Changeset 11582
- Timestamp:
- 2019-09-20T11:44:31+02:00 (4 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO/subfiles
- Files:
-
- 24 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 55 57 56 58 \begin{description} 57 \item[ \np{jphgr_mesh}{jphgr\_mesh}=0] The most general curvilinear orthogonal grids.59 \item[{\np{jphgr_mesh}{jphgr\_mesh}=0}] The most general curvilinear orthogonal grids. 58 60 The coordinates and their first derivatives with respect to $i$ and $j$ are provided 59 61 in a input file (\ifile{coordinates}), read in \rou{hgr\_read} subroutine of the domhgr module. 60 62 This is now the only option available within \NEMO\ itself from v4.0 onwards. 61 \item[ \np{jphgr_mesh}{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).63 \item[{\np{jphgr_mesh}{jphgr\_mesh}=1 to 5}] A few simple analytical grids are provided (see below). 62 64 For other analytical grids, the \mdl{domhgr} module (\texttt{DOMAINcfg} variant) must be 63 65 modified by the user. In most cases, modifying the \mdl{usrdef\_hgr} module of \NEMO\ is … … 136 138 137 139 It is possible to define a simple regular vertical grid by giving zero stretching 138 (\np {ppacr}{ppacr}\forcode{ = 0}). In that case, the parameters \jp{jpk} (number of $w$-levels)140 (\np[=0]{ppacr}{ppacr}). In that case, the parameters \jp{jpk} (number of $w$-levels) 139 141 and \np{pphmax}{pphmax} (total ocean depth in meters) fully define the grid. 140 142 … … 152 154 top and bottom with a smooth hyperbolic tangent transition in between (\autoref{fig:DOMCFG_zgr}). 153 155 154 A double hyperbolic tangent version (\np {ldbletanh}{ldbletanh}\forcode{ = .true.}) is also available156 A double hyperbolic tangent version (\np[=.true.]{ldbletanh}{ldbletanh}) is also available 155 157 which permits finer control and is used, typically, to obtain a well resolved upper ocean 156 158 without compromising on resolution at depth using a moderate number of levels. … … 170 172 \end{gather} 171 173 172 If the ice shelf cavities are opened (\np {ln_isfcav}{ln\_isfcav}\forcode{ = .true.}), the definition174 If the ice shelf cavities are opened (\np[=.true.]{ln_isfcav}{ln\_isfcav}), the definition 173 175 of $z_0$ is the same. However, definition of $e_3^0$ at $t$- and $w$-points is 174 176 respectively changed to: … … 314 316 \np{nn_bathy}{nn\_bathy} (found in \nam{dom}{dom} namelist (\texttt{DOMAINCFG} variant) ): 315 317 \begin{description} 316 \item[ \np{nn_bathy}{nn\_bathy}\forcode{ = 0}]:318 \item[{\np[=0]{nn_bathy}{nn\_bathy}}]: 317 319 a flat-bottom domain is defined. 318 320 The total depth $z_w (jpk)$ is given by the coordinate transformation. 319 321 The domain can either be a closed basin or a periodic channel depending on the parameter \np{jperio}{jperio}. 320 \item[ \np{nn_bathy}{nn\_bathy}\forcode{ = -1}]:322 \item[{\np[=-1]{nn_bathy}{nn\_bathy}}]: 321 323 a domain with a bump of topography one third of the domain width at the central latitude. 322 324 This is meant for the "EEL-R5" configuration, a periodic or open boundary channel with a seamount. 323 \item[ \np{nn_bathy}{nn\_bathy}\forcode{ = 1}]:325 \item[{\np[=1]{nn_bathy}{nn\_bathy}}]: 324 326 read a bathymetry and ice shelf draft (if needed). 325 327 The \ifile{bathy\_meter} file (Netcdf format) provides the ocean depth (positive, in meters) at … … 332 334 The \ifile{isfdraft\_meter} file (Netcdf format) provides the ice shelf draft (positive, in meters) at 333 335 each grid point of the model grid. 334 This file is only needed if \np {ln_isfcav}{ln\_isfcav}\forcode{ = .true.}.336 This file is only needed if \np[=.true.]{ln_isfcav}{ln\_isfcav}. 335 337 Defining the ice shelf draft will also define the ice shelf edge and the grounding line position. 336 338 \end{description} … … 412 414 %-------------------------------------------------------------------------------------------------------------- 413 415 Options are defined in \nam{zgr_sco}{zgr\_sco} (\texttt{DOMAINcfg} only). 414 In $s$-coordinate (\np {ln_sco}{ln\_sco}\forcode{ = .true.}), the depth and thickness of the model levels are defined from416 In $s$-coordinate (\np[=.true.]{ln_sco}{ln\_sco}), the depth and thickness of the model levels are defined from 415 417 the product of a depth field and either a stretching function or its derivative, respectively: 416 418 … … 435 437 436 438 The original default \NEMO\ s-coordinate stretching is available if neither of the other options are specified as true 437 (\np {ln_s_SH94}{ln\_s\_SH94}\forcode{ = .false.} and \np{ln_s_SF12}{ln\_s\_SF12}\forcode{ = .false.}).439 (\np[=.false.]{ln_s_SH94}{ln\_s\_SH94} and \np[=.false.]{ln_s_SF12}{ln\_s\_SF12}). 438 440 This uses a depth independent $\tanh$ function for the stretching \citep{madec.delecluse.ea_JPO96}: 439 441 … … 455 457 456 458 A stretching function, 457 modified from the commonly used \citet{song.haidvogel_JCP94} stretching (\np {ln_s_SH94}{ln\_s\_SH94}\forcode{ = .true.}),459 modified from the commonly used \citet{song.haidvogel_JCP94} stretching (\np[=.true.]{ln_s_SH94}{ln\_s\_SH94}), 458 460 is also available and is more commonly used for shelf seas modelling: 459 461 … … 558 560 This option is described in the Report by Levier \textit{et al.} (2007), available on the \NEMO\ web site. 559 561 560 \ biblio561 562 \ pindex562 \onlyinsubfile{\bibliography{../main/bibliography}} 563 564 \onlyinsubfile{\printindex} 563 565 564 566 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_algos.tex
r11577 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 17 19 % UBS scheme 18 20 % ------------------------------------------------------------------------------------------------------------- 19 \section{Upstream Biased Scheme (UBS) (\protect\np {ln_traadv_ubs}{ln\_traadv\_ubs}\forcode{ = .true.})}21 \section{Upstream Biased Scheme (UBS) (\protect\np[=.true.]{ln_traadv_ubs}{ln\_traadv\_ubs})} 20 22 \label{sec:ALGOS_tra_adv_ubs} 21 23 … … 59 61 the control of artificial diapycnal fluxes is of paramount importance. 60 62 It has therefore been preferred to evaluate the vertical flux using the TVD scheme when 61 \np {ln_traadv_ubs}{ln\_traadv\_ubs}\forcode{ = .true.}.63 \np[=.true.]{ln_traadv_ubs}{ln\_traadv\_ubs}. 62 64 63 65 For stability reasons, in \autoref{eq:TRA_adv_ubs}, the first term which corresponds to … … 841 843 \ie\ the variance of the tracer is preserved by the discretisation of the skew fluxes. 842 844 843 \ biblio844 845 \ pindex845 \onlyinsubfile{\bibliography{../main/bibliography}} 846 847 \onlyinsubfile{\printindex} 846 848 847 849 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_diff_opers.tex
r11558 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 411 413 that is a Laplacian diffusion is applied on momentum along the coordinate directions. 412 414 413 \ biblio414 415 \ pindex415 \onlyinsubfile{\bibliography{../main/bibliography}} 416 417 \onlyinsubfile{\printindex} 416 418 417 419 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex
r11577 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 366 368 % Vorticity Term with ENE scheme 367 369 % ------------------------------------------------------------------------------------------------------------- 368 \subsubsection{Vorticity term with ENE scheme (\protect\np {ln_dynvor_ene}{ln\_dynvor\_ene}\forcode{ = .true.})}370 \subsubsection{Vorticity term with ENE scheme (\protect\np[=.true.]{ln_dynvor_ene}{ln\_dynvor\_ene})} 369 371 \label{subsec:INVARIANTS_vorENE} 370 372 … … 406 408 % Vorticity Term with EEN scheme 407 409 % ------------------------------------------------------------------------------------------------------------- 408 \subsubsection{Vorticity term with EEN scheme (\protect\np {ln_dynvor_een}{ln\_dynvor\_een}\forcode{ = .true.})}410 \subsubsection{Vorticity term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})} 409 411 \label{subsec:INVARIANTS_vorEEN_vect} 410 412 … … 878 880 % Vorticity Term with ENS scheme 879 881 % ------------------------------------------------------------------------------------------------------------- 880 \subsubsection{Vorticity term with ENS scheme (\protect\np {ln_dynvor_ens}{ln\_dynvor\_ens}\forcode{ = .true.})}882 \subsubsection{Vorticity term with ENS scheme (\protect\np[=.true.]{ln_dynvor_ens}{ln\_dynvor\_ens})} 881 883 \label{subsec:INVARIANTS_vorENS} 882 884 … … 947 949 % Vorticity Term with EEN scheme 948 950 % ------------------------------------------------------------------------------------------------------------- 949 \subsubsection{Vorticity Term with EEN scheme (\protect\np {ln_dynvor_een}{ln\_dynvor\_een}\forcode{ = .true.})}951 \subsubsection{Vorticity Term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})} 950 952 \label{subsec:INVARIANTS_vorEEN} 951 953 … … 1528 1530 %%%% end of appendix in gm comment 1529 1531 %} 1530 \ biblio1531 1532 \ pindex1532 \onlyinsubfile{\bibliography{../main/bibliography}} 1533 1534 \onlyinsubfile{\printindex} 1533 1535 1534 1536 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex
r11558 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 594 596 the expression of the 3D divergence in the $s-$coordinates established above. 595 597 596 \ biblio597 598 \ pindex598 \onlyinsubfile{\bibliography{../main/bibliography}} 599 600 \onlyinsubfile{\printindex} 599 601 600 602 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex
r11577 r11582 11 11 \newcommand{\rtriadt}[1]{\ensuremath{\triadt{i}{k}{#1}{i_p}{k_p}}} 12 12 13 \onlyinsubfile{\makeindex} 14 13 15 \begin{document} 14 16 % ================================================================ … … 42 44 The options specific to the Griffies scheme include: 43 45 \begin{description} 44 \item[ \np{ln_triad_iso}{ln\_triad\_iso}]46 \item[{\np{ln_triad_iso}{ln\_triad\_iso}}] 45 47 See \autoref{sec:TRIADS_taper}. 46 48 If this is set false (the default), … … 53 55 giving an almost pure horizontal diffusive tracer flux within the mixed layer. 54 56 This is similar to the tapering suggested by \citet{gerdes.koberle.ea_CD91}. See \autoref{subsec:TRIADS_Gerdes-taper} 55 \item[ \np{ln_botmix_triad}{ln\_botmix\_triad}]57 \item[{\np{ln_botmix_triad}{ln\_botmix\_triad}}] 56 58 See \autoref{sec:TRIADS_iso_bdry}. 57 59 If this is set false (the default) then the lateral diffusive fluxes … … 59 61 If it is set true, however, then these lateral diffusive fluxes are applied, 60 62 giving smoother bottom tracer fields at the cost of introducing diapycnal mixing. 61 \item[ \np{rn_sw_triad}{rn\_sw\_triad}]63 \item[{\np{rn_sw_triad}{rn\_sw\_triad}}] 62 64 blah blah to be added.... 63 65 \end{description} 64 66 The options shared with the Standard scheme include: 65 67 \begin{description} 66 \item[ \np{ln_traldf_msc}{ln\_traldf\_msc}] blah blah to be added67 \item[ \np{rn_slpmax}{rn\_slpmax}] blah blah to be added68 \item[{\np{ln_traldf_msc}{ln\_traldf\_msc}}] blah blah to be added 69 \item[{\np{rn_slpmax}{rn\_slpmax}}] blah blah to be added 68 70 \end{description} 69 71 … … 646 648 Note that both near bottom triad slopes \triad{i}{k}{R}{1/2}{1/2} and \triad{i+1}{k}{R}{-1/2}{1/2} are masked when 647 649 either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, \ie\ the $i,k+1$ $u$-point is masked. 648 The associated lateral fluxes (grey-black dashed line) are masked if \np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .false.},649 but left unmasked, giving bottom mixing, if \np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .true.}.650 651 The default option \np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .false.} is suitable when the bbl mixing option is enabled652 (\np {ln_trabbl}{ln\_trabbl}\forcode{ = .true.}, with \np{nn_bbl_ldf}{nn\_bbl\_ldf}\forcode{ = 1}), or for simple idealized problems.653 For setups with topography without bbl mixing, \np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .true.} may be necessary.650 The associated lateral fluxes (grey-black dashed line) are masked if \np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad}, 651 but left unmasked, giving bottom mixing, if \np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad}. 652 653 The default option \np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad} is suitable when the bbl mixing option is enabled 654 (\np[=.true.]{ln_trabbl}{ln\_trabbl}, with \np[=1]{nn_bbl_ldf}{nn\_bbl\_ldf}), or for simple idealized problems. 655 For setups with topography without bbl mixing, \np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad} may be necessary. 654 656 % >>>>>>>>>>>>>>>>>>>>>>>>>>>> 655 657 \begin{figure}[h] … … 672 674 \ie\ the $i,k+1$ $u$-point is masked. 673 675 The associated lateral fluxes (grey-black dashed line) are masked if 674 \protect\np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .false.}, but left unmasked,675 giving bottom mixing, if \protect\np {ln_botmix_triad}{ln\_botmix\_triad}\forcode{ = .true.}}676 \protect\np[=.false.]{ln_botmix_triad}{ln\_botmix\_triad}, but left unmasked, 677 giving bottom mixing, if \protect\np[=.true.]{ln_botmix_triad}{ln\_botmix\_triad}} 676 678 \label{fig:TRIADS_bdry_triads} 677 679 \end{figure} … … 715 717 \label{sec:TRIADS_lintaper} 716 718 717 This is the option activated by the default choice \np {ln_triad_iso}{ln\_triad\_iso}\forcode{ = .false.}.719 This is the option activated by the default choice \np[=.false.]{ln_triad_iso}{ln\_triad\_iso}. 718 720 Slopes $\tilde{r}_i$ relative to geopotentials are tapered linearly from their value immediately below 719 721 the mixed layer to zero at the surface, as described in option (c) of \autoref{fig:LDF_eiv_slp}, to values … … 1145 1147 \label{sec:TRIADS_sfdiag} 1146 1148 1147 Where the namelist parameter \np {ln_traldf_gdia}{ln\_traldf\_gdia}\forcode{ = .true.},1149 Where the namelist parameter \np[=.true.]{ln_traldf_gdia}{ln\_traldf\_gdia}, 1148 1150 diagnosed mean eddy-induced velocities are output. 1149 1151 Each time step, streamfunctions are calculated in the $i$-$k$ and $j$-$k$ planes at … … 1171 1173 \] 1172 1174 1173 \ biblio1174 1175 \ pindex1175 \onlyinsubfile{\bibliography{../main/bibliography}} 1176 1177 \onlyinsubfile{\printindex} 1176 1178 1177 1179 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 194 196 \end{clines} 195 197 196 \ biblio197 198 \ pindex198 \onlyinsubfile{\bibliography{../main/bibliography}} 199 200 \onlyinsubfile{\printindex} 199 201 200 202 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 125 127 126 128 XIOS may be used to read single file restart produced by \NEMO. Currently only the variables written to 127 file \forcode{numror} can be handled by XIOS. To activate restart reading using XIOS, set \np {ln_xios_read}{ln\_xios\_read}\forcode{=.true.}129 file \forcode{numror} can be handled by XIOS. To activate restart reading using XIOS, set \np[=.true. ]{ln_xios_read}{ln\_xios\_read} 128 130 in \textit{namelist\_cfg}. This setting will be ignored when multiple restart files are present, and default \NEMO 129 131 functionality will be used for reading. There is no need to change iodef.xml file to use XIOS to read … … 143 145 type of restart \NEMO\ will write. If it is set to 0, default \NEMO\ functionality will be used - each 144 146 processor writes its own restart file; if it is set to 1 XIOS will write restart into a single file; 145 for \np {nn_wxios}{nn\_wxios}\forcode{=2} the restart will be written by XIOS into multiple files, one for each XIOS server.146 Note, however, that \textbf{\NEMO\ will not read restart generated by XIOS when \np {nn_wxios}{nn\_wxios}\forcode{=2}}. The restart will147 for \np[=2]{nn_wxios}{nn\_wxios} the restart will be written by XIOS into multiple files, one for each XIOS server. 148 Note, however, that \textbf{\NEMO\ will not read restart generated by XIOS when \np[=2]{nn_wxios}{nn\_wxios}}. The restart will 147 149 have to be rebuild before continuing the run. This option aims to reduce number of restart files generated by \NEMO\ only, 148 150 and may be useful when there is a need to change number of processors used to run simulation. … … 1470 1472 1471 1473 \begin{description} 1472 \item[ \np{ln_glo_trd}{ln\_glo\_trd}]:1474 \item[{\np{ln_glo_trd}{ln\_glo\_trd}}]: 1473 1475 at each \np{nn_trd}{nn\_trd} time-step a check of the basin averaged properties of 1474 1476 the momentum and tracer equations is performed. 1475 1477 This also includes a check of $T^2$, $S^2$, $\tfrac{1}{2} (u^2+v2)$, 1476 1478 and potential energy time evolution equations properties; 1477 \item[ \np{ln_dyn_trd}{ln\_dyn\_trd}]:1479 \item[{\np{ln_dyn_trd}{ln\_dyn\_trd}}]: 1478 1480 each 3D trend of the evolution of the two momentum components is output; 1479 \item[ \np{ln_dyn_mxl}{ln\_dyn\_mxl}]:1481 \item[{\np{ln_dyn_mxl}{ln\_dyn\_mxl}}]: 1480 1482 each 3D trend of the evolution of the two momentum components averaged over the mixed layer is output; 1481 \item[ \np{ln_vor_trd}{ln\_vor\_trd}]:1483 \item[{\np{ln_vor_trd}{ln\_vor\_trd}}]: 1482 1484 a vertical summation of the moment tendencies is performed, 1483 1485 then the curl is computed to obtain the barotropic vorticity tendencies which are output; 1484 \item[ \np{ln_KE_trd}{ln\_KE\_trd}] :1486 \item[{\np{ln_KE_trd}{ln\_KE\_trd}}] : 1485 1487 each 3D trend of the Kinetic Energy equation is output; 1486 \item[ \np{ln_tra_trd}{ln\_tra\_trd}]:1488 \item[{\np{ln_tra_trd}{ln\_tra\_trd}}]: 1487 1489 each 3D trend of the evolution of temperature and salinity is output; 1488 \item[ \np{ln_tra_mxl}{ln\_tra\_mxl}]:1490 \item[{\np{ln_tra_mxl}{ln\_tra\_mxl}}]: 1489 1491 each 2D trend of the evolution of temperature and salinity averaged over the mixed layer is output; 1490 1492 \end{description} … … 1495 1497 \textbf{Note that} in the current version (v3.6), many changes has been introduced but not fully tested. 1496 1498 In particular, options associated with \np{ln_dyn_mxl}{ln\_dyn\_mxl}, \np{ln_vor_trd}{ln\_vor\_trd}, and \np{ln_tra_mxl}{ln\_tra\_mxl} are not working, 1497 and none of the options have been tested with variable volume (\ie\ \np {ln_linssh}{ln\_linssh}\forcode{=.true.}).1499 and none of the options have been tested with variable volume (\ie\ \np[=.true.]{ln_linssh}{ln\_linssh}). 1498 1500 1499 1501 % ------------------------------------------------------------------------------------------------------------- … … 1515 1517 Options are defined by \nam{flo}{flo} namelist variables. 1516 1518 The algorithm used is based either on the work of \cite{blanke.raynaud_JPO97} (default option), 1517 or on a $4^th$ Runge-Hutta algorithm (\np {ln_flork4}{ln\_flork4}\forcode{=.true.}).1519 or on a $4^th$ Runge-Hutta algorithm (\np[=.true.]{ln_flork4}{ln\_flork4}). 1518 1520 Note that the \cite{blanke.raynaud_JPO97} algorithm have the advantage of providing trajectories which 1519 1521 are consistent with the numeric of the code, so that the trajectories never intercept the bathymetry. … … 1522 1524 1523 1525 Initial coordinates can be given with Ariane Tools convention 1524 (IJK coordinates, (\np {ln_ariane}{ln\_ariane}\forcode{=.true.}) ) or with longitude and latitude.1526 (IJK coordinates, (\np[=.true.]{ln_ariane}{ln\_ariane}) ) or with longitude and latitude. 1525 1527 1526 1528 In case of Ariane convention, input filename is \textit{init\_float\_ariane}. … … 1573 1575 1574 1576 \np{jpnfl}{jpnfl} is the total number of floats during the run. 1575 When initial positions are read in a restart file (\np {ln_rstflo}{ln\_rstflo}\forcode{=.true.} ),1577 When initial positions are read in a restart file (\np[=.true.]{ln_rstflo}{ln\_rstflo} ), 1576 1578 \np{jpnflnewflo}{jpnflnewflo} can be added in the initialization file. 1577 1579 … … 1581 1583 creation of the float restart file. 1582 1584 1583 Output data can be written in ascii files (\np {ln_flo_ascii}{ln\_flo\_ascii}\forcode{=.true.}).1585 Output data can be written in ascii files (\np[=.true.]{ln_flo_ascii}{ln\_flo\_ascii}). 1584 1586 In that case, output filename is trajec\_float. 1585 1587 1586 Another possiblity of writing format is Netcdf (\np {ln_flo_ascii}{ln\_flo\_ascii}\forcode{=.false.}) with1588 Another possiblity of writing format is Netcdf (\np[=.false.]{ln_flo_ascii}{ln\_flo\_ascii}) with 1587 1589 \key{iomput} and outputs selected in iodef.xml. 1588 1590 Here it is an example of specification to put in files description section: … … 1939 1941 1940 1942 Third, the discretisation of \autoref{eq:DIA_steric_Bq} depends on the type of free surface which is considered. 1941 In the non linear free surface case, \ie\ \np {ln_linssh}{ln\_linssh}\forcode{=.true.}, it is given by1943 In the non linear free surface case, \ie\ \np[=.true.]{ln_linssh}{ln\_linssh}, it is given by 1942 1944 1943 1945 \[ … … 2034 2036 sea water pressure at sea floor (botpres), dynamic sea surface height (sshdyn). 2035 2037 2036 In \mdl{diaptr} when \np {ln_diaptr}{ln\_diaptr}\forcode{=.true.}2038 In \mdl{diaptr} when \np[=.true.]{ln_diaptr}{ln\_diaptr} 2037 2039 (see the \nam{ptr}{ptr} namelist below) can be computed on-line the poleward heat and salt transports, 2038 2040 their advective and diffusive component, and the meriodional stream function . 2039 When \np {ln_subbas}{ln\_subbas}\forcode{=.true.}, transports and stream function are computed for the Atlantic, Indian,2041 When \np[=.true.]{ln_subbas}{ln\_subbas}, transports and stream function are computed for the Atlantic, Indian, 2040 2042 Pacific and Indo-Pacific Oceans (defined north of 30\deg{S}) as well as for the World Ocean. 2041 2043 The sub-basin decomposition requires an input file (\ifile{subbasins}) which contains three 2D mask arrays, … … 2119 2121 % ================================================================ 2120 2122 2121 \ biblio2122 2123 \ pindex2123 \onlyinsubfile{\bibliography{../main/bibliography}} 2124 2125 \onlyinsubfile{\printindex} 2124 2126 2125 2127 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 46 48 This namelist contains only two variables: 47 49 \begin{description} 48 \item[ \np{ln_diurnal}{ln\_diurnal}]50 \item[{\np{ln_diurnal}{ln\_diurnal}}] 49 51 A logical switch for turning on/off both the cool skin and warm layer. 50 \item[ \np{ln_diurnal_only}{ln\_diurnal\_only}]52 \item[{\np{ln_diurnal_only}{ln\_diurnal\_only}}] 51 53 A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of \NEMO. 52 54 \np{ln_diurnal_only}{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln_diurnal}{ln\_diurnal} is \forcode{.false.}. … … 159 161 \] 160 162 161 \ biblio163 \onlyinsubfile{\bibliography{../main/bibliography}} 162 164 163 \ pindex165 \onlyinsubfile{\printindex} 164 166 165 167 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 487 489 (d) hybrid $s-z$ coordinate, 488 490 (e) hybrid $s-z$ coordinate with partial step, and 489 (f) same as (e) but in the non-linear free surface (\protect\np {ln_linssh}{ln\_linssh}\forcode{=.false.}).491 (f) same as (e) but in the non-linear free surface (\protect\np[=.false.]{ln_linssh}{ln\_linssh}). 490 492 Note that the non-linear free surface can be used with any of the 5 coordinates (a) to (e).} 491 493 \label{fig:DOM_z_zps_s_sps} … … 524 526 525 527 \begin{itemize} 526 \item $z$-coordinate with full step bathymetry (\np {ln_zco}{ln\_zco}\forcode{=.true.}),527 \item $z$-coordinate with partial step ($zps$) bathymetry (\np {ln_zps}{ln\_zps}\forcode{=.true.}),528 \item Generalized, $s$-coordinate (\np {ln_sco}{ln\_sco}\forcode{=.true.}).528 \item $z$-coordinate with full step bathymetry (\np[=.true.]{ln_zco}{ln\_zco}), 529 \item $z$-coordinate with partial step ($zps$) bathymetry (\np[=.true.]{ln_zps}{ln\_zps}), 530 \item Generalized, $s$-coordinate (\np[=.true.]{ln_sco}{ln\_sco}). 529 531 \end{itemize} 530 532 … … 544 546 They are updated at each model time step. 545 547 The initial fixed reference coordinate system is held in variable names with a $\_0$ suffix. 546 When the linear free surface option is used (\np {ln_linssh}{ln\_linssh}\forcode{=.true.}),548 When the linear free surface option is used (\np[=.true.]{ln_linssh}{ln\_linssh}), 547 549 \textit{before}, \textit{now} and \textit{after} arrays are initially set to 548 550 their reference counterpart and remain fixed. … … 682 684 683 685 \begin{description} 684 \item[ \np{ln_tsd_init}{ln\_tsd\_init}\forcode{= .true.}]686 \item[{\np[=.true.]{ln_tsd_init}{ln\_tsd\_init}}] 685 687 Use T and S input files that can be given on the model grid itself or on their native input data grids. 686 688 In the latter case, the data will be interpolated on-the-fly both in the horizontal and the vertical to the model grid … … 688 690 The information relating to the input files are specified in the \np{sn_tem}{sn\_tem} and \np{sn_sal}{sn\_sal} structures. 689 691 The computation is done in the \mdl{dtatsd} module. 690 \item[ \np{ln_tsd_init}{ln\_tsd\_init}\forcode{= .false.}]692 \item[{\np[=.false.]{ln_tsd_init}{ln\_tsd\_init}}] 691 693 Initial values for T and S are set via a user supplied \rou{usr\_def\_istate} routine contained in \mdl{userdef\_istate}. 692 694 The default version sets horizontally uniform T and profiles as used in the GYRE configuration … … 694 696 \end{description} 695 697 696 \ biblio697 698 \ pindex698 \onlyinsubfile{\bibliography{../main/bibliography}} 699 700 \onlyinsubfile{\printindex} 699 701 700 702 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 205 207 (EEN scheme) (see \autoref{subsec:INVARIANTS_vorEEN}). 206 208 In the case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the consistency of 207 vorticity term with analytical equations (\np {ln_dynvor_con}{ln\_dynvor\_con}\forcode{=.true.}).209 vorticity term with analytical equations (\np[=.true.]{ln_dynvor_con}{ln\_dynvor\_con}). 208 210 The vorticity terms are all computed in dedicated routines that can be found in the \mdl{dynvor} module. 209 211 … … 327 329 A key point in \autoref{eq:DYN_een_e3f} is how the averaging in the \textbf{i}- and \textbf{j}- directions is made. 328 330 It uses the sum of masked t-point vertical scale factor divided either by the sum of the four t-point masks 329 (\np {nn_een_e3f}{nn\_een\_e3f}\forcode{=1}), or just by $4$ (\np{nn_een_e3f}{nn\_een\_e3f}\forcode{=.true.}).331 (\np[=1]{nn_een_e3f}{nn\_een\_e3f}), or just by $4$ (\np[=.true.]{nn_een_e3f}{nn\_een\_e3f}). 330 332 The latter case preserves the continuity of $e_{3f}$ when one or more of the neighbouring $e_{3t}$ tends to zero and 331 333 extends by continuity the value of $e_{3f}$ into the land areas. … … 407 409 \right. 408 410 \] 409 When \np {ln_dynzad_zts}{ln\_dynzad\_zts}\forcode{=.true.},411 When \np[=.true.]{ln_dynzad_zts}{ln\_dynzad\_zts}, 410 412 a split-explicit time stepping with 5 sub-timesteps is used on the vertical advection term. 411 413 This option can be useful when the value of the timestep is limited by vertical advection \citep{lemarie.debreu.ea_OM15}. … … 534 536 But the amplitudes of the false extrema are significantly reduced over those in the centred second order method. 535 537 As the scheme already includes a diffusion component, it can be used without explicit lateral diffusion on momentum 536 (\ie\ \np {ln_dynldf_lap}{ln\_dynldf\_lap}\forcode{=}\np{ln_dynldf_bilap}{ln\_dynldf\_bilap}\forcode{=.false.}),538 (\ie\ \np[=]{ln_dynldf_lap}{ln\_dynldf\_lap}\np[=.false.]{ln_dynldf_bilap}{ln\_dynldf\_bilap}), 537 539 and it is recommended to do so. 538 540 … … 665 667 density Jacobian with cubic polynomial method is currently disabled whilst known bugs are under investigation. 666 668 667 $\bullet$ Traditional coding (see for example \citet{madec.delecluse.ea_JPO96}: (\np {ln_dynhpg_sco}{ln\_dynhpg\_sco}\forcode{=.true.})669 $\bullet$ Traditional coding (see for example \citet{madec.delecluse.ea_JPO96}: (\np[=.true.]{ln_dynhpg_sco}{ln\_dynhpg\_sco}) 668 670 \begin{equation} 669 671 \label{eq:DYN_hpg_sco} … … 683 685 ($e_{3w}$). 684 686 685 $\bullet$ Traditional coding with adaptation for ice shelf cavities (\np {ln_dynhpg_isf}{ln\_dynhpg\_isf}\forcode{=.true.}).686 This scheme need the activation of ice shelf cavities (\np {ln_isfcav}{ln\_isfcav}\forcode{=.true.}).687 688 $\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np {ln_dynhpg_prj}{ln\_dynhpg\_prj}\forcode{=.true.})687 $\bullet$ Traditional coding with adaptation for ice shelf cavities (\np[=.true.]{ln_dynhpg_isf}{ln\_dynhpg\_isf}). 688 This scheme need the activation of ice shelf cavities (\np[=.true.]{ln_isfcav}{ln\_isfcav}). 689 690 $\bullet$ Pressure Jacobian scheme (prj) (a research paper in preparation) (\np[=.true.]{ln_dynhpg_prj}{ln\_dynhpg\_prj}) 689 691 690 692 $\bullet$ Density Jacobian with cubic polynomial scheme (DJC) \citep{shchepetkin.mcwilliams_OM05} 691 (\np {ln_dynhpg_djc}{ln\_dynhpg\_djc}\forcode{=.true.}) (currently disabled; under development)693 (\np[=.true.]{ln_dynhpg_djc}{ln\_dynhpg\_djc}) (currently disabled; under development) 692 694 693 695 Note that expression \autoref{eq:DYN_hpg_sco} is commonly used when the variable volume formulation is activated 694 696 (\texttt{vvl?}) because in that case, even with a flat bottom, 695 697 the coordinate surfaces are not horizontal but follow the free surface \citep{levier.treguier.ea_rpt07}. 696 The pressure jacobian scheme (\np {ln_dynhpg_prj}{ln\_dynhpg\_prj}\forcode{=.true.}) is available as697 an improved option to \np {ln_dynhpg_sco}{ln\_dynhpg\_sco}\forcode{=.true.} when \texttt{vvl?} is active.698 The pressure jacobian scheme (\np[=.true.]{ln_dynhpg_prj}{ln\_dynhpg\_prj}) is available as 699 an improved option to \np[=.true.]{ln_dynhpg_sco}{ln\_dynhpg\_sco} when \texttt{vvl?} is active. 698 700 The pressure Jacobian scheme uses a constrained cubic spline to 699 701 reconstruct the density profile across the water column. … … 707 709 708 710 Beneath an ice shelf, the total pressure gradient is the sum of the pressure gradient due to the ice shelf load and 709 the pressure gradient due to the ocean load (\np {ln_dynhpg_isf}{ln\_dynhpg\_isf}\forcode{=.true.}).\\711 the pressure gradient due to the ocean load (\np[=.true.]{ln_dynhpg_isf}{ln\_dynhpg\_isf}).\\ 710 712 711 713 The main hypothesis to compute the ice shelf load is that the ice shelf is in an isostatic equilibrium. … … 738 740 rather than at the central time level $t$ only, as in the standard leapfrog scheme. 739 741 740 $\bullet$ leapfrog scheme (\np {ln_dynhpg_imp}{ln\_dynhpg\_imp}\forcode{=.true.}):742 $\bullet$ leapfrog scheme (\np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}): 741 743 742 744 \begin{equation} … … 746 748 \end{equation} 747 749 748 $\bullet$ semi-implicit scheme (\np {ln_dynhpg_imp}{ln\_dynhpg\_imp}\forcode{=.true.}):750 $\bullet$ semi-implicit scheme (\np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}): 749 751 \begin{equation} 750 752 \label{eq:DYN_hpg_imp} … … 764 766 such as the stability limits associated with advection or diffusion. 765 767 766 In practice, the semi-implicit scheme is used when \np {ln_dynhpg_imp}{ln\_dynhpg\_imp}\forcode{=.true.}.768 In practice, the semi-implicit scheme is used when \np[=.true.]{ln_dynhpg_imp}{ln\_dynhpg\_imp}. 767 769 In this case, we choose to apply the time filter to temperature and salinity used in the equation of state, 768 770 instead of applying it to the hydrostatic pressure or to the density, … … 865 867 The size of the small time step, $\rdt_e$ (the external mode or barotropic time step) is provided through 866 868 the \np{nn_baro}{nn\_baro} namelist parameter as: $\rdt_e = \rdt / nn\_baro$. 867 This parameter can be optionally defined automatically (\np {ln_bt_nn_auto}{ln\_bt\_nn\_auto}\forcode{=.true.}) considering that869 This parameter can be optionally defined automatically (\np[=.true.]{ln_bt_nn_auto}{ln\_bt\_nn\_auto}) considering that 868 870 the stability of the barotropic system is essentially controled by external waves propagation. 869 871 Maximum Courant number is in that case time independent, and easily computed online from the input bathymetry. … … 904 906 In this particular exemple, 905 907 a boxcar averaging window over \np{nn_baro}{nn\_baro} barotropic time steps is used 906 (\np {nn_bt_flt}{nn\_bt\_flt}\forcode{=1}) and \np{nn_baro}{nn\_baro}\forcode{=5}.908 (\np[=1]{nn_bt_flt}{nn\_bt\_flt}) and \np[=5]{nn_baro}{nn\_baro}. 907 909 Internal mode time steps (which are also the model time steps) are denoted by 908 910 $t-\rdt$, $t$ and $t+\rdt$. … … 913 915 the latter are used to obtain time averaged transports to advect tracers. 914 916 a) Forward time integration: 915 \protect\np {ln_bt_fw}{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln_bt_av}{ln\_bt\_av}\forcode{=.true.}.917 \protect\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}, \protect\np[=.true.]{ln_bt_av}{ln\_bt\_av}. 916 918 b) Centred time integration: 917 \protect\np {ln_bt_fw}{ln\_bt\_fw}\forcode{=.false.}, \protect\np{ln_bt_av}{ln\_bt\_av}\forcode{=.true.}.919 \protect\np[=.false.]{ln_bt_fw}{ln\_bt\_fw}, \protect\np[=.true.]{ln_bt_av}{ln\_bt\_av}. 918 920 c) Forward time integration with no time filtering (POM-like scheme): 919 \protect\np {ln_bt_fw}{ln\_bt\_fw}\forcode{=.true.}, \protect\np{ln_bt_av}{ln\_bt\_av}\forcode{=.false.}.}921 \protect\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}, \protect\np[=.false.]{ln_bt_av}{ln\_bt\_av}.} 920 922 \label{fig:DYN_spg_ts} 921 923 \end{figure} 922 924 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > 923 925 924 In the default case (\np {ln_bt_fw}{ln\_bt\_fw}\forcode{=.true.}),926 In the default case (\np[=.true.]{ln_bt_fw}{ln\_bt\_fw}), 925 927 the external mode is integrated between \textit{now} and \textit{after} baroclinic time-steps 926 928 (\autoref{fig:DYN_spg_ts}a). 927 929 To avoid aliasing of fast barotropic motions into three dimensional equations, 928 time filtering is eventually applied on barotropic quantities (\np {ln_bt_av}{ln\_bt\_av}\forcode{=.true.}).930 time filtering is eventually applied on barotropic quantities (\np[=.true.]{ln_bt_av}{ln\_bt\_av}). 929 931 In that case, the integration is extended slightly beyond \textit{after} time step to 930 932 provide time filtered quantities. … … 933 935 asselin filtering is not applied to barotropic quantities.\\ 934 936 Alternatively, one can choose to integrate barotropic equations starting from \textit{before} time step 935 (\np {ln_bt_fw}{ln\_bt\_fw}\forcode{=.false.}).937 (\np[=.false.]{ln_bt_fw}{ln\_bt\_fw}). 936 938 Although more computationaly expensive ( \np{nn_baro}{nn\_baro} additional iterations are indeed necessary), 937 939 the baroclinic to barotropic forcing term given at \textit{now} time step become centred in … … 958 960 959 961 One can eventually choose to feedback instantaneous values by not using any time filter 960 (\np {ln_bt_av}{ln\_bt\_av}\forcode{=.false.}).962 (\np[=.false.]{ln_bt_av}{ln\_bt\_av}). 961 963 In that case, external mode equations are continuous in time, 962 964 \ie\ they are not re-initialized when starting a new sub-stepping sequence. … … 1191 1193 1192 1194 A rotation of the lateral momentum diffusion operator is needed in several cases: 1193 for iso-neutral diffusion in the $z$-coordinate (\np {ln_dynldf_iso}{ln\_dynldf\_iso}\forcode{=.true.}) and1194 for either iso-neutral (\np {ln_dynldf_iso}{ln\_dynldf\_iso}\forcode{=.true.}) or1195 geopotential (\np {ln_dynldf_hor}{ln\_dynldf\_hor}\forcode{=.true.}) diffusion in the $s$-coordinate.1195 for iso-neutral diffusion in the $z$-coordinate (\np[=.true.]{ln_dynldf_iso}{ln\_dynldf\_iso}) and 1196 for either iso-neutral (\np[=.true.]{ln_dynldf_iso}{ln\_dynldf\_iso}) or 1197 geopotential (\np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}) diffusion in the $s$-coordinate. 1196 1198 In the partial step case, coordinates are horizontal except at the deepest level and 1197 no rotation is performed when \np {ln_dynldf_hor}{ln\_dynldf\_hor}\forcode{=.true.}.1199 no rotation is performed when \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}. 1198 1200 The diffusion operator is defined simply as the divergence of down gradient momentum fluxes on 1199 1201 each momentum component. … … 1269 1271 Two time stepping schemes can be used for the vertical diffusion term: 1270 1272 $(a)$ a forward time differencing scheme 1271 (\np {ln_zdfexp}{ln\_zdfexp}\forcode{=.true.}) using a time splitting technique (\np{nn_zdfexp}{nn\_zdfexp} $>$ 1) or1272 $(b)$ a backward (or implicit) time differencing scheme (\np {ln_zdfexp}{ln\_zdfexp}\forcode{=.false.})1273 (\np[=.true.]{ln_zdfexp}{ln\_zdfexp}) using a time splitting technique (\np{nn_zdfexp}{nn\_zdfexp} $>$ 1) or 1274 $(b)$ a backward (or implicit) time differencing scheme (\np[=.false.]{ln_zdfexp}{ln\_zdfexp}) 1273 1275 (see \autoref{chap:TD}). 1274 1276 Note that namelist variables \np{ln_zdfexp}{ln\_zdfexp} and \np{nn_zdfexp}{nn\_zdfexp} apply to both tracers and dynamics. … … 1320 1322 three other forcings may enter the dynamical equations by affecting the surface pressure gradient. 1321 1323 1322 (1) When \np {ln_apr_dyn}{ln\_apr\_dyn}\forcode{=.true.} (see \autoref{sec:SBC_apr}),1324 (1) When \np[=.true.]{ln_apr_dyn}{ln\_apr\_dyn} (see \autoref{sec:SBC_apr}), 1323 1325 the atmospheric pressure is taken into account when computing the surface pressure gradient. 1324 1326 1325 (2) When \np {ln_tide_pot}{ln\_tide\_pot}\forcode{=.true.} and \np{ln_tide}{ln\_tide}\forcode{=.true.} (see \autoref{sec:SBC_tide}),1327 (2) When \np[=.true.]{ln_tide_pot}{ln\_tide\_pot} and \np[=.true.]{ln_tide}{ln\_tide} (see \autoref{sec:SBC_tide}), 1326 1328 the tidal potential is taken into account when computing the surface pressure gradient. 1327 1329 1328 (3) When \np {nn_ice_embd}{nn\_ice\_embd}\forcode{=2} and LIM or CICE is used1330 (3) When \np[=2]{nn_ice_embd}{nn\_ice\_embd} and LIM or CICE is used 1329 1331 (\ie\ when the sea-ice is embedded in the ocean), 1330 1332 the snow-ice mass is taken into account when computing the surface pressure gradient. … … 1406 1408 1407 1409 The flux across each $u$-face of a tracer cell is multiplied by a factor zuwdmask (an array which depends on ji and jj). 1408 If the user sets \np {ln_wd_dl_ramp}{ln\_wd\_dl\_ramp}\forcode{=.false.} then zuwdmask is 1 when the1410 If the user sets \np[=.false.]{ln_wd_dl_ramp}{ln\_wd\_dl\_ramp} then zuwdmask is 1 when the 1409 1411 flux is from a cell with water depth greater than \np{rn_wdmin1}{rn\_wdmin1} and 0 otherwise. If the user sets 1410 \np {ln_wd_dl_ramp}{ln\_wd\_dl\_ramp}\forcode{=.true.} the flux across the face is ramped down as the water depth decreases1412 \np[=.true.]{ln_wd_dl_ramp}{ln\_wd\_dl\_ramp} the flux across the face is ramped down as the water depth decreases 1411 1413 from 2 * \np{rn_wdmin1}{rn\_wdmin1} to \np{rn_wdmin1}{rn\_wdmin1}. The use of this ramp reduced grid-scale noise in idealised test cases. 1412 1414 … … 1425 1427 fields (tracers independent of $x$, $y$ and $z$). Our scheme conserves constant tracers because 1426 1428 the velocities used at the tracer cell faces on the baroclinic timesteps are carefully calculated by dynspg\_ts 1427 to equal their mean value during the barotropic steps. If the user sets \np {ln_wd_dl_bc}{ln\_wd\_dl\_bc}\forcode{=.true.}, the1429 to equal their mean value during the barotropic steps. If the user sets \np[=.true.]{ln_wd_dl_bc}{ln\_wd\_dl\_bc}, the 1428 1430 baroclinic velocities are also multiplied by a suitably weighted average of zuwdmask. 1429 1431 … … 1658 1660 1659 1661 $\bullet$ vector invariant form or linear free surface 1660 (\np {ln_dynhpg_vec}{ln\_dynhpg\_vec}\forcode{=.true.} ; \texttt{vvl?} not defined):1662 (\np[=.true.]{ln_dynhpg_vec}{ln\_dynhpg\_vec} ; \texttt{vvl?} not defined): 1661 1663 \[ 1662 1664 % \label{eq:DYN_nxt_vec} … … 1670 1672 1671 1673 $\bullet$ flux form and nonlinear free surface 1672 (\np {ln_dynhpg_vec}{ln\_dynhpg\_vec}\forcode{=.false.} ; \texttt{vvl?} defined):1674 (\np[=.false.]{ln_dynhpg_vec}{ln\_dynhpg\_vec} ; \texttt{vvl?} defined): 1673 1675 \[ 1674 1676 % \label{eq:DYN_nxt_flux} … … 1684 1686 the subscript $f$ denotes filtered values and $\gamma$ is the Asselin coefficient. 1685 1687 $\gamma$ is initialized as \np{nn_atfp}{nn\_atfp} (namelist parameter). 1686 Its default value is \np {nn_atfp}{nn\_atfp}\forcode{=10.e-3}.1688 Its default value is \np[=10.e-3]{nn_atfp}{nn\_atfp}. 1687 1689 In both cases, the modified Asselin filter is not applied since perfect conservation is not an issue for 1688 1690 the momentum equations. … … 1693 1695 1694 1696 % ================================================================ 1695 \ biblio1696 1697 \ pindex1697 \onlyinsubfile{\bibliography{../main/bibliography}} 1698 1699 \onlyinsubfile{\printindex} 1698 1700 1699 1701 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 101 103 \caption[Lateral boundary conditions]{ 102 104 Lateral boundary conditions 103 (a) free-slip (\protect\np {rn_shlat}{rn\_shlat}\forcode{=0});104 (b) no-slip (\protect\np {rn_shlat}{rn\_shlat}\forcode{=2});105 (c) "partial" free-slip (\forcode{0<}\protect\np {rn_shlat}{rn\_shlat}\forcode{<2}) and105 (a) free-slip (\protect\np[=0]{rn_shlat}{rn\_shlat}); 106 (b) no-slip (\protect\np[=2]{rn_shlat}{rn\_shlat}); 107 (c) "partial" free-slip (\forcode{0<}\protect\np[<2]{rn_shlat}{rn\_shlat}) and 106 108 (d) "strong" no-slip (\forcode{2<}\protect\np{rn_shlat}{rn\_shlat}). 107 109 Implied "ghost" velocity inside land area is display in grey.} … … 112 114 \begin{description} 113 115 114 \item[free-slip boundary condition ( \np{rn_shlat}{rn\_shlat}\forcode{=0}):] the tangential velocity at116 \item[free-slip boundary condition ({\np[=0]{rn_shlat}{rn\_shlat}})] the tangential velocity at 115 117 the coastline is equal to the offshore velocity, 116 118 \ie\ the normal derivative of the tangential velocity is zero at the coast, … … 118 120 (\autoref{fig:LBC_shlat}-a). 119 121 120 \item[no-slip boundary condition ( \np{rn_shlat}{rn\_shlat}\forcode{=2}):] the tangential velocity vanishes at the coastline.122 \item[no-slip boundary condition ({\np[=2]{rn_shlat}{rn\_shlat}})] the tangential velocity vanishes at the coastline. 121 123 Assuming that the tangential velocity decreases linearly from 122 124 the closest ocean velocity grid point to the coastline, … … 139 141 \] 140 142 141 \item["partial" free-slip boundary condition (0$<$\np{rn_shlat}{rn\_shlat}$<$2) :] the tangential velocity at143 \item["partial" free-slip boundary condition (0$<$\np{rn_shlat}{rn\_shlat}$<$2)] the tangential velocity at 142 144 the coastline is smaller than the offshore velocity, \ie\ there is a lateral friction but 143 145 not strong enough to make the tangential velocity at the coast vanish (\autoref{fig:LBC_shlat}-c). 144 146 This can be selected by providing a value of mask$_{f}$ strictly inbetween $0$ and $2$. 145 147 146 \item["strong" no-slip boundary condition (2$<$\np{rn_shlat}{rn\_shlat}) :] the viscous boundary layer is assumed to148 \item["strong" no-slip boundary condition (2$<$\np{rn_shlat}{rn\_shlat})] the viscous boundary layer is assumed to 147 149 be smaller than half the grid size (\autoref{fig:LBC_shlat}-d). 148 150 The friction is thus larger than in the no-slip case. … … 393 395 \label{subsec:LBC_bdy_namelist} 394 396 395 The BDY module is activated by setting \np {ln_bdy}{ln\_bdy}\forcode{=.true.} .397 The BDY module is activated by setting \np[=.true.]{ln_bdy}{ln\_bdy} . 396 398 It is possible to define more than one boundary ``set'' and apply different boundary conditions to each set. 397 399 The number of boundary sets is defined by \np{nb_bdy}{nb\_bdy}. 398 400 Each boundary set can be either defined as a series of straight line segments directly in the namelist 399 (\np {ln_coords_file}{ln\_coords\_file}\forcode{=.false.}, and a namelist block \nam{bdy_index}{bdy\_index} must be included for each set) or read in from a file (\np{ln_coords_file}{ln\_coords\_file}\forcode{=.true.}, and a ``\ifile{coordinates.bdy}'' file must be provided).401 (\np[=.false.]{ln_coords_file}{ln\_coords\_file}, and a namelist block \nam{bdy_index}{bdy\_index} must be included for each set) or read in from a file (\np[=.true.]{ln_coords_file}{ln\_coords\_file}, and a ``\ifile{coordinates.bdy}'' file must be provided). 400 402 The coordinates.bdy file is analagous to the usual \NEMO\ ``\ifile{coordinates}'' file. 401 403 In the example above, there are two boundary sets, the first of which is defined via a file and … … 422 424 423 425 The boundary data is either set to initial conditions 424 (\np {nn_tra_dta}{nn\_tra\_dta}\forcode{=0}) or forced with external data from a file (\np{nn_tra_dta}{nn\_tra\_dta}\forcode{=1}).426 (\np[=0]{nn_tra_dta}{nn\_tra\_dta}) or forced with external data from a file (\np[=1]{nn_tra_dta}{nn\_tra\_dta}). 425 427 In case the 3d velocity data contain the total velocity (ie, baroclinic and barotropic velocity), 426 the bdy code can derived baroclinic and barotropic velocities by setting \np {ln_full_vel}{ln\_full\_vel}\forcode{=.true.}428 the bdy code can derived baroclinic and barotropic velocities by setting \np[=.true.]{ln_full_vel}{ln\_full\_vel} 427 429 For the barotropic solution there is also the option to use tidal harmonic forcing either by 428 itself (\np {nn_dyn2d_dta}{nn\_dyn2d\_dta}\forcode{=2}) or in addition to other external data (\np{nn_dyn2d_dta}{nn\_dyn2d\_dta}\forcode{=3}).\\430 itself (\np[=2]{nn_dyn2d_dta}{nn\_dyn2d\_dta}) or in addition to other external data (\np[=3]{nn_dyn2d_dta}{nn\_dyn2d\_dta}).\\ 429 431 If not set to initial conditions, sea-ice salinity, temperatures and melt ponds data at the boundary can either be read in a file or defined as constant (by \np{rn_ice_sal}{rn\_ice\_sal}, \np{rn_ice_tem}{rn\_ice\_tem}, \np{rn_ice_apnd}{rn\_ice\_apnd}, \np{rn_ice_hpnd}{rn\_ice\_hpnd}). Ice age is constant and defined by \np{rn_ice_age}{rn\_ice\_age}. 430 432 … … 602 604 \jp{jpinft} give the start and end $i$ indices for each segment with similar for the other boundaries. 603 605 These segments define a list of $T$ grid points along the outermost row of the boundary ($nbr\,=\, 1$). 604 The code deduces the $U$ and $V$ points and also the points for $nbr\,>\, 1$ if \np {nn_rimwidth}{nn\_rimwidth}\forcode{>1}.606 The code deduces the $U$ and $V$ points and also the points for $nbr\,>\, 1$ if \np[>1]{nn_rimwidth}{nn\_rimwidth}. 605 607 606 608 The boundary geometry may also be defined from a ``\ifile{coordinates.bdy}'' file. … … 673 675 There is an option to force the total volume in the regional model to be constant. 674 676 This is controlled by the \np{ln_vol}{ln\_vol} parameter in the namelist. 675 A value of \np {ln_vol}{ln\_vol}\forcode{=.false.} indicates that this option is not used.677 A value of \np[=.false.]{ln_vol}{ln\_vol} indicates that this option is not used. 676 678 Two options to control the volume are available (\np{nn_volctl}{nn\_volctl}). 677 If \np {nn_volctl}{nn\_volctl}\forcode{=0} then a correction is applied to the normal barotropic velocities around the boundary at679 If \np[=0]{nn_volctl}{nn\_volctl} then a correction is applied to the normal barotropic velocities around the boundary at 678 680 each timestep to ensure that the integrated volume flow through the boundary is zero. 679 If \np {nn_volctl}{nn\_volctl}\forcode{=1} then the calculation of the volume change on681 If \np[=1]{nn_volctl}{nn\_volctl} then the calculation of the volume change on 680 682 the timestep includes the change due to the freshwater flux across the surface and 681 683 the correction velocity corrects for this as well. … … 741 743 direction of rotation). %, e.g. anticlockwise or clockwise. 742 744 743 \ biblio744 745 \ pindex745 \onlyinsubfile{\bibliography{../main/bibliography}} 746 747 \onlyinsubfile{\printindex} 746 748 747 749 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 24 26 (see the \nam{tra_ldf}{tra\_ldf} and \nam{dyn_ldf}{dyn\_ldf} below). 25 27 Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 26 Griffies's implementation, which is used if \np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{=.true.},28 Griffies's implementation, which is used if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, 27 29 is described in \autoref{apdx:TRIADS} 28 30 … … 40 42 \subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF} \& \protect\np{ln_dynldf_OFF}{ln\_dynldf\_OFF})} 41 43 42 It is possible to run without explicit lateral diffusion on tracers (\protect\np {ln_traldf_OFF}{ln\_traldf\_OFF}\forcode{=.true.}) and/or43 momentum (\protect\np {ln_dynldf_OFF}{ln\_dynldf\_OFF}\forcode{=.true.}). The latter option is even recommended if using the44 UBS advection scheme on momentum (\np {ln_dynadv_ubs}{ln\_dynadv\_ubs}\forcode{=.true.},44 It is possible to run without explicit lateral diffusion on tracers (\protect\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}) and/or 45 momentum (\protect\np[=.true.]{ln_dynldf_OFF}{ln\_dynldf\_OFF}). The latter option is even recommended if using the 46 UBS advection scheme on momentum (\np[=.true.]{ln_dynadv_ubs}{ln\_dynadv\_ubs}, 45 47 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 46 48 47 49 \subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln_traldf_lap}{ln\_traldf\_lap} \& \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})} 48 Setting \protect\np {ln_traldf_lap}{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap}\forcode{=.true.} enables50 Setting \protect\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap} and/or \protect\np[=.true.]{ln_dynldf_lap}{ln\_dynldf\_lap} enables 49 51 a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 50 52 Laplacian and Bilaplacian operators for the same variable. 51 53 52 54 \subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln_traldf_blp}{ln\_traldf\_blp} \& \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp})} 53 Setting \protect\np {ln_traldf_blp}{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp}\forcode{=.true.} enables55 Setting \protect\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp} and/or \protect\np[=.true.]{ln_dynldf_blp}{ln\_dynldf\_blp} enables 54 56 a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 55 57 We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. … … 107 109 %gm% caution I'm not sure the simplification was a good idea! 108 110 109 These slopes are computed once in \rou{ldf\_slp\_init} when \np {ln_sco}{ln\_sco}\forcode{=.true.},110 and either \np {ln_traldf_hor}{ln\_traldf\_hor}\forcode{=.true.} or \np{ln_dynldf_hor}{ln\_dynldf\_hor}\forcode{=.true.}.111 These slopes are computed once in \rou{ldf\_slp\_init} when \np[=.true.]{ln_sco}{ln\_sco}, 112 and either \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} or \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}. 111 113 112 114 \subsection{Slopes for tracer iso-neutral mixing} … … 164 166 \item[$s$- or hybrid $s$-$z$- coordinate: ] 165 167 in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 166 the Griffies scheme is used (\np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{=.true.};168 the Griffies scheme is used (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; 167 169 see \autoref{apdx:TRIADS}). 168 170 In other words, iso-neutral mixing will only be accurately represented with a linear equation of state 169 (\np {ln_seos}{ln\_seos}\forcode{=.true.}).171 (\np[=.true.]{ln_seos}{ln\_seos}). 170 172 In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso} 171 173 will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. … … 222 224 To overcome this problem, several techniques have been proposed in which the numerical schemes of 223 225 the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}. 224 Griffies's scheme is now available in \NEMO\ if \np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{ = .true.}; see \autoref{apdx:TRIADS}.226 Griffies's scheme is now available in \NEMO\ if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; see \autoref{apdx:TRIADS}. 225 227 Here, another strategy is presented \citep{lazar_phd97}: 226 228 a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of … … 326 328 The way the mixing coefficients are set in the reference version can be described as follows: 327 329 328 \subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=-20, -30} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=-20, -30})}330 \subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np[=-20, -30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=-20, -30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 329 331 330 332 Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, … … 332 334 decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 333 335 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 334 The provided fields can either be 2d (\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=-20}, \np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=-20}) or 3d (\np{nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=-30}, \np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=-30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}).336 The provided fields can either be 2d (\np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}) or 3d (\np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 335 337 336 338 %-------------------------------------------------TABLE--------------------------------------------------- … … 340 342 \hline 341 343 Namelist parameter & Input filename & dimensions & variable names \\ \hline 342 \np {nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=-20} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline343 \np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=-20} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline344 \np {nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=-30} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline345 \np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=-30} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline344 \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t} & \forcode{eddy_viscosity_2D.nc } & $(i,j)$ & \forcode{ahmt_2d, ahmf_2d} \\ \hline 345 \np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} & \forcode{eddy_diffusivity_2D.nc } & $(i,j)$ & \forcode{ahtu_2d, ahtv_2d} \\ \hline 346 \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t} & \forcode{eddy_viscosity_3D.nc } & $(i,j,k)$ & \forcode{ahmt_3d, ahmf_3d} \\ \hline 347 \np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} & \forcode{eddy_diffusivity_3D.nc } & $(i,j,k)$ & \forcode{ahtu_3d, ahtv_3d} \\ \hline 346 348 \end{tabular} 347 349 \caption{Description of expected input files if mixing coefficients are read from NetCDF files} … … 350 352 %-------------------------------------------------------------------------------------------------------------- 351 353 352 \subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=0} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=0})}354 \subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np[=0]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=0]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 353 355 354 356 If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: … … 366 368 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}, \np{rn_Ld}{rn\_Ld} and \np{rn_Lv}{rn\_Lv}. 367 369 368 \subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=10} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=10})}370 \subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np[=10]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=10]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 369 371 370 372 In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which … … 373 375 This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 374 376 375 \subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=20} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=20})}377 \subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np[=20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 376 378 377 379 In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and … … 398 400 \colorbox{yellow}{CASE \np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} = 21 to be added} 399 401 400 \subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=30} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=30})}402 \subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np[=30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 401 403 402 404 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, … … 404 406 the magnitude of the coefficient. 405 407 406 \subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np {nn_aht_ijk_t}{nn\_aht\_ijk\_t}\forcode{=31} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=31})}408 \subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np[=31]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=31]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 407 409 In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re = \lvert U \rvert e / A_l$ is constant (and here hardcoded to $12$): 408 410 \colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} … … 418 420 \end{equation} 419 421 420 \subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np {nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}\forcode{=32})}422 \subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 421 423 422 424 This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a … … 505 507 } 506 508 507 When \citet{gent.mcwilliams_JPO90} diffusion is used (\np {ln_ldfeiv}{ln\_ldfeiv}\forcode{=.true.}),509 When \citet{gent.mcwilliams_JPO90} diffusion is used (\np[=.true.]{ln_ldfeiv}{ln\_ldfeiv}), 508 510 an eddy induced tracer advection term is added, 509 511 the formulation of which depends on the slopes of iso-neutral surfaces. … … 512 514 and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates. 513 515 514 If isopycnal mixing is used in the standard way, \ie\ \np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{=.false.}, the eddy induced velocity is given by:516 If isopycnal mixing is used in the standard way, \ie\ \np[=.false.]{ln_traldf_triad}{ln\_traldf\_triad}, the eddy induced velocity is given by: 515 517 \begin{equation} 516 518 \label{eq:LDF_eiv} … … 536 538 \colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added} 537 539 538 In case of setting \np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{ = .true.}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}.540 In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}. 539 541 540 542 % ================================================================ … … 554 556 %-------------------------------------------------------------------------------------------------------------- 555 557 556 If \np {ln_mle}{ln\_mle}\forcode{=.true.} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection.558 If \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 557 559 558 560 \colorbox{yellow}{TBC} 559 561 560 \ biblio561 562 \ pindex562 \onlyinsubfile{\bibliography{../main/bibliography}} 563 564 \onlyinsubfile{\printindex} 563 565 564 566 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 569 571 Values between 0 to 4 are associated with interpolation while values 5 or 6 are associated with averaging. 570 572 \begin{itemize} 571 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 0}: Distance-weighted interpolation572 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 1}: Distance-weighted interpolation (small angle)573 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 2}: Bilinear interpolation (geographical grid)574 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 3}: Bilinear remapping interpolation (general grid)575 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 4}: Polynomial interpolation576 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 5}: Radial footprint averaging with diameter specified in the namelist as573 \item \np[=0]{nn_2dint}{nn\_2dint}: Distance-weighted interpolation 574 \item \np[=1]{nn_2dint}{nn\_2dint}: Distance-weighted interpolation (small angle) 575 \item \np[=2]{nn_2dint}{nn\_2dint}: Bilinear interpolation (geographical grid) 576 \item \np[=3]{nn_2dint}{nn\_2dint}: Bilinear remapping interpolation (general grid) 577 \item \np[=4]{nn_2dint}{nn\_2dint}: Polynomial interpolation 578 \item \np[=5]{nn_2dint}{nn\_2dint}: Radial footprint averaging with diameter specified in the namelist as 577 579 \texttt{rn\_[var]\_avglamscl} in degrees or metres (set using \texttt{ln\_[var]\_fp\_indegs}) 578 \item \np {nn_2dint}{nn\_2dint}\forcode{ = 6}: Rectangular footprint averaging with E/W and N/S size specified in580 \item \np[=6]{nn_2dint}{nn\_2dint}: Rectangular footprint averaging with E/W and N/S size specified in 579 581 the namelist as \texttt{rn\_[var]\_avglamscl} and \texttt{rn\_[var]\_avgphiscl} in degrees or metres 580 582 (set using \texttt{ln\_[var]\_fp\_indegs}) … … 1168 1170 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1169 1171 1170 \ biblio1171 1172 \ pindex1172 \onlyinsubfile{\bibliography{../main/bibliography}} 1173 1174 \onlyinsubfile{\printindex} 1173 1175 1174 1176 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 41 43 \begin{itemize} 42 44 \item 43 a bulk formulation (\np {ln_blk}{ln\_blk}\forcode{=.true.} with four possible bulk algorithms),44 \item 45 a flux formulation (\np {ln_flx}{ln\_flx}\forcode{=.true.}),45 a bulk formulation (\np[=.true.]{ln_blk}{ln\_blk} with four possible bulk algorithms), 46 \item 47 a flux formulation (\np[=.true.]{ln_flx}{ln\_flx}), 46 48 \item 47 49 a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler), 48 (\np{ln_cpl}{ln\_cpl} or \np {ln_mixcpl}{ln\_mixcpl}\forcode{=.true.}),49 \item 50 a user defined formulation (\np {ln_usr}{ln\_usr}\forcode{=.true.}).50 (\np{ln_cpl}{ln\_cpl} or \np[=.true.]{ln_mixcpl}{ln\_mixcpl}), 51 \item 52 a user defined formulation (\np[=.true.]{ln_usr}{ln\_usr}). 51 53 \end{itemize} 52 54 … … 69 71 the local grid directions in the model, 70 72 \item 71 the use of a land/sea mask for input fields (\np {nn_lsm}{nn\_lsm}\forcode{=.true.}),72 \item 73 the addition of a surface restoring term to observed SST and/or SSS (\np {ln_ssr}{ln\_ssr}\forcode{=.true.}),73 the use of a land/sea mask for input fields (\np[=.true.]{nn_lsm}{nn\_lsm}), 74 \item 75 the addition of a surface restoring term to observed SST and/or SSS (\np[=.true.]{ln_ssr}{ln\_ssr}), 74 76 \item 75 77 the modification of fluxes below ice-covered areas (using climatological ice-cover or a sea-ice model) 76 (\np {nn_ice}{nn\_ice}\forcode{=0..3}),77 \item 78 the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np {ln_rnf}{ln\_rnf}\forcode{=.true.}),78 (\np[=0..3]{nn_ice}{nn\_ice}), 79 \item 80 the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np[=.true.]{ln_rnf}{ln\_rnf}), 79 81 \item 80 82 the addition of ice-shelf melting as lateral inflow (parameterisation) or 81 as fluxes applied at the land-ice ocean interface (\np {ln_isf}{ln\_isf}\forcode{=.true.}),83 as fluxes applied at the land-ice ocean interface (\np[=.true.]{ln_isf}{ln\_isf}), 82 84 \item 83 85 the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift 84 (\np {nn_fwb}{nn\_fwb}\forcode{=0..2}),86 (\np[=0..2]{nn_fwb}{nn\_fwb}), 85 87 \item 86 88 the transformation of the solar radiation (if provided as daily mean) into an analytical diurnal cycle 87 (\np {ln_dm2dc}{ln\_dm2dc}\forcode{=.true.}),88 \item 89 the activation of wave effects from an external wave model (\np {ln_wave}{ln\_wave}\forcode{=.true.}),90 \item 91 a neutral drag coefficient is read from an external wave model (\np {ln_cdgw}{ln\_cdgw}\forcode{=.true.}),92 \item 93 the Stokes drift from an external wave model is accounted for (\np {ln_sdw}{ln\_sdw}\forcode{=.true.}),94 \item 95 the choice of the Stokes drift profile parameterization (\np {nn_sdrift}{nn\_sdrift}\forcode{=0..2}),96 \item 97 the surface stress given to the ocean is modified by surface waves (\np {ln_tauwoc}{ln\_tauwoc}\forcode{=.true.}),98 \item 99 the surface stress given to the ocean is read from an external wave model (\np {ln_tauw}{ln\_tauw}\forcode{=.true.}),100 \item 101 the Stokes-Coriolis term is included (\np {ln_stcor}{ln\_stcor}\forcode{=.true.}),102 \item 103 the light penetration in the ocean (\np {ln_traqsr}{ln\_traqsr}\forcode{=.true.} with namelist \nam{tra_qsr}{tra\_qsr}),104 \item 105 the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np {ln_apr_dyn}{ln\_apr\_dyn}\forcode{=.true.} with namelist \nam{sbc_apr}{sbc\_apr}),106 \item 107 the effect of sea-ice pressure on the ocean (\np {ln_ice_embd}{ln\_ice\_embd}\forcode{=.true.}).89 (\np[=.true.]{ln_dm2dc}{ln\_dm2dc}), 90 \item 91 the activation of wave effects from an external wave model (\np[=.true.]{ln_wave}{ln\_wave}), 92 \item 93 a neutral drag coefficient is read from an external wave model (\np[=.true.]{ln_cdgw}{ln\_cdgw}), 94 \item 95 the Stokes drift from an external wave model is accounted for (\np[=.true.]{ln_sdw}{ln\_sdw}), 96 \item 97 the choice of the Stokes drift profile parameterization (\np[=0..2]{nn_sdrift}{nn\_sdrift}), 98 \item 99 the surface stress given to the ocean is modified by surface waves (\np[=.true.]{ln_tauwoc}{ln\_tauwoc}), 100 \item 101 the surface stress given to the ocean is read from an external wave model (\np[=.true.]{ln_tauw}{ln\_tauw}), 102 \item 103 the Stokes-Coriolis term is included (\np[=.true.]{ln_stcor}{ln\_stcor}), 104 \item 105 the light penetration in the ocean (\np[=.true.]{ln_traqsr}{ln\_traqsr} with namelist \nam{tra_qsr}{tra\_qsr}), 106 \item 107 the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np[=.true.]{ln_apr_dyn}{ln\_apr\_dyn} with namelist \nam{sbc_apr}{sbc\_apr}), 108 \item 109 the effect of sea-ice pressure on the ocean (\np[=.true.]{ln_ice_embd}{ln\_ice\_embd}). 108 110 \end{itemize} 109 111 … … 142 144 The latter is the penetrative part of the heat flux. 143 145 It is applied as a 3D trend of the temperature equation (\mdl{traqsr} module) when 144 \np {ln_traqsr}{ln\_traqsr}\forcode{=.true.}.146 \np[=.true.]{ln_traqsr}{ln\_traqsr}. 145 147 The way the light penetrates inside the water column is generally a sum of decreasing exponentials 146 148 (see \autoref{subsec:TRA_qsr}). … … 278 280 & daily or weekLL & monthly & yearly \\ 279 281 \hline 280 \np {clim}{clim}\forcode{=.false.} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\282 \np[=.false.]{clim}{clim} & fn\_yYYYYmMMdDD.nc & fn\_yYYYYmMM.nc & fn\_yYYYY.nc \\ 281 283 \hline 282 \np {clim}{clim}\forcode{=.true.} & not possible & fn\_m??.nc & fn \\284 \np[=.true.]{clim}{clim} & not possible & fn\_m??.nc & fn \\ 283 285 \hline 284 286 \end{tabular} … … 351 353 However, for forcing data related to the surface module, 352 354 values are not needed at every time-step but at every \np{nn_fsbc}{nn\_fsbc} time-step. 353 For example with \np {nn_fsbc}{nn\_fsbc}\forcode{=3}, the surface module will be called at time-steps 1, 4, 7, etc.355 For example with \np[=3]{nn_fsbc}{nn\_fsbc}, the surface module will be called at time-steps 1, 4, 7, etc. 354 356 The date used for the time interpolation is thus redefined to the middle of \np{nn_fsbc}{nn\_fsbc} time-step period. 355 357 In the previous example, this leads to: 1h30'00", 4h30'00", 7h30'00", etc. \\ … … 550 552 Spinup of the iceberg floats 551 553 \item 552 Ocean/sea-ice simulation with both models running in parallel (\np {ln_mixcpl}{ln\_mixcpl}\forcode{=.true.})554 Ocean/sea-ice simulation with both models running in parallel (\np[=.true.]{ln_mixcpl}{ln\_mixcpl}) 553 555 \end{itemize} 554 556 … … 605 607 606 608 The user can also choose in the \nam{sbc_sas}{sbc\_sas} namelist to read the mean (nn\_fsbc time-step) fraction of solar net radiation absorbed in the 1st T level using 607 (\np {ln_flx}{ln\_flx}\forcode{=.true.}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln_flx}{ln\_flx}\forcode{=.true.}). In that last case, only the 1st level will be read in.609 (\np[=.true.]{ln_flx}{ln\_flx}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln_flx}{ln\_flx}\forcode{=.true.}). In that last case, only the 1st level will be read in. 608 610 609 611 … … 623 625 %------------------------------------------------------------------------------------------------------------- 624 626 625 In the flux formulation (\np {ln_flx}{ln\_flx}\forcode{=.true.}),627 In the flux formulation (\np[=.true.]{ln_flx}{ln\_flx}), 626 628 the surface boundary condition fields are directly read from input files. 627 629 The user has to define in the namelist \nam{sbc_flx}{sbc\_flx} the name of the file, … … 731 733 \begin{itemize} 732 734 \item 733 NCAR (\np {ln_NCAR}{ln\_NCAR}\forcode{=.true.}):735 NCAR (\np[=.true.]{ln_NCAR}{ln\_NCAR}): 734 736 The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 735 737 They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. … … 741 743 This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 742 744 \item 743 COARE 3.0 (\np {ln_COARE_3p0}{ln\_COARE\_3p0}\forcode{=.true.}):745 COARE 3.0 (\np[=.true.]{ln_COARE_3p0}{ln\_COARE\_3p0}): 744 746 See \citet{fairall.bradley.ea_JC03} for more details 745 747 \item 746 COARE 3.5 (\np {ln_COARE_3p5}{ln\_COARE\_3p5}\forcode{=.true.}):748 COARE 3.5 (\np[=.true.]{ln_COARE_3p5}{ln\_COARE\_3p5}): 747 749 See \citet{edson.jampana.ea_JPO13} for more details 748 750 \item 749 ECMWF (\np {ln_ECMWF}{ln\_ECMWF}\forcode{=.true.}):751 ECMWF (\np[=.true.]{ln_ECMWF}{ln\_ECMWF}): 750 752 Based on \href{https://www.ecmwf.int/node/9221}{IFS (Cy31)} implementation and documentation. 751 753 Surface roughness lengths needed for the Obukhov length are computed following \citet{beljaars_QJRMS95}. … … 762 764 \begin{itemize} 763 765 \item 764 Constant value (\np {constant value}{constant\ value}\forcode{ Cd_ice = 1.4e-3}):766 Constant value (\np[ Cd_ice=1.4e-3 ]{constant value}{constant\ value}): 765 767 default constant value used for momentum and heat neutral transfer coefficients 766 768 \item 767 \citet{lupkes.gryanik.ea_JGR12} (\np {ln_Cd_L12}{ln\_Cd\_L12}\forcode{=.true.}):769 \citet{lupkes.gryanik.ea_JGR12} (\np[=.true.]{ln_Cd_L12}{ln\_Cd\_L12}): 768 770 This scheme adds a dependency on edges at leads, melt ponds and flows 769 771 of the constant neutral air-ice drag. After some approximations, … … 773 775 It is theoretically applicable to all ice conditions (not only MIZ). 774 776 \item 775 \citet{lupkes.gryanik_JGR15} (\np {ln_Cd_L15}{ln\_Cd\_L15}\forcode{=.true.}):777 \citet{lupkes.gryanik_JGR15} (\np[=.true.]{ln_Cd_L15}{ln\_Cd\_L15}): 776 778 Alternative turbulent transfer coefficients formulation between sea-ice 777 779 and atmosphere with distinct momentum and heat coefficients depending … … 842 844 843 845 The optional atmospheric pressure can be used to force ocean and ice dynamics 844 (\np {ln_apr_dyn}{ln\_apr\_dyn}\forcode{=.true.}, \nam{sbc}{sbc} namelist).846 (\np[=.true.]{ln_apr_dyn}{ln\_apr\_dyn}, \nam{sbc}{sbc} namelist). 845 847 The input atmospheric forcing defined via \np{sn_apr}{sn\_apr} structure (\nam{sbc_apr}{sbc\_apr} namelist) 846 848 can be interpolated in time to the model time step, and even in space when the interpolation on-the-fly is used. … … 914 916 computationally too expensive. Here, two options are available: 915 917 $\Pi_{sal}$ generated by an external model can be read in 916 (\np {ln_read_load}{ln\_read\_load}\forcode{ =.true.}), or a ``scalar approximation'' can be917 used (\np {ln_scal_load}{ln\_scal\_load}\forcode{ =.true.}). In the latter case918 (\np[=.true.]{ln_read_load}{ln\_read\_load}), or a ``scalar approximation'' can be 919 used (\np[=.true.]{ln_scal_load}{ln\_scal\_load}). In the latter case 918 920 \[ 919 921 \Pi_{sal} = \beta \eta, … … 1076 1078 \begin{description} 1077 1079 1078 \item[ \np{nn_isf}{nn\_isf}\forcode{=1}]:1079 The ice shelf cavity is represented (\np {ln_isfcav}{ln\_isfcav}\forcode{=.true.} needed).1080 \item[{\np[=1]{nn_isf}{nn\_isf}}]: 1081 The ice shelf cavity is represented (\np[=.true.]{ln_isfcav}{ln\_isfcav} needed). 1080 1082 The fwf and heat flux are depending of the local water properties. 1081 1083 … … 1083 1085 1084 1086 \begin{description} 1085 \item[ \np{nn_isfblk}{nn\_isfblk}\forcode{=1}]:1087 \item[{\np[=1]{nn_isfblk}{nn\_isfblk}}]: 1086 1088 The melt rate is based on a balance between the upward ocean heat flux and 1087 1089 the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 1088 \item[ \np{nn_isfblk}{nn\_isfblk}\forcode{=2}]:1090 \item[{\np[=2]{nn_isfblk}{nn\_isfblk}}]: 1089 1091 The melt rate and the heat flux are based on a 3 equations formulation 1090 1092 (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation). … … 1103 1105 There are 3 different ways to compute the exchange coeficient: 1104 1106 \begin{description} 1105 \item[ \np{nn_gammablk}{nn\_gammablk}\forcode{=0}]:1107 \item[{\np[=0]{nn_gammablk}{nn\_gammablk}}]: 1106 1108 The salt and heat exchange coefficients are constant and defined by \np{rn_gammas0}{rn\_gammas0} and \np{rn_gammat0}{rn\_gammat0}. 1107 1109 \begin{gather*} … … 1111 1113 \end{gather*} 1112 1114 This is the recommended formulation for ISOMIP. 1113 \item[ \np{nn_gammablk}{nn\_gammablk}\forcode{=1}]:1115 \item[{\np[=1]{nn_gammablk}{nn\_gammablk}}]: 1114 1116 The salt and heat exchange coefficients are velocity dependent and defined as 1115 1117 \begin{gather*} … … 1119 1121 where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn_hisf_tbl}{rn\_hisf\_tbl} meters). 1120 1122 See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 1121 \item[ \np{nn_gammablk}{nn\_gammablk}\forcode{=2}]:1123 \item[{\np[=2]{nn_gammablk}{nn\_gammablk}}]: 1122 1124 The salt and heat exchange coefficients are velocity and stability dependent and defined as: 1123 1125 \[ … … 1130 1132 This formulation has not been extensively tested in \NEMO\ (not recommended). 1131 1133 \end{description} 1132 \item[ \np{nn_isf}{nn\_isf}\forcode{=2}]:1134 \item[{\np[=2]{nn_isf}{nn\_isf}}]: 1133 1135 The ice shelf cavity is not represented. 1134 1136 The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 1135 1137 The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 1136 1138 (\np{sn_depmax_isf}{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 1137 (\np{sn_depmin_isf}{sn\_depmin\_isf}) as in (\np {nn_isf}{nn\_isf}\forcode{=3}).1139 (\np{sn_depmin_isf}{sn\_depmin\_isf}) as in (\np[=3]{nn_isf}{nn\_isf}). 1138 1140 The effective melting length (\np{sn_Leff_isf}{sn\_Leff\_isf}) is read from a file. 1139 \item[ \np{nn_isf}{nn\_isf}\forcode{=3}]:1141 \item[{\np[=3]{nn_isf}{nn\_isf}}]: 1140 1142 The ice shelf cavity is not represented. 1141 1143 The fwf (\np{sn_rnfisf}{sn\_rnfisf}) is prescribed and distributed along the ice shelf edge between … … 1143 1145 the base of the ice shelf along the calving front (\np{sn_depmin_isf}{sn\_depmin\_isf}). 1144 1146 The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 1145 \item[ \np{nn_isf}{nn\_isf}\forcode{=4}]:1146 The ice shelf cavity is opened (\np {ln_isfcav}{ln\_isfcav}\forcode{=.true.} needed).1147 \item[{\np[=4]{nn_isf}{nn\_isf}}]: 1148 The ice shelf cavity is opened (\np[=.true.]{ln_isfcav}{ln\_isfcav} needed). 1147 1149 However, the fwf is not computed but specified from file \np{sn_fwfisf}{sn\_fwfisf}). 1148 1150 The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 1149 As in \np {nn_isf}{nn\_isf}\forcode{=1}, the fluxes are spread over the top boundary layer thickness (\np{rn_hisf_tbl}{rn\_hisf\_tbl})\\1151 As in \np[=1]{nn_isf}{nn\_isf}, the fluxes are spread over the top boundary layer thickness (\np{rn_hisf_tbl}{rn\_hisf\_tbl})\\ 1150 1152 \end{description} 1151 1153 1152 $\bullet$ \np {nn_isf}{nn\_isf}\forcode{=1} and \np{nn_isf}{nn\_isf}\forcode{=2} compute a melt rate based on1154 $\bullet$ \np[=1]{nn_isf}{nn\_isf} and \np[=2]{nn_isf}{nn\_isf} compute a melt rate based on 1153 1155 the water mass properties, ocean velocities and depth. 1154 1156 This flux is thus highly dependent of the model resolution (horizontal and vertical), 1155 1157 realism of the water masses onto the shelf ...\\ 1156 1158 1157 $\bullet$ \np {nn_isf}{nn\_isf}\forcode{=3} and \np{nn_isf}{nn\_isf}\forcode{=4} read the melt rate from a file.1159 $\bullet$ \np[=3]{nn_isf}{nn\_isf} and \np[=4]{nn_isf}{nn\_isf} read the melt rate from a file. 1158 1160 You have total control of the fwf forcing. 1159 1161 This can be useful if the water masses on the shelf are not realistic or … … 1204 1206 \end{description} 1205 1207 1206 If \np {ln_iscpl}{ln\_iscpl}\forcode{=.true.}, the isf draft is assume to be different at each restart step with1208 If \np[=.true.]{ln_iscpl}{ln\_iscpl}, the isf draft is assume to be different at each restart step with 1207 1209 potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 1208 1210 The wetting and drying scheme applied on the restart is very simple and described below for the 6 different possible cases: … … 1240 1242 1241 1243 In order to remove the trend and keep the conservation level as close to 0 as possible, 1242 a simple conservation scheme is available with \np {ln_hsb}{ln\_hsb}\forcode{=.true.}.1244 a simple conservation scheme is available with \np[=.true.]{ln_hsb}{ln\_hsb}. 1243 1245 The heat/salt/vol. gain/loss is diagnosed, as well as the location. 1244 1246 A correction increment is computed and apply each time step during the next \np{rn_fiscpl}{rn\_fiscpl} time steps. … … 1270 1272 which is an integer representing how many icebergs of this class are being described as one lagrangian point 1271 1273 (this reduces the numerical problem of tracking every single iceberg). 1272 They are enabled by setting \np {ln_icebergs}{ln\_icebergs}\forcode{=.true.}.1274 They are enabled by setting \np[=.true.]{ln_icebergs}{ln\_icebergs}. 1273 1275 1274 1276 Two initialisation schemes are possible. 1275 1277 \begin{description} 1276 \item[ \np{nn_test_icebergs}{nn\_test\_icebergs}~$>$~0]1278 \item[{\np{nn_test_icebergs}{nn\_test\_icebergs}~$>$~0}] 1277 1279 In this scheme, the value of \np{nn_test_icebergs}{nn\_test\_icebergs} represents the class of iceberg to generate 1278 1280 (so between 1 and 10), and \np{nn_test_icebergs}{nn\_test\_icebergs} provides a lon/lat box in the domain at each grid point of … … 1281 1283 \np{nn_test_icebergs}{nn\_test\_icebergs} is defined by four numbers in \np{nn_test_box}{nn\_test\_box} representing the corners of 1282 1284 the geographical box: lonmin,lonmax,latmin,latmax 1283 \item[ \np{nn_test_icebergs}{nn\_test\_icebergs}\forcode{=-1}]1285 \item[{\np[=-1]{nn_test_icebergs}{nn\_test\_icebergs}}] 1284 1286 In this scheme, the model reads a calving file supplied in the \np{sn_icb}{sn\_icb} parameter. 1285 1287 This should be a file with a field on the configuration grid (typically ORCA) … … 1306 1308 The amount of information is controlled by two integer parameters: 1307 1309 \begin{description} 1308 \item[ \np{nn_verbose_level}{nn\_verbose\_level}] takes a value between one and four and1310 \item[{\np{nn_verbose_level}{nn\_verbose\_level}}] takes a value between one and four and 1309 1311 represents an increasing number of points in the code at which variables are written, 1310 1312 and an increasing level of obscurity. 1311 \item[ \np{nn_verbose_write}{nn\_verbose\_write}] is the number of timesteps between writes1313 \item[{\np{nn_verbose_write}{nn\_verbose\_write}}] is the number of timesteps between writes 1312 1314 \end{description} 1313 1315 … … 1343 1345 1344 1346 Physical processes related to ocean surface waves can be accounted by setting the logical variable 1345 \np {ln_wave}{ln\_wave}\forcode{=.true.} in \nam{sbc}{sbc} namelist. In addition, specific flags accounting for1347 \np[=.true.]{ln_wave}{ln\_wave} in \nam{sbc}{sbc} namelist. In addition, specific flags accounting for 1346 1348 different processes should be activated as explained in the following sections. 1347 1349 … … 1351 1353 for external data names, locations, frequency, interpolation and all the miscellanous options allowed by 1352 1354 Input Data generic Interface (see \autoref{sec:SBC_input}). 1353 \item[coupled mode]: \NEMO\ and an external wave model can be coupled by setting \np {ln_cpl}{ln\_cpl} \forcode{= .true.}1355 \item[coupled mode]: \NEMO\ and an external wave model can be coupled by setting \np[=.true.]{ln_cpl}{ln\_cpl} 1354 1356 in \nam{sbc}{sbc} namelist and filling the \nam{sbc_cpl}{sbc\_cpl} namelist. 1355 1357 \end{description} … … 1364 1366 1365 1367 The neutral surface drag coefficient provided from an external data source (\ie\ a wave model), 1366 can be used by setting the logical variable \np {ln_cdgw}{ln\_cdgw} \forcode{= .true.} in \nam{sbc}{sbc} namelist.1368 can be used by setting the logical variable \np[=.true.]{ln_cdgw}{ln\_cdgw} in \nam{sbc}{sbc} namelist. 1367 1369 Then using the routine \rou{sbcblk\_algo\_ncar} and starting from the neutral drag coefficent provided, 1368 1370 the drag coefficient is computed according to the stable/unstable conditions of the … … 1408 1410 1409 1411 \begin{description} 1410 \item[ \np{nn_sdrift}{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by1412 \item[{\np{nn_sdrift}{nn\_sdrift} = 0}]: exponential integral profile parameterization proposed by 1411 1413 \citet{breivik.janssen.ea_JPO14}: 1412 1414 … … 1427 1429 where $H_s$ is the significant wave height and $\omega$ is the wave frequency. 1428 1430 1429 \item[ \np{nn_sdrift}{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a1431 \item[{\np{nn_sdrift}{nn\_sdrift} = 1}]: velocity profile based on the Phillips spectrum which is considered to be a 1430 1432 reasonable estimate of the part of the spectrum mostly contributing to the Stokes drift velocity near the surface 1431 1433 \citep{breivik.bidlot.ea_OM16}: … … 1439 1441 where $erf$ is the complementary error function and $k_p$ is the peak wavenumber. 1440 1442 1441 \item[ \np{nn_sdrift}{nn\_sdrift} = 2]: velocity profile based on the Phillips spectrum as for \np{nn_sdrift}{nn\_sdrift} = 11443 \item[{\np{nn_sdrift}{nn\_sdrift} = 2}]: velocity profile based on the Phillips spectrum as for \np{nn_sdrift}{nn\_sdrift} = 1 1442 1444 but using the wave frequency from a wave model. 1443 1445 … … 1477 1479 In order to include this term, once evaluated the Stokes drift (using one of the 3 possible 1478 1480 approximations described in \autoref{subsec:SBC_wave_sdw}), 1479 \np {ln_stcor}{ln\_stcor}\forcode{=.true.} has to be set.1481 \np[=.true.]{ln_stcor}{ln\_stcor} has to be set. 1480 1482 1481 1483 … … 1517 1519 1518 1520 The wave stress derived from an external wave model can be provided either through the normalized 1519 wave stress into the ocean by setting \np {ln_tauwoc}{ln\_tauwoc}\forcode{=.true.}, or through the zonal and1520 meridional stress components by setting \np {ln_tauw}{ln\_tauw}\forcode{=.true.}.1521 wave stress into the ocean by setting \np[=.true.]{ln_tauwoc}{ln\_tauwoc}, or through the zonal and 1522 meridional stress components by setting \np[=.true.]{ln_tauw}{ln\_tauw}. 1521 1523 1522 1524 … … 1561 1563 assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 1562 1564 The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO\ by 1563 setting \np {ln_dm2dc}{ln\_dm2dc}\forcode{=.true.} (a \textit{\nam{sbc}{sbc}} namelist variable) when1564 using a bulk formulation (\np {ln_blk}{ln\_blk}\forcode{=.true.}) or1565 the flux formulation (\np {ln_flx}{ln\_flx}\forcode{=.true.}).1565 setting \np[=.true.]{ln_dm2dc}{ln\_dm2dc} (a \textit{\nam{sbc}{sbc}} namelist variable) when 1566 using a bulk formulation (\np[=.true.]{ln_blk}{ln\_blk}) or 1567 the flux formulation (\np[=.true.]{ln_flx}{ln\_flx}). 1566 1568 The reconstruction is performed in the \mdl{sbcdcy} module. 1567 1569 The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. … … 1598 1600 \label{subsec:SBC_rotation} 1599 1601 1600 When using a flux (\np {ln_flx}{ln\_flx}\forcode{=.true.}) or bulk (\np{ln_blk}{ln\_blk}\forcode{=.true.}) formulation,1602 When using a flux (\np[=.true.]{ln_flx}{ln\_flx}) or bulk (\np[=.true.]{ln_blk}{ln\_blk}) formulation, 1601 1603 pairs of vector components can be rotated from east-north directions onto the local grid directions. 1602 1604 This is particularly useful when interpolation on the fly is used since here any vectors are likely to … … 1627 1629 1628 1630 Options are defined through the \nam{sbc_ssr}{sbc\_ssr} namelist variables. 1629 On forced mode using a flux formulation (\np {ln_flx}{ln\_flx}\forcode{=.true.}),1631 On forced mode using a flux formulation (\np[=.true.]{ln_flx}{ln\_flx}), 1630 1632 a feedback term \emph{must} be added to the surface heat flux $Q_{ns}^o$: 1631 1633 \[ … … 1746 1748 1747 1749 \begin{description} 1748 \item[ \np{nn_fwb}{nn\_fwb}\forcode{=0}]1750 \item[{\np[=0]{nn_fwb}{nn\_fwb}}] 1749 1751 no control at all. 1750 1752 The mean sea level is free to drift, and will certainly do so. 1751 \item[ \np{nn_fwb}{nn\_fwb}\forcode{=1}]1753 \item[{\np[=1]{nn_fwb}{nn\_fwb}}] 1752 1754 global mean \textit{emp} set to zero at each model time step. 1753 1755 %GS: comment below still relevant ? 1754 1756 %Note that with a sea-ice model, this technique only controls the mean sea level with linear free surface and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling). 1755 \item[ \np{nn_fwb}{nn\_fwb}\forcode{=2}]1757 \item[{\np[=2]{nn_fwb}{nn\_fwb}}] 1756 1758 freshwater budget is adjusted from the previous year annual mean budget which 1757 1759 is read in the \textit{EMPave\_old.dat} file. … … 1783 1785 1784 1786 1785 \ biblio1786 1787 \ pindex1787 \onlyinsubfile{\bibliography{../main/bibliography}} 1788 1789 \onlyinsubfile{\printindex} 1788 1790 1789 1791 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_STO.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 186 188 187 189 \begin{description} 188 \item[ \np{nn_sto_eos}{nn\_sto\_eos}:] number of independent random walks189 \item[ \np{rn_eos_stdxy}{rn\_eos\_stdxy}:] random walk horizontal standard deviation (in grid points)190 \item[ \np{rn_eos_stdz}{rn\_eos\_stdz}:] random walk vertical standard deviation (in grid points)191 \item[ \np{rn_eos_tcor}{rn\_eos\_tcor}:] random walk time correlation (in timesteps)192 \item[ \np{nn_eos_ord}{nn\_eos\_ord}:] order of autoregressive processes193 \item[ \np{nn_eos_flt}{nn\_eos\_flt}:] passes of Laplacian filter194 \item[ \np{rn_eos_lim}{rn\_eos\_lim}:] limitation factor (default = 3.0)190 \item[{\np{nn_sto_eos}{nn\_sto\_eos}:}] number of independent random walks 191 \item[{\np{rn_eos_stdxy}{rn\_eos\_stdxy}:}] random walk horizontal standard deviation (in grid points) 192 \item[{\np{rn_eos_stdz}{rn\_eos\_stdz}:}] random walk vertical standard deviation (in grid points) 193 \item[{\np{rn_eos_tcor}{rn\_eos\_tcor}:}] random walk time correlation (in timesteps) 194 \item[{\np{nn_eos_ord}{nn\_eos\_ord}:}] order of autoregressive processes 195 \item[{\np{nn_eos_flt}{nn\_eos\_flt}:}] passes of Laplacian filter 196 \item[{\np{rn_eos_lim}{rn\_eos\_lim}:}] limitation factor (default = 3.0) 195 197 \end{description} 196 198 197 199 The first four parameters define the stochastic part of equation of state. 198 \ biblio199 200 \ pindex200 \onlyinsubfile{\bibliography{../main/bibliography}} 201 202 \onlyinsubfile{\printindex} 201 203 202 204 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 55 57 56 58 The user has the option of extracting each tendency term on the RHS of the tracer equation for output 57 (\np{ln_tra_trd}{ln\_tra\_trd} or \np {ln_tra_mxl}{ln\_tra\_mxl}\forcode{=.true.}), as described in \autoref{chap:DIA}.59 (\np{ln_tra_trd}{ln\_tra\_trd} or \np[=.true.]{ln_tra_mxl}{ln\_tra\_mxl}), as described in \autoref{chap:DIA}. 58 60 59 61 % ================================================================ … … 85 87 Indeed, it is obtained by using the following equality: $\nabla \cdot (\vect U \, T) = \vect U \cdot \nabla T$ which 86 88 results from the use of the continuity equation, $\partial_t e_3 + e_3 \; \nabla \cdot \vect U = 0$ 87 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie\ \np {ln_linssh}{ln\_linssh}\forcode{=.true.}).89 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie\ \np[=.true.]{ln_linssh}{ln\_linssh}). 88 90 Therefore it is of paramount importance to design the discrete analogue of the advection tendency so that 89 91 it is consistent with the continuity equation in order to enforce the conservation properties of … … 121 123 \begin{description} 122 124 \item[linear free surface:] 123 (\np {ln_linssh}{ln\_linssh}\forcode{=.true.})125 (\np[=.true.]{ln_linssh}{ln\_linssh}) 124 126 the first level thickness is constant in time: 125 127 the vertical boundary condition is applied at the fixed surface $z = 0$ rather than on … … 129 131 the first level tracer value. 130 132 \item[non-linear free surface:] 131 (\np {ln_linssh}{ln\_linssh}\forcode{=.false.})133 (\np[=.false.]{ln_linssh}{ln\_linssh}) 132 134 convergence/divergence in the first ocean level moves the free surface up/down. 133 135 There is no tracer advection through it so that the advective fluxes through the surface are also zero. … … 190 192 % 2nd order centred scheme 191 193 192 The centred advection scheme (CEN) is used when \np {ln_traadv_cen}{ln\_traadv\_cen}\forcode{=.true.}.194 The centred advection scheme (CEN) is used when \np[=.true.]{ln_traadv_cen}{ln\_traadv\_cen}. 193 195 Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 194 196 setting \np{nn_cen_h}{nn\_cen\_h} and \np{nn_cen_v}{nn\_cen\_v} to $2$ or $4$. … … 222 224 \tau_u^{cen4} = \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \, \Big]}^{\,i + 1/2} 223 225 \end{equation} 224 In the vertical direction (\np {nn_cen_v}{nn\_cen\_v}\forcode{=4}),226 In the vertical direction (\np[=4]{nn_cen_v}{nn\_cen\_v}), 225 227 a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}. 226 228 In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion, … … 255 257 \label{subsec:TRA_adv_tvd} 256 258 257 The Flux Corrected Transport schemes (FCT) is used when \np {ln_traadv_fct}{ln\_traadv\_fct}\forcode{=.true.}.259 The Flux Corrected Transport schemes (FCT) is used when \np[=.true.]{ln_traadv_fct}{ln\_traadv\_fct}. 258 260 Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 259 261 setting \np{nn_fct_h}{nn\_fct\_h} and \np{nn_fct_v}{nn\_fct\_v} to $2$ or $4$. … … 298 300 \label{subsec:TRA_adv_mus} 299 301 300 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np {ln_traadv_mus}{ln\_traadv\_mus}\forcode{=.true.}.302 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np[=.true.]{ln_traadv_mus}{ln\_traadv\_mus}. 301 303 MUSCL implementation can be found in the \mdl{traadv\_mus} module. 302 304 … … 326 328 This choice ensure the \textit{positive} character of the scheme. 327 329 In addition, fluxes round a grid-point where a runoff is applied can optionally be computed using upstream fluxes 328 (\np {ln_mus_ups}{ln\_mus\_ups}\forcode{=.true.}).330 (\np[=.true.]{ln_mus_ups}{ln\_mus\_ups}). 329 331 330 332 % ------------------------------------------------------------------------------------------------------------- … … 334 336 \label{subsec:TRA_adv_ubs} 335 337 336 The Upstream-Biased Scheme (UBS) is used when \np {ln_traadv_ubs}{ln\_traadv\_ubs}\forcode{=.true.}.338 The Upstream-Biased Scheme (UBS) is used when \np[=.true.]{ln_traadv_ubs}{ln\_traadv\_ubs}. 337 339 UBS implementation can be found in the \mdl{traadv\_mus} module. 338 340 … … 364 366 \citep{shchepetkin.mcwilliams_OM05, demange_phd14}. 365 367 Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme 366 (\np {nn_ubs_v}{nn\_ubs\_v}\forcode{=2 or 4}).368 (\np[=2 or 4]{nn_ubs_v}{nn\_ubs\_v}). 367 369 368 370 For stability reasons (see \autoref{chap:TD}), the first term in \autoref{eq:TRA_adv_ubs} … … 407 409 408 410 The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme 409 proposed by \citet{leonard_CMAME79} is used when \np {ln_traadv_qck}{ln\_traadv\_qck}\forcode{=.true.}.411 proposed by \citet{leonard_CMAME79} is used when \np[=.true.]{ln_traadv_qck}{ln\_traadv\_qck}. 410 412 QUICKEST implementation can be found in the \mdl{traadv\_qck} module. 411 413 … … 452 454 except for the pure vertical component that appears when a rotation tensor is used. 453 455 This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:TD}). 454 When \np {ln_traldf_msc}{ln\_traldf\_msc}\forcode{=.true.}, a Method of Stabilizing Correction is used in which456 When \np[=.true.]{ln_traldf_msc}{ln\_traldf\_msc}, a Method of Stabilizing Correction is used in which 455 457 the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}. 456 458 … … 464 466 465 467 \begin{description} 466 \item[ \np{ln_traldf_OFF}{ln\_traldf\_OFF}\forcode{=.true.}:]468 \item[{\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}}] 467 469 no operator selected, the lateral diffusive tendency will not be applied to the tracer equation. 468 470 This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme for example). 469 \item[ \np{ln_traldf_lap}{ln\_traldf\_lap}\forcode{=.true.}:]471 \item[{\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap}}] 470 472 a laplacian operator is selected. 471 473 This harmonic operator takes the following expression: $\mathcal{L}(T) = \nabla \cdot A_{ht} \; \nabla T $, 472 474 where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}), 473 475 and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}). 474 \item[ \np{ln_traldf_blp}{ln\_traldf\_blp}\forcode{=.true.}]:476 \item[{\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp}}]: 475 477 a bilaplacian operator is selected. 476 478 This biharmonic operator takes the following expression: … … 497 499 The choice of a direction of action determines the form of operator used. 498 500 The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane when 499 iso-level option is used (\np {ln_traldf_lev}{ln\_traldf\_lev}\forcode{=.true.}) or501 iso-level option is used (\np[=.true.]{ln_traldf_lev}{ln\_traldf\_lev}) or 500 502 when a horizontal (\ie\ geopotential) operator is demanded in \textit{z}-coordinate 501 (\np{ln_traldf_hor}{ln\_traldf\_hor} and \np {ln_zco}{ln\_zco}\forcode{=.true.}).503 (\np{ln_traldf_hor}{ln\_traldf\_hor} and \np[=.true.]{ln_zco}{ln\_zco}). 502 504 The associated code can be found in the \mdl{traldf\_lap\_blp} module. 503 505 The operator is a rotated (re-entrant) laplacian when … … 536 538 It is a \textit{horizontal} operator (\ie acting along geopotential surfaces) in 537 539 the $z$-coordinate with or without partial steps, but is simply an iso-level operator in the $s$-coordinate. 538 It is thus used when, in addition to \np{ln_traldf_lap}{ln\_traldf\_lap} or \np {ln_traldf_blp}{ln\_traldf\_blp}\forcode{=.true.},539 we have \np {ln_traldf_lev}{ln\_traldf\_lev}\forcode{=.true.} or \np{ln_traldf_hor}{ln\_traldf\_hor}~=~\np{ln_zco}{ln\_zco}\forcode{=.true.}.540 It is thus used when, in addition to \np{ln_traldf_lap}{ln\_traldf\_lap} or \np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp}, 541 we have \np[=.true.]{ln_traldf_lev}{ln\_traldf\_lev} or \np{ln_traldf_hor}{ln\_traldf\_hor}~=~\np[=.true.]{ln_zco}{ln\_zco}. 540 542 In both cases, it significantly contributes to diapycnal mixing. 541 543 It is therefore never recommended, even when using it in the bilaplacian case. 542 544 543 Note that in the partial step $z$-coordinate (\np {ln_zps}{ln\_zps}\forcode{=.true.}),545 Note that in the partial step $z$-coordinate (\np[=.true.]{ln_zps}{ln\_zps}), 544 546 tracers in horizontally adjacent cells are located at different depths in the vicinity of the bottom. 545 547 In this case, horizontal derivatives in (\autoref{eq:TRA_ldf_lap}) at the bottom level require a specific treatment. … … 573 575 $r_1$ and $r_2$ are the slopes between the surface of computation ($z$- or $s$-surfaces) and 574 576 the surface along which the diffusion operator acts (\ie\ horizontal or iso-neutral surfaces). 575 It is thus used when, in addition to \np {ln_traldf_lap}{ln\_traldf\_lap}\forcode{=.true.},576 we have \np {ln_traldf_iso}{ln\_traldf\_iso}\forcode{=.true.},577 or both \np {ln_traldf_hor}{ln\_traldf\_hor}\forcode{=.true.} and \np{ln_zco}{ln\_zco}\forcode{=.true.}.577 It is thus used when, in addition to \np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap}, 578 we have \np[=.true.]{ln_traldf_iso}{ln\_traldf\_iso}, 579 or both \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} and \np[=.true.]{ln_zco}{ln\_zco}. 578 580 The way these slopes are evaluated is given in \autoref{sec:LDF_slp}. 579 581 At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero using … … 591 593 any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}. 592 594 593 Note that in the partial step $z$-coordinate (\np {ln_zps}{ln\_zps}\forcode{=.true.}),595 Note that in the partial step $z$-coordinate (\np[=.true.]{ln_zps}{ln\_zps}), 594 596 the horizontal derivatives at the bottom level in \autoref{eq:TRA_ldf_iso} require a specific treatment. 595 597 They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. … … 601 603 602 604 An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases 603 is also available in \NEMO\ (\np {ln_traldf_triad}{ln\_traldf\_triad}\forcode{=.true.}).605 is also available in \NEMO\ (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}). 604 606 A complete description of the algorithm is given in \autoref{apdx:TRIADS}. 605 607 … … 647 649 respectively. 648 650 Generally, $A_w^{vT} = A_w^{vS}$ except when double diffusive mixing is parameterised 649 (\ie\ \np {ln_zdfddm}{ln\_zdfddm}\forcode{=.true.},).651 (\ie\ \np[=.true.]{ln_zdfddm}{ln\_zdfddm},). 650 652 The way these coefficients are evaluated is given in \autoref{chap:ZDF} (ZDF). 651 653 Furthermore, when iso-neutral mixing is used, both mixing coefficients are increased by … … 722 724 Such time averaging prevents the divergence of odd and even time step (see \autoref{chap:TD}). 723 725 724 In the linear free surface case (\np {ln_linssh}{ln\_linssh}\forcode{=.true.}), an additional term has to be added on726 In the linear free surface case (\np[=.true.]{ln_linssh}{ln\_linssh}), an additional term has to be added on 725 727 both temperature and salinity. 726 728 On temperature, this term remove the heat content associated with mass exchange that has been added to $Q_{ns}$. … … 757 759 758 760 Options are defined through the \nam{tra_qsr}{tra\_qsr} namelist variables. 759 When the penetrative solar radiation option is used (\np {ln_traqsr}{ln\_traqsr}\forcode{=.true.}),761 When the penetrative solar radiation option is used (\np[=.true.]{ln_traqsr}{ln\_traqsr}), 760 762 the solar radiation penetrates the top few tens of meters of the ocean. 761 If it is not used (\np {ln_traqsr}{ln\_traqsr}\forcode{=.false.}) all the heat flux is absorbed in the first ocean level.763 If it is not used (\np[=.false.]{ln_traqsr}{ln\_traqsr}) all the heat flux is absorbed in the first ocean level. 762 764 Thus, in the former case a term is added to the time evolution equation of temperature \autoref{eq:MB_PE_tra_T} and 763 765 the surface boundary condition is modified to take into account only the non-penetrative part of the surface … … 788 790 larger depths where it contributes to local heating. 789 791 The way this second part of the solar energy penetrates into the ocean depends on which formulation is chosen. 790 In the simple 2-waveband light penetration scheme (\np {ln_qsr_2bd}{ln\_qsr\_2bd}\forcode{=.true.})792 In the simple 2-waveband light penetration scheme (\np[=.true.]{ln_qsr_2bd}{ln\_qsr\_2bd}) 791 793 a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths, 792 794 leading to the following expression \citep{paulson.simpson_JPO77}: … … 816 818 The 2-bands formulation does not reproduce the full model very well. 817 819 818 The RGB formulation is used when \np {ln_qsr_rgb}{ln\_qsr\_rgb}\forcode{=.true.}.820 The RGB formulation is used when \np[=.true.]{ln_qsr_rgb}{ln\_qsr\_rgb}. 819 821 The RGB attenuation coefficients (\ie\ the inverses of the extinction length scales) are tabulated over 820 822 61 nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L … … 823 825 824 826 \begin{description} 825 \item[ \np{nn_chldta}{nn\_chldta}\forcode{=0}]827 \item[{\np[=0]{nn_chldta}{nn\_chldta}}] 826 828 a constant 0.05 g.Chl/L value everywhere ; 827 \item[ \np{nn_chldta}{nn\_chldta}\forcode{=1}]829 \item[{\np[=1]{nn_chldta}{nn\_chldta}}] 828 830 an observed time varying chlorophyll deduced from satellite surface ocean color measurement spread uniformly in 829 831 the vertical direction; 830 \item[ \np{nn_chldta}{nn\_chldta}\forcode{=2}]832 \item[{\np[=2]{nn_chldta}{nn\_chldta}}] 831 833 same as previous case except that a vertical profile of chlorophyl is used. 832 834 Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value; 833 \item[ \np{ln_qsr_bio}{ln\_qsr\_bio}\forcode{=.true.}]835 \item[{\np[=.true.]{ln_qsr_bio}{ln\_qsr\_bio}}] 834 836 simulated time varying chlorophyll by TOP biogeochemical model. 835 837 In this case, the RGB formulation is used to calculate both the phytoplankton light limitation in … … 944 946 % Diffusive BBL 945 947 % ------------------------------------------------------------------------------------------------------------- 946 \subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf=1})]{Diffusive bottom boundary layer (\protect\np {nn_bbl_ldf}{nn\_bbl\_ldf}\forcode{=1})}948 \subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf=1})]{Diffusive bottom boundary layer (\protect\np[=1]{nn_bbl_ldf}{nn\_bbl\_ldf})} 947 949 \label{subsec:TRA_bbl_diff} 948 950 949 When applying sigma-diffusion (\np {ln_trabbl}{ln\_trabbl}\forcode{=.true.} and \np{nn_bbl_ldf}{nn\_bbl\_ldf} set to 1),951 When applying sigma-diffusion (\np[=.true.]{ln_trabbl}{ln\_trabbl} and \np{nn_bbl_ldf}{nn\_bbl\_ldf} set to 1), 950 952 the diffusive flux between two adjacent cells at the ocean floor is given by 951 953 \[ … … 983 985 % Advective BBL 984 986 % ------------------------------------------------------------------------------------------------------------- 985 \subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv=1,2})]{Advective bottom boundary layer (\protect\np {nn_bbl_adv}{nn\_bbl\_adv}\forcode{=1,2})}987 \subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv=1,2})]{Advective bottom boundary layer (\protect\np[=1,2]{nn_bbl_adv}{nn\_bbl\_adv})} 986 988 \label{subsec:TRA_bbl_adv} 987 989 … … 1014 1016 %%%gmcomment : this section has to be really written 1015 1017 1016 When applying an advective BBL (\np {nn_bbl_adv}{nn\_bbl\_adv}\forcode{=1..2}), an overturning circulation is added which1018 When applying an advective BBL (\np[=1..2]{nn_bbl_adv}{nn\_bbl\_adv}), an overturning circulation is added which 1017 1019 connects two adjacent bottom grid-points only if dense water overlies less dense water on the slope. 1018 1020 The density difference causes dense water to move down the slope. 1019 1021 1020 \np {nn_bbl_adv}{nn\_bbl\_adv}\forcode{=1}:1022 \np[=1]{nn_bbl_adv}{nn\_bbl\_adv}: 1021 1023 the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step 1022 1024 (see black arrow in \autoref{fig:TRA_bbl}) \citep{beckmann.doscher_JPO97}. … … 1025 1027 if the velocity is directed towards greater depth (\ie\ $\vect U \cdot \nabla H > 0$). 1026 1028 1027 \np {nn_bbl_adv}{nn\_bbl\_adv}\forcode{=2}:1029 \np[=2]{nn_bbl_adv}{nn\_bbl\_adv}: 1028 1030 the downslope velocity is chosen to be proportional to $\Delta \rho$, 1029 1031 the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}. … … 1153 1155 (\ie\ fluxes plus content in mass exchanges). 1154 1156 $\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (\textbf{namelist} parameter). 1155 Its default value is \np {rn_atfp}{rn\_atfp}\forcode{=10.e-3}.1157 Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp}. 1156 1158 Note that the forcing correction term in the filter is not applied in linear free surface 1157 1159 (\jp{ln\_linssh}\forcode{=.true.}) (see \autoref{subsec:TRA_sbc}). … … 1216 1218 1217 1219 \begin{description} 1218 \item[ \np{ln_teos10}{ln\_teos10}\forcode{=.true.}]1220 \item[{\np[=.true.]{ln_teos10}{ln\_teos10}}] 1219 1221 the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used. 1220 1222 The accuracy of this approximation is comparable to the TEOS-10 rational function approximation, … … 1235 1237 either computing the air-sea and ice-sea fluxes (forced mode) or 1236 1238 sending the SST field to the atmosphere (coupled mode). 1237 \item[ \np{ln_eos80}{ln\_eos80}\forcode{=.true.}]1239 \item[{\np[=.true.]{ln_eos80}{ln\_eos80}}] 1238 1240 the polyEOS80-bsq equation of seawater is used. 1239 1241 It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized to … … 1247 1249 Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which 1248 1250 is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value. 1249 \item[ \np{ln_seos}{ln\_seos}\forcode{=.true.}]1251 \item[{\np[=.true.]{ln_seos}{ln\_seos}}] 1250 1252 a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen, 1251 1253 the coefficients of which has been optimized to fit the behavior of TEOS10 … … 1367 1369 I've changed "derivative" to "difference" and "mean" to "average"} 1368 1370 1369 With partial cells (\np {ln_zps}{ln\_zps}\forcode{=.true.}) at bottom and top (\np{ln_isfcav}{ln\_isfcav}\forcode{=.true.}),1371 With partial cells (\np[=.true.]{ln_zps}{ln\_zps}) at bottom and top (\np[=.true.]{ln_isfcav}{ln\_isfcav}), 1370 1372 in general, tracers in horizontally adjacent cells live at different depths. 1371 1373 Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module) and 1372 1374 the hydrostatic pressure gradient calculations (\mdl{dynhpg} module). 1373 The partial cell properties at the top (\np {ln_isfcav}{ln\_isfcav}\forcode{=.true.}) are computed in the same way as1375 The partial cell properties at the top (\np[=.true.]{ln_isfcav}{ln\_isfcav}) are computed in the same way as 1374 1376 for the bottom. 1375 1377 So, only the bottom interpolation is explained below. … … 1387 1389 the $z$-partial step coordinate]{ 1388 1390 Discretisation of the horizontal difference and average of tracers in 1389 the $z$-partial step coordinate (\protect\np {ln_zps}{ln\_zps}\forcode{=.true.}) in1391 the $z$-partial step coordinate (\protect\np[=.true.]{ln_zps}{ln\_zps}) in 1390 1392 the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 1391 1393 A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, … … 1459 1461 %%% 1460 1462 1461 \ biblio1462 1463 \ pindex1463 \onlyinsubfile{\bibliography{../main/bibliography}} 1464 1465 \onlyinsubfile{\printindex} 1464 1466 1465 1467 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11578 r11582 3 3 %% Custom aliases 4 4 \newcommand{\cf}{\ensuremath{C\kern-0.14em f}} 5 6 \onlyinsubfile{\makeindex} 5 7 6 8 \begin{document} … … 42 44 are computed and added to the general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively. 43 45 %These trends can be computed using either a forward time stepping scheme 44 %(namelist parameter \np {ln_zdfexp}{ln\_zdfexp}\forcode{=.true.}) or a backward time stepping scheme45 %(\np {ln_zdfexp}{ln\_zdfexp}\forcode{=.false.}) depending on the magnitude of the mixing coefficients,46 %(namelist parameter \np[=.true.]{ln_zdfexp}{ln\_zdfexp}) or a backward time stepping scheme 47 %(\np[=.false.]{ln_zdfexp}{ln\_zdfexp}) depending on the magnitude of the mixing coefficients, 46 48 %and thus of the formulation used (see \autoref{chap:TD}). 47 49 … … 92 94 %-------------------------------------------------------------------------------------------------------------- 93 95 94 When \np {ln_zdfric}{ln\_zdfric}\forcode{=.true.}, a local Richardson number dependent formulation for the vertical momentum and96 When \np[=.true.]{ln_zdfric}{ln\_zdfric}, a local Richardson number dependent formulation for the vertical momentum and 95 97 tracer eddy coefficients is set through the \nam{zdf_ric}{zdf\_ric} namelist variables. 96 98 The vertical mixing coefficients are diagnosed from the large scale variables computed by the model. … … 118 120 119 121 A simple mixing-layer model to transfer and dissipate the atmospheric forcings 120 (wind-stress and buoyancy fluxes) can be activated setting the \np {ln_mldw}{ln\_mldw}\forcode{=.true.} in the namelist.122 (wind-stress and buoyancy fluxes) can be activated setting the \np[=.true.]{ln_mldw}{ln\_mldw} in the namelist. 121 123 122 124 In this case, the local depth of turbulent wind-mixing or "Ekman depth" $h_{e}(x,y,t)$ is evaluated and … … 225 227 which is valid in a stable stratified region with constant values of the Brunt-Vais\"{a}l\"{a} frequency. 226 228 The resulting length scale is bounded by the distance to the surface or to the bottom 227 (\np {nn_mxl}{nn\_mxl}\forcode{=0}) or by the local vertical scale factor (\np{nn_mxl}{nn\_mxl}\forcode{=1}).229 (\np[=0]{nn_mxl}{nn\_mxl}) or by the local vertical scale factor (\np[=1]{nn_mxl}{nn\_mxl}). 228 230 \citet{blanke.delecluse_JPO93} notice that this simplification has two major drawbacks: 229 231 it makes no sense for locally unstable stratification and the computation no longer uses all 230 232 the information contained in the vertical density profile. 231 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np {nn_mxl}{nn\_mxl}\forcode{=2, 3} cases,233 To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np[=2, 3]{nn_mxl}{nn\_mxl} cases, 232 234 which add an extra assumption concerning the vertical gradient of the computed length scale. 233 235 So, the length scales are first evaluated as in \autoref{eq:ZDF_tke_mxl0_1} and then bounded such that: … … 267 269 where $l^{(k)}$ is computed using \autoref{eq:ZDF_tke_mxl0_1}, \ie\ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$. 268 270 269 In the \np {nn_mxl}{nn\_mxl}\forcode{=2} case, the dissipation and mixing length scales take the same value:270 $ l_k= l_\epsilon = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)$, while in the \np {nn_mxl}{nn\_mxl}\forcode{=3} case,271 In the \np[=2]{nn_mxl}{nn\_mxl} case, the dissipation and mixing length scales take the same value: 272 $ l_k= l_\epsilon = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)$, while in the \np[=3]{nn_mxl}{nn\_mxl} case, 271 273 the dissipation and mixing turbulent length scales are give as in \citet{gaspar.gregoris.ea_JGR90}: 272 274 \[ … … 312 314 $\alpha_{CB} = 100$ the Craig and Banner's value. 313 315 As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$, 314 with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter, setting \np {rn_ebb}{rn\_ebb}\forcode{ = 67.83} corresponds316 with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter, setting \np[=67.83]{rn_ebb}{rn\_ebb} corresponds 315 317 to $\alpha_{CB} = 100$. 316 Further setting \np {ln_mxl0}{ln\_mxl0}\forcode{ =.true.}, applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale,318 Further setting \np[=.true.]{ln_mxl0}{ln\_mxl0}, applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, 317 319 with $\beta$ hard coded to the Stacey's value. 318 320 Note that a minimal threshold of \np{rn_emin0}{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the … … 385 387 (\ie\ near-inertial oscillations and ocean swells and waves). 386 388 387 When using this parameterization (\ie\ when \np {nn_etau}{nn\_etau}\forcode{=1}),389 When using this parameterization (\ie\ when \np[=1]{nn_etau}{nn\_etau}), 388 390 the TKE input to the ocean ($S$) imposed by the winds in the form of near-inertial oscillations, 389 391 swell and waves is parameterized by \autoref{eq:ZDF_Esbc} the standard TKE surface boundary condition, … … 398 400 (no penetration if $f_i=1$, \ie\ if the ocean is entirely covered by sea-ice). 399 401 The value of $f_r$, usually a few percents, is specified through \np{rn_efr}{rn\_efr} namelist parameter. 400 The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np {nn_etau}{nn\_etau}\forcode{=0}) or402 The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np[=0]{nn_etau}{nn\_etau}) or 401 403 a latitude dependent value (varying from 0.5~m at the Equator to a maximum value of 30~m at high latitudes 402 (\np {nn_etau}{nn\_etau}\forcode{=1}).403 404 Note that two other option exist, \np {nn_etau}{nn\_etau}\forcode{=2, 3}.404 (\np[=1]{nn_etau}{nn\_etau}). 405 406 Note that two other option exist, \np[=2, 3]{nn_etau}{nn\_etau}. 405 407 They correspond to applying \autoref{eq:ZDF_Ehtau} only at the base of the mixed layer, 406 408 or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrates the ocean. … … 508 510 \caption[Set of predefined GLS parameters or equivalently predefined turbulence models available]{ 509 511 Set of predefined GLS parameters, or equivalently predefined turbulence models available with 510 \protect\np {ln_zdfgls}{ln\_zdfgls}\forcode{=.true.} and controlled by512 \protect\np[=.true.]{ln_zdfgls}{ln\_zdfgls} and controlled by 511 513 the \protect\np{nn_clos}{nn\_clos} namelist variable in \protect\nam{zdf_gls}{zdf\_gls}.} 512 514 \label{tab:ZDF_GLS} … … 519 521 $C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88}, 520 522 or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01} 521 (\np {nn_stab_func}{nn\_stab\_func}\forcode{=0, 3}, resp.).523 (\np[=0, 3]{nn_stab_func}{nn\_stab\_func}, resp.). 522 524 The value of $C_{0\mu}$ depends on the choice of the stability function. 523 525 … … 525 527 Neumann condition through \np{nn_bc_surf}{nn\_bc\_surf} and \np{nn_bc_bot}{nn\_bc\_bot}, resp. 526 528 As for TKE closure, the wave effect on the mixing is considered when 527 \np {rn_crban}{rn\_crban}\forcode{ > 0.} \citep{craig.banner_JPO94, mellor.blumberg_JPO04}.529 \np[ > 0.]{rn_crban}{rn\_crban} \citep{craig.banner_JPO94, mellor.blumberg_JPO04}. 528 530 The \np{rn_crban}{rn\_crban} namelist parameter is $\alpha_{CB}$ in \autoref{eq:ZDF_Esbc} and 529 531 \np{rn_charn}{rn\_charn} provides the value of $\beta$ in \autoref{eq:ZDF_Lsbc}. … … 536 538 the entrainment depth predicted in stably stratified situations, 537 539 and that its value has to be chosen in accordance with the algebraic model for the turbulent fluxes. 538 The clipping is only activated if \np {ln_length_lim}{ln\_length\_lim}\forcode{=.true.},540 The clipping is only activated if \np[=.true.]{ln_length_lim}{ln\_length\_lim}, 539 541 and the $c_{lim}$ is set to the \np{rn_clim_galp}{rn\_clim\_galp} value. 540 542 … … 707 709 708 710 Options are defined through the \nam{zdf}{zdf} namelist variables. 709 The non-penetrative convective adjustment is used when \np {ln_zdfnpc}{ln\_zdfnpc}\forcode{=.true.}.711 The non-penetrative convective adjustment is used when \np[=.true.]{ln_zdfnpc}{ln\_zdfnpc}. 710 712 It is applied at each \np{nn_npc}{nn\_npc} time step and mixes downwards instantaneously the statically unstable portion of 711 713 the water column, but only until the density structure becomes neutrally stable … … 751 753 752 754 Options are defined through the \nam{zdf}{zdf} namelist variables. 753 The enhanced vertical diffusion parameterisation is used when \np {ln_zdfevd}{ln\_zdfevd}\forcode{=.true.}.755 The enhanced vertical diffusion parameterisation is used when \np[=.true.]{ln_zdfevd}{ln\_zdfevd}. 754 756 In this case, the vertical eddy mixing coefficients are assigned very large values 755 757 in regions where the stratification is unstable 756 758 (\ie\ when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{lazar_phd97, lazar.madec.ea_JPO99}. 757 This is done either on tracers only (\np {nn_evdm}{nn\_evdm}\forcode{=0}) or758 on both momentum and tracers (\np {nn_evdm}{nn\_evdm}\forcode{=1}).759 760 In practice, where $N^2\leq 10^{-12}$, $A_T^{vT}$ and $A_T^{vS}$, and if \np {nn_evdm}{nn\_evdm}\forcode{=1},759 This is done either on tracers only (\np[=0]{nn_evdm}{nn\_evdm}) or 760 on both momentum and tracers (\np[=1]{nn_evdm}{nn\_evdm}). 761 762 In practice, where $N^2\leq 10^{-12}$, $A_T^{vT}$ and $A_T^{vS}$, and if \np[=1]{nn_evdm}{nn\_evdm}, 761 763 the four neighbouring $A_u^{vm} \;\mbox{and}\;A_v^{vm}$ values also, are set equal to 762 764 the namelist parameter \np{rn_avevd}{rn\_avevd}. … … 795 797 The OSMOSIS turbulent closure scheme already includes enhanced vertical diffusion in the case of convection, 796 798 %as governed by the variables $bvsqcon$ and $difcon$ found in \mdl{zdfkpp}, 797 therefore \np {ln_zdfevd}{ln\_zdfevd}\forcode{=.false.} should be used with the OSMOSIS scheme.799 therefore \np[=.false.]{ln_zdfevd}{ln\_zdfevd} should be used with the OSMOSIS scheme. 798 800 % gm% + one word on non local flux with KPP scheme trakpp.F90 module... 799 801 … … 1002 1004 c_b^T = - r 1003 1005 \] 1004 When \np {ln_lin}{ln\_lin} \forcode{= .true.}, the value of $r$ used is \np{rn_Uc0}{rn\_Uc0}*\np{rn_Cd0}{rn\_Cd0}.1005 Setting \np {ln_OFF}{ln\_OFF} \forcode{= .true.} (and \forcode{ln_lin=.true.}) is equivalent to setting $r=0$ and leads to a free-slip boundary condition.1006 When \np[=.true.]{ln_lin}{ln\_lin}, the value of $r$ used is \np{rn_Uc0}{rn\_Uc0}*\np{rn_Cd0}{rn\_Cd0}. 1007 Setting \np[=.true.]{ln_OFF}{ln\_OFF} (and \forcode{ln_lin=.true.}) is equivalent to setting $r=0$ and leads to a free-slip boundary condition. 1006 1008 1007 1009 These values are assigned in \mdl{zdfdrg}. 1008 1010 Note that there is support for local enhancement of these values via an externally defined 2D mask array 1009 (\np {ln_boost}{ln\_boost}\forcode{=.true.}) given in the \ifile{bfr\_coef} input NetCDF file.1011 (\np[=.true.]{ln_boost}{ln\_boost}) given in the \ifile{bfr\_coef} input NetCDF file. 1010 1012 The mask values should vary from 0 to 1. 1011 1013 Locations with a non-zero mask value will have the friction coefficient increased by … … 1043 1045 $C_D$= \np{rn_Cd0}{rn\_Cd0}, and $e_b$ =\np{rn_bfeb2}{rn\_bfeb2}. 1044 1046 Note that for applications which consider tides explicitly, a low or even zero value of \np{rn_bfeb2}{rn\_bfeb2} is recommended. A local enhancement of $C_D$ is again possible via an externally defined 2D mask array 1045 (\np {ln_boost}{ln\_boost}\forcode{=.true.}).1047 (\np[=.true.]{ln_boost}{ln\_boost}). 1046 1048 This works in the same way as for the linear friction case with non-zero masked locations increased by 1047 1049 $mask\_value$ * \np{rn_boost}{rn\_boost} * \np{rn_Cd0}{rn\_Cd0}. … … 1055 1057 In the non-linear friction case, the drag coefficient, $C_D$, can be optionally enhanced using 1056 1058 a "law of the wall" scaling. This assumes that the model vertical resolution can capture the logarithmic layer which typically occur for layers thinner than 1 m or so. 1057 If \np {ln_loglayer}{ln\_loglayer} \forcode{= .true.}, $C_D$ is no longer constant but is related to the distance to the wall (or equivalently to the half of the top/bottom layer thickness):1059 If \np[=.true.]{ln_loglayer}{ln\_loglayer}, $C_D$ is no longer constant but is related to the distance to the wall (or equivalently to the half of the top/bottom layer thickness): 1058 1060 \[ 1059 1061 C_D = \left ( {\kappa \over {\mathrm log}\left ( 0.5 \; e_{3b} / rn\_{z0} \right ) } \right )^2 … … 1070 1072 1071 1073 \noindent The log-layer enhancement can also be applied to the top boundary friction if 1072 under ice-shelf cavities are activated (\np {ln_isfcav}{ln\_isfcav}\forcode{=.true.}).1074 under ice-shelf cavities are activated (\np[=.true.]{ln_isfcav}{ln\_isfcav}). 1073 1075 %In this case, the relevant namelist parameters are \np{rn_tfrz0}{rn\_tfrz0}, \np{rn_tfri2}{rn\_tfri2} and \np{rn_tfri2_max}{rn\_tfri2\_max}. 1074 1076 … … 1076 1078 % Explicit bottom Friction 1077 1079 % ------------------------------------------------------------------------------------------------------------- 1078 \subsection[Explicit top/bottom friction (\forcode{ln_drgimp=.false.})]{Explicit top/bottom friction (\protect\np {ln_drgimp}{ln\_drgimp}\forcode{=.false.})}1080 \subsection[Explicit top/bottom friction (\forcode{ln_drgimp=.false.})]{Explicit top/bottom friction (\protect\np[=.false.]{ln_drgimp}{ln\_drgimp})} 1079 1081 \label{subsec:ZDF_drg_stability} 1080 1082 1081 Setting \np {ln_drgimp}{ln\_drgimp} \forcode{= .false.} means that bottom friction is treated explicitly in time, which has the advantage of simplifying the interaction with the split-explicit free surface (see \autoref{subsec:ZDF_drg_ts}). The latter does indeed require the knowledge of bottom stresses in the course of the barotropic sub-iteration, which becomes less straightforward in the implicit case. In the explicit case, top/bottom stresses can be computed using \textit{before} velocities and inserted in the overall momentum tendency budget. This reads:1083 Setting \np[=.false.]{ln_drgimp}{ln\_drgimp} means that bottom friction is treated explicitly in time, which has the advantage of simplifying the interaction with the split-explicit free surface (see \autoref{subsec:ZDF_drg_ts}). The latter does indeed require the knowledge of bottom stresses in the course of the barotropic sub-iteration, which becomes less straightforward in the implicit case. In the explicit case, top/bottom stresses can be computed using \textit{before} velocities and inserted in the overall momentum tendency budget. This reads: 1082 1084 1083 1085 At the top (below an ice shelf cavity): … … 1137 1139 % Implicit Bottom Friction 1138 1140 % ------------------------------------------------------------------------------------------------------------- 1139 \subsection[Implicit top/bottom friction (\forcode{ln_drgimp=.true.})]{Implicit top/bottom friction (\protect\np {ln_drgimp}{ln\_drgimp}\forcode{=.true.})}1141 \subsection[Implicit top/bottom friction (\forcode{ln_drgimp=.true.})]{Implicit top/bottom friction (\protect\np[=.true.]{ln_drgimp}{ln\_drgimp})} 1140 1142 \label{subsec:ZDF_drg_imp} 1141 1143 … … 1170 1172 \label{subsec:ZDF_drg_ts} 1171 1173 1172 With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration and equal to the value used to update the baroclinic momentum trend. Provided \np {ln_drgimp}{ln\_drgimp}\forcode{= .false.} and a centred or \textit{leap-frog} like integration of barotropic equations is used (\ie\ \forcode{ln_bt_fw=.false.}, cf \autoref{subsec:DYN_spg_ts}), this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step. However, if \np{ln_drgimp}{ln\_drgimp}\forcode{= .true.}, stresses depend on the \textit{after} value of the velocities which themselves depend on the barotropic iteration result. This cyclic dependency makes difficult obtaining consistent stresses in 2d and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized since it interferes with the adjustment to the boundary conditions.1174 With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration and equal to the value used to update the baroclinic momentum trend. Provided \np[=.false.]{ln_drgimp}{ln\_drgimp} and a centred or \textit{leap-frog} like integration of barotropic equations is used (\ie\ \forcode{ln_bt_fw=.false.}, cf \autoref{subsec:DYN_spg_ts}), this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step. However, if \np[=.true.]{ln_drgimp}{ln\_drgimp}, stresses depend on the \textit{after} value of the velocities which themselves depend on the barotropic iteration result. This cyclic dependency makes difficult obtaining consistent stresses in 2d and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized since it interferes with the adjustment to the boundary conditions. 1173 1175 1174 1176 The strategy to handle top/bottom stresses with split-explicit free surface in \NEMO\ is as follows: … … 1508 1510 % ================================================================ 1509 1511 1510 \ biblio1511 1512 \ pindex1512 \onlyinsubfile{\bibliography{../main/bibliography}} 1513 1514 \onlyinsubfile{\printindex} 1513 1515 1514 1516 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_cfgs.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 253 255 254 256 The GYRE configuration is set like an analytical configuration. 255 Through \np {ln_read_cfg}{ln\_read\_cfg}\forcode{ = .false.} in \nam{cfg}{cfg} namelist defined in257 Through \np[=.false.]{ln_read_cfg}{ln\_read\_cfg} in \nam{cfg}{cfg} namelist defined in 256 258 the reference configuration \path{./cfgs/GYRE_PISCES/EXPREF/namelist_cfg} 257 259 analytical definition of grid in GYRE is done in usrdef\_hrg, usrdef\_zgr routines. … … 271 273 For example, keeping a same model size on each processor while increasing the number of processor used is very easy, 272 274 even though the physical integrity of the solution can be compromised. 273 Benchmark is activate via \np {ln_bench}{ln\_bench}\forcode{ = .true.} in \nam{usr_def}{usr\_def} in275 Benchmark is activate via \np[=.true.]{ln_bench}{ln\_bench} in \nam{usr_def}{usr\_def} in 274 276 namelist \path{./cfgs/GYRE_PISCES/EXPREF/namelist_cfg}. 275 277 … … 299 301 In particular, the AMM uses $s$-coordinates in the vertical rather than $z$-coordinates and 300 302 is forced with tidal lateral boundary conditions using a Flather boundary condition from the BDY module. 301 Also specific to the AMM configuration is the use of the GLS turbulence scheme (\np {ln_zdfgls}{ln\_zdfgls} \forcode{= .true.}).303 Also specific to the AMM configuration is the use of the GLS turbulence scheme (\np[=.true.]{ln_zdfgls}{ln\_zdfgls}). 302 304 303 305 In addition to the tidal boundary condition the model may also take open boundary conditions from … … 308 310 Unlike ordinary river points the Baltic inputs also include salinity and temperature data. 309 311 310 \ biblio311 312 \ pindex312 \onlyinsubfile{\bibliography{../main/bibliography}} 313 314 \onlyinsubfile{\printindex} 313 315 314 316 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex
r11544 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 329 331 It has not been implemented. 330 332 331 \ biblio332 333 \ pindex333 \onlyinsubfile{\bibliography{../main/bibliography}} 334 335 \onlyinsubfile{\printindex} 334 336 335 337 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_misc.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 416 418 417 419 % ================================================================ 418 \ biblio419 420 \ pindex420 \onlyinsubfile{\bibliography{../main/bibliography}} 421 422 \onlyinsubfile{\printindex} 421 423 422 424 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex
r11561 r11582 1173 1173 Nevertheless it is currently not available in the iso-neutral case. 1174 1174 1175 \ biblio1176 1177 \ pindex1175 \onlyinsubfile{\bibliography{../main/bibliography}} 1176 1177 \onlyinsubfile{\input{../../global/printindex}} 1178 1178 1179 1179 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 299 301 The default value is 1, as recommended by \citet{Roullet2000?} 300 302 301 \colorbox{red}{\np {rnu}{rnu}\forcode{=1} to be suppressed from namelist !}303 \colorbox{red}{\np[=1]{rnu}{rnu} to be suppressed from namelist !} 302 304 303 305 %------------------------------------------------------------- … … 313 315 In particular, this means that in filtered case, the matrix to be inverted has to be recomputed at each time-step. 314 316 315 \ biblio316 317 \ pindex317 \onlyinsubfile{\bibliography{../main/bibliography}} 318 319 \onlyinsubfile{\printindex} 318 320 319 321 \end{document} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11578 r11582 1 1 \documentclass[../main/NEMO_manual]{subfiles} 2 3 \onlyinsubfile{\makeindex} 2 4 3 5 \begin{document} … … 86 88 where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient. 87 89 $\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (namelist parameter). 88 Its default value is \np {rn_atfp}{rn\_atfp}\forcode{ = 10.e-3} (see \autoref{sec:TD_mLF}),90 Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp} (see \autoref{sec:TD_mLF}), 89 91 causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}). 90 92 The addition of a time filter degrades the accuracy of the calculation from second to first order. … … 172 174 173 175 The leapfrog environment supports a centred in time computation of the surface pressure, \ie\ evaluated 174 at \textit{now} time step. This refers to as the explicit free surface case in the code (\np {ln_dynspg_exp}{ln\_dynspg\_exp}\forcode{=.true.}).176 at \textit{now} time step. This refers to as the explicit free surface case in the code (\np[=.true.]{ln_dynspg_exp}{ln\_dynspg\_exp}). 175 177 This choice however imposes a strong constraint on the time step which should be small enough to resolve the propagation 176 178 of external gravity waves. As a matter of fact, one rather use in a realistic setup, a split-explicit free surface 177 (\np {ln_dynspg_ts}{ln\_dynspg\_ts}\forcode{=.true.}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc179 (\np[=.true.]{ln_dynspg_ts}{ln\_dynspg\_ts}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc 178 180 time steps. The use of the time-splitting (in combination with non-linear free surface) imposes some constraints on the design of 179 181 the overall flowchart, in particular to ensure exact tracer conservation (see \autoref{fig:TD_TimeStep_flowchart}). … … 297 299 When restarting, if the time step has been changed, or one of the prognostic variables at \textit{before} time step 298 300 is missing, an Euler time stepping scheme is imposed. A forward initial step can still be enforced by the user by setting 299 the namelist variable \np {nn_euler}{nn\_euler}\forcode{=0}. Other options to control the time integration of the model301 the namelist variable \np[=0]{nn_euler}{nn\_euler}. Other options to control the time integration of the model 300 302 are defined through the \nam{run}{run} namelist variables. 301 303 %%% … … 386 388 } 387 389 388 \ biblio389 390 \ pindex390 \onlyinsubfile{\bibliography{../main/bibliography}} 391 392 \onlyinsubfile{\printindex} 391 393 392 394 \end{document}
Note: See TracChangeset
for help on using the changeset viewer.