Changeset 11558
- Timestamp:
- 2019-09-17T17:04:06+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO/subfiles
- Files:
-
- 23 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex
r11543 r11558 43 43 %--------------------------------------------namdom------------------------------------------------------- 44 44 45 \nlst{namdom_domcfg} 45 \begin{listing} 46 \nlst{namdom_domcfg} 47 \caption{\texttt{namdom\_domcfg}} 48 \label{lst:namdom_domcfg} 49 \end{listing} 46 50 %-------------------------------------------------------------------------------------------------------------- 47 51 … … 103 107 \section{Vertical grid} 104 108 \label{sec:DOMCFG_vert} 109 105 110 \subsection{Vertical reference coordinate} 106 111 \label{sec:DOMCFG_zref} … … 108 113 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 109 114 \begin{figure}[!tb] 110 \begin{center} 111 \includegraphics[width=\textwidth]{Fig_zgr} 112 \caption{ 113 \protect\label{fig:DOMCFG_zgr} 114 Default vertical mesh for ORCA2: 30 ocean levels (L30). 115 Vertical level functions for (a) T-point depth and (b) the associated scale factor for the $z$-coordinate case. 116 } 117 \end{center} 115 \centering 116 \includegraphics[width=\textwidth]{Fig_zgr} 117 \caption[DOMAINcfg: default vertical mesh for ORCA2]{ 118 Default vertical mesh for ORCA2: 30 ocean levels (L30). 119 Vertical level functions for (a) T-point depth and (b) the associated scale factor for 120 the $z$-coordinate case.} 121 \label{fig:DOMCFG_zgr} 118 122 \end{figure} 119 123 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 225 229 %% %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 226 230 \begin{table} 227 \begin{center} 228 \begin{tabular}{c||r|r|r|r} 229 \hline 230 \textbf{LEVEL} & \textbf{gdept\_1d} & \textbf{gdepw\_1d} & \textbf{e3t\_1d } & \textbf{e3w\_1d} \\ 231 \hline 232 1 & \textbf{ 5.00} & 0.00 & \textbf{ 10.00} & 10.00 \\ 233 \hline 234 2 & \textbf{ 15.00} & 10.00 & \textbf{ 10.00} & 10.00 \\ 235 \hline 236 3 & \textbf{ 25.00} & 20.00 & \textbf{ 10.00} & 10.00 \\ 237 \hline 238 4 & \textbf{ 35.01} & 30.00 & \textbf{ 10.01} & 10.00 \\ 239 \hline 240 5 & \textbf{ 45.01} & 40.01 & \textbf{ 10.01} & 10.01 \\ 241 \hline 242 6 & \textbf{ 55.03} & 50.02 & \textbf{ 10.02} & 10.02 \\ 243 \hline 244 7 & \textbf{ 65.06} & 60.04 & \textbf{ 10.04} & 10.03 \\ 245 \hline 246 8 & \textbf{ 75.13} & 70.09 & \textbf{ 10.09} & 10.06 \\ 247 \hline 248 9 & \textbf{ 85.25} & 80.18 & \textbf{ 10.17} & 10.12 \\ 249 \hline 250 10 & \textbf{ 95.49} & 90.35 & \textbf{ 10.33} & 10.24 \\ 251 \hline 252 11 & \textbf{ 105.97} & 100.69 & \textbf{ 10.65} & 10.47 \\ 253 \hline 254 12 & \textbf{ 116.90} & 111.36 & \textbf{ 11.27} & 10.91 \\ 255 \hline 256 13 & \textbf{ 128.70} & 122.65 & \textbf{ 12.47} & 11.77 \\ 257 \hline 258 14 & \textbf{ 142.20} & 135.16 & \textbf{ 14.78} & 13.43 \\ 259 \hline 260 15 & \textbf{ 158.96} & 150.03 & \textbf{ 19.23} & 16.65 \\ 261 \hline 262 16 & \textbf{ 181.96} & 169.42 & \textbf{ 27.66} & 22.78 \\ 263 \hline 264 17 & \textbf{ 216.65} & 197.37 & \textbf{ 43.26} & 34.30 \\ 265 \hline 266 18 & \textbf{ 272.48} & 241.13 & \textbf{ 70.88} & 55.21 \\ 267 \hline 268 19 & \textbf{ 364.30} & 312.74 & \textbf{ 116.11} & 90.99 \\ 269 \hline 270 20 & \textbf{ 511.53} & 429.72 & \textbf{ 181.55} & 146.43 \\ 271 \hline 272 21 & \textbf{ 732.20} & 611.89 & \textbf{ 261.03} & 220.35 \\ 273 \hline 274 22 & \textbf{ 1033.22} & 872.87 & \textbf{ 339.39} & 301.42 \\ 275 \hline 276 23 & \textbf{ 1405.70} & 1211.59 & \textbf{ 402.26} & 373.31 \\ 277 \hline 278 24 & \textbf{ 1830.89} & 1612.98 & \textbf{ 444.87} & 426.00 \\ 279 \hline 280 25 & \textbf{ 2289.77} & 2057.13 & \textbf{ 470.55} & 459.47 \\ 281 \hline 282 26 & \textbf{ 2768.24} & 2527.22 & \textbf{ 484.95} & 478.83 \\ 283 \hline 284 27 & \textbf{ 3257.48} & 3011.90 & \textbf{ 492.70} & 489.44 \\ 285 \hline 286 28 & \textbf{ 3752.44} & 3504.46 & \textbf{ 496.78} & 495.07 \\ 287 \hline 288 29 & \textbf{ 4250.40} & 4001.16 & \textbf{ 498.90} & 498.02 \\ 289 \hline 290 30 & \textbf{ 4749.91} & 4500.02 & \textbf{ 500.00} & 499.54 \\ 291 \hline 292 31 & \textbf{ 5250.23} & 5000.00 & \textbf{ 500.56} & 500.33 \\ 293 \hline 294 \end{tabular} 295 \end{center} 296 \caption{ 297 \protect\label{tab:DOMCFG_orca_zgr} 298 Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as computed from 299 \autoref{eq:DOMCFG_zgr_ana_2} using the coefficients given in \autoref{eq:DOMCFG_zgr_coef} 300 } 231 \centering 232 \begin{tabular}{c||r|r|r|r} 233 \hline 234 \textbf{LEVEL} & \textbf{gdept\_1d} & \textbf{gdepw\_1d} & \textbf{e3t\_1d } & \textbf{e3w\_1d} \\ 235 \hline 236 1 & \textbf{ 5.00} & 0.00 & \textbf{ 10.00} & 10.00 \\ 237 \hline 238 2 & \textbf{ 15.00} & 10.00 & \textbf{ 10.00} & 10.00 \\ 239 \hline 240 3 & \textbf{ 25.00} & 20.00 & \textbf{ 10.00} & 10.00 \\ 241 \hline 242 4 & \textbf{ 35.01} & 30.00 & \textbf{ 10.01} & 10.00 \\ 243 \hline 244 5 & \textbf{ 45.01} & 40.01 & \textbf{ 10.01} & 10.01 \\ 245 \hline 246 6 & \textbf{ 55.03} & 50.02 & \textbf{ 10.02} & 10.02 \\ 247 \hline 248 7 & \textbf{ 65.06} & 60.04 & \textbf{ 10.04} & 10.03 \\ 249 \hline 250 8 & \textbf{ 75.13} & 70.09 & \textbf{ 10.09} & 10.06 \\ 251 \hline 252 9 & \textbf{ 85.25} & 80.18 & \textbf{ 10.17} & 10.12 \\ 253 \hline 254 10 & \textbf{ 95.49} & 90.35 & \textbf{ 10.33} & 10.24 \\ 255 \hline 256 11 & \textbf{ 105.97} & 100.69 & \textbf{ 10.65} & 10.47 \\ 257 \hline 258 12 & \textbf{ 116.90} & 111.36 & \textbf{ 11.27} & 10.91 \\ 259 \hline 260 13 & \textbf{ 128.70} & 122.65 & \textbf{ 12.47} & 11.77 \\ 261 \hline 262 14 & \textbf{ 142.20} & 135.16 & \textbf{ 14.78} & 13.43 \\ 263 \hline 264 15 & \textbf{ 158.96} & 150.03 & \textbf{ 19.23} & 16.65 \\ 265 \hline 266 16 & \textbf{ 181.96} & 169.42 & \textbf{ 27.66} & 22.78 \\ 267 \hline 268 17 & \textbf{ 216.65} & 197.37 & \textbf{ 43.26} & 34.30 \\ 269 \hline 270 18 & \textbf{ 272.48} & 241.13 & \textbf{ 70.88} & 55.21 \\ 271 \hline 272 19 & \textbf{ 364.30} & 312.74 & \textbf{ 116.11} & 90.99 \\ 273 \hline 274 20 & \textbf{ 511.53} & 429.72 & \textbf{ 181.55} & 146.43 \\ 275 \hline 276 21 & \textbf{ 732.20} & 611.89 & \textbf{ 261.03} & 220.35 \\ 277 \hline 278 22 & \textbf{ 1033.22} & 872.87 & \textbf{ 339.39} & 301.42 \\ 279 \hline 280 23 & \textbf{ 1405.70} & 1211.59 & \textbf{ 402.26} & 373.31 \\ 281 \hline 282 24 & \textbf{ 1830.89} & 1612.98 & \textbf{ 444.87} & 426.00 \\ 283 \hline 284 25 & \textbf{ 2289.77} & 2057.13 & \textbf{ 470.55} & 459.47 \\ 285 \hline 286 26 & \textbf{ 2768.24} & 2527.22 & \textbf{ 484.95} & 478.83 \\ 287 \hline 288 27 & \textbf{ 3257.48} & 3011.90 & \textbf{ 492.70} & 489.44 \\ 289 \hline 290 28 & \textbf{ 3752.44} & 3504.46 & \textbf{ 496.78} & 495.07 \\ 291 \hline 292 29 & \textbf{ 4250.40} & 4001.16 & \textbf{ 498.90} & 498.02 \\ 293 \hline 294 30 & \textbf{ 4749.91} & 4500.02 & \textbf{ 500.00} & 499.54 \\ 295 \hline 296 31 & \textbf{ 5250.23} & 5000.00 & \textbf{ 500.56} & 500.33 \\ 297 \hline 298 \end{tabular} 299 \caption[Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration]{ 300 Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as 301 computed from \autoref{eq:DOMCFG_zgr_ana_2} using 302 the coefficients given in \autoref{eq:DOMCFG_zgr_coef}} 303 \label{tab:DOMCFG_orca_zgr} 301 304 \end{table} 302 305 %%%YY … … 405 408 %------------------------------------------nam_zgr_sco--------------------------------------------------- 406 409 % 407 \nlst{namzgr_sco_domcfg} 410 \begin{listing} 411 \nlst{namzgr_sco_domcfg} 412 \caption{\texttt{namzgr\_sco\_domcfg}} 413 \label{lst:namzgr_sco_domcfg} 414 \end{listing} 408 415 %-------------------------------------------------------------------------------------------------------------- 409 416 Options are defined in \nam{zgr\_sco} (\texttt{DOMAINcfg} only). … … 463 470 %% %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 464 471 \begin{figure}[!ht] 465 \begin{center} 466 \includegraphics[width=\textwidth]{Fig_sco_function} 467 \caption{ 468 \protect\label{fig:DOMCFG_sco_function} 469 Examples of the stretching function applied to a seamount; 470 from left to right: surface, surface and bottom, and bottom intensified resolutions 471 } 472 \end{center} 472 \centering 473 \includegraphics[width=\textwidth]{Fig_sco_function} 474 \caption[DOMAINcfg: examples of the stretching function applied to a seamount]{ 475 Examples of the stretching function applied to a seamount; 476 from left to right: surface, surface and bottom, and bottom intensified resolutions} 477 \label{fig:DOMCFG_sco_function} 473 478 \end{figure} 474 479 %% %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 516 521 %% %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 517 522 \begin{figure}[!ht] 523 \centering 518 524 \includegraphics[width=\textwidth]{Fig_DOM_compare_coordinates_surface} 519 \caption {525 \caption[DOMAINcfg: comparison of $s$- and $z$-coordinate]{ 520 526 A comparison of the \citet{song.haidvogel_JCP94} $S$-coordinate (solid lines), 521 527 a 50 level $Z$-coordinate (contoured surfaces) and 522 528 the \citet{siddorn.furner_OM13} $S$-coordinate (dashed lines) in the surface $100~m$ for 523 529 a idealised bathymetry that goes from $50~m$ to $5500~m$ depth. 524 For clarity every third coordinate surface is shown. 525 } 530 For clarity every third coordinate surface is shown.} 526 531 \label{fig:DOMCFG_fig_compare_coordinates_surface} 527 532 \end{figure} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_algos.tex
r11544 r11558 307 307 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 308 308 \begin{figure}[!ht] 309 \begin{center} 310 \includegraphics[width=\textwidth]{Fig_ISO_triad} 311 \caption{ 312 \protect\label{fig:ALGOS_ISO_triad} 313 Triads used in the Griffies's like iso-neutral diffision scheme for 314 $u$-component (upper panel) and $w$-component (lower panel). 315 } 316 \end{center} 309 \centering 310 \includegraphics[width=\textwidth]{Fig_ISO_triad} 311 \caption[Triads used in the Griffies's like iso-neutral diffision scheme for 312 $u$- and $w$-components)]{ 313 Triads used in the Griffies's like iso-neutral diffision scheme for 314 $u$-component (upper panel) and $w$-component (lower panel).} 315 \label{fig:ALGOS_ISO_triad} 317 316 \end{figure} 318 317 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_diff_opers.tex
r11543 r11558 70 70 Indeed, for the special case $k=z$ and thus $e_3 =1$, 71 71 we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:SCOORD} and 72 use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule }.72 use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule1}. 73 73 Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{eq:DIFFOPERS_1}, 74 74 the ($i$,$z$) and ($j$,$z$) planes are independent. -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex
r11543 r11558 411 411 With the EEN scheme, the vorticity terms are represented as: 412 412 \begin{equation} 413 \label{eq:INVARIANTS_dynvor_een }413 \label{eq:INVARIANTS_dynvor_een1} 414 414 \left\{ { 415 415 \begin{aligned} … … 952 952 With the EEN scheme, the vorticity terms are represented as: 953 953 \begin{equation} 954 \label{eq:INVARIANTS_dynvor_een }954 \label{eq:INVARIANTS_dynvor_een2} 955 955 \left\{ { 956 956 \begin{aligned} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex
r11543 r11558 63 63 Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that 64 64 \begin{equation} 65 \label{eq:SCOORD_s_chain_rule }65 \label{eq:SCOORD_s_chain_rule1} 66 66 \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t} = 67 67 \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t} … … 102 102 the model equations in the curvilinear $s-$coordinate system are: 103 103 \begin{equation} 104 \label{eq:SCOORD_s_chain_rule }104 \label{eq:SCOORD_s_chain_rule2} 105 105 \begin{aligned} 106 106 &\left. {\frac{\partial \bullet }{\partial t}} \right|_z = … … 128 128 \label{sec:SCOORD_continuity} 129 129 130 Using (\autoref{eq:SCOORD_s_chain_rule }) and130 Using (\autoref{eq:SCOORD_s_chain_rule1}) and 131 131 the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate, 132 132 the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to … … 272 272 + w \;\frac{\partial u}{\partial z} \\ 273 273 % 274 \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule }) }274 \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) } 275 275 % 276 276 &= \left. {\frac{\partial u }{\partial t}} \right|_z … … 317 317 \end{subequations} 318 318 % 319 Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule })) to $u$ and319 Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and 320 320 using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side, 321 321 \[ -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex
r11543 r11558 26 26 %-----------------------------------------nam_traldf------------------------------------------------------ 27 27 28 \nlst{namtra_ldf}29 28 %--------------------------------------------------------------------------------------------------------- 30 29 … … 202 201 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 203 202 \begin{figure}[tb] 204 \begin{center} 205 \includegraphics[width=\textwidth]{Fig_GRIFF_triad_fluxes} 206 \caption{ 207 \protect\label{fig:TRIADS_ISO_triad} 208 (a) Arrangement of triads $S_i$ and tracer gradients to 209 give lateral tracer flux from box $i,k$ to $i+1,k$ 210 (b) Triads $S'_i$ and tracer gradients to give vertical tracer flux from 211 box $i,k$ to $i,k+1$. 212 } 213 \end{center} 203 \centering 204 \includegraphics[width=\textwidth]{Fig_GRIFF_triad_fluxes} 205 \caption[Triads arrangement and tracer gradients to give lateral and vertical tracer fluxes]{ 206 (a) Arrangement of triads $S_i$ and tracer gradients to 207 give lateral tracer flux from box $i,k$ to $i+1,k$ 208 (b) Triads $S'_i$ and tracer gradients to give vertical tracer flux from 209 box $i,k$ to $i,k+1$.} 210 \label{fig:TRIADS_ISO_triad} 214 211 \end{figure} 215 212 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 266 263 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 267 264 \begin{figure}[tb] 268 \begin{center} 269 \includegraphics[width=\textwidth]{Fig_GRIFF_qcells} 270 \caption{ 271 \protect\label{fig:TRIADS_qcells} 272 Triad notation for quarter cells. $T$-cells are inside boxes, 273 while the $i+\fractext{1}{2},k$ $u$-cell is shaded in green and 274 the $i,k+\fractext{1}{2}$ $w$-cell is shaded in pink. 275 } 276 \end{center} 265 \centering 266 \includegraphics[width=\textwidth]{Fig_GRIFF_qcells} 267 \caption[Triad notation for quarter cells]{ 268 Triad notation for quarter cells. 269 $T$-cells are inside boxes, 270 while the $i+\fractext{1}{2},k$ $u$-cell is shaded in green and 271 the $i,k+\fractext{1}{2}$ $w$-cell is shaded in pink.} 272 \label{fig:TRIADS_qcells} 277 273 \end{figure} 278 274 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 659 655 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 660 656 \begin{figure}[h] 661 \begin{center} 662 \includegraphics[width=\textwidth]{Fig_GRIFF_bdry_triads} 663 \caption{ 664 \protect\label{fig:TRIADS_bdry_triads} 665 (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer points (black dots), 666 and $i+1/2,1$ $u$-point (blue square). 667 Triad slopes \triad{i}{1}{R}{1/2}{-1/2} (magenta) and \triad{i+1}{1}{R}{-1/2}{-1/2} (blue) poking through 668 the ocean surface are masked (faded in figure). 669 However, the lateral $_{11}$ contributions towards \triad[u]{i}{1}{F}{1/2}{-1/2} and 670 \triad[u]{i+1}{1}{F}{-1/2}{-1/2} (yellow line) are still applied, 671 giving diapycnal diffusive fluxes. 672 \newline 673 (b) Both near bottom triad slopes \triad{i}{k}{R}{1/2}{1/2} and 674 \triad{i+1}{k}{R}{-1/2}{1/2} are masked when either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, 675 \ie\ the $i,k+1$ $u$-point is masked. 676 The associated lateral fluxes (grey-black dashed line) are masked if 677 \protect\np{ln\_botmix\_triad}\forcode{ = .false.}, but left unmasked, 678 giving bottom mixing, if \protect\np{ln\_botmix\_triad}\forcode{ = .true.} 679 } 680 \end{center} 657 \centering 658 \includegraphics[width=\textwidth]{Fig_GRIFF_bdry_triads} 659 \caption[Boundary triads]{ 660 (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer points (black dots), 661 and $i+1/2,1$ $u$-point (blue square). 662 Triad slopes \triad{i}{1}{R}{1/2}{-1/2} (magenta) and 663 \triad{i+1}{1}{R}{-1/2}{-1/2} (blue) poking through the ocean surface are masked 664 (faded in figure). 665 However, 666 the lateral $_{11}$ contributions towards \triad[u]{i}{1}{F}{1/2}{-1/2} and 667 \triad[u]{i+1}{1}{F}{-1/2}{-1/2} (yellow line) are still applied, 668 giving diapycnal diffusive fluxes. 669 \newline 670 (b) Both near bottom triad slopes \triad{i}{k}{R}{1/2}{1/2} and 671 \triad{i+1}{k}{R}{-1/2}{1/2} are masked when 672 either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, 673 \ie\ the $i,k+1$ $u$-point is masked. 674 The associated lateral fluxes (grey-black dashed line) are masked if 675 \protect\np{ln\_botmix\_triad}\forcode{ = .false.}, but left unmasked, 676 giving bottom mixing, if \protect\np{ln\_botmix\_triad}\forcode{ = .true.}} 677 \label{fig:TRIADS_bdry_triads} 681 678 \end{figure} 682 679 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 811 808 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 812 809 \begin{figure}[h] 813 % \fcapside { 814 \ caption{815 \protect\label{fig:TRIADS_MLB_triad}810 \centering 811 \includegraphics[width=\textwidth]{Fig_GRIFF_MLB_triads} 812 \caption[Definition of mixed-layer depth and calculation of linearly tapered triads]{ 816 813 Definition of mixed-layer depth and calculation of linearly tapered triads. 817 The figure shows a water column at a given $i,j$ (simplified to $i$), with the ocean surface at the top. 814 The figure shows a water column at a given $i,j$ (simplified to $i$), 815 with the ocean surface at the top. 818 816 Tracer points are denoted by bullets, and black lines the edges of the tracer cells; 819 817 $k$ increases upwards. 820 818 \newline 821 \hspace{5 em} 822 We define the mixed-layer by setting the vertical index of the tracer point immediately below the mixed layer, 823 $k_{\mathrm{ML}}$, as the maximum $k$ (shallowest tracer point) such that 819 We define the mixed-layer by setting the vertical index of the tracer point immediately below 820 the mixed layer, $k_{\mathrm{ML}}$, as the maximum $k$ (shallowest tracer point) such that 824 821 ${\rho_0}_{i,k}>{\rho_0}_{i,k_{10}}+\Delta\rho_c$, 825 822 where $i,k_{10}$ is the tracer gridbox within which the depth reaches 10~m. … … 830 827 Triads with different $i_p,k_p$, denoted by different colours, 831 828 (\eg\ the green triad $i_p=1/2,k_p=-1/2$) are tapered to the appropriate basal triad.} 832 % } 833 \includegraphics[width=\textwidth]{Fig_GRIFF_MLB_triads} 829 \label{fig:TRIADS_MLB_triad} 834 830 \end{figure} 835 831 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r11543 r11558 149 149 %------------------------------------------nam_asminc----------------------------------------------------- 150 150 % 151 \nlst{nam_asminc} 151 \begin{listing} 152 \nlst{nam_asminc} 153 \caption{\texttt{nam\_asminc}} 154 \label{lst:nam_asminc} 155 \end{listing} 152 156 %------------------------------------------------------------------------------------------------------------- 153 157 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11543 r11558 174 174 \xmlline|<variable id="using_server" type="bool"></variable>| 175 175 176 The {\ttfamily using\_server} setting determines whether or not the server will be used in \textit{attached mode} 177 (as a library) [{\ttfamily> false <}] or in \textit{detached mode} 178 (as an external executable on N additional, dedicated cpus) [{\ttfamily > true <}]. 179 The \textit{attached mode} is simpler to use but much less efficient for massively parallel applications. 176 The \texttt{using\_server} setting determines whether or not the server will be used in 177 \textit{attached mode} 178 (as a library) [\texttt{> false <}] or in \textit{detached mode} 179 (as an external executable on N additional, dedicated cpus) [\texttt{ > true <}]. 180 The \textit{attached mode} is simpler to use but much less efficient for 181 massively parallel applications. 180 182 The type of each file can be either ''multiple\_file'' or ''one\_file''. 181 183 … … 218 220 219 221 \begin{table} 220 \scriptsize221 222 \begin{tabularx}{\textwidth}{|lXl|} 222 223 \hline … … 341 342 342 343 \begin{table} 343 \scriptsize344 344 \begin{tabular*}{\textwidth}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|} 345 345 \hline … … 373 373 374 374 \begin{table} 375 \scriptsize376 375 \begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|} 377 376 \hline … … 398 397 399 398 \begin{table} 400 \scriptsize401 399 \begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|} 402 400 \hline … … 418 416 419 417 \begin{table} 420 \scriptsize421 418 \begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|} 422 419 \hline … … 634 631 635 632 \begin{table} 636 \scriptsize637 633 \begin{tabularx}{\textwidth}{|lX|} 638 634 \hline … … 695 691 696 692 \begin{table} 697 \scriptsize698 693 \begin{tabular}{|l|c|c|} 699 694 \hline … … 894 889 895 890 \begin{table} 896 \scriptsize897 891 \begin{tabularx}{\textwidth}{|l|X|X|l|X|} 898 892 \hline … … 917 911 \hline 918 912 \end{tabularx} 919 \caption{ Context tags}913 \caption{XIOS: context tags} 920 914 \end{table} 921 915 922 916 \begin{table} 923 \scriptsize924 917 \begin{tabularx}{\textwidth}{|l|X|X|X|l|} 925 918 \hline … … 952 945 \hline 953 946 \end{tabularx} 954 \caption{ Field tags ("\ttfamily{field\_*}")}947 \caption{XIOS: field tags ("\texttt{field\_*}")} 955 948 \end{table} 956 949 957 950 \begin{table} 958 \scriptsize959 951 \begin{tabularx}{\textwidth}{|l|X|X|X|l|} 960 952 \hline … … 988 980 \hline 989 981 \end{tabularx} 990 \caption{ File tags ("\ttfamily{file\_*}")}982 \caption{XIOS: file tags ("\texttt{file\_*}")} 991 983 \end{table} 992 984 993 985 \begin{table} 994 \scriptsize995 986 \begin{tabularx}{\textwidth}{|l|X|X|X|X|} 996 987 \hline … … 1021 1012 \hline 1022 1013 \end{tabularx} 1023 \caption{ Axis tags ("\ttfamily{axis\_*}")}1014 \caption{XIOS: axis tags ("\texttt{axis\_*}")} 1024 1015 \end{table} 1025 1016 1026 1017 \begin{table} 1027 \scriptsize1028 1018 \begin{tabularx}{\textwidth}{|l|X|X|X|X|} 1029 1019 \hline … … 1054 1044 \hline 1055 1045 \end{tabularx} 1056 \caption{ Domain tags ("\ttfamily{domain\_*)}"}1046 \caption{XIOS: domain tags ("\texttt{domain\_*)}"} 1057 1047 \end{table} 1058 1048 1059 1049 \begin{table} 1060 \scriptsize1061 1050 \begin{tabularx}{\textwidth}{|l|X|X|X|X|} 1062 1051 \hline … … 1087 1076 \hline 1088 1077 \end{tabularx} 1089 \caption{ Grid tags ("\ttfamily{grid\_*}")}1078 \caption{XIOS: grid tags ("\texttt{grid\_*}")} 1090 1079 \end{table} 1091 1080 … … 1093 1082 1094 1083 \begin{table} 1095 \scriptsize1096 1084 \begin{tabularx}{\textwidth}{|l|X|l|l|} 1097 1085 \hline … … 1128 1116 \hline 1129 1117 \end{tabularx} 1130 \caption{ Reference attributes ("\ttfamily{*\_ref}")}1118 \caption{XIOS: reference attributes ("\texttt{*\_ref}")} 1131 1119 \end{table} 1132 1120 1133 1121 \begin{table} 1134 \scriptsize1135 1122 \begin{tabularx}{\textwidth}{|l|X|l|l|} 1136 1123 \hline … … 1164 1151 \hline 1165 1152 \end{tabularx} 1166 \caption{ Domain attributes ("\ttfamily{zoom\_*}")}1153 \caption{XIOS: domain attributes ("\texttt{zoom\_*}")} 1167 1154 \end{table} 1168 1155 1169 1156 \begin{table} 1170 \scriptsize1171 1157 \begin{tabularx}{\textwidth}{|l|X|l|l|} 1172 1158 \hline … … 1219 1205 \hline 1220 1206 \end{tabularx} 1221 \caption{ File attributes}1207 \caption{XIOS: file attributes} 1222 1208 \end{table} 1223 1209 1224 1210 \begin{table} 1225 \scriptsize1226 1211 \begin{tabularx}{\textwidth}{|l|X|l|l|} 1227 1212 \hline … … 1268 1253 \hline 1269 1254 \end{tabularx} 1270 \caption{ Field attributes}1255 \caption{XIOS: field attributes} 1271 1256 \end{table} 1272 1257 1273 1258 \begin{table} 1274 \scriptsize1275 1259 \begin{tabularx}{\textwidth}{|l|X|X|X|} 1276 1260 \hline … … 1327 1311 \hline 1328 1312 \end{tabularx} 1329 \caption{ Miscellaneous attributes}1313 \caption{XIOS: miscellaneous attributes} 1330 1314 \end{table} 1331 1315 … … 1366 1350 %------------------------------------------namnc4---------------------------------------------------- 1367 1351 1368 \nlst{namnc4} 1352 \begin{listing} 1353 \nlst{namnc4} 1354 \caption{\texttt{namnc4}} 1355 \label{lst:namnc4} 1356 \end{listing} 1369 1357 %------------------------------------------------------------------------------------------------------------- 1370 1358 … … 1404 1392 \end{forlines} 1405 1393 1406 \noindent for a standard ORCA2\_LIM configuration gives chunksizes of {\small\t tfamily46x38x1} respectively in1407 the mono-processor case (\ie\ global domain of {\small\t tfamily182x149x31}).1394 \noindent for a standard ORCA2\_LIM configuration gives chunksizes of {\small\texttt 46x38x1} respectively in 1395 the mono-processor case (\ie\ global domain of {\small\texttt 182x149x31}). 1408 1396 An illustration of the potential space savings that NetCDF4 chunking and compression provides is given in 1409 1397 table \autoref{tab:DIA_NC4} which compares the results of two short runs of the ORCA2\_LIM reference configuration with … … 1414 1402 %------------------------------------------TABLE---------------------------------------------------- 1415 1403 \begin{table} 1416 \scriptsize1417 1404 \centering 1418 1405 \begin{tabular}{lrrr} … … 1446 1433 ORCA2\_2d\_grid\_W\_0007.nc & 4416 & 1368 & 70\% \\ 1447 1434 \end{tabular} 1448 \caption{ 1449 \protect\label{tab:DIA_NC4} 1450 Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression 1451 } 1435 \caption{Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression} 1436 \label{tab:DIA_NC4} 1452 1437 \end{table} 1453 1438 %---------------------------------------------------------------------------------------------------- … … 1471 1456 %------------------------------------------namtrd---------------------------------------------------- 1472 1457 1473 \nlst{namtrd} 1458 \begin{listing} 1459 \nlst{namtrd} 1460 \caption{\texttt{namtrd}} 1461 \label{lst:namtrd} 1462 \end{listing} 1474 1463 %------------------------------------------------------------------------------------------------------------- 1475 1464 … … 1518 1507 %--------------------------------------------namflo------------------------------------------------------- 1519 1508 1520 \nlst{namflo} 1509 \begin{listing} 1510 \nlst{namflo} 1511 \caption{\texttt{namflo}} 1512 \label{lst:namflo} 1513 \end{listing} 1521 1514 %-------------------------------------------------------------------------------------------------------------- 1522 1515 … … 1536 1529 In case of Ariane convention, input filename is \textit{init\_float\_ariane}. 1537 1530 Its format is: \\ 1538 { \scriptsize\texttt{I J K nisobfl itrash}}1531 { \texttt{I J K nisobfl itrash}} 1539 1532 1540 1533 \noindent with: … … 1548 1541 \noindent Example: \\ 1549 1542 \noindent 1550 { \scriptsize1543 { 1551 1544 \texttt{ 1552 1545 100.00000 90.00000 -1.50000 1.00000 0.00000 \\ … … 1559 1552 In the other case (longitude and latitude), input filename is init\_float. 1560 1553 Its format is: \\ 1561 { \scriptsize\texttt{Long Lat depth nisobfl ngrpfl itrash}}1554 { \texttt{Long Lat depth nisobfl ngrpfl itrash}} 1562 1555 1563 1556 \noindent with: … … 1573 1566 \noindent Example: \\ 1574 1567 \noindent 1575 { \scriptsize1568 { 1576 1569 \texttt{ 1577 1570 20.0 0.0 0.0 0 1 1 \\ … … 1622 1615 %------------------------------------------nam_diaharm---------------------------------------------------- 1623 1616 % 1624 \nlst{nam_diaharm} 1617 \begin{listing} 1618 \nlst{nam_diaharm} 1619 \caption{\texttt{nam\_diaharm}} 1620 \label{lst:nam_diaharm} 1621 \end{listing} 1625 1622 %---------------------------------------------------------------------------------------------------------- 1626 1623 … … 1670 1667 %------------------------------------------nam_diadct---------------------------------------------------- 1671 1668 1672 \nlst{nam_diadct} 1669 \begin{listing} 1670 \nlst{nam_diadct} 1671 \caption{\texttt{nam\_diadct}} 1672 \label{lst:nam_diadct} 1673 \end{listing} 1673 1674 %------------------------------------------------------------------------------------------------------------- 1674 1675 … … 1704 1705 1705 1706 Each section is defined by: \\ 1706 \noindent { \scriptsize\texttt{long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section\_name}} \\1707 \noindent { \texttt{long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section\_name}} \\ 1707 1708 with: 1708 1709 … … 1721 1722 1722 1723 \noindent If nclass $\neq$ 0, the next lines contain the class type and the nclass bounds: \\ 1723 { \scriptsize1724 { 1724 1725 \texttt{ 1725 1726 long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section\_name \\ … … 1754 1755 and the ATL\_Cuba\_Florida with 4 temperature clases (5 class bounds), are shown: \\ 1755 1756 \noindent 1756 { \scriptsize1757 { 1757 1758 \texttt{ 1758 1759 -68. -54.5 -60. -64.7 00 okstrpond noice ACC\_Drake\_Passage \\ … … 1769 1770 1770 1771 The output format is: \\ 1771 { \scriptsize1772 { 1772 1773 \texttt{ 1773 1774 date, time-step number, section number, \\ … … 1791 1792 1792 1793 \begin{table} 1793 \scriptsize1794 1794 \begin{tabular}{|l|l|l|l|l|} 1795 1795 \hline … … 2011 2011 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 2012 2012 \begin{figure}[!t] 2013 \begin{center} 2014 \includegraphics[width=\textwidth]{Fig_mask_subasins} 2015 \caption{ 2016 \protect\label{fig:DIA_mask_subasins} 2017 Decomposition of the World Ocean (here ORCA2) into sub-basin used in to 2018 compute the heat and salt transports as well as the meridional stream-function: 2019 Atlantic basin (red), Pacific basin (green), Indian basin (bleue), Indo-Pacific basin (bleue+green). 2020 Note that semi-enclosed seas (Red, Med and Baltic seas) as well as Hudson Bay are removed from the sub-basins. 2021 Note also that the Arctic Ocean has been split into Atlantic and Pacific basins along the North fold line. 2022 } 2023 \end{center} 2013 \centering 2014 \includegraphics[width=\textwidth]{Fig_mask_subasins} 2015 \caption[Decomposition of the World Ocean to compute transports as well as 2016 the meridional stream-function]{ 2017 Decomposition of the World Ocean (here ORCA2) into sub-basin used in to 2018 compute the heat and salt transports as well as the meridional stream-function: 2019 Atlantic basin (red), Pacific basin (green), 2020 Indian basin (blue), Indo-Pacific basin (blue+green). 2021 Note that semi-enclosed seas (Red, Med and Baltic seas) as well as 2022 Hudson Bay are removed from the sub-basins. 2023 Note also that the Arctic Ocean has been split into Atlantic and 2024 Pacific basins along the North fold line. 2025 } 2026 \label{fig:DIA_mask_subasins} 2024 2027 \end{figure} 2025 2028 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 2049 2052 %------------------------------------------namptr----------------------------------------- 2050 2053 2051 \nlst{namptr} 2054 \begin{listing} 2055 \nlst{namptr} 2056 \caption{\texttt{namptr}} 2057 \label{lst:namptr} 2058 \end{listing} 2052 2059 %----------------------------------------------------------------------------------------- 2053 2060 … … 2059 2066 %------------------------------------------nam_dia25h------------------------------------- 2060 2067 2061 \nlst{nam_dia25h} 2068 \begin{listing} 2069 \nlst{nam_dia25h} 2070 \caption{\texttt{nam\_dia25h}} 2071 \label{lst:nam_dia25h} 2072 \end{listing} 2062 2073 %----------------------------------------------------------------------------------------- 2063 2074 … … 2074 2085 %------------------------------------------nam_diatmb----------------------------------------------------- 2075 2086 2076 \nlst{nam_diatmb} 2087 \begin{listing} 2088 \nlst{nam_diatmb} 2089 \caption{\texttt{nam\_diatmb}} 2090 \label{lst:nam_diatmb} 2091 \end{listing} 2077 2092 %---------------------------------------------------------------------------------------------------------- 2078 2093 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex
r11544 r11558 38 38 Both the cool skin and warm layer models are controlled through the namelist \nam{diu}: 39 39 40 \nlst{namdiu} 40 \begin{listing} 41 \nlst{namdiu} 42 \caption{\texttt{namdiu}} 43 \label{lst:namdiu} 44 \end{listing} 45 41 46 This namelist contains only two variables: 42 47 \begin{description} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r11552 r11558 8 8 \label{chap:DOM} 9 9 10 %\chaptertoc10 \chaptertoc 11 11 12 12 % Missing things: … … 57 57 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 58 58 \begin{figure}[!tb] 59 \begin{center} 60 \includegraphics[width=\textwidth]{Fig_cell} 61 \caption{ 62 \protect\label{fig:DOM_cell} 63 Arrangement of variables. 64 $t$ indicates scalar points where temperature, salinity, density, pressure and 65 horizontal divergence are defined. 66 $(u,v,w)$ indicates vector points, and $f$ indicates vorticity points where both relative and 67 planetary vorticities are defined. 68 } 69 \end{center} 59 \centering 60 \includegraphics[width=\textwidth]{Fig_cell} 61 \caption[Arrangement of variables in the unit cell of space domain]{ 62 Arrangement of variables in the unit cell of space domain. 63 $t$ indicates scalar points where 64 temperature, salinity, density, pressure and horizontal divergence are defined. 65 $(u,v,w)$ indicates vector points, 66 and $f$ indicates vorticity points where 67 both relative and planetary vorticities are defined.} 68 \label{fig:DOM_cell} 70 69 \end{figure} 71 70 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 102 101 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 103 102 \begin{table}[!tb] 104 \ begin{center}105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 \caption{125 \protect\label{tab:DOM_cell}126 Location of grid-points as a function of integer orinteger and a half value of the column, line or level.127 128 In the code, the indexing uses integer values only and is positive downwards in the vertical with $k=1$ at the surface.129 (see \autoref{subsec:DOM_Num_Index})130 }131 \ end{center}103 \centering 104 \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|} 105 \hline 106 t & $i $ & $j $ & $k $ \\ 107 \hline 108 u & $i + 1/2$ & $j $ & $k $ \\ 109 \hline 110 v & $i $ & $j + 1/2$ & $k $ \\ 111 \hline 112 w & $i $ & $j $ & $k + 1/2$ \\ 113 \hline 114 f & $i + 1/2$ & $j + 1/2$ & $k $ \\ 115 \hline 116 uw & $i + 1/2$ & $j $ & $k + 1/2$ \\ 117 \hline 118 vw & $i $ & $j + 1/2$ & $k + 1/2$ \\ 119 \hline 120 fw & $i + 1/2$ & $j + 1/2$ & $k + 1/2$ \\ 121 \hline 122 \end{tabular} 123 \caption[Location of grid-points]{ 124 Location of grid-points as a function of integer or 125 integer and a half value of the column, line or level. 126 This indexing is only used for the writing of the semi -discrete equations. 127 In the code, the indexing uses integer values only and 128 is positive downwards in the vertical with $k=1$ at the surface. 129 (see \autoref{subsec:DOM_Num_Index})} 130 \label{tab:DOM_cell} 132 131 \end{table} 133 132 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 148 147 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 149 148 \begin{figure}[!t] 150 \begin{center} 151 \includegraphics[width=\textwidth]{Fig_zgr_e3} 152 \caption{ 153 \protect\label{fig:DOM_zgr_e3} 154 Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, 155 and (b) analytically derived grid-point position and scale factors. 156 For both grids here, the same $w$-point depth has been chosen but 157 in (a) the $t$-points are set half way between $w$-points while 158 in (b) they are defined from an analytical function: 159 $z(k) = 5 \, (k - 1/2)^3 - 45 \, (k - 1/2)^2 + 140 \, (k - 1/2) - 150$. 160 Note the resulting difference between the value of the grid-size $\Delta_k$ and 161 those of the scale factor $e_k$. 162 } 163 \end{center} 149 \centering 150 \includegraphics[width=\textwidth]{Fig_zgr_e3} 151 \caption[Comparison of grid-point position, vertical grid-size and scale factors]{ 152 Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, 153 and (b) analytically derived grid-point position and scale factors. 154 For both grids here, the same $w$-point depth has been chosen but 155 in (a) the $t$-points are set half way between $w$-points while 156 in (b) they are defined from an analytical function: 157 $z(k) = 5 \, (k - 1/2)^3 - 45 \, (k - 1/2)^2 + 140 \, (k - 1/2) - 150$. 158 Note the resulting difference between the value of the grid-size $\Delta_k$ and 159 those of the scale factor $e_k$.} 160 \label{fig:DOM_zgr_e3} 164 161 \end{figure} 165 162 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 266 263 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 267 264 \begin{figure}[!tb] 268 \begin{center} 269 \includegraphics[width=\textwidth]{Fig_index_hor} 270 \caption{ 271 \protect\label{fig:DOM_index_hor} 272 Horizontal integer indexing used in the \fortran\ code. 273 The dashed area indicates the cell in which variables contained in arrays have the same $i$- and $j$-indices 274 } 275 \end{center} 265 \centering 266 \includegraphics[width=\textwidth]{Fig_index_hor} 267 \caption[Horizontal integer indexing]{ 268 Horizontal integer indexing used in the \fortran\ code. 269 The dashed area indicates the cell in which 270 variables contained in arrays have the same $i$- and $j$-indices} 271 \label{fig:DOM_index_hor} 276 272 \end{figure} 277 273 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 321 317 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 322 318 \begin{figure}[!pt] 323 \begin{center} 324 \includegraphics[width=\textwidth]{Fig_index_vert} 325 \caption{ 326 \protect\label{fig:DOM_index_vert} 327 Vertical integer indexing used in the \fortran\ code. 328 Note that the $k$-axis is oriented downward. 329 The dashed area indicates the cell in which variables contained in arrays have a common $k$-index. 330 } 331 \end{center} 319 \centering 320 \includegraphics[width=\textwidth]{Fig_index_vert} 321 \caption[Vertical integer indexing]{ 322 Vertical integer indexing used in the \fortran\ code. 323 Note that the $k$-axis is oriented downward. 324 The dashed area indicates the cell in which 325 variables contained in arrays have a common $k$-index.} 326 \label{fig:DOM_index_vert} 332 327 \end{figure} 333 328 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 338 333 \section{Spatial domain configuration} 339 334 \label{subsec:DOM_config} 340 341 \nlst{namcfg}342 335 343 336 Two typical methods are available to specify the spatial domain configuration; … … 468 461 \label{subsec:DOM_zgr} 469 462 %-----------------------------------------namdom------------------------------------------- 470 \nlst{namdom} 463 \begin{listing} 464 \nlst{namdom} 465 \caption{\texttt{namdom}} 466 \label{lst:namdom} 467 \end{listing} 471 468 %------------------------------------------------------------------------------------------------------------- 472 469 … … 482 479 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 483 480 \begin{figure}[!tb] 484 \begin{center} 485 \includegraphics[width=\textwidth]{Fig_z_zps_s_sps} 486 \caption{ 487 \protect\label{fig:DOM_z_zps_s_sps} 488 The ocean bottom as seen by the model: 489 (a) $z$-coordinate with full step, 490 (b) $z$-coordinate with partial step, 491 (c) $s$-coordinate: terrain following representation, 492 (d) hybrid $s-z$ coordinate, 493 (e) hybrid $s-z$ coordinate with partial step, and 494 (f) same as (e) but in the non-linear free surface (\protect\np{ln\_linssh}\forcode{=.false.}). 495 Note that the non-linear free surface can be used with any of the 5 coordinates (a) to (e). 496 } 497 \end{center} 481 \centering 482 \includegraphics[width=\textwidth]{Fig_z_zps_s_sps} 483 \caption[Ocean bottom regarding coordinate systems ($z$, $s$ and hybrid $s-z$)]{ 484 The ocean bottom as seen by the model: 485 (a) $z$-coordinate with full step, 486 (b) $z$-coordinate with partial step, 487 (c) $s$-coordinate: terrain following representation, 488 (d) hybrid $s-z$ coordinate, 489 (e) hybrid $s-z$ coordinate with partial step, and 490 (f) same as (e) but in the non-linear free surface (\protect\np{ln\_linssh}\forcode{=.false.}). 491 Note that the non-linear free surface can be used with any of the 5 coordinates (a) to (e).} 492 \label{fig:DOM_z_zps_s_sps} 498 493 \end{figure} 499 494 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 654 649 \label{subsec:DOM_meshmask} 655 650 656 \nlst{namcfg}657 658 651 Most of the arrays relating to a particular ocean model configuration discussed in this chapter 659 652 (grid-point position, scale factors) … … 665 658 checking or confirmation is required. 666 659 667 \nlst{namdom}668 669 660 Alternatively, all the arrays relating to a particular ocean model configuration 670 661 (grid-point position, scale factors, depths and masks) … … 680 671 \label{sec:DOM_DTA_tsd} 681 672 %-----------------------------------------namtsd------------------------------------------- 682 \nlst{namtsd} 673 \begin{listing} 674 \nlst{namtsd} 675 \caption{\texttt{namtsd}} 676 \label{lst:namtsd} 677 \end{listing} 683 678 %------------------------------------------------------------------------------------------ 684 679 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11552 r11558 166 166 %-----------------------------------------nam_dynadv---------------------------------------------------- 167 167 168 \nlst{namdyn_adv} 168 \begin{listing} 169 \nlst{namdyn_adv} 170 \caption{\texttt{namdyn\_adv}} 171 \label{lst:namdyn_adv} 172 \end{listing} 169 173 %------------------------------------------------------------------------------------------------------------- 170 174 … … 185 189 %------------------------------------------nam_dynvor---------------------------------------------------- 186 190 187 \nlst{namdyn_vor} 191 \begin{listing} 192 \nlst{namdyn_vor} 193 \caption{\texttt{namdyn\_vor}} 194 \label{lst:namdyn_vor} 195 \end{listing} 188 196 %------------------------------------------------------------------------------------------------------------- 189 197 … … 308 316 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 309 317 \begin{figure}[!ht] 310 \begin{center} 311 \includegraphics[width=\textwidth]{Fig_DYN_een_triad} 312 \caption{ 313 \protect\label{fig:DYN_een_triad} 314 Triads used in the energy and enstrophy conserving scheme (een) for 315 $u$-component (upper panel) and $v$-component (lower panel). 316 } 317 \end{center} 318 \centering 319 \includegraphics[width=\textwidth]{Fig_DYN_een_triad} 320 \caption[Triads used in the energy and enstrophy conserving scheme (EEN)]{ 321 Triads used in the energy and enstrophy conserving scheme (EEN) for 322 $u$-component (upper panel) and $v$-component (lower panel).} 323 \label{fig:DYN_een_triad} 318 324 \end{figure} 319 325 % >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 416 422 %------------------------------------------nam_dynadv---------------------------------------------------- 417 423 418 \nlst{namdyn_adv}419 424 %------------------------------------------------------------------------------------------------------------- 420 425 … … 564 569 %------------------------------------------nam_dynhpg--------------------------------------------------- 565 570 566 \nlst{namdyn_hpg} 571 \begin{listing} 572 \nlst{namdyn_hpg} 573 \caption{\texttt{namdyn\_hpg}} 574 \label{lst:namdyn_hpg} 575 \end{listing} 567 576 %------------------------------------------------------------------------------------------------------------- 568 577 … … 778 787 %-----------------------------------------nam_dynspg---------------------------------------------------- 779 788 780 \nlst{namdyn_spg} 789 \begin{listing} 790 \nlst{namdyn_spg} 791 \caption{\texttt{namdyn\_spg}} 792 \label{lst:namdyn_spg} 793 \end{listing} 781 794 %------------------------------------------------------------------------------------------------------------ 782 795 … … 884 897 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > 885 898 \begin{figure}[!t] 886 \begin{center} 887 \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 888 \caption{ 889 \protect\label{fig:DYN_spg_ts} 890 Schematic of the split-explicit time stepping scheme for the external and internal modes. 891 Time increases to the right. In this particular exemple, 892 a boxcar averaging window over $nn\_baro$ barotropic time steps is used ($nn\_bt\_flt=1$) and $nn\_baro=5$. 893 Internal mode time steps (which are also the model time steps) are denoted by $t-\rdt$, $t$ and $t+\rdt$. 894 Variables with $k$ superscript refer to instantaneous barotropic variables, 895 $< >$ and $<< >>$ operator refer to time filtered variables using respectively primary (red vertical bars) and 896 secondary weights (blue vertical bars). 897 The former are used to obtain time filtered quantities at $t+\rdt$ while 898 the latter are used to obtain time averaged transports to advect tracers. 899 a) Forward time integration: \protect\np{ln\_bt\_fw}\forcode{=.true.}, 900 \protect\np{ln\_bt\_av}\forcode{=.true.}. 901 b) Centred time integration: \protect\np{ln\_bt\_fw}\forcode{=.false.}, 902 \protect\np{ln\_bt\_av}\forcode{=.true.}. 903 c) Forward time integration with no time filtering (POM-like scheme): 904 \protect\np{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln\_bt\_av}\forcode{=.false.}. 905 } 906 \end{center} 899 \centering 900 \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 901 \caption[Split-explicit time stepping scheme for the external and internal modes]{ 902 Schematic of the split-explicit time stepping scheme for the external and internal modes. 903 Time increases to the right. 904 In this particular exemple, 905 a boxcar averaging window over \np{nn\_baro} barotropic time steps is used 906 (\np{nn\_bt\_flt}\forcode{=1}) and \np{nn\_baro}\forcode{=5}. 907 Internal mode time steps (which are also the model time steps) are denoted by 908 $t-\rdt$, $t$ and $t+\rdt$. 909 Variables with $k$ superscript refer to instantaneous barotropic variables, 910 $< >$ and $<< >>$ operator refer to time filtered variables using respectively primary 911 (red vertical bars) and secondary weights (blue vertical bars). 912 The former are used to obtain time filtered quantities at $t+\rdt$ while 913 the latter are used to obtain time averaged transports to advect tracers. 914 a) Forward time integration: 915 \protect\np{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln\_bt\_av}\forcode{=.true.}. 916 b) Centred time integration: 917 \protect\np{ln\_bt\_fw}\forcode{=.false.}, \protect\np{ln\_bt\_av}\forcode{=.true.}. 918 c) Forward time integration with no time filtering (POM-like scheme): 919 \protect\np{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln\_bt\_av}\forcode{=.false.}.} 920 \label{fig:DYN_spg_ts} 907 921 \end{figure} 908 922 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > … … 1114 1128 %------------------------------------------nam_dynldf---------------------------------------------------- 1115 1129 1116 \nlst{namdyn_ldf} 1130 \begin{listing} 1131 \nlst{namdyn_ldf} 1132 \caption{\texttt{namdyn\_ldf}} 1133 \label{lst:namdyn_ldf} 1134 \end{listing} 1117 1135 %------------------------------------------------------------------------------------------------------------- 1118 1136 … … 1245 1263 %----------------------------------------------namzdf------------------------------------------------------ 1246 1264 1247 \nlst{namzdf}1248 1265 %------------------------------------------------------------------------------------------------------------- 1249 1266 … … 1332 1349 by setting $\mathrm{ln\_wd\_dl} = \mathrm{.true.}$ and $\mathrm{ln\_wd\_il} = \mathrm{.false.}$. 1333 1350 1334 \nlst{namwad} 1351 \begin{listing} 1352 \nlst{namwad} 1353 \caption{\texttt{namwad}} 1354 \label{lst:namwad} 1355 \end{listing} 1335 1356 1336 1357 The following terminology is used. The depth of the topography (positive downwards) … … 1541 1562 neighbouring $(i+1,j)$ and $(i,j)$ tracer points. zcpx is calculated using two logicals 1542 1563 variables, $\mathrm{ll\_tmp1}$ and $\mathrm{ll\_tmp2}$ which are evaluated for each grid 1543 column. The three possible combinations are illustrated in figure\autoref{fig:DYN_WAD_dynhpg}.1564 column. The three possible combinations are illustrated in \autoref{fig:DYN_WAD_dynhpg}. 1544 1565 1545 1566 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1546 \begin{figure}[!ht] \begin{center} 1547 \includegraphics[width=\textwidth]{Fig_WAD_dynhpg} 1548 \caption{ 1567 \begin{figure}[!ht] 1568 \centering 1569 \includegraphics[width=\textwidth]{Fig_WAD_dynhpg} 1570 \caption[Combinations controlling the limiting of the horizontal pressure gradient in 1571 wetting and drying regimes]{ 1572 Three possible combinations of the logical variables controlling the 1573 limiting of the horizontal pressure gradient in wetting and drying regimes} 1549 1574 \label{fig:DYN_WAD_dynhpg} 1550 Illustrations of the three possible combinations of the logical variables controlling the1551 limiting of the horizontal pressure gradient in wetting and drying regimes}1552 \end{center}1553 1575 \end{figure} 1554 1576 %>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1625 1647 %----------------------------------------------namdom---------------------------------------------------- 1626 1648 1627 \nlst{namdom}1628 1649 %------------------------------------------------------------------------------------------------------------- 1629 1650 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11552 r11558 22 22 %--------------------------------------------namlbc------------------------------------------------------- 23 23 24 \nlst{namlbc} 24 \begin{listing} 25 \nlst{namlbc} 26 \caption{\texttt{namlbc}} 27 \label{lst:namlbc} 28 \end{listing} 25 29 %-------------------------------------------------------------------------------------------------------------- 26 30 … … 67 71 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 68 72 \begin{figure}[!t] 69 \begin{center} 70 \includegraphics[width=\textwidth]{Fig_LBC_uv} 71 \caption{ 72 \protect\label{fig:LBC_uv} 73 Lateral boundary (thick line) at T-level. 74 The velocity normal to the boundary is set to zero. 75 } 76 \end{center} 73 \centering 74 \includegraphics[width=\textwidth]{Fig_LBC_uv} 75 \caption[Lateral boundary at $T$-level]{ 76 Lateral boundary (thick line) at T-level. 77 The velocity normal to the boundary is set to zero.} 78 \label{fig:LBC_uv} 77 79 \end{figure} 78 80 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 96 98 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 97 99 \begin{figure}[!p] 98 \begin{center} 99 \includegraphics[width=\textwidth]{Fig_LBC_shlat} 100 \caption{ 101 \protect\label{fig:LBC_shlat} 102 lateral boundary condition 103 (a) free-slip ($rn\_shlat=0$); 104 (b) no-slip ($rn\_shlat=2$); 105 (c) "partial" free-slip ($0<rn\_shlat<2$) and 106 (d) "strong" no-slip ($2<rn\_shlat$). 107 Implied "ghost" velocity inside land area is display in grey. 108 } 109 \end{center} 100 \centering 101 \includegraphics[width=\textwidth]{Fig_LBC_shlat} 102 \caption[Lateral boundary conditions]{ 103 Lateral boundary conditions 104 (a) free-slip (\protect\np{rn\_shlat}\forcode{=0}); 105 (b) no-slip (\protect\np{rn\_shlat}\forcode{=2}); 106 (c) "partial" free-slip (\forcode{0<}\protect\np{rn\_shlat}\forcode{<2}) and 107 (d) "strong" no-slip (\forcode{2<}\protect\np{rn\_shlat}). 108 Implied "ghost" velocity inside land area is display in grey.} 109 \label{fig:LBC_shlat} 110 110 \end{figure} 111 111 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 207 207 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 208 208 \begin{figure}[!t] 209 \begin{center} 210 \includegraphics[width=\textwidth]{Fig_LBC_jperio} 211 \caption{ 212 \protect\label{fig:LBC_jperio} 213 setting of (a) east-west cyclic (b) symmetric across the equator boundary conditions. 214 } 215 \end{center} 209 \centering 210 \includegraphics[width=\textwidth]{Fig_LBC_jperio} 211 \caption[Setting of east-west cyclic and symmetric across the Equator boundary conditions]{ 212 Setting of (a) east-west cyclic (b) symmetric across the Equator boundary conditions} 213 \label{fig:LBC_jperio} 216 214 \end{figure} 217 215 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 232 230 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 233 231 \begin{figure}[!t] 234 \begin{center} 235 \includegraphics[width=\textwidth]{Fig_North_Fold_T} 236 \caption{ 237 \protect\label{fig:LBC_North_Fold_T} 238 North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($jperio=4$), 239 as used in ORCA 2, 1/4, and 1/12. 240 Pink shaded area corresponds to the inner domain mask (see text). 241 } 242 \end{center} 232 \centering 233 \includegraphics[width=\textwidth]{Fig_North_Fold_T} 234 \caption[North fold boundary in ORCA 2\deg, 1/4\deg and 1/12\deg]{ 235 North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($jperio=4$), 236 as used in ORCA 2\deg, 1/4\deg and 1/12\deg. 237 Pink shaded area corresponds to the inner domain mask (see text).} 238 \label{fig:LBC_North_Fold_T} 243 239 \end{figure} 244 240 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 253 249 %-----------------------------------------nammpp-------------------------------------------- 254 250 255 \nlst{nammpp} 251 \begin{listing} 252 \nlst{nammpp} 253 \caption{\texttt{nammpp}} 254 \label{lst:nammpp} 255 \end{listing} 256 256 %----------------------------------------------------------------------------------------------- 257 257 … … 291 291 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 292 292 \begin{figure}[!t] 293 \begin{center} 294 \includegraphics[width=\textwidth]{Fig_mpp} 295 \caption{ 296 \protect\label{fig:LBC_mpp} 297 Positioning of a sub-domain when massively parallel processing is used. 298 } 299 \end{center} 293 \centering 294 \includegraphics[width=\textwidth]{Fig_mpp} 295 \caption{Positioning of a sub-domain when massively parallel processing is used} 296 \label{fig:LBC_mpp} 300 297 \end{figure} 301 298 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 349 346 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 350 347 \begin{figure}[!ht] 351 \begin{center} 352 \includegraphics[width=\textwidth]{Fig_mppini2} 353 \caption[Atlantic domain]{ 354 \protect\label{fig:LBC_mppini2} 355 Example of Atlantic domain defined for the CLIPPER projet. 356 Initial grid is composed of 773 x 1236 horizontal points. 357 (a) the domain is split onto 9 \time 20 subdomains (jpni=9, jpnj=20). 358 52 subdomains are land areas. 359 (b) 52 subdomains are eliminated (white rectangles) and 360 the resulting number of processors really used during the computation is jpnij=128. 361 } 362 \end{center} 348 \centering 349 \includegraphics[width=\textwidth]{Fig_mppini2} 350 \caption[Atlantic domain defined for the CLIPPER projet]{ 351 Example of Atlantic domain defined for the CLIPPER projet. 352 Initial grid is composed of 773 x 1236 horizontal points. 353 (a) the domain is split onto 9 $times$ 20 subdomains (jpni=9, jpnj=20). 354 52 subdomains are land areas. 355 (b) 52 subdomains are eliminated (white rectangles) and 356 the resulting number of processors really used during the computation is jpnij=128.} 357 \label{fig:LBC_mppini2} 363 358 \end{figure} 364 359 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 373 368 %-----------------------------------------nambdy-------------------------------------------- 374 369 375 \nlst{nambdy} 370 \begin{listing} 371 \nlst{nambdy} 372 \caption{\texttt{nambdy}} 373 \label{lst:nambdy} 374 \end{listing} 376 375 %----------------------------------------------------------------------------------------------- 377 376 %-----------------------------------------nambdy_dta-------------------------------------------- 378 377 379 \nlst{nambdy_dta} 378 \begin{listing} 379 \nlst{nambdy_dta} 380 \caption{\texttt{nambdy\_dta}} 381 \label{lst:nambdy_dta} 382 \end{listing} 380 383 %----------------------------------------------------------------------------------------------- 381 384 … … 594 597 the boundary point is increasingly further away from the edge of the model domain. 595 598 A set of $nbi$, $nbj$, and $nbr$ arrays is defined for each of the $T$, $U$ and $V$ grids. 596 Figure\autoref{fig:LBC_bdy_geom} shows an example of an irregular boundary.599 \autoref{fig:LBC_bdy_geom} shows an example of an irregular boundary. 597 600 598 601 The boundary geometry for each set may be defined in a namelist nambdy\_index or … … 607 610 608 611 The boundary geometry may also be defined from a ``\ifile{coordinates.bdy}'' file. 609 Figure\autoref{fig:LBC_nc_header} gives an example of the header information from such a file, based on the description of geometrical setup given above.612 \autoref{fig:LBC_nc_header} gives an example of the header information from such a file, based on the description of geometrical setup given above. 610 613 The file should contain the index arrays for each of the $T$, $U$ and $V$ grids. 611 614 The arrays must be in order of increasing $nbr$. … … 624 627 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 625 628 \begin{figure}[!t] 626 \begin{center} 627 \includegraphics[width=\textwidth]{Fig_LBC_bdy_geom} 628 \caption { 629 \protect\label{fig:LBC_bdy_geom} 630 Example of geometry of unstructured open boundary 631 } 632 \end{center} 629 \centering 630 \includegraphics[width=\textwidth]{Fig_LBC_bdy_geom} 631 \caption[Geometry of unstructured open boundary]{Example of geometry of unstructured open boundary} 632 \label{fig:LBC_bdy_geom} 633 633 \end{figure} 634 634 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 664 664 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 665 665 \begin{figure}[!t] 666 \begin{center} 667 \includegraphics[width=\textwidth]{Fig_LBC_nc_header} 668 \caption { 669 \protect\label{fig:LBC_nc_header} 670 Example of the header for a \protect\ifile{coordinates.bdy} file 671 } 672 \end{center} 666 \centering 667 \includegraphics[width=\textwidth]{Fig_LBC_nc_header} 668 \caption[Header for a \protect\ifile{coordinates.bdy} file]{ 669 Example of the header for a \protect\ifile{coordinates.bdy} file} 670 \label{fig:LBC_nc_header} 673 671 \end{figure} 674 672 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 697 695 %-----------------------------------------nambdy_tide-------------------------------------------- 698 696 699 \nlst{nambdy_tide} 697 \begin{listing} 698 \nlst{nambdy_tide} 699 \caption{\texttt{nambdy\_tide}} 700 \label{lst:nambdy_tide} 701 \end{listing} 700 702 %----------------------------------------------------------------------------------------------- 701 703 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11543 r11558 23 23 These three aspects of the lateral diffusion are set through namelist parameters 24 24 (see the \nam{tra\_ldf} and \nam{dyn\_ldf} below). 25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 26 26 Griffies's implementation, which is used if \np{ln\_traldf\_triad}\forcode{=.true.}, 27 27 is described in \autoref{apdx:TRIADS} … … 29 29 %-----------------------------------namtra_ldf - namdyn_ldf-------------------------------------------- 30 30 31 \nlst{namtra_ldf}32 33 \nlst{namdyn_ldf}34 31 %-------------------------------------------------------------------------------------------------------------- 35 32 … … 45 42 {No lateral mixing (\protect\np{ln\_traldf\_OFF}, \protect\np{ln\_dynldf\_OFF})} 46 43 47 It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{=.true.}) and/or 48 momentum (\protect\np{ln\_dynldf\_OFF}\forcode{=.true.}). The latter option is even recommended if using the 44 It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{=.true.}) and/or 45 momentum (\protect\np{ln\_dynldf\_OFF}\forcode{=.true.}). The latter option is even recommended if using the 49 46 UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{=.true.}, 50 47 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. … … 52 49 \subsection[Laplacian mixing (\forcode{ln_traldf_lap}, \forcode{ln_dynldf_lap})] 53 50 {Laplacian mixing (\protect\np{ln\_traldf\_lap}, \protect\np{ln\_dynldf\_lap})} 54 Setting \protect\np{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{=.true.} enables 55 a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 51 Setting \protect\np{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{=.true.} enables 52 a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 56 53 Laplacian and Bilaplacian operators for the same variable. 57 54 58 55 \subsection[Bilaplacian mixing (\forcode{ln_traldf_blp}, \forcode{ln_dynldf_blp})] 59 56 {Bilaplacian mixing (\protect\np{ln\_traldf\_blp}, \protect\np{ln\_dynldf\_blp})} 60 Setting \protect\np{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{=.true.} enables 61 a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 57 Setting \protect\np{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{=.true.} enables 58 a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 62 59 We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. 63 60 … … 84 81 $r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}), 85 82 while for momentum the slopes are $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and 86 $r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$. 83 $r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$. 87 84 88 85 %gm% add here afigure of the slope in i-direction … … 94 91 Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when 95 92 the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform, 96 \ie\ a linear function of $z_T$, the depth of a $T$-point. 93 \ie\ a linear function of $z_T$, the depth of a $T$-point. 97 94 %gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient} 98 95 … … 113 110 \end{equation} 114 111 115 %gm% caution I'm not sure the simplification was a good idea! 112 %gm% caution I'm not sure the simplification was a good idea! 116 113 117 114 These slopes are computed once in \rou{ldf\_slp\_init} when \np{ln\_sco}\forcode{=.true.}, 118 and either \np{ln\_traldf\_hor}\forcode{=.true.} or \np{ln\_dynldf\_hor}\forcode{=.true.}. 115 and either \np{ln\_traldf\_hor}\forcode{=.true.} or \np{ln\_dynldf\_hor}\forcode{=.true.}. 119 116 120 117 \subsection{Slopes for tracer iso-neutral mixing} … … 145 142 146 143 %gm% rewrite this as the explanation is not very clear !!! 147 %In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth. 144 %In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth. 148 145 149 146 %By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 150 147 151 %In the $z$-coordinate, the derivative of the \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so the $in situ$ density can be used for its evaluation. 148 %In the $z$-coordinate, the derivative of the \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so the $in situ$ density can be used for its evaluation. 152 149 153 150 As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to … … 164 161 This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$, 165 162 where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87} 166 (see \autoref{subsec:TRA_bn2}). 163 (see \autoref{subsec:TRA_bn2}). 167 164 168 165 \item[$z$-coordinate with partial step: ] … … 179 176 will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. 180 177 181 %gm% 178 %gm% 182 179 Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for 183 180 the constraint on iso-neutral fluxes. … … 240 237 241 238 Nevertheless, this iso-neutral operator does not ensure that variance cannot increase, 242 contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property. 239 contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property. 243 240 244 241 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 245 242 \begin{figure}[!ht] 246 \begin{center} 247 \includegraphics[width=\textwidth]{Fig_LDF_ZDF1} 248 \caption { 249 \protect\label{fig:LDF_ZDF1} 250 averaging procedure for isopycnal slope computation. 251 } 252 \end{center} 243 \centering 244 \includegraphics[width=\textwidth]{Fig_LDF_ZDF1} 245 \caption{Averaging procedure for isopycnal slope computation} 246 \label{fig:LDF_ZDF1} 253 247 \end{figure} 254 248 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 255 249 256 %There are three additional questions about the slope calculation. 257 %First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes. 258 %Second, numerical stability issues also require a bound on slopes. 250 %There are three additional questions about the slope calculation. 251 %First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes. 252 %Second, numerical stability issues also require a bound on slopes. 259 253 %Third, the question of boundary condition specified on slopes... 260 254 … … 263 257 264 258 265 % In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04}, 266 % the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly 267 % to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the 259 % In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04}, 260 % the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly 261 % to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the 268 262 % surface motivates this flattening of isopycnals near the surface). 269 263 … … 277 271 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 278 272 \begin{figure}[!ht] 279 \begin{center} 280 \includegraphics[width=\textwidth]{Fig_eiv_slp} 281 \caption{ 282 \protect\label{fig:LDF_eiv_slp} 283 Vertical profile of the slope used for lateral mixing in the mixed layer: 284 \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 285 which has to be adjusted at the surface boundary 286 \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface: 287 wall boundary condition). 288 Nevertheless, the profile between the surface zero value and the interior iso-neutral one is unknown, 289 and especially the value at the base of the mixed layer; 290 \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 291 imposing a maximum slope of 1/100; 292 \textit{(c)} profile of slope actually used in \NEMO: a linear decrease of the slope from 293 zero at the surface to its ocean interior value computed just below the mixed layer. 294 Note the huge change in the slope at the base of the mixed layer between \textit{(b)} and \textit{(c)}. 295 } 296 \end{center} 273 \centering 274 \includegraphics[width=\textwidth]{Fig_eiv_slp} 275 \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{ 276 Vertical profile of the slope used for lateral mixing in the mixed layer: 277 \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 278 which has to be adjusted at the surface boundary 279 \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface: 280 wall boundary condition). 281 Nevertheless, 282 the profile between the surface zero value and the interior iso-neutral one is unknown, 283 and especially the value at the base of the mixed layer; 284 \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 285 imposing a maximum slope of 1/100; 286 \textit{(c)} profile of slope actually used in \NEMO: 287 a linear decrease of the slope from zero at the surface to 288 its ocean interior value computed just below the mixed layer. 289 Note the huge change in the slope at the base of the mixed layer between 290 \textit{(b)} and \textit{(c)}.} 291 \label{fig:LDF_eiv_slp} 297 292 \end{figure} 298 293 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 326 321 (see \autoref{sec:LBC_coast}). 327 322 328 323 329 324 % ================================================================ 330 325 % Lateral Mixing Coefficients … … 334 329 \label{sec:LDF_coef} 335 330 336 The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}. 331 The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}. 337 332 The way the mixing coefficients are set in the reference version can be described as follows: 338 333 … … 340 335 { Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{=-20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=-20, -30})} 341 336 342 Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, 337 Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, 343 338 the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 344 decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 345 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 339 decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 340 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 346 341 The provided fields can either be 2d (\np{nn\_aht\_ijk\_t}\forcode{=-20}, \np{nn\_ahm\_ijk\_t}\forcode{=-20}) or 3d (\np{nn\_aht\_ijk\_t}\forcode{=-30}, \np{nn\_ahm\_ijk\_t}\forcode{=-30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 347 342 348 343 %-------------------------------------------------TABLE--------------------------------------------------- 349 344 \begin{table}[htb] 350 \begin{center} 351 \begin{tabular}{|l|l|l|l|} 352 \hline 353 Namelist parameter & Input filename & dimensions & variable names \\ \hline 354 \np{nn\_ahm\_ijk\_t}\forcode{=-20} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline 355 \np{nn\_aht\_ijk\_t}\forcode{=-20} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline 356 \np{nn\_ahm\_ijk\_t}\forcode{=-30} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline 357 \np{nn\_aht\_ijk\_t}\forcode{=-30} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline 358 \end{tabular} 359 \caption{ 360 \protect\label{tab:LDF_files} 361 Description of expected input files if mixing coefficients are read from NetCDF files. 362 } 363 \end{center} 345 \centering 346 \begin{tabular}{|l|l|l|l|} 347 \hline 348 Namelist parameter & Input filename & dimensions & variable names \\ \hline 349 \np{nn\_ahm\_ijk\_t}\forcode{=-20} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline 350 \np{nn\_aht\_ijk\_t}\forcode{=-20} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline 351 \np{nn\_ahm\_ijk\_t}\forcode{=-30} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline 352 \np{nn\_aht\_ijk\_t}\forcode{=-30} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline 353 \end{tabular} 354 \caption{Description of expected input files if mixing coefficients are read from NetCDF files} 355 \label{tab:LDF_files} 364 356 \end{table} 365 357 %-------------------------------------------------------------------------------------------------------------- … … 421 413 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, 422 414 \ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of 423 the magnitude of the coefficient. 415 the magnitude of the coefficient. 424 416 425 417 \subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t=31}, \forcode{nn_ahm_ijk_t=31})] … … 433 425 \begin{aligned} 434 426 & \frac{1}{12} \lvert U \rvert e & \text{for laplacian operator } \\ 435 & \frac{1}{12} \lvert U \rvert e^3 & \text{for bilaplacian operator } 427 & \frac{1}{12} \lvert U \rvert e^3 & \text{for bilaplacian operator } 436 428 \end{aligned} 437 429 \right. … … 441 433 {Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{=32})} 442 434 443 This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 435 This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 444 436 characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.: 445 437 … … 459 451 \begin{aligned} 460 452 & C^2 T_{smag}^{-1} L_{smag}^2 & \text{for laplacian operator } \\ 461 & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4 & \text{for bilaplacian operator } 453 & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4 & \text{for bilaplacian operator } 462 454 \end{aligned} 463 455 \right. … … 469 461 \begin{aligned} 470 462 & C_{min} \frac{1}{2} \lvert U \rvert e < A_{smag} < C_{max} \frac{e^2}{ 8\rdt} & \text{for laplacian operator } \\ 471 & C_{min} \frac{1}{12} \lvert U \rvert e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt} & \text{for bilaplacian operator } 463 & C_{min} \frac{1}{12} \lvert U \rvert e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt} & \text{for bilaplacian operator } 472 464 \end{aligned} 473 465 \end{equation} … … 482 474 divergent components of the horizontal current (see \autoref{subsec:MB_ldf}). 483 475 Although the eddy coefficient could be set to different values in these two terms, 484 this option is not currently available. 476 this option is not currently available. 485 477 486 478 (2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of … … 498 490 %--------------------------------------------namtra_eiv--------------------------------------------------- 499 491 500 \nlst{namtra_eiv} 492 \begin{listing} 493 \nlst{namtra_eiv} 494 \caption{\texttt{namtra\_eiv}} 495 \label{lst:namtra_eiv} 496 \end{listing} 501 497 502 498 %-------------------------------------------------------------------------------------------------------------- … … 530 526 and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates. 531 527 532 If isopycnal mixing is used in the standard way, \ie\ \np{ln\_traldf\_triad}\forcode{=.false.}, the eddy induced velocity is given by: 528 If isopycnal mixing is used in the standard way, \ie\ \np{ln\_traldf\_triad}\forcode{=.false.}, the eddy induced velocity is given by: 533 529 \begin{equation} 534 530 \label{eq:LDF_eiv} … … 539 535 \end{split} 540 536 \end{equation} 541 where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn\_aei\_ijk\_t} \nam{tra\_eiv} namelist parameter. 537 where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn\_aei\_ijk\_t} \nam{tra\_eiv} namelist parameter. 542 538 The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and 543 539 added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed. … … 547 543 previous releases of OPA \citep{madec.delecluse.ea_NPM98}. 548 544 This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of 549 paramount importance. 545 paramount importance. 550 546 551 547 At the surface, lateral and bottom boundaries, the eddy induced velocity, 552 and thus the advective eddy fluxes of heat and salt, are set to zero. 553 The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn\_aei\_ijk\_t}, \np{rn\_Ue}, \np{rn\_Le} namelist parameters). 548 and thus the advective eddy fluxes of heat and salt, are set to zero. 549 The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn\_aei\_ijk\_t}, \np{rn\_Ue}, \np{rn\_Le} namelist parameters). 554 550 \colorbox{yellow}{CASE \np{nn\_aei\_ijk\_t} = 21 to be added} 555 551 … … 566 562 %--------------------------------------------namtra_eiv--------------------------------------------------- 567 563 568 \nlst{namtra_mle} 564 \begin{listing} 565 \nlst{namtra_mle} 566 \caption{\texttt{namtra\_mle}} 567 \label{lst:namtra_mle} 568 \end{listing} 569 569 570 570 %-------------------------------------------------------------------------------------------------------------- -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex
r11552 r11558 119 119 %------------------------------------------namobs-------------------------------------------------------- 120 120 121 \nlst{namobs} 121 \begin{listing} 122 \nlst{namobs} 123 \caption{\texttt{namobs}} 124 \label{lst:namobs} 125 \end{listing} 122 126 %------------------------------------------------------------------------------------------------------------- 123 127 … … 695 699 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 696 700 \begin{figure} 697 \begin{center} 698 \includegraphics[width=\textwidth]{Fig_OBS_avg_rec} 699 \caption{ 700 \protect\label{fig:OBS_avgrec} 701 Weights associated with each model grid box (blue lines and numbers) 702 for an observation at -170.5\deg{E}, 56.0\deg{N} with a rectangular footprint of 1\deg x 1\deg. 703 } 704 \end{center} 701 \centering 702 \includegraphics[width=\textwidth]{Fig_OBS_avg_rec} 703 \caption[Observational weights with a rectangular footprint]{ 704 Weights associated with each model grid box (blue lines and numbers) 705 for an observation at -170.5\deg{E}, 56.0\deg{N} with a rectangular footprint of 1\deg\ x 1\deg.} 706 \label{fig:OBS_avgrec} 705 707 \end{figure} 706 % >>>>>>>>>>>>>>>>>>>>>>>>>>>>708 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 707 709 708 710 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 709 711 \begin{figure} 710 \begin{center} 711 \includegraphics[width=\textwidth]{Fig_OBS_avg_rad} 712 \caption{ 713 \protect\label{fig:OBS_avgrad} 714 Weights associated with each model grid box (blue lines and numbers) 715 for an observation at -170.5\deg{E}, 56.0\deg{N} with a radial footprint with diameter 1\deg. 716 } 717 \end{center} 712 \centering 713 \includegraphics[width=\textwidth]{Fig_OBS_avg_rad} 714 \caption[Observational weights with a radial footprint]{ 715 Weights associated with each model grid box (blue lines and numbers) 716 for an observation at -170.5\deg{E}, 56.0\deg{N} with a radial footprint with diameter 1\deg.} 717 \label{fig:OBS_avgrad} 718 718 \end{figure} 719 719 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 788 788 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 789 789 \begin{figure} 790 \begin{center} 791 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_local} 792 \caption{ 793 \protect\label{fig:OBS_local} 794 Example of the distribution of observations with the geographical distribution of observational data. 795 } 796 \end{center} 790 \centering 791 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_local} 792 \caption[Observations with the geographical distribution]{ 793 Example of the distribution of observations with 794 the geographical distribution of observational data} 795 \label{fig:OBS_local} 797 796 \end{figure} 798 797 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 817 816 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 818 817 \begin{figure} 819 \begin{center} 820 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_global} 821 \caption{ 822 \protect\label{fig:OBS_global} 823 Example of the distribution of observations with the round-robin distribution of observational data. 824 } 825 \end{center} 818 \centering 819 \includegraphics[width=\textwidth]{Fig_ASM_obsdist_global} 820 \caption[Observations with the round-robin distribution]{ 821 Example of the distribution of observations with 822 the round-robin distribution of observational data.} 823 \label{fig:OBS_global} 826 824 \end{figure} 827 825 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1150 1148 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1151 1149 \begin{figure} 1152 \begin{center} 1153 % \includegraphics[width=\textwidth]{Fig_OBS_dataplot_main} 1154 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_main} 1155 \caption{ 1156 \protect\label{fig:OBS_dataplotmain} 1157 Main window of dataplot. 1158 } 1159 \end{center} 1150 \centering 1151 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_main} 1152 \caption{Main window of dataplot} 1153 \label{fig:OBS_dataplotmain} 1160 1154 \end{figure} 1161 1155 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1166 1160 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1167 1161 \begin{figure} 1168 \begin{center} 1169 % \includegraphics[width=\textwidth]{Fig_OBS_dataplot_prof} 1170 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_prof} 1171 \caption{ 1172 \protect\label{fig:OBS_dataplotprofile} 1173 Profile plot from dataplot produced by right clicking on a point in the main window. 1174 } 1175 \end{center} 1162 \centering 1163 \includegraphics[width=\textwidth]{Fig_OBS_dataplot_prof} 1164 \caption[Profile plot from dataplot]{ 1165 Profile plot from dataplot produced by right clicking on a point in the main window} 1166 \label{fig:OBS_dataplotprofile} 1176 1167 \end{figure} 1177 1168 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11551 r11558 14 14 %---------------------------------------namsbc-------------------------------------------------- 15 15 16 \nlst{namsbc} 16 \begin{listing} 17 \nlst{namsbc} 18 \caption{\texttt{namsbc}} 19 \label{lst:namsbc} 20 \end{listing} 17 21 %-------------------------------------------------------------------------------------------------------------- 18 22 … … 183 187 %-------------------------------------------------TABLE--------------------------------------------------- 184 188 \begin{table}[tb] 185 \begin{center} 186 \begin{tabular}{|l|l|l|l|} 187 \hline 188 Variable description & Model variable & Units & point \\\hline 189 i-component of the surface current & ssu\_m & $m.s^{-1}$ & U \\\hline 190 j-component of the surface current & ssv\_m & $m.s^{-1}$ & V \\ \hline 191 Sea surface temperature & sst\_m & \r{}$K$ & T \\\hline 192 Sea surface salinty & sss\_m & $psu$ & T \\ \hline 193 \end{tabular} 194 \caption{ 195 \protect\label{tab:SBC_ssm} 196 Ocean variables provided by the ocean to the surface module (SBC). 197 The variable are averaged over \np{nn\_fsbc} time-step, 198 \ie\ the frequency of computation of surface fluxes. 199 } 200 \end{center} 189 \centering 190 \begin{tabular}{|l|l|l|l|} 191 \hline 192 Variable description & Model variable & Units & point \\ 193 \hline 194 i-component of the surface current & ssu\_m & $m.s^{-1}$ & U \\ 195 \hline 196 j-component of the surface current & ssv\_m & $m.s^{-1}$ & V \\ 197 \hline 198 Sea surface temperature & sst\_m & \r{}$K$ & T \\\hline 199 Sea surface salinty & sss\_m & $psu$ & T \\ \hline 200 \end{tabular} 201 \caption[Ocean variables provided to the surface module)]{ 202 Ocean variables provided to the surface module (\texttt{SBC}). 203 The variable are averaged over \protect\np{nn\_fsbc} time-step, 204 \ie\ the frequency of computation of surface fluxes.} 205 \label{tab:SBC_ssm} 201 206 \end{table} 202 207 %-------------------------------------------------------------------------------------------------------------- … … 269 274 %--------------------------------------------------TABLE-------------------------------------------------- 270 275 \begin{table}[htbp] 271 \begin{center} 272 \begin{tabular}{|l|c|c|c|} 273 \hline 274 & daily or weekLL & monthly & yearly \\ \hline 275 \np{clim}\forcode{=.false.} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\ \hline 276 \np{clim}\forcode{=.true.} & not possible & fn\_m??.nc & fn \\ \hline 277 \end{tabular} 278 \end{center} 279 \caption{ 280 \protect\label{tab:SBC_fldread} 281 naming nomenclature for climatological or interannual input file(s), as a function of the open/close frequency. 276 \centering 277 \begin{tabular}{|l|c|c|c|} 278 \hline 279 & daily or weekLL & monthly & yearly \\ 280 \hline 281 \np{clim}\forcode{=.false.} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\ 282 \hline 283 \np{clim}\forcode{=.true.} & not possible & fn\_m??.nc & fn \\ 284 \hline 285 \end{tabular} 286 \caption[Naming nomenclature for climatological or interannual input file]{ 287 Naming nomenclature for climatological or interannual input file, 288 as a function of the open/close frequency. 282 289 The stem name is assumed to be 'fn'. 283 290 For weekly files, the 'LLL' corresponds to the first three letters of the first day of the week 284 291 (\ie\ 'sun','sat','fri','thu','wed','tue','mon'). 285 The 'YYYY', 'MM' and 'DD' should be replaced by the actual year/month/day, always coded with 4 or 2 digits. 286 Note that (1) in mpp, if the file is split over each subdomain, the suffix '.nc' is replaced by '\_PPPP.nc', 292 The 'YYYY', 'MM' and 'DD' should be replaced by the actual year/month/day, 293 always coded with 4 or 2 digits. 294 Note that (1) in mpp, if the file is split over each subdomain, 295 the suffix '.nc' is replaced by '\_PPPP.nc', 287 296 where 'PPPP' is the process number coded with 4 digits; 288 297 (2) when using AGRIF, the prefix '\_N' is added to files, where 'N' is the child grid number. 289 298 } 299 \label{tab:SBC_fldread} 290 300 \end{table} 291 301 %-------------------------------------------------------------------------------------------------------------- … … 519 529 %---------------------------------------namsbc_sas-------------------------------------------------- 520 530 521 \nlst{namsbc_sas} 531 \begin{listing} 532 \nlst{namsbc_sas} 533 \caption{\texttt{namsbc\_sas}} 534 \label{lst:namsbc_sas} 535 \end{listing} 522 536 %-------------------------------------------------------------------------------------------------------------- 523 537 … … 604 618 %------------------------------------------namsbc_flx---------------------------------------------------- 605 619 606 \nlst{namsbc_flx} 620 \begin{listing} 621 \nlst{namsbc_flx} 622 \caption{\texttt{namsbc\_flx}} 623 \label{lst:namsbc_flx} 624 \end{listing} 607 625 %------------------------------------------------------------------------------------------------------------- 608 626 … … 627 645 %---------------------------------------namsbc_blk-------------------------------------------------- 628 646 629 \nlst{namsbc_blk} 647 \begin{listing} 648 \nlst{namsbc_blk} 649 \caption{\texttt{namsbc\_blk}} 650 \label{lst:namsbc_blk} 651 \end{listing} 630 652 %-------------------------------------------------------------------------------------------------------------- 631 653 … … 649 671 %--------------------------------------------------TABLE-------------------------------------------------- 650 672 \begin{table}[htbp] 673 \centering 674 \begin{tabular}{|l|c|c|c|} 675 \hline 676 Variable description & Model variable & Units & point \\ 677 \hline 678 i-component of the 10m air velocity & utau & $m.s^{-1}$ & T \\ 679 \hline 680 j-component of the 10m air velocity & vtau & $m.s^{-1}$ & T \\ 681 \hline 682 10m air temperature & tair & \r{}$K$ & T \\ 683 \hline 684 Specific humidity & humi & \% & T \\ 685 \hline 686 Incoming long wave radiation & qlw & $W.m^{-2}$ & T \\ 687 \hline 688 Incoming short wave radiation & qsr & $W.m^{-2}$ & T \\ 689 \hline 690 Total precipitation (liquid + solid) & precip & $Kg.m^{-2}.s^{-1}$ & T \\ 691 \hline 692 Solid precipitation & snow & $Kg.m^{-2}.s^{-1}$ & T \\ 693 \hline 694 Mean sea-level pressure & slp & $hPa$ & T \\ 695 \hline 696 \end{tabular} 651 697 \label{tab:SBC_BULK} 652 \begin{center}653 \begin{tabular}{|l|c|c|c|}654 \hline655 Variable description & Model variable & Units & point \\ \hline656 i-component of the 10m air velocity & utau & $m.s^{-1}$ & T \\ \hline657 j-component of the 10m air velocity & vtau & $m.s^{-1}$ & T \\ \hline658 10m air temperature & tair & \r{}$K$ & T \\ \hline659 Specific humidity & humi & \% & T \\ \hline660 Incoming long wave radiation & qlw & $W.m^{-2}$ & T \\ \hline661 Incoming short wave radiation & qsr & $W.m^{-2}$ & T \\ \hline662 Total precipitation (liquid + solid) & precip & $Kg.m^{-2}.s^{-1}$ & T \\ \hline663 Solid precipitation & snow & $Kg.m^{-2}.s^{-1}$ & T \\ \hline664 Mean sea-level pressure & slp & $hPa$ & T \\ \hline665 \end{tabular}666 \end{center}667 698 \end{table} 668 699 %-------------------------------------------------------------------------------------------------------------- … … 768 799 %------------------------------------------namsbc_cpl---------------------------------------------------- 769 800 770 \nlst{namsbc_cpl} 801 \begin{listing} 802 \nlst{namsbc_cpl} 803 \caption{\texttt{namsbc\_cpl}} 804 \label{lst:namsbc_cpl} 805 \end{listing} 771 806 %------------------------------------------------------------------------------------------------------------- 772 807 … … 807 842 %------------------------------------------namsbc_apr---------------------------------------------------- 808 843 809 \nlst{namsbc_apr} 844 \begin{listing} 845 \nlst{namsbc_apr} 846 \caption{\texttt{namsbc\_apr}} 847 \label{lst:namsbc_apr} 848 \end{listing} 810 849 %------------------------------------------------------------------------------------------------------------- 811 850 … … 847 886 %------------------------------------------nam_tide--------------------------------------- 848 887 849 \nlst{nam_tide} 888 \begin{listing} 889 \nlst{nam_tide} 890 \caption{\texttt{nam\_tide}} 891 \label{lst:nam_tide} 892 \end{listing} 850 893 %----------------------------------------------------------------------------------------- 851 894 … … 899 942 %------------------------------------------namsbc_rnf---------------------------------------------------- 900 943 901 \nlst{namsbc_rnf} 944 \begin{listing} 945 \nlst{namsbc_rnf} 946 \caption{\texttt{namsbc\_rnf}} 947 \label{lst:namsbc_rnf} 948 \end{listing} 902 949 %------------------------------------------------------------------------------------------------------------- 903 950 … … 1025 1072 %------------------------------------------namsbc_isf---------------------------------------------------- 1026 1073 1027 \nlst{namsbc_isf} 1074 \begin{listing} 1075 \nlst{namsbc_isf} 1076 \caption{\texttt{namsbc\_isf}} 1077 \label{lst:namsbc_isf} 1078 \end{listing} 1028 1079 %-------------------------------------------------------------------------------------------------------- 1029 1080 … … 1126 1177 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1127 1178 \begin{figure}[!t] 1128 \begin{center} 1129 \includegraphics[width=\textwidth]{Fig_SBC_isf} 1130 \caption{ 1131 \protect\label{fig:SBC_isf} 1132 Illustration the location where the fwf is injected and whether or not the fwf is interactif or not depending of \np{nn\_isf}. 1133 } 1134 \end{center} 1179 \centering 1180 \includegraphics[width=\textwidth]{Fig_SBC_isf} 1181 \caption[Ice shelf location and fresh water flux definition]{ 1182 Illustration of the location where the fwf is injected and 1183 whether or not the fwf is interactif or not depending of \protect\np{nn\_isf}.} 1184 \label{fig:SBC_isf} 1135 1185 \end{figure} 1136 1186 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1145 1195 %------------------------------------------namsbc_iscpl---------------------------------------------------- 1146 1196 1147 \nlst{namsbc_iscpl} 1197 \begin{listing} 1198 \nlst{namsbc_iscpl} 1199 \caption{\texttt{namsbc\_iscpl}} 1200 \label{lst:namsbc_iscpl} 1201 \end{listing} 1148 1202 %-------------------------------------------------------------------------------------------------------- 1149 1203 … … 1210 1264 %------------------------------------------namberg---------------------------------------------------- 1211 1265 1212 \nlst{namberg} 1266 \begin{listing} 1267 \nlst{namberg} 1268 \caption{\texttt{namberg}} 1269 \label{lst:namberg} 1270 \end{listing} 1213 1271 %------------------------------------------------------------------------------------------------------------- 1214 1272 … … 1280 1338 %------------------------------------------namsbc_wave-------------------------------------------------------- 1281 1339 1282 \nlst{namsbc_wave} 1340 \begin{listing} 1341 \nlst{namsbc_wave} 1342 \caption{\texttt{namsbc\_wave}} 1343 \label{lst:namsbc_wave} 1344 \end{listing} 1283 1345 %------------------------------------------------------------------------------------------------------------- 1284 1346 … … 1483 1545 %------------------------------------------namsbc------------------------------------------------------------- 1484 1546 % 1485 \nlst{namsbc} 1547 1486 1548 %------------------------------------------------------------------------------------------------------------- 1487 1549 1488 1550 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1489 1551 \begin{figure}[!t] 1490 \begin{center} 1491 \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 1492 \caption{ 1493 \protect\label{fig:SBC_diurnal} 1494 Example of recontruction of the diurnal cycle variation of short wave flux from daily mean values. 1495 The reconstructed diurnal cycle (black line) is chosen as 1496 the mean value of the analytical cycle (blue line) over a time step, 1497 not as the mid time step value of the analytically cycle (red square). 1498 From \citet{bernie.guilyardi.ea_CD07}. 1499 } 1500 \end{center} 1552 \centering 1553 \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 1554 \caption[Reconstruction of the diurnal cycle variation of short wave flux]{ 1555 Example of reconstruction of the diurnal cycle variation of short wave flux from 1556 daily mean values. 1557 The reconstructed diurnal cycle (black line) is chosen as 1558 the mean value of the analytical cycle (blue line) over a time step, 1559 not as the mid time step value of the analytically cycle (red square). 1560 From \citet{bernie.guilyardi.ea_CD07}.} 1561 \label{fig:SBC_diurnal} 1501 1562 \end{figure} 1502 1563 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1525 1586 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1526 1587 \begin{figure}[!t] 1527 \begin{center} 1528 \includegraphics[width=\textwidth]{Fig_SBC_dcy} 1529 \caption{ 1530 \protect\label{fig:SBC_dcy} 1531 Example of recontruction of the diurnal cycle variation of short wave flux from 1532 daily mean values on an ORCA2 grid with a time sampling of 2~hours (from 1am to 11pm). 1533 The display is on (i,j) plane. 1534 } 1535 \end{center} 1588 \centering 1589 \includegraphics[width=\textwidth]{Fig_SBC_dcy} 1590 \caption[Reconstruction of the diurnal cycle variation of short wave flux on an ORCA2 grid]{ 1591 Example of reconstruction of the diurnal cycle variation of short wave flux from 1592 daily mean values on an ORCA2 grid with a time sampling of 2~hours (from 1am to 11pm). 1593 The display is on (i,j) plane.} 1594 \label{fig:SBC_dcy} 1536 1595 \end{figure} 1537 1596 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1569 1628 %------------------------------------------namsbc_ssr---------------------------------------------------- 1570 1629 1571 \nlst{namsbc_ssr} 1630 \begin{listing} 1631 \nlst{namsbc_ssr} 1632 \caption{\texttt{namsbc\_ssr}} 1633 \label{lst:namsbc_ssr} 1634 \end{listing} 1572 1635 %------------------------------------------------------------------------------------------------------------- 1573 1636 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_STO.tex
r11544 r11558 176 176 %---------------------------------------namsto-------------------------------------------------- 177 177 178 \nlst{namsto} 178 \begin{listing} 179 \nlst{namsto} 180 \caption{\texttt{namsto}} 181 \label{lst:namsto} 182 \end{listing} 179 183 %-------------------------------------------------------------------------------------------------------------- 180 184 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11552 r11558 65 65 %------------------------------------------namtra_adv----------------------------------------------------- 66 66 67 \nlst{namtra_adv} 67 \begin{listing} 68 \nlst{namtra_adv} 69 \caption{\texttt{namtra\_adv}} 70 \label{lst:namtra_adv} 71 \end{listing} 68 72 %------------------------------------------------------------------------------------------------------------- 69 73 … … 90 94 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 91 95 \begin{figure}[!t] 92 \begin{center} 93 \includegraphics[width=\textwidth]{Fig_adv_scheme} 94 \caption{ 95 \protect\label{fig:TRA_adv_scheme} 96 Schematic representation of some ways used to evaluate the tracer value at $u$-point and 97 the amount of tracer exchanged between two neighbouring grid points. 98 Upsteam biased scheme (ups): 99 the upstream value is used and the black area is exchanged. 100 Piecewise parabolic method (ppm): 101 a parabolic interpolation is used and the black and dark grey areas are exchanged. 102 Monotonic upstream scheme for conservative laws (muscl): 103 a parabolic interpolation is used and black, dark grey and grey areas are exchanged. 104 Second order scheme (cen2): 105 the mean value is used and black, dark grey, grey and light grey areas are exchanged. 106 Note that this illustration does not include the flux limiter used in ppm and muscl schemes. 107 } 108 \end{center} 96 \centering 97 \includegraphics[width=\textwidth]{Fig_adv_scheme} 98 \caption[Ways to evaluate the tracer value and the amount of tracer exchanged]{ 99 Schematic representation of some ways used to evaluate the tracer value at $u$-point and 100 the amount of tracer exchanged between two neighbouring grid points. 101 Upsteam biased scheme (ups): 102 the upstream value is used and the black area is exchanged. 103 Piecewise parabolic method (ppm): 104 a parabolic interpolation is used and the black and dark grey areas are exchanged. 105 Monotonic upstream scheme for conservative laws (muscl): 106 a parabolic interpolation is used and black, dark grey and grey areas are exchanged. 107 Second order scheme (cen2): 108 the mean value is used and black, dark grey, grey and light grey areas are exchanged. 109 Note that this illustration does not include the flux limiter used in ppm and muscl schemes.} 110 \label{fig:TRA_adv_scheme} 109 111 \end{figure} 110 112 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 435 437 %-----------------------------------------nam_traldf------------------------------------------------------ 436 438 437 \nlst{namtra_ldf} 439 \begin{listing} 440 \nlst{namtra_ldf} 441 \caption{\texttt{namtra\_ldf}} 442 \label{lst:namtra_ldf} 443 \end{listing} 438 444 %------------------------------------------------------------------------------------------------------------- 439 445 … … 640 646 %--------------------------------------------namzdf--------------------------------------------------------- 641 647 642 \nlst{namzdf}643 648 %-------------------------------------------------------------------------------------------------------------- 644 649 … … 759 764 %--------------------------------------------namqsr-------------------------------------------------------- 760 765 761 \nlst{namtra_qsr} 766 \begin{listing} 767 \nlst{namtra_qsr} 768 \caption{\texttt{namtra\_qsr}} 769 \label{lst:namtra_qsr} 770 \end{listing} 762 771 %-------------------------------------------------------------------------------------------------------------- 763 772 … … 857 866 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 858 867 \begin{figure}[!t] 859 \begin{center} 860 \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 861 \caption{ 862 \protect\label{fig:TRA_qsr_irradiance} 863 Penetration profile of the downward solar irradiance calculated by four models. 864 Two waveband chlorophyll-independent formulation (blue), 865 a chlorophyll-dependent monochromatic formulation (green), 866 4 waveband RGB formulation (red), 867 61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 868 (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 869 From \citet{lengaigne.menkes.ea_CD07}. 870 } 871 \end{center} 868 \centering 869 \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 870 \caption[Penetration profile of the downward solar irradiance calculated by four models]{ 871 Penetration profile of the downward solar irradiance calculated by four models. 872 Two waveband chlorophyll-independent formulation (blue), 873 a chlorophyll-dependent monochromatic formulation (green), 874 4 waveband RGB formulation (red), 875 61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 876 (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 877 From \citet{lengaigne.menkes.ea_CD07}.} 878 \label{fig:TRA_qsr_irradiance} 872 879 \end{figure} 873 880 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 881 888 %--------------------------------------------nambbc-------------------------------------------------------- 882 889 883 \nlst{nambbc} 890 \begin{listing} 891 \nlst{nambbc} 892 \caption{\texttt{nambbc}} 893 \label{lst:nambbc} 894 \end{listing} 884 895 %-------------------------------------------------------------------------------------------------------------- 885 896 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 886 897 \begin{figure}[!t] 887 \begin{center} 888 \includegraphics[width=\textwidth]{Fig_TRA_geoth} 889 \caption{ 890 \protect\label{fig:TRA_geothermal} 891 Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 892 It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}. 893 } 894 \end{center} 898 \centering 899 \includegraphics[width=\textwidth]{Fig_TRA_geoth} 900 \caption[Geothermal heat flux]{ 901 Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 902 It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}.} 903 \label{fig:TRA_geothermal} 895 904 \end{figure} 896 905 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 920 929 %--------------------------------------------nambbl--------------------------------------------------------- 921 930 922 \nlst{nambbl} 931 \begin{listing} 932 \nlst{nambbl} 933 \caption{\texttt{nambbl}} 934 \label{lst:nambbl} 935 \end{listing} 923 936 %-------------------------------------------------------------------------------------------------------------- 924 937 … … 999 1012 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1000 1013 \begin{figure}[!t] 1001 \ begin{center}1002 1003 \caption{1004 \protect\label{fig:TRA_bbl}1005 Advective/diffusive Bottom Boundary Layer.1006 The BBL parameterisation is activated when $\rho^i_{kup}$ is larger than $\rho^{i + 1}_{kdnw}$.1007 Red arrows indicate the additional overturning circulation due to the advective BBL.1008 The transport of the downslope flow is defined eitheras the transport of the bottom ocean cell (black arrow),1009 1010 The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$ ocean bottom cells.1011 }1012 \ end{center}1014 \centering 1015 \includegraphics[width=\textwidth]{Fig_BBL_adv} 1016 \caption[Advective/diffusive bottom boundary layer]{ 1017 Advective/diffusive Bottom Boundary Layer. 1018 The BBL parameterisation is activated when $\rho^i_{kup}$ is larger than $\rho^{i + 1}_{kdnw}$. 1019 Red arrows indicate the additional overturning circulation due to the advective BBL. 1020 The transport of the downslope flow is defined either 1021 as the transport of the bottom ocean cell (black arrow), 1022 or as a function of the along slope density gradient. 1023 The green arrow indicates the diffusive BBL flux directly connecting 1024 $kup$ and $kdwn$ ocean bottom cells.} 1025 \label{fig:TRA_bbl} 1013 1026 \end{figure} 1014 1027 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1085 1098 %--------------------------------------------namtra_dmp------------------------------------------------- 1086 1099 1087 \nlst{namtra_dmp} 1100 \begin{listing} 1101 \nlst{namtra_dmp} 1102 \caption{\texttt{namtra\_dmp}} 1103 \label{lst:namtra_dmp} 1104 \end{listing} 1088 1105 %-------------------------------------------------------------------------------------------------------------- 1089 1106 … … 1140 1157 \label{sec:TRA_nxt} 1141 1158 %--------------------------------------------namdom----------------------------------------------------- 1142 1143 \nlst{namdom}1144 1159 %-------------------------------------------------------------------------------------------------------------- 1145 1160 … … 1179 1194 %--------------------------------------------nameos----------------------------------------------------- 1180 1195 1181 \nlst{nameos} 1196 \begin{listing} 1197 \nlst{nameos} 1198 \caption{\texttt{nameos}} 1199 \label{lst:nameos} 1200 \end{listing} 1182 1201 %-------------------------------------------------------------------------------------------------------------- 1183 1202 … … 1283 1302 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1284 1303 \begin{table}[!tb] 1285 \begin{center} 1286 \begin{tabular}{|l|l|l|l|} 1287 \hline 1288 coeff. & computer name & S-EOS & description \\ 1289 \hline 1290 $a_0$ & \np{rn\_a0} & $1.6550~10^{-1}$ & linear thermal expansion coeff. \\ 1291 \hline 1292 $b_0$ & \np{rn\_b0} & $7.6554~10^{-1}$ & linear haline expansion coeff. \\ 1293 \hline 1294 $\lambda_1$ & \np{rn\_lambda1}& $5.9520~10^{-2}$ & cabbeling coeff. in $T^2$ \\ 1295 \hline 1296 $\lambda_2$ & \np{rn\_lambda2}& $5.4914~10^{-4}$ & cabbeling coeff. in $S^2$ \\ 1297 \hline 1298 $\nu$ & \np{rn\_nu} & $2.4341~10^{-3}$ & cabbeling coeff. in $T \, S$ \\ 1299 \hline 1300 $\mu_1$ & \np{rn\_mu1} & $1.4970~10^{-4}$ & thermobaric coeff. in T \\ 1301 \hline 1302 $\mu_2$ & \np{rn\_mu2} & $1.1090~10^{-5}$ & thermobaric coeff. in S \\ 1303 \hline 1304 \end{tabular} 1305 \caption{ 1306 \protect\label{tab:TRA_SEOS} 1307 Standard value of S-EOS coefficients. 1308 } 1309 \end{center} 1304 \centering 1305 \begin{tabular}{|l|l|l|l|} 1306 \hline 1307 coeff. & computer name & S-EOS & description \\ 1308 \hline 1309 $a_0$ & \np{rn\_a0} & $1.6550~10^{-1}$ & linear thermal expansion coeff. \\ 1310 \hline 1311 $b_0$ & \np{rn\_b0} & $7.6554~10^{-1}$ & linear haline expansion coeff. \\ 1312 \hline 1313 $\lambda_1$ & \np{rn\_lambda1}& $5.9520~10^{-2}$ & cabbeling coeff. in $T^2$ \\ 1314 \hline 1315 $\lambda_2$ & \np{rn\_lambda2}& $5.4914~10^{-4}$ & cabbeling coeff. in $S^2$ \\ 1316 \hline 1317 $\nu$ & \np{rn\_nu} & $2.4341~10^{-3}$ & cabbeling coeff. in $T \, S$ \\ 1318 \hline 1319 $\mu_1$ & \np{rn\_mu1} & $1.4970~10^{-4}$ & thermobaric coeff. in T \\ 1320 \hline 1321 $\mu_2$ & \np{rn\_mu2} & $1.1090~10^{-5}$ & thermobaric coeff. in S \\ 1322 \hline 1323 \end{tabular} 1324 \caption{Standard value of S-EOS coefficients} 1325 \label{tab:TRA_SEOS} 1310 1326 \end{table} 1311 1327 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 1391 1407 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1392 1408 \begin{figure}[!p] 1393 \begin{center} 1394 \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 1395 \caption{ 1396 \protect\label{fig:TRA_Partial_step_scheme} 1397 Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate 1398 (\protect\np{ln\_zps}\forcode{=.true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 1399 A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 1400 the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. 1401 The horizontal difference is then given by: $\delta_{i + 1/2} T_k = \widetilde T_k^{\, i + 1} -T_k^{\, i}$ and 1402 the average by: $\overline T_k^{\, i + 1/2} = (\widetilde T_k^{\, i + 1/2} - T_k^{\, i}) / 2$. 1403 } 1404 \end{center} 1409 \centering 1410 \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 1411 \caption[Discretisation of the horizontal difference and average of tracers in 1412 the $z$-partial step coordinate]{ 1413 Discretisation of the horizontal difference and average of tracers in 1414 the $z$-partial step coordinate (\protect\np{ln\_zps}\forcode{=.true.}) in 1415 the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 1416 A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 1417 the tracer value at the depth of the shallower tracer point of 1418 the two adjacent bottom $T$-points. 1419 The horizontal difference is then given by: 1420 $\delta_{i + 1/2} T_k = \widetilde T_k^{\, i + 1} -T_k^{\, i}$ and 1421 the average by: 1422 $\overline T_k^{\, i + 1/2} = (\widetilde T_k^{\, i + 1/2} - T_k^{\, i}) / 2$.} 1423 \label{fig:TRA_Partial_step_scheme} 1405 1424 \end{figure} 1406 1425 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11543 r11558 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 %% Custom aliases 4 \newcommand{\cf}{\ensuremath{C\kern-0.14em f}} 2 5 3 6 \begin{document} … … 45 48 %--------------------------------------------namzdf-------------------------------------------------------- 46 49 47 \nlst{namzdf} 50 \begin{listing} 51 \nlst{namzdf} 52 \caption{\texttt{namzdf}} 53 \label{lst:namzdf} 54 \end{listing} 48 55 %-------------------------------------------------------------------------------------------------------------- 49 56 … … 80 87 %--------------------------------------------namric--------------------------------------------------------- 81 88 82 \nlst{namzdf_ric} 89 \begin{listing} 90 \nlst{namzdf_ric} 91 \caption{\texttt{namzdf\_ric}} 92 \label{lst:namzdf_ric} 93 \end{listing} 83 94 %-------------------------------------------------------------------------------------------------------------- 84 95 … … 137 148 %--------------------------------------------namzdf_tke-------------------------------------------------- 138 149 139 \nlst{namzdf_tke} 150 \begin{listing} 151 \nlst{namzdf_tke} 152 \caption{\texttt{namzdf\_tke}} 153 \label{lst:namzdf_tke} 154 \end{listing} 140 155 %-------------------------------------------------------------------------------------------------------------- 141 156 … … 238 253 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 239 254 \begin{figure}[!t] 240 \begin{center} 241 \includegraphics[width=\textwidth]{Fig_mixing_length} 242 \caption{ 243 \protect\label{fig:ZDF_mixing_length} 244 Illustration of the mixing length computation. 245 } 246 \end{center} 255 \centering 256 \includegraphics[width=\textwidth]{Fig_mixing_length} 257 \caption[Mixing length computation]{Illustration of the mixing length computation} 258 \label{fig:ZDF_mixing_length} 247 259 \end{figure} 248 260 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 421 433 %--------------------------------------------namzdf_gls--------------------------------------------------------- 422 434 423 \nlst{namzdf_gls} 435 \begin{listing} 436 \nlst{namzdf_gls} 437 \caption{\texttt{namzdf\_gls}} 438 \label{lst:namzdf_gls} 439 \end{listing} 424 440 %-------------------------------------------------------------------------------------------------------------- 425 441 … … 475 491 %--------------------------------------------------TABLE-------------------------------------------------- 476 492 \begin{table}[htbp] 477 \begin{center} 478 % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c} 479 \begin{tabular}{ccccc} 480 & $k-kl$ & $k-\epsilon$ & $k-\omega$ & generic \\ 481 % & \citep{mellor.yamada_RG82} & \citep{rodi_JGR87} & \citep{wilcox_AJ88} & \\ 482 \hline 483 \hline 484 \np{nn\_clo} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} \\ 485 \hline 486 $( p , n , m )$ & ( 0 , 1 , 1 ) & ( 3 , 1.5 , -1 ) & ( -1 , 0.5 , -1 ) & ( 2 , 1 , -0.67 ) \\ 487 $\sigma_k$ & 2.44 & 1. & 2. & 0.8 \\ 488 $\sigma_\psi$ & 2.44 & 1.3 & 2. & 1.07 \\ 489 $C_1$ & 0.9 & 1.44 & 0.555 & 1. \\ 490 $C_2$ & 0.5 & 1.92 & 0.833 & 1.22 \\ 491 $C_3$ & 1. & 1. & 1. & 1. \\ 492 $F_{wall}$ & Yes & -- & -- & -- \\ 493 \hline 494 \hline 495 \end{tabular} 496 \caption{ 497 \protect\label{tab:ZDF_GLS} 498 Set of predefined GLS parameters, or equivalently predefined turbulence models available with 499 \protect\np{ln\_zdfgls}\forcode{=.true.} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}. 500 } 501 \end{center} 493 \centering 494 % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c} 495 \begin{tabular}{ccccc} 496 & $k-kl$ & $k-\epsilon$ & $k-\omega$ & generic \\ 497 % & \citep{mellor.yamada_RG82} & \citep{rodi_JGR87} & \citep{wilcox_AJ88} & \\ 498 \hline 499 \hline 500 \np{nn\_clo} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} \\ 501 \hline 502 $( p , n , m )$ & ( 0 , 1 , 1 ) & ( 3 , 1.5 , -1 ) & ( -1 , 0.5 , -1 ) & ( 2 , 1 , -0.67 ) \\ 503 $\sigma_k$ & 2.44 & 1. & 2. & 0.8 \\ 504 $\sigma_\psi$ & 2.44 & 1.3 & 2. & 1.07 \\ 505 $C_1$ & 0.9 & 1.44 & 0.555 & 1. \\ 506 $C_2$ & 0.5 & 1.92 & 0.833 & 1.22 \\ 507 $C_3$ & 1. & 1. & 1. & 1. \\ 508 $F_{wall}$ & Yes & -- & -- & -- \\ 509 \hline 510 \hline 511 \end{tabular} 512 \caption[Set of predefined GLS parameters or equivalently predefined turbulence models available]{ 513 Set of predefined GLS parameters, or equivalently predefined turbulence models available with 514 \protect\np{ln\_zdfgls}\forcode{=.true.} and controlled by 515 the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}.} 516 \label{tab:ZDF_GLS} 502 517 \end{table} 503 518 %-------------------------------------------------------------------------------------------------------------- … … 542 557 %--------------------------------------------namzdf_osm--------------------------------------------------------- 543 558 544 \nlst{namzdf_osm} 559 \begin{listing} 560 \nlst{namzdf_osm} 561 \caption{\texttt{namzdf\_osm}} 562 \label{lst:namzdf_osm} 563 \end{listing} 545 564 %-------------------------------------------------------------------------------------------------------------- 546 565 … … 556 575 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 557 576 \begin{figure}[!t] 558 \begin{center} 559 \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 560 \caption{ 561 \protect\label{fig:ZDF_TKE_time_scheme} 562 Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and its links to the momentum and tracer time integration. 563 } 564 \end{center} 577 \centering 578 \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 579 \caption[Subgrid kinetic energy integration in GLS and TKE schemes]{ 580 Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and 581 its links to the momentum and tracer time integration.} 582 \label{fig:ZDF_TKE_time_scheme} 565 583 \end{figure} 566 584 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 676 694 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 677 695 \begin{figure}[!htb] 678 \begin{center} 679 \includegraphics[width=\textwidth]{Fig_npc} 680 \caption{ 681 \protect\label{fig:ZDF_npc} 682 Example of an unstable density profile treated by the non penetrative convective adjustment algorithm. 683 $1^{st}$ step: the initial profile is checked from the surface to the bottom. 684 It is found to be unstable between levels 3 and 4. 685 They are mixed. 686 The resulting $\rho$ is still larger than $\rho$(5): levels 3 to 5 are mixed. 687 The resulting $\rho$ is still larger than $\rho$(6): levels 3 to 6 are mixed. 688 The $1^{st}$ step ends since the density profile is then stable below the level 3. 689 $2^{nd}$ step: the new $\rho$ profile is checked following the same procedure as in $1^{st}$ step: 690 levels 2 to 5 are mixed. 691 The new density profile is checked. 692 It is found stable: end of algorithm. 693 } 694 \end{center} 696 \centering 697 \includegraphics[width=\textwidth]{Fig_npc} 698 \caption[Unstable density profile treated by the non penetrative convective adjustment algorithm]{ 699 Example of an unstable density profile treated by 700 the non penetrative convective adjustment algorithm. 701 $1^{st}$ step: the initial profile is checked from the surface to the bottom. 702 It is found to be unstable between levels 3 and 4. 703 They are mixed. 704 The resulting $\rho$ is still larger than $\rho$(5): levels 3 to 5 are mixed. 705 The resulting $\rho$ is still larger than $\rho$(6): levels 3 to 6 are mixed. 706 The $1^{st}$ step ends since the density profile is then stable below the level 3. 707 $2^{nd}$ step: the new $\rho$ profile is checked following the same procedure as in $1^{st}$ step: 708 levels 2 to 5 are mixed. 709 The new density profile is checked. 710 It is found stable: end of algorithm.} 711 \label{fig:ZDF_npc} 695 712 \end{figure} 696 713 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 838 855 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 839 856 \begin{figure}[!t] 840 \begin{center} 841 \includegraphics[width=\textwidth]{Fig_zdfddm} 842 \caption{ 843 \protect\label{fig:ZDF_ddm} 844 From \citet{merryfield.holloway.ea_JPO99} : 845 (a) Diapycnal diffusivities $A_f^{vT}$ and $A_f^{vS}$ for temperature and salt in regions of salt fingering. 846 Heavy curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and thin curves $A^{\ast v} = 10^{-4}~m^2.s^{-1}$; 847 (b) diapycnal diffusivities $A_d^{vT}$ and $A_d^{vS}$ for temperature and salt in regions of 848 diffusive convection. 849 Heavy curves denote the Federov parameterisation and thin curves the Kelley parameterisation. 850 The latter is not implemented in \NEMO. 851 } 852 \end{center} 857 \centering 858 \includegraphics[width=\textwidth]{Fig_zdfddm} 859 \caption[Diapycnal diffusivities for temperature and salt in regions of salt fingering and 860 diffusive convection]{ 861 From \citet{merryfield.holloway.ea_JPO99}: 862 (a) Diapycnal diffusivities $A_f^{vT}$ and $A_f^{vS}$ for temperature and salt in 863 regions of salt fingering. 864 Heavy curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and 865 thin curves $A^{\ast v} = 10^{-4}~m^2.s^{-1}$; 866 (b) diapycnal diffusivities $A_d^{vT}$ and $A_d^{vS}$ for temperature and salt in 867 regions of diffusive convection. 868 Heavy curves denote the Federov parameterisation and thin curves the Kelley parameterisation. 869 The latter is not implemented in \NEMO.} 870 \label{fig:ZDF_ddm} 853 871 \end{figure} 854 872 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 893 911 %--------------------------------------------namdrg-------------------------------------------------------- 894 912 % 895 \nlst{namdrg} 896 \nlst{namdrg_top} 897 \nlst{namdrg_bot} 913 \begin{listing} 914 \nlst{namdrg} 915 \caption{\texttt{namdrg}} 916 \label{lst:namdrg} 917 \end{listing} 918 \begin{listing} 919 \nlst{namdrg_top} 920 \caption{\texttt{namdrg\_top}} 921 \label{lst:namdrg_top} 922 \end{listing} 923 \begin{listing} 924 \nlst{namdrg_bot} 925 \caption{\texttt{namdrg\_bot}} 926 \label{lst:namdrg_bot} 927 \end{listing} 898 928 899 929 %-------------------------------------------------------------------------------------------------------------- … … 1175 1205 %--------------------------------------------namzdf_iwm------------------------------------------ 1176 1206 % 1177 \nlst{namzdf_iwm} 1207 \begin{listing} 1208 \nlst{namzdf_iwm} 1209 \caption{\texttt{namzdf\_iwm}} 1210 \label{lst:namzdf_iwm} 1211 \end{listing} 1178 1212 %-------------------------------------------------------------------------------------------------------------- 1179 1213 … … 1287 1321 1288 1322 \begin{table}[htbp] 1289 \begin{center} 1290 % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}} 1291 \begin{tabular}{r|ccc} 1292 \hline 1293 spatial discretization & 2nd order centered & 3rd order upwind & 4th order compact \\ 1294 advective CFL criterion & 0.904 & 0.472 & 0.522 \\ 1295 \hline 1296 \end{tabular} 1297 \caption{ 1298 \protect\label{tab:ZDF_zad_Aimp_CFLcrit} 1299 The advective CFL criteria for a range of spatial discretizations for the Leap-Frog with Robert Asselin filter time-stepping 1300 ($\nu=0.1$) as given in \citep{lemarie.debreu.ea_OM15}. 1301 } 1302 \end{center} 1323 \centering 1324 % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}} 1325 \begin{tabular}{r|ccc} 1326 \hline 1327 spatial discretization & 2$^nd$ order centered & 3$^rd$ order upwind & 4$^th$ order compact \\ 1328 advective CFL criterion & 0.904 & 0.472 & 0.522 \\ 1329 \hline 1330 \end{tabular} 1331 \caption[Advective CFL criteria for the leapfrog with Robert Asselin filter time-stepping]{ 1332 The advective CFL criteria for a range of spatial discretizations for 1333 the leapfrog with Robert Asselin filter time-stepping 1334 ($\nu=0.1$) as given in \citep{lemarie.debreu.ea_OM15}.} 1335 \label{tab:ZDF_zad_Aimp_CFLcrit} 1303 1336 \end{table} 1304 1337 … … 1331 1364 Cu_{cut} &= 2Cu_{max} - Cu_{min} \nonumber \\ 1332 1365 Fcu &= 4Cu_{max}*(Cu_{max}-Cu_{min}) \nonumber \\ 1333 C\kern-0.14emf &=1366 \cf &= 1334 1367 \begin{cases} 1335 1368 0.0 &\text{if $Cu \leq Cu_{min}$} \\ … … 1340 1373 1341 1374 \begin{figure}[!t] 1342 \begin{center} 1343 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_coeff} 1344 \caption{ 1345 \protect\label{fig:ZDF_zad_Aimp_coeff} 1346 The value of the partitioning coefficient ($C\kern-0.14em f$) used to partition vertical velocities into parts to 1347 be treated implicitly and explicitly for a range of typical Courant numbers (\forcode{ln_zad_Aimp=.true.}) 1348 } 1349 \end{center} 1375 \centering 1376 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_coeff} 1377 \caption[Partitioning coefficient used to partition vertical velocities into parts]{ 1378 The value of the partitioning coefficient (\cf) used to partition vertical velocities into 1379 parts to be treated implicitly and explicitly for a range of typical Courant numbers 1380 (\forcode{ln_zad_Aimp=.true.}).} 1381 \label{fig:ZDF_zad_Aimp_coeff} 1350 1382 \end{figure} 1351 1383 … … 1356 1388 \begin{align} 1357 1389 \label{eq:ZDF_Eqn_zad_Aimp_partition2} 1358 w_{i_{ijk}} &= C\kern-0.14emf_{ijk} w_{n_{ijk}} \nonumber \\1359 w_{n_{ijk}} &= (1- C\kern-0.14emf_{ijk}) w_{n_{ijk}}1390 w_{i_{ijk}} &= \cf_{ijk} w_{n_{ijk}} \nonumber \\ 1391 w_{n_{ijk}} &= (1-\cf_{ijk}) w_{n_{ijk}} 1360 1392 \end{align} 1361 1393 … … 1363 1395 the three cases from \autoref{eq:ZDF_Eqn_zad_Aimp_partition} can be considered as: 1364 1396 fully-explicit; mixed explicit/implicit and mostly-implicit. With the settings shown the 1365 coefficient ( $C\kern-0.14em f$) varies as shown in \autoref{fig:ZDF_zad_Aimp_coeff}. Note with these values1397 coefficient (\cf) varies as shown in \autoref{fig:ZDF_zad_Aimp_coeff}. Note with these values 1366 1398 the $Cu_{cut}$ boundary between the mixed implicit-explicit treatment and 'mostly 1367 1399 implicit' is 0.45 which is just below the stability limited given in … … 1381 1413 1382 1414 \begin{figure}[!t] 1383 \begin{center} 1384 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_frames} 1385 \caption{ 1386 \protect\label{fig:ZDF_zad_Aimp_overflow_frames} 1387 A time-series of temperature vertical cross-sections for the OVERFLOW test case. These results are for the default 1388 settings with \forcode{nn_rdt=10.0} and without adaptive implicit vertical advection (\forcode{ln_zad_Aimp=.false.}). 1389 } 1390 \end{center} 1415 \centering 1416 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_frames} 1417 \caption[OVERFLOW: time-series of temperature vertical cross-sections]{ 1418 A time-series of temperature vertical cross-sections for the OVERFLOW test case. 1419 These results are for the default settings with \forcode{nn_rdt=10.0} and 1420 without adaptive implicit vertical advection (\forcode{ln_zad_Aimp=.false.}).} 1421 \label{fig:ZDF_zad_Aimp_overflow_frames} 1391 1422 \end{figure} 1392 1423 1393 1424 \subsection{Adaptive-implicit vertical advection in the OVERFLOW test-case} 1425 1394 1426 The \href{https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/test\_cases.html\#overflow}{OVERFLOW test case} 1395 1427 provides a simple illustration of the adaptive-implicit advection in action. The example here differs from the basic test case … … 1428 1460 implicit and explicit components of the vertical velocity are available via XIOS as 1429 1461 \texttt{wimp} and \texttt{wexp} respectively. Likewise, the partitioning coefficient 1430 ( $C\kern-0.14em f$) is also available as \texttt{wi\_cff}. For a quick oversight of1462 (\cf) is also available as \texttt{wi\_cff}. For a quick oversight of 1431 1463 the schemes activity the global maximum values of the absolute implicit component 1432 1464 of the vertical velocity and the partitioning coefficient are written to the netCDF … … 1460 1492 1461 1493 \begin{figure}[!t] 1462 \ begin{center}1463 1464 \caption{1465 \protect\label{fig:ZDF_zad_Aimp_overflow_all_rdt}1466 Sample temperature vertical cross-sections from mid- and end-run using different values for \forcode{nn_rdt}1467 and with or without adaptive implicit vertical advection. Without the adaptive implicit vertical advection only1468 the run with the shortest timestep is able to run to completion. Note also that the colour-scale has been1469 chosen to confirm that temperatures remain within the original range of 10$^o$ to 20$^o$.1470 }1471 \ end{center}1494 \centering 1495 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_all_rdt} 1496 \caption[OVERFLOW: sample temperature vertical cross-sections from mid- and end-run]{ 1497 Sample temperature vertical cross-sections from mid- and end-run using 1498 different values for \forcode{nn_rdt} and with or without adaptive implicit vertical advection. 1499 Without the adaptive implicit vertical advection 1500 only the run with the shortest timestep is able to run to completion. 1501 Note also that the colour-scale has been chosen to confirm that 1502 temperatures remain within the original range of 10$^o$ to 20$^o$.} 1503 \label{fig:ZDF_zad_Aimp_overflow_all_rdt} 1472 1504 \end{figure} 1473 1505 1474 1506 \begin{figure}[!t] 1475 \begin{center} 1476 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf} 1477 \caption{ 1478 \protect\label{fig:ZDF_zad_Aimp_maxCf} 1479 The maximum partitioning coefficient during a series of test runs with increasing model timestep length. 1480 At the larger timesteps, the vertical velocity is treated mostly implicitly at some location throughout 1481 the run. 1482 } 1483 \end{center} 1507 \centering 1508 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf} 1509 \caption[OVERFLOW: maximum partitioning coefficient during a series of test runs]{ 1510 The maximum partitioning coefficient during a series of test runs with 1511 increasing model timestep length. 1512 At the larger timesteps, 1513 the vertical velocity is treated mostly implicitly at some location throughout the run.} 1514 \label{fig:ZDF_zad_Aimp_maxCf} 1484 1515 \end{figure} 1485 1516 1486 1517 \begin{figure}[!t] 1487 \begin{center} 1488 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf_loc} 1489 \caption{ 1490 \protect\label{fig:ZDF_zad_Aimp_maxCf_loc} 1491 The maximum partitioning coefficient for the \forcode{nn_rdt=10.0s} case overlaid with information on the gridcell i- and k- 1492 locations of the maximum value. 1493 } 1494 \end{center} 1518 \centering 1519 \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf_loc} 1520 \caption[OVERFLOW: maximum partitioning coefficient for the case overlaid]{ 1521 The maximum partitioning coefficient for the \forcode{nn_rdt=10.0} case overlaid with 1522 information on the gridcell i- and k-locations of the maximum value.} 1523 \label{fig:ZDF_zad_Aimp_maxCf_loc} 1495 1524 \end{figure} 1496 1525 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_cfgs.tex
r11543 r11558 28 28 %------------------------------------------namcfg---------------------------------------------------- 29 29 30 \nlst{namcfg} 30 \begin{listing} 31 \nlst{namcfg} 32 \caption{\texttt{namcfg}} 33 \label{lst:namcfg} 34 \end{listing} 31 35 %------------------------------------------------------------------------------------------------------------- 32 36 … … 89 93 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 90 94 \begin{figure}[!t] 91 \begin{center} 92 \includegraphics[width=\textwidth]{Fig_ORCA_NH_mesh} 93 \caption{ 94 \protect\label{fig:CFGS_ORCA_msh} 95 ORCA mesh conception. 96 The departure from an isotropic Mercator grid start poleward of 20\deg{N}. 97 The two "north pole" are the foci of a series of embedded ellipses (blue curves) which 98 are determined analytically and form the i-lines of the ORCA mesh (pseudo latitudes). 99 Then, following \citet{madec.imbard_CD96}, the normal to the series of ellipses (red curves) is computed which 100 provides the j-lines of the mesh (pseudo longitudes). 101 } 102 \end{center} 95 \centering 96 \includegraphics[width=\textwidth]{Fig_ORCA_NH_mesh} 97 \caption[ORCA mesh conception]{ 98 ORCA mesh conception. 99 The departure from an isotropic Mercator grid start poleward of 20\deg{N}. 100 The two "north pole" are the foci of a series of embedded ellipses (blue curves) which 101 are determined analytically and form the i-lines of the ORCA mesh (pseudo latitudes). 102 Then, following \citet{madec.imbard_CD96}, 103 the normal to the series of ellipses (red curves) is computed which 104 provides the j-lines of the mesh (pseudo longitudes).} 105 \label{fig:CFGS_ORCA_msh} 103 106 \end{figure} 104 107 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 121 124 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 122 125 \begin{figure}[!tbp] 123 \begin{center} 124 \includegraphics[width=\textwidth]{Fig_ORCA_NH_msh05_e1_e2} 125 \includegraphics[width=\textwidth]{Fig_ORCA_aniso} 126 \caption { 127 \protect\label{fig:CFGS_ORCA_e1e2} 128 \textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and 129 \textit{Bottom}: ratio of anisotropy ($e_1 / e_2$) 130 for ORCA 0.5\deg ~mesh. 131 South of 20\deg{N} a Mercator grid is used ($e_1 = e_2$) so that the anisotropy ratio is 1. 132 Poleward of 20\deg{N}, the two "north pole" introduce a weak anisotropy over the ocean areas ($< 1.2$) except in 133 vicinity of Victoria Island (Canadian Arctic Archipelago). 134 } 135 \end{center} 126 \centering 127 \includegraphics[width=\textwidth]{Fig_ORCA_NH_msh05_e1_e2} 128 \includegraphics[width=\textwidth]{Fig_ORCA_aniso} 129 \caption[Horizontal scale factors and ratio of anisotropy for ORCA 0.5\deg\ mesh]{ 130 \textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and 131 \textit{Bottom}: ratio of anisotropy ($e_1 / e_2$) 132 for ORCA 0.5\deg\ mesh. 133 South of 20\deg{N} a Mercator grid is used ($e_1 = e_2$) so that the anisotropy ratio is 1. 134 Poleward of 20\deg{N}, 135 the two "north pole" introduce a weak anisotropy over the ocean areas ($< 1.2$) except in 136 vicinity of Victoria Island (Canadian Arctic Archipelago).} 137 \label{fig:CFGS_ORCA_e1e2} 136 138 \end{figure} 137 139 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 163 165 %--------------------------------------------------TABLE-------------------------------------------------- 164 166 \begin{table}[!t] 165 \begin{center} 166 \begin{tabular}{p{4cm} c c c c} 167 Horizontal Grid & \jp{ORCA\_index} & \jp{jpiglo} & \jp{jpjglo} \\ 168 \hline \hline 169 % 4 \deg & 4 & 92 & 76 \\ 170 2 \deg & 2 & 182 & 149 \\ 171 1 \deg & 1 & 362 & 292 \\ 172 0.5 \deg & 05 & 722 & 511 \\ 173 0.25\deg & 025 & 1442 & 1021 \\ 174 \hline \hline 175 \end{tabular} 176 \caption{ 177 \protect\label{tab:CFGS_ORCA} 178 Domain size of ORCA family configurations. 179 The flag for configurations of ORCA family need to be set in \textit{domain\_cfg} file. 180 } 181 \end{center} 167 \centering 168 \begin{tabular}{p{4cm} c c c c} 169 Horizontal Grid & \jp{ORCA\_index} & \jp{jpiglo} & \jp{jpjglo} \\ 170 \hline \hline 171 % 4 \deg\ & 4 & 92 & 76 \\ 172 2 \deg\ & 2 & 182 & 149 \\ 173 1 \deg\ & 1 & 362 & 292 \\ 174 0.5 \deg\ & 05 & 722 & 511 \\ 175 0.25\deg\ & 025 & 1442 & 1021 \\ 176 \hline \hline 177 \end{tabular} 178 \caption[Domain size of ORCA family configurations]{ 179 Domain size of ORCA family configurations. 180 The flag for configurations of ORCA family need to be set in \textit{domain\_cfg} file.} 181 \label{tab:CFGS_ORCA} 182 182 \end{table} 183 183 %-------------------------------------------------------------------------------------------------------------- … … 277 277 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 278 278 \begin{figure}[!t] 279 \begin{center} 280 \includegraphics[width=\textwidth]{Fig_GYRE} 281 \caption{ 282 \protect\label{fig:CFGS_GYRE} 283 Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54. 284 From \citet{levy.klein.ea_OM10}. 285 } 286 \end{center} 279 \centering 280 \includegraphics[width=\textwidth]{Fig_GYRE} 281 \caption[Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54]{ 282 Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54. 283 From \citet{levy.klein.ea_OM10}.} 284 \label{fig:CFGS_GYRE} 287 285 \end{figure} 288 286 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_misc.tex
r11552 r11558 27 27 balance the net evaporation occurring over the Mediterranean region. 28 28 This problem occurs even in eddy permitting simulations. 29 For example, in ORCA 1/4\deg several straits of the Indonesian archipelago (Ombai, Lombok...)29 For example, in ORCA 1/4\deg\ several straits of the Indonesian archipelago (Ombai, Lombok...) 30 30 are much narrow than even a single ocean grid-point. 31 31 … … 72 72 \end{itemize} 73 73 74 75 74 The second method is to increase the viscous boundary layer thickness by a local increase 76 75 of the fmask value at the coast. This method can also be effective in wider passages. The … … 86 85 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 87 86 \begin{figure}[!tbp] 88 \begin{center} 89 \includegraphics[width=\textwidth]{Fig_Gibraltar} 90 \includegraphics[width=\textwidth]{Fig_Gibraltar2} 91 \caption{ 92 \protect\label{fig:MISC_strait_hand} 93 Example of the Gibraltar strait defined in a $1^{\circ} \times 1^{\circ}$ mesh. 94 \textit{Top}: using partially open cells. 95 The meridional scale factor at $v$-point is reduced on both sides of the strait to account for 96 the real width of the strait (about 20 km). 97 Note that the scale factors of the strait $T$-point remains unchanged. 98 \textit{Bottom}: using viscous boundary layers. 99 The four fmask parameters along the strait coastlines are set to a value larger than 4, 100 \ie\ "strong" no-slip case (see \autoref{fig:LBC_shlat}) creating a large viscous boundary layer that 101 allows a reduced transport through the strait. 102 } 103 \end{center} 87 \centering 88 \includegraphics[width=\textwidth]{Fig_Gibraltar} 89 \includegraphics[width=\textwidth]{Fig_Gibraltar2} 90 \caption[Two methods to defined the Gibraltar strait]{ 91 Example of the Gibraltar strait defined in a 1\deg\ $\times$ 1\deg\ mesh. 92 \textit{Top}: using partially open cells. 93 The meridional scale factor at $v$-point is reduced on both sides of the strait to 94 account for the real width of the strait (about 20 km). 95 Note that the scale factors of the strait $T$-point remains unchanged. 96 \textit{Bottom}: using viscous boundary layers. 97 The four fmask parameters along the strait coastlines are set to a value larger than 4, 98 \ie\ "strong" no-slip case (see \autoref{fig:LBC_shlat}) creating a large viscous boundary layer 99 that allows a reduced transport through the strait.} 100 \label{fig:MISC_strait_hand} 104 101 \end{figure} 105 102 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 107 104 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 108 105 \begin{figure}[!tbp] 109 \begin{center} 110 \includegraphics[width=\textwidth]{Fig_closea_mask_example} 111 \caption{ 112 \protect\label{fig:MISC_closea_mask_example} 113 Example of mask fields for the closea module. \textit{Left}: a 114 closea\_mask field; \textit{Right}: a closea\_mask\_rnf 115 field. In this example, if ln\_closea is set to .true., the mean 116 freshwater flux over each of the American Great Lakes will be 117 set to zero, and the total residual for all the lakes, if 118 negative, will be put into the St Laurence Seaway in the area 119 shown. 120 } 121 \end{center} 106 \centering 107 \includegraphics[width=\textwidth]{Fig_closea_mask_example} 108 \caption[Mask fields for the \protect\mdl{closea} module]{ 109 Example of mask fields for the \protect\mdl{closea} module. 110 \textit{Left}: a closea\_mask field; 111 \textit{Right}: a closea\_mask\_rnf field. 112 In this example, if \protect\np{ln\_closea} is set to \forcode{.true.}, 113 the mean freshwater flux over each of the American Great Lakes will be set to zero, 114 and the total residual for all the lakes, if negative, will be put into 115 the St Laurence Seaway in the area shown.} 116 \label{fig:MISC_closea_mask_example} 122 117 \end{figure} 123 118 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 351 346 %--------------------------------------------namctl------------------------------------------------------- 352 347 353 \nlst{namctl} 348 \begin{listing} 349 \nlst{namctl} 350 \caption{\texttt{namctl}} 351 \label{lst:namctl} 352 \end{listing} 354 353 %-------------------------------------------------------------------------------------------------------------- 355 354 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex
r11543 r11558 130 130 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 131 131 \begin{figure}[!ht] 132 \begin{center} 133 \includegraphics[width=\textwidth]{Fig_I_ocean_bc} 134 \caption{ 135 \protect\label{fig:MB_ocean_bc} 136 The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 137 where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 138 Both $H$ and $\eta$ are referenced to $z = 0$. 139 } 140 \end{center} 132 \centering 133 \includegraphics[width=\textwidth]{Fig_I_ocean_bc} 134 \caption[Ocean boundary conditions]{ 135 The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 136 where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 137 Both $H$ and $\eta$ are referenced to $z = 0$.} 138 \label{fig:MB_ocean_bc} 141 139 \end{figure} 142 140 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 333 331 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 334 332 \begin{figure}[!tb] 335 \begin{center} 336 \includegraphics[width=\textwidth]{Fig_I_earth_referential} 337 \caption{ 338 \protect\label{fig:MB_referential} 339 the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 340 coordinate system $(i,j,k)$. 341 } 342 \end{center} 333 \centering 334 \includegraphics[width=\textwidth]{Fig_I_earth_referential} 335 \caption[Geographical and curvilinear coordinate systems]{ 336 the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 337 coordinate system $(i,j,k)$.} 338 \label{fig:MB_referential} 343 339 \end{figure} 344 340 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 749 745 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 750 746 \begin{figure}[!b] 751 \begin{center} 752 \includegraphics[width=\textwidth]{Fig_z_zstar} 753 \caption{ 754 \protect\label{fig:MB_z_zstar} 755 (a) $z$-coordinate in linear free-surface case ; 756 (b) $z$-coordinate in non-linear free surface case ; 757 (c) re-scaled height coordinate 758 (become popular as the \zstar-coordinate \citep{adcroft.campin_OM04}). 759 } 760 \end{center} 747 \centering 748 \includegraphics[width=\textwidth]{Fig_z_zstar} 749 \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 750 (a) $z$-coordinate in linear free-surface case ; 751 (b) $z$-coordinate in non-linear free surface case ; 752 (c) re-scaled height coordinate 753 (become popular as the \zstar-coordinate \citep{adcroft.campin_OM04}).} 754 \label{fig:MB_z_zstar} 761 755 \end{figure} 762 756 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11544 r11558 140 140 %--------------------------------------------namdom---------------------------------------------------- 141 141 142 \nlst{namdom}143 142 %-------------------------------------------------------------------------------------------------------------- 144 143 The split-explicit free surface formulation used in OPA follows the one proposed by \citet{Griffies2004?}. … … 149 148 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > 150 149 \begin{figure}[!t] 151 \ begin{center}152 153 \caption{154 \protect\label{fig:MBZ_dyn_dynspg_ts}155 156 157 158 159 160 161 162 163 164 165 166 167 168 A baroclinic leap-frog time step carries the surface height to $t+\Delta t$ using the convergence of169 the time averaged vertically integrated velocity taken from baroclinic time step t.170 }171 \ end{center}150 \centering 151 \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 152 \caption[Schematic of the split-explicit time stepping scheme for 153 the barotropic and baroclinic modes, after \citet{Griffies2004?}]{ 154 Schematic of the split-explicit time stepping scheme for the barotropic and baroclinic modes, 155 after \citet{Griffies2004?}. 156 Time increases to the right. 157 Baroclinic time steps are denoted by $t-\Delta t$, $t, t+\Delta t$, and $t+2\Delta t$. 158 The curved line represents a leap-frog time step, 159 and the smaller barotropic time steps $N \Delta t=2\Delta t$ are denoted by the zig-zag line. 160 The vertically integrated forcing \textbf{M}(t) computed at 161 baroclinic time step t represents the interaction between the barotropic and baroclinic motions. 162 While keeping the total depth, tracer, and freshwater forcing fields fixed, 163 a leap-frog integration carries the surface height and vertically integrated velocity from 164 t to $t+2 \Delta t$ using N barotropic time steps of length $\Delta t$. 165 Time averaging the barotropic fields over the N+1 time steps (endpoints included) 166 centers the vertically integrated velocity at the baroclinic timestep $t+\Delta t$. 167 A baroclinic leap-frog time step carries the surface height to $t+\Delta t$ using 168 the convergence of the time averaged vertically integrated velocity taken from 169 baroclinic time step t.} 170 \label{fig:MBZ_dyn_dynspg_ts} 172 171 \end{figure} 173 172 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11543 r11558 186 186 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 187 187 \begin{figure}[!t] 188 \begin{center} 189 \includegraphics[width=\textwidth]{Fig_TimeStepping_flowchart_v4} 190 \caption{ 191 \protect\label{fig:TD_TimeStep_flowchart} 192 Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface. The latter combined 193 with non-linear free surface requires the dynamical tendency being updated prior tracers tendency to ensure 194 conservation. Note the use of time integrated fluxes issued from the barotropic loop in subsequent calculations 195 of tracer advection and in the continuity equation. Details about the time-splitting scheme can be found 196 in \autoref{subsec:DYN_spg_ts}. 197 } 198 \end{center} 188 \centering 189 \includegraphics[width=\textwidth]{Fig_TimeStepping_flowchart_v4} 190 \caption[Leapfrog time stepping sequence with split-explicit free surface]{ 191 Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface. 192 The latter combined with non-linear free surface requires the dynamical tendency being 193 updated prior tracers tendency to ensure conservation. 194 Note the use of time integrated fluxes issued from the barotropic loop in 195 subsequent calculations of tracer advection and in the continuity equation. 196 Details about the time-splitting scheme can be found in \autoref{subsec:DYN_spg_ts}.} 197 \label{fig:TD_TimeStep_flowchart} 199 198 \end{figure} 200 199 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 248 247 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 249 248 \begin{figure}[!t] 250 \ begin{center}251 252 \caption{253 \protect\label{fig:TD_MLF_forcing}254 Illustration of forcing integration methods.255 (top) ''Traditional'' formulation:256 the forcing is defined at the same time as the variable to which it is applied257 (integer value of the time step index) and it is applied over a $2 \rdt$ period.258 (bottom) modified formulation:259 the forcing is defined in the middle of the time(integer and a half value of the time step index) and260 the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over a $2 \rdt$ period.261 }262 \ end{center}249 \centering 250 \includegraphics[width=\textwidth]{Fig_MLF_forcing} 251 \caption[Forcing integration methods for modified leapfrog (top and bottom)]{ 252 Illustration of forcing integration methods. 253 (top) ''Traditional'' formulation: 254 the forcing is defined at the same time as the variable to which it is applied 255 (integer value of the time step index) and it is applied over a $2 \rdt$ period. 256 (bottom) modified formulation: 257 the forcing is defined in the middle of the time 258 (integer and a half value of the time step index) and 259 the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over 260 a $2 \rdt$ period.} 261 \label{fig:TD_MLF_forcing} 263 262 \end{figure} 264 263 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> … … 271 270 272 271 %--------------------------------------------namrun------------------------------------------- 273 \nlst{namrun} 272 \begin{listing} 273 \nlst{namrun} 274 \caption{\texttt{namrun}} 275 \label{lst:namrun} 276 \end{listing} 274 277 %-------------------------------------------------------------------------------------------------------------- 275 278 … … 317 320 %--------------------------------------------namrun------------------------------------------- 318 321 319 \nlst{namdom}320 322 %-------------------------------------------------------------------------------------------------------------- 321 323
Note: See TracChangeset
for help on using the changeset viewer.