Changeset 11551
- Timestamp:
- 2019-09-16T16:53:24+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO/subfiles
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11543 r11551 341 341 342 342 If the domain decomposition is automatically defined (when \np{jpni} and \np{jpnj} are < 1), the decomposition chosen by the model will minimise the sub-domain size (defined as $max_{all domains}(jpi \times jpj)$) and maximize the number of eliminated land subdomains. This means that no other domain decomposition (a set of \np{jpni} and \np{jpnj} values) will use less processes than $(jpni \times jpnj - N_{land})$ and get a smaller subdomain size. 343 In order to specify $N_{mpi}$ properly (minimize $N_{useless}$), you must run the model once with \np{ln\_list} activated. In this case, the model will start the initialisation phase, print the list of optimum decompositions ($N_{mpi}$, \np{jpni} and \np{jpnj}) in \texttt{ocean.output} and directly abort. The maximum value of $N_{mpi}$ tested in this list is given by $max(N_{MPI\_tasks}, \np{jpni} \times \np{jpnj})$. For example, run the model on 40 nodes with ln\_list activated and $\np{jpni} = 10000$ and $\np{jpnj}= 1$, will print the list of optimum domains decomposition from 1 to about 10000.343 In order to specify $N_{mpi}$ properly (minimize $N_{useless}$), you must run the model once with \np{ln\_list} activated. In this case, the model will start the initialisation phase, print the list of optimum decompositions ($N_{mpi}$, \np{jpni} and \np{jpnj}) in \texttt{ocean.output} and directly abort. The maximum value of $N_{mpi}$ tested in this list is given by $max(N_{MPI\_tasks}, jpni \times jpnj)$. For example, run the model on 40 nodes with ln\_list activated and $jpni = 10000$ and $jpnj = 1$, will print the list of optimum domains decomposition from 1 to about 10000. 344 344 345 345 Processors are numbered from 0 to $N_{mpi} - 1$. Subdomains containning some ocean points are numbered first from 0 to $jpni * jpnj - N_{land} -1$. The remaining $N_{useless}$ land subdomains are numbered next, which means that, for a given (\np{jpni}, \np{jpnj}), the numbers attributed to he ocean subdomains do not vary with $N_{useless}$. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11543 r11551 1063 1063 \item[\np{nn\_gammablk}\forcode{=0}]: 1064 1064 The salt and heat exchange coefficients are constant and defined by \np{rn\_gammas0} and \np{rn\_gammat0}. 1065 \[ 1066 % \label{eq:SBC_isf_gamma_iso} 1067 \gamma^{T} = \np{rn\_gammat0} 1068 \] 1069 \[ 1070 \gamma^{S} = \np{rn\_gammas0} 1071 \] 1065 \begin{gather*} 1066 % \label{eq:SBC_isf_gamma_iso} 1067 \gamma^{T} = rn\_gammat0 \\ 1068 \gamma^{S} = rn\_gammas0 1069 \end{gather*} 1072 1070 This is the recommended formulation for ISOMIP. 1073 1071 \item[\np{nn\_gammablk}\forcode{=1}]: 1074 1072 The salt and heat exchange coefficients are velocity dependent and defined as 1075 \[ 1076 \gamma^{T} = \np{rn\_gammat0} \times u_{*} 1077 \] 1078 \[ 1079 \gamma^{S} = \np{rn\_gammas0} \times u_{*} 1080 \] 1073 \begin{gather*} 1074 \gamma^{T} = rn\_gammat0 \times u_{*} \\ 1075 \gamma^{S} = rn\_gammas0 \times u_{*} 1076 \end{gather*} 1081 1077 where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 1082 1078 See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application.
Note: See TracChangeset
for help on using the changeset viewer.