friction (\protect\np{ln\_drgimp}\forcode{=.true.})} 1124 1124 \label{subsec:ZDF_drg_imp} 1125 1125 … … 1155 1155 \label{subsec:ZDF_drg_ts} 1156 1156 1157 With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration and equal to the value used to update the baroclinic momentum trend. Provided \np{ln\_drgimp}\forcode{= .false.} and a centred or \textit{leap-frog} like integration of barotropic equations is used (\ie\ \forcode{ln_bt_fw =.false.}, cf \autoref{subsec:DYN_spg_ts}), this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step. However, if \np{ln\_drgimp}\forcode{= .true.}, stresses depend on the \textit{after} value of the velocities which themselves depend on the barotropic iteration result. This cyclic dependency makes difficult obtaining consistent stresses in 2d and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized since it interferes with the adjustment to the boundary conditions.1157 With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration and equal to the value used to update the baroclinic momentum trend. Provided \np{ln\_drgimp}\forcode{= .false.} and a centred or \textit{leap-frog} like integration of barotropic equations is used (\ie\ \forcode{ln_bt_fw=.false.}, cf \autoref{subsec:DYN_spg_ts}), this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step. However, if \np{ln\_drgimp}\forcode{= .true.}, stresses depend on the \textit{after} value of the velocities which themselves depend on the barotropic iteration result. This cyclic dependency makes difficult obtaining consistent stresses in 2d and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized since it interferes with the adjustment to the boundary conditions. 1158 1158 1159 1159 The strategy to handle top/bottom stresses with split-explicit free surface in \NEMO\ is as follows: … … 1169 1169 % Internal wave-driven mixing 1170 1170 % ================================================================ 1171 \section[Internal wave-driven mixing (\forcode{ln_zdfiwm =.true.})]1172 {Internal wave-driven mixing (\protect\np{ln\_zdfiwm}\forcode{ =.true.})}1171 \section[Internal wave-driven mixing (\forcode{ln_zdfiwm=.true.})] 1172 {Internal wave-driven mixing (\protect\np{ln\_zdfiwm}\forcode{=.true.})} 1173 1173 \label{subsec:ZDF_tmx_new} 1174 1174 … … 1230 1230 % surface wave-induced mixing 1231 1231 % ================================================================ 1232 \section[Surface wave-induced mixing (\forcode{ln_zdfswm =.true.})]1233 {Surface wave-induced mixing (\protect\np{ln\_zdfswm}\forcode{ =.true.})}1232 \section[Surface wave-induced mixing (\forcode{ln_zdfswm=.true.})] 1233 {Surface wave-induced mixing (\protect\np{ln\_zdfswm}\forcode{=.true.})} 1234 1234 \label{subsec:ZDF_swm} 1235 1235 … … 1254 1254 and diffusivity coefficients. 1255 1255 1256 In order to account for this contribution set: \forcode{ln_zdfswm =.true.},1257 then wave interaction has to be activated through \forcode{ln_wave =.true.},1258 the Stokes Drift can be evaluated by setting \forcode{ln_sdw =.true.}1256 In order to account for this contribution set: \forcode{ln_zdfswm=.true.}, 1257 then wave interaction has to be activated through \forcode{ln_wave=.true.}, 1258 the Stokes Drift can be evaluated by setting \forcode{ln_sdw=.true.} 1259 1259 (see \autoref{subsec:SBC_wave_sdw}) 1260 1260 and the needed wave fields can be provided either in forcing or coupled mode … … 1264 1264 % Adaptive-implicit vertical advection 1265 1265 % ================================================================ 1266 \section[Adaptive-implicit vertical advection (\forcode{ln_zad_Aimp =.true.})]1267 {Adaptive-implicit vertical advection(\protect\np{ln\_zad\_Aimp}\forcode{ =.true.})}1266 \section[Adaptive-implicit vertical advection (\forcode{ln_zad_Aimp=.true.})] 1267 {Adaptive-implicit vertical advection(\protect\np{ln\_zad\_Aimp}\forcode{=.true.})} 1268 1268 \label{subsec:ZDF_aimp} 1269 1269 … … 1283 1283 interest or due to short-lived conditions such that the extra numerical diffusion or 1284 1284 viscosity does not greatly affect the overall solution. With such applications, setting: 1285 \forcode{ln_zad_Aimp =.true.} should allow much longer model timesteps to be used whilst1285 \forcode{ln_zad_Aimp=.true.} should allow much longer model timesteps to be used whilst 1286 1286 retaining the accuracy of the high order explicit schemes over most of the domain. 1287 1287 … … 1407 1407 1408 1408 \noindent which were chosen to provide a slightly more stable and less noisy solution. The 1409 result when using the default value of \forcode{nn_rdt =10.} without adaptive-implicit1409 result when using the default value of \forcode{nn_rdt=10.} without adaptive-implicit 1410 1410 vertical velocity is illustrated in \autoref{fig:zad_Aimp_overflow_frames}. The mass of 1411 1411 cold water, initially sitting on the shelf, moves down the slope and forms a 1412 1412 bottom-trapped, dense plume. Even with these extra physics choices the model is close to 1413 stability limits and attempts with \forcode{nn_rdt =30.} will fail after about 5.5 hours1413 stability limits and attempts with \forcode{nn_rdt=30.} will fail after about 5.5 hours 1414 1414 with excessively high horizontal velocities. This time-scale corresponds with the time the 1415 1415 plume reaches the steepest part of the topography and, although detected as a horizontal … … 1423 1423 significantly altering the solution (although at this extreme the plume is more diffuse 1424 1424 and has not travelled so far). Notably, the solution with and without the scheme is 1425 slightly different even with \forcode{nn_rdt =10.}; suggesting that the base run was1425 slightly different even with \forcode{nn_rdt=10.}; suggesting that the base run was 1426 1426 close enough to instability to trigger the scheme despite completing successfully. 1427 1427 To assist in diagnosing how active the scheme is, in both location and time, the 3D -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11435 r11537 304 304 The default value is 1, as recommended by \citet{Roullet2000?} 305 305 306 \colorbox{red}{\np{rnu}\forcode{ =1} to be suppressed from namelist !}306 \colorbox{red}{\np{rnu}\forcode{=1} to be suppressed from namelist !} 307 307 308 308 %------------------------------------------------------------- -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11435 r11537 86 86 where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient. 87 87 $\gamma$ is initialized as \np{rn\_atfp} (namelist parameter). 88 Its default value is \np{rn\_atfp}\forcode{ =10.e-3} (see \autoref{sec:STP_mLF}),88 Its default value is \np{rn\_atfp}\forcode{=10.e-3} (see \autoref{sec:STP_mLF}), 89 89 causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}). 90 90 The addition of a time filter degrades the accuracy of the calculation from second to first order. … … 172 172 173 173 The leapfrog environment supports a centred in time computation of the surface pressure, \ie\ evaluated 174 at \textit{now} time step. This refers to as the explicit free surface case in the code (\np{ln\_dynspg\_exp}\forcode{ =.true.}).174 at \textit{now} time step. This refers to as the explicit free surface case in the code (\np{ln\_dynspg\_exp}\forcode{=.true.}). 175 175 This choice however imposes a strong constraint on the time step which should be small enough to resolve the propagation 176 176 of external gravity waves. As a matter of fact, one rather use in a realistic setup, a split-explicit free surface 177 (\np{ln\_dynspg\_ts}\forcode{ =.true.}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc177 (\np{ln\_dynspg\_ts}\forcode{=.true.}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc 178 178 time steps. The use of the time-splitting (in combination with non-linear free surface) imposes some constraints on the design of 179 179 the overall flowchart, in particular to ensure exact tracer conservation (see \autoref{fig:TimeStep_flowchart}). -
NEMO/trunk/doc/latex/SI3/main/chapters.tex
r11171 r11537 1 1 \subfile{../subfiles/todolist} 2 3 \subfile{../subfiles/introduction} % Introduction4 2 5 3 \subfile{../subfiles/chap_model_basics} -
NEMO/trunk/doc/latex/SI3/main/definitions.tex
r11433 r11537 12 12 13 13 %% Color for document (frontpage banner, links and chapter boxes) 14 \def \set color{ \definecolor{manualcolor}{cmyk}{0, 0, 0, 0.4} }14 \def \setmanualcolor{ \definecolor{manualcolor}{cmyk}{0, 0, 0, 0.4} } 15 15 16 16 %% IPSL publication number -
NEMO/trunk/doc/latex/SI3/subfiles/chap_bdy_agrif.tex
r11015 r11537 9 9 \chapter{BDY and AGRIF with SI$^3$} 10 10 \label{chap:REG} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_domain.tex
r11031 r11537 10 10 \chapter{Time, space and thickness space domain} 11 11 \label{chap:DOM} 12 \ minitoc12 \chaptertoc 13 13 14 14 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_dynamics.tex
r11015 r11537 10 10 \chapter{Ice dynamics} 11 11 \label{chap:DYN} 12 \ minitoc12 \chaptertoc 13 13 14 14 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_interfaces.tex
r11015 r11537 9 9 \chapter{Ice-atmosphere and ice-ocean interfaces} 10 10 \label{chap:INT} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_miscellaneous.tex
r11015 r11537 9 9 \chapter{Miscellaneous topics} 10 10 \label{chap:MIS} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_model_basics.tex
r11043 r11537 9 9 \chapter{Model Basics} 10 10 \label{chap:MB} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_output_diagnostics.tex
r11031 r11537 9 9 \chapter{Output and diagnostics} 10 10 \label{chap:DIA} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_radiative_transfer.tex
r11031 r11537 13 13 \chapter{Radiative transfer} 14 14 \label{chap:RAD} 15 \ minitoc15 \chaptertoc 16 16 17 17 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_ridging_rafting.tex
r11043 r11537 10 10 \chapter{Ridging and rafting} 11 11 \label{chap:RDG} 12 \ minitoc12 \chaptertoc 13 13 14 14 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_single_category_use.tex
r11015 r11537 11 11 12 12 \label{chap:INT} 13 \ minitoc13 \chaptertoc 14 14 15 15 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_thermo.tex
r11031 r11537 9 9 \chapter{Ice thermodynamics} 10 10 \label{chap:THD} 11 \ minitoc11 \chaptertoc 12 12 13 13 \newpage -
NEMO/trunk/doc/latex/SI3/subfiles/chap_transport.tex
r11031 r11537 10 10 \chapter{Ice transport} 11 11 \label{chap:TRP} 12 \ minitoc12 \chaptertoc 13 13 14 14 \newpage
Note: See TracChangeset
for help on using the changeset viewer.