Changeset 11599
- Timestamp:
- 2019-09-25T22:19:45+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO/subfiles
- Files:
-
- 13 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex
r11598 r11599 341 341 and possibly introduce masking of extra land points to better fit the original bathymetry file. 342 342 \end{description} 343 %%%344 343 345 344 %% ================================================================================================= … … 384 383 \subsubsection[$S$-coordinate (\forcode{ln_sco})]{$S$-coordinate (\protect\np{ln_sco}{ln\_sco})} 385 384 \label{sec:DOMCFG_sco} 386 %387 385 \begin{listing} 388 386 \nlst{namzgr_sco_domcfg} -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex
r11598 r11599 134 134 \int\limits_D \zeta \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\ 135 135 \] 136 %137 136 \[ 138 137 % \label{eq:INVARIANTS_E_tot_vect_adv_1} … … 272 271 %gm comment 273 272 \gmcomment{ 274 %275 273 The last equality comes from the following equation, 276 274 \begin{flalign*} … … 329 327 % end gm comment 330 328 } 331 %332 329 333 330 %% ================================================================================================= -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex
r11598 r11599 311 311 \end{align*} 312 312 \end{subequations} 313 %314 313 Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and 315 314 using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side, … … 361 360 } 362 361 \end{align*} 363 %364 362 Introducing the vertical scale factor inside the horizontal derivative of the first two terms 365 363 (\ie\ the horizontal divergence), it becomes : -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ASM.tex
r11598 r11599 101 101 one assimilation cycle to the next than that described by \autoref{eq:ASM_F1_i}. 102 102 103 %==========================================================================104 % Divergence damping description %%%105 103 %% ================================================================================================= 106 104 \section{Divergence damping initialisation} … … 145 143 This specifies the number of iterations of the divergence damping. Setting a value of the order of 100 will result in a significant reduction in the vertical velocity induced by the increments. 146 144 147 %==========================================================================148 149 145 %% ================================================================================================= 150 146 \section{Implementation details} … … 154 150 the ORCA2 grid. 155 151 156 %157 152 \begin{listing} 158 153 \nlst{nam_asminc} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11598 r11599 1583 1583 \label{sec:DIA_diag_harm} 1584 1584 1585 %1586 1585 \begin{listing} 1587 1586 \nlst{nam_diaharm} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex
r11598 r11599 65 65 The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable. 66 66 67 %===============================================================68 67 %% ================================================================================================= 69 68 \section{Warm layer model} 70 69 \label{sec:DIU_warm_layer_sec} 71 %===============================================================72 70 73 71 The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter). … … 122 120 In practice the second term acts as a relaxation on the temperature. 123 121 124 %===============================================================125 126 122 %% ================================================================================================= 127 123 \section{Cool skin model} 128 124 \label{sec:DIU_cool_skin_sec} 129 130 %===============================================================131 125 132 126 The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11598 r11599 67 67 Furthermore, the tendency terms associated with the 2D barotropic vorticity balance (when \texttt{trdvor?} is defined) 68 68 can be derived from the 3D terms. 69 %%%70 69 \gmcomment{STEVEN: not quite sure I've got the sense of the last sentence. does 71 70 MISC correspond to "extracting tendency terms" or "vorticity balance"?} … … 535 534 there is also the possibility of using a $4^{th}$ order evaluation of the advective velocity as in ROMS. 536 535 This is an error and should be suppressed soon. 537 %%%538 536 \gmcomment{action : this have to be done} 539 %%%540 537 541 538 %% ================================================================================================= … … 809 806 \subsection[Split-explicit free surface (\forcode{ln_dynspg_ts})]{Split-explicit free surface (\protect\np{ln_dynspg_ts}{ln\_dynspg\_ts})} 810 807 \label{subsec:DYN_spg_ts} 811 %812 808 %\nlst{namsplit} 813 809 … … 824 820 Therefore, $\rdt_e$ is adjusted so that the Maximum allowed Courant number is smaller than \np{rn_bt_cmax}{rn\_bt\_cmax}. 825 821 826 %%%827 822 The barotropic mode solves the following equations: 828 823 % \begin{subequations} … … 893 888 %references to Patrick Marsaleix' work here. Also work done by SHOM group. 894 889 895 %%%896 890 897 891 As far as tracer conservation is concerned, … … 907 901 obtain exact conservation. 908 902 909 %%%910 903 911 904 One can eventually choose to feedback instantaneous values by not using any time filter … … 1190 1183 the first derivative term normal to the coast depends on the free or no-slip lateral boundary conditions chosen, 1191 1184 while the third derivative terms normal to the coast are set to zero (see \autoref{chap:LBC}). 1192 %%%1193 1185 \gmcomment{add a remark on the the change in the position of the coefficient} 1194 %%%1195 1186 1196 1187 %% ================================================================================================= -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11598 r11599 68 68 \label{sec:LDF_slp} 69 69 70 %%%71 70 \gmcomment{ 72 71 we should emphasize here that the implementation is a rather old one. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11598 r11599 135 135 136 136 %\colorbox{yellow}{Miss: } 137 %138 137 %A extensive description of all namsbc namelist (parameter that have to be 139 138 %created!) 140 %141 139 %Especially the \np{nn_fsbc}{nn\_fsbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu 142 140 %ssv) \ie\ information required by flux computation or sea-ice 143 %144 141 %\mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add 145 142 %a word on runoff: included in surface bc or add as lateral obc{\ldots}. 146 %147 143 %Sbcmod manage the ``providing'' (fourniture) to the ocean the 7 fields 148 %149 144 %Fluxes update only each nf\_sbc time step (namsbc) explain relation 150 145 %between nf\_sbc and nf\_ice, do we define nf\_blk??? ? only one 151 146 %nf\_sbc 152 %153 147 %Explain here all the namlist namsbc variable{\ldots}. 154 %155 148 % explain : use or not of surface currents 156 %157 149 %\colorbox{yellow}{End Miss } 158 150 … … 889 881 890 882 %\gmcomment{ word doc of runoffs: 891 %892 883 %In the current \NEMO\ setup river runoff is added to emp fluxes, these are then applied at just the sea surface as a volume change (in the variable volume case this is a literal volume change, and in the linear free surface case the free surface is moved) and a salt flux due to the concentration/dilution effect. There is also an option to increase vertical mixing near river mouths; this gives the effect of having a 3d river. All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface. 893 884 %Our aim was to code the option to specify the temperature and salinity of river runoff, (as well as the amount), along with the depth that the river water will affect. This would make it possible to model low salinity outflow, such as the Baltic, and would allow the ocean temperature to be affected by river runoff. … … 1313 1304 \subsection[Diurnal cycle (\textit{sbcdcy.F90})]{Diurnal cycle (\protect\mdl{sbcdcy})} 1314 1305 \label{subsec:SBC_dcy} 1315 %1316 1306 1317 1307 \begin{figure}[!t] -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11598 r11599 530 530 \label{subsec:TRA_ldf_iso_triad} 531 531 532 %&& Standard rotated (bi-)laplacian operator533 %&& ----------------------------------------------534 532 %% ================================================================================================= 535 533 \subsubsection[Standard rotated (bi-)laplacian operator (\textit{traldf\_iso.F90})]{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})} … … 574 572 They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. 575 573 576 %&& Triad rotated (bi-)laplacian operator577 %&& -------------------------------------------578 574 %% ================================================================================================= 579 575 \subsubsection[Triad rotated (bi-)laplacian operator (\forcode{ln_traldf_triad})]{Triad rotated (bi-)laplacian operator (\protect\np{ln_traldf_triad}{ln\_traldf\_triad})} … … 593 589 normal to the bottom and normal to the surface are set to zero. 594 590 595 %&& Option for the rotated operators596 %&& ----------------------------------------------597 591 %% ================================================================================================= 598 592 \subsubsection{Option for the rotated operators} … … 1270 1264 1271 1265 % =====>>>>> TO BE written 1272 %1273 1266 1274 1267 %% ================================================================================================= … … 1365 1358 Sensitivity of the advection schemes to the way horizontal averages are performed in the vicinity of 1366 1359 partial cells should be further investigated in the near future. 1367 %%%1368 1360 \gmcomment{gm : this last remark has to be done} 1369 %%%1370 1361 1371 1362 \onlyinsubfile{\input{../../global/epilogue}} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11598 r11599 771 771 \label{subsec:ZDF_ddm} 772 772 773 %774 773 %\nlst{namzdf_ddm} 775 774 … … 858 857 \label{sec:ZDF_drg} 859 858 860 %861 859 \begin{listing} 862 860 \nlst{namdrg} … … 1127 1125 \label{subsec:ZDF_tmx_new} 1128 1126 1129 %1130 1127 \begin{listing} 1131 1128 \nlst{namzdf_iwm} … … 1180 1177 $h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of 1181 1178 the abyssal hill topography \citep{goff_JGR10} and the latitude. 1182 %1183 1179 % Jc: input files names ? 1184 1180 -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11598 r11599 78 78 the surface height, again so long as $\eta > -H$. 79 79 80 %%%81 80 % essai update time splitting... 82 %%%83 81 84 82 %% ================================================================================================= -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11598 r11599 30 30 \gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here, 31 31 would help ==> to be added} 32 %%%%33 32 34 33 Having defined the continuous equations in \autoref{chap:MB}, we need now to choose a time discretization, … … 294 293 the namelist variable \np[=0]{nn_euler}{nn\_euler}. Other options to control the time integration of the model 295 294 are defined through the \nam{run}{run} namelist variables. 296 %%%297 295 \gmcomment{ 298 296 add here how to force the restart to contain only one time step for operational purposes … … 304 302 a word on the check of restart ..... 305 303 } 306 %%%307 304 308 305 \gmcomment{ % add a subsection here … … 321 318 } %% end add 322 319 323 %%324 320 \gmcomment{ % add implicit in vvl case and Crant-Nicholson scheme 325 321 … … 371 367 \end{flalign*} 372 368 373 %%374 369 } 375 370
Note: See TracChangeset
for help on using the changeset viewer.