Changeset 11690
- Timestamp:
- 2019-10-11T19:05:10+02:00 (5 years ago)
- Location:
- NEMO/trunk/doc/latex/NEMO/subfiles
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex
r11599 r11690 113 113 \begin{figure}[!tb] 114 114 \centering 115 \includegraphics[width=0.66\textwidth]{ Fig_zgr}115 \includegraphics[width=0.66\textwidth]{DOMCFG_zgr} 116 116 \caption[DOMAINcfg: default vertical mesh for ORCA2]{ 117 117 Default vertical mesh for ORCA2: 30 ocean levels (L30). … … 444 444 \begin{figure}[!ht] 445 445 \centering 446 \includegraphics[width=0.66\textwidth]{ Fig_sco_function}446 \includegraphics[width=0.66\textwidth]{DOMCFG_sco_function} 447 447 \caption[DOMAINcfg: examples of the stretching function applied to a seamount]{ 448 448 Examples of the stretching function applied to a seamount; … … 493 493 \begin{figure}[!ht] 494 494 \centering 495 \includegraphics[width=0.66\textwidth]{ Fig_DOM_compare_coordinates_surface}495 \includegraphics[width=0.66\textwidth]{DOMCFG_compare_coordinates_surface} 496 496 \caption[DOMAINcfg: comparison of $s$- and $z$-coordinate]{ 497 497 A comparison of the \citet{song.haidvogel_JCP94} $S$-coordinate (solid lines), -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_algos.tex
r11598 r11690 311 311 \begin{figure}[!ht] 312 312 \centering 313 \includegraphics[width=0.66\textwidth]{ Fig_ISO_triad}313 \includegraphics[width=0.66\textwidth]{ALGOS_ISO_triad} 314 314 \caption[Triads used in the Griffies's like iso-neutral diffision scheme for 315 315 $u$- and $w$-components)]{ -
NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex
r11598 r11690 212 212 \begin{figure}[tb] 213 213 \centering 214 \includegraphics[width=0.66\textwidth]{ Fig_GRIFF_triad_fluxes}214 \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_triad_fluxes} 215 215 \caption[Triads arrangement and tracer gradients to give lateral and vertical tracer fluxes]{ 216 216 (a) Arrangement of triads $S_i$ and tracer gradients to … … 272 272 \begin{figure}[tb] 273 273 \centering 274 \includegraphics[width=0.66\textwidth]{ Fig_GRIFF_qcells}274 \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_qcells} 275 275 \caption[Triad notation for quarter cells]{ 276 276 Triad notation for quarter cells. … … 657 657 \begin{figure}[h] 658 658 \centering 659 \includegraphics[width=0.66\textwidth]{ Fig_GRIFF_bdry_triads}659 \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_bdry_triads} 660 660 \caption[Boundary triads]{ 661 661 (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer points (black dots), … … 808 808 \begin{figure}[h] 809 809 \centering 810 \includegraphics[width=0.66\textwidth]{ Fig_GRIFF_MLB_triads}810 \includegraphics[width=0.66\textwidth]{TRIADS_GRIFF_MLB_triads} 811 811 \caption[Definition of mixed-layer depth and calculation of linearly tapered triads]{ 812 812 Definition of mixed-layer depth and calculation of linearly tapered triads. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIA.tex
r11599 r11690 1967 1967 \begin{figure}[!t] 1968 1968 \centering 1969 \includegraphics[width=0.66\textwidth]{ Fig_mask_subasins}1969 \includegraphics[width=0.66\textwidth]{DIA_mask_subasins} 1970 1970 \caption[Decomposition of the World Ocean to compute transports as well as 1971 1971 the meridional stream-function]{ -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DOM.tex
r11630 r11690 60 60 \begin{figure} 61 61 \centering 62 \includegraphics[width=0.33\textwidth]{ Fig_cell}62 \includegraphics[width=0.33\textwidth]{DOM_cell} 63 63 \caption[Arrangement of variables in the unit cell of space domain]{ 64 64 Arrangement of variables in the unit cell of space domain. … … 151 151 \begin{figure} 152 152 \centering 153 \includegraphics[width=0.5\textwidth]{ Fig_zgr_e3}153 \includegraphics[width=0.5\textwidth]{DOM_zgr_e3} 154 154 \caption[Comparison of grid-point position, vertical grid-size and scale factors]{ 155 155 Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, … … 265 265 \begin{figure} 266 266 \centering 267 \includegraphics[width=0.33\textwidth]{ Fig_index_hor}267 \includegraphics[width=0.33\textwidth]{DOM_index_hor} 268 268 \caption[Horizontal integer indexing]{ 269 269 Horizontal integer indexing used in the \fortran\ code. … … 316 316 \begin{figure} 317 317 \centering 318 \includegraphics[width=0.33\textwidth]{ Fig_index_vert}318 \includegraphics[width=0.33\textwidth]{DOM_index_vert} 319 319 \caption[Vertical integer indexing]{ 320 320 Vertical integer indexing used in the \fortran\ code. … … 474 474 \begin{figure} 475 475 \centering 476 \includegraphics[width=0.5\textwidth]{ Fig_z_zps_s_sps}476 \includegraphics[width=0.5\textwidth]{DOM_z_zps_s_sps} 477 477 \caption[Ocean bottom regarding coordinate systems ($z$, $s$ and hybrid $s-z$)]{ 478 478 The ocean bottom as seen by the model: -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex
r11599 r11690 311 311 \begin{figure}[!ht] 312 312 \centering 313 \includegraphics[width=0.66\textwidth]{ Fig_DYN_een_triad}313 \includegraphics[width=0.66\textwidth]{DYN_een_triad} 314 314 \caption[Triads used in the energy and enstrophy conserving scheme (EEN)]{ 315 315 Triads used in the energy and enstrophy conserving scheme (EEN) for … … 846 846 \begin{figure}[!t] 847 847 \centering 848 \includegraphics[width=0.66\textwidth]{ Fig_DYN_dynspg_ts}848 \includegraphics[width=0.66\textwidth]{DYN_dynspg_ts} 849 849 \caption[Split-explicit time stepping scheme for the external and internal modes]{ 850 850 Schematic of the split-explicit time stepping scheme for the external and internal modes. … … 1480 1480 \begin{figure}[!ht] 1481 1481 \centering 1482 \includegraphics[width=0.66\textwidth]{ Fig_WAD_dynhpg}1482 \includegraphics[width=0.66\textwidth]{DYN_WAD_dynhpg} 1483 1483 \caption[Combinations controlling the limiting of the horizontal pressure gradient in 1484 1484 wetting and drying regimes]{ -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LBC.tex
r11598 r11690 79 79 \begin{figure}[!t] 80 80 \centering 81 \includegraphics[width=0.66\textwidth]{ Fig_LBC_uv}81 \includegraphics[width=0.66\textwidth]{LBC_uv} 82 82 \caption[Lateral boundary at $T$-level]{ 83 83 Lateral boundary (thick line) at T-level. … … 104 104 \begin{figure}[!p] 105 105 \centering 106 \includegraphics[width=0.66\textwidth]{ Fig_LBC_shlat}106 \includegraphics[width=0.66\textwidth]{LBC_shlat} 107 107 \caption[Lateral boundary conditions]{ 108 108 Lateral boundary conditions … … 201 201 \begin{figure}[!t] 202 202 \centering 203 \includegraphics[width=0.66\textwidth]{ Fig_LBC_jperio}203 \includegraphics[width=0.66\textwidth]{LBC_jperio} 204 204 \caption[Setting of east-west cyclic and symmetric across the Equator boundary conditions]{ 205 205 Setting of (a) east-west cyclic (b) symmetric across the Equator boundary conditions} … … 219 219 \begin{figure}[!t] 220 220 \centering 221 \includegraphics[width=0.66\textwidth]{ Fig_North_Fold_T}221 \includegraphics[width=0.66\textwidth]{LBC_North_Fold_T} 222 222 \caption[North fold boundary in ORCA 2\deg, 1/4\deg and 1/12\deg]{ 223 223 North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($jperio=4$), … … 272 272 \begin{figure}[!t] 273 273 \centering 274 \includegraphics[width=0.66\textwidth]{ Fig_mpp}274 \includegraphics[width=0.66\textwidth]{LBC_mpp} 275 275 \caption{Positioning of a sub-domain when massively parallel processing is used} 276 276 \label{fig:LBC_mpp} … … 325 325 \begin{figure}[!ht] 326 326 \centering 327 \includegraphics[width=0.66\textwidth]{ Fig_mppini2}327 \includegraphics[width=0.66\textwidth]{LBC_mppini2} 328 328 \caption[Atlantic domain defined for the CLIPPER projet]{ 329 329 Example of Atlantic domain defined for the CLIPPER projet. … … 596 596 \begin{figure}[!t] 597 597 \centering 598 \includegraphics[width=0.66\textwidth]{ Fig_LBC_bdy_geom}598 \includegraphics[width=0.66\textwidth]{LBC_bdy_geom} 599 599 \caption[Geometry of unstructured open boundary]{Example of geometry of unstructured open boundary} 600 600 \label{fig:LBC_bdy_geom} … … 631 631 \begin{figure}[!t] 632 632 \centering 633 \includegraphics[width=0.66\textwidth]{ Fig_LBC_nc_header}633 \includegraphics[width=0.66\textwidth]{LBC_nc_header} 634 634 \caption[Header for a \protect\ifile{coordinates.bdy} file]{ 635 635 Example of the header for a \protect\ifile{coordinates.bdy} file} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex
r11599 r11690 237 237 \begin{figure}[!ht] 238 238 \centering 239 \includegraphics[width=0.66\textwidth]{ Fig_LDF_ZDF1}239 \includegraphics[width=0.66\textwidth]{LDF_ZDF1} 240 240 \caption{Averaging procedure for isopycnal slope computation} 241 241 \label{fig:LDF_ZDF1} … … 263 263 \begin{figure}[!ht] 264 264 \centering 265 \includegraphics[width=0.66\textwidth]{ Fig_eiv_slp}265 \includegraphics[width=0.66\textwidth]{LDF_eiv_slp} 266 266 \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{ 267 267 Vertical profile of the slope used for lateral mixing in the mixed layer: -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex
r11598 r11690 711 711 \begin{figure} 712 712 \centering 713 \includegraphics[width=0.66\textwidth]{ Fig_OBS_avg_rec}713 \includegraphics[width=0.66\textwidth]{OBS_avg_rec} 714 714 \caption[Observational weights with a rectangular footprint]{ 715 715 Weights associated with each model grid box (blue lines and numbers) … … 720 720 \begin{figure} 721 721 \centering 722 \includegraphics[width=0.66\textwidth]{ Fig_OBS_avg_rad}722 \includegraphics[width=0.66\textwidth]{OBS_avg_rad} 723 723 \caption[Observational weights with a radial footprint]{ 724 724 Weights associated with each model grid box (blue lines and numbers) … … 798 798 \begin{figure} 799 799 \centering 800 \includegraphics[width=0.66\textwidth]{ Fig_ASM_obsdist_local}800 \includegraphics[width=0.66\textwidth]{OBS_obsdist_local} 801 801 \caption[Observations with the geographical distribution]{ 802 802 Example of the distribution of observations with … … 825 825 \begin{figure} 826 826 \centering 827 \includegraphics[width=0.66\textwidth]{ Fig_ASM_obsdist_global}827 \includegraphics[width=0.66\textwidth]{OBS_obsdist_global} 828 828 \caption[Observations with the round-robin distribution]{ 829 829 Example of the distribution of observations with … … 1164 1164 \begin{figure} 1165 1165 \centering 1166 \includegraphics[width=0.66\textwidth]{ Fig_OBS_dataplot_main}1166 \includegraphics[width=0.66\textwidth]{OBS_dataplot_main} 1167 1167 \caption{Main window of dataplot} 1168 1168 \label{fig:OBS_dataplotmain} … … 1174 1174 \begin{figure} 1175 1175 \centering 1176 \includegraphics[width=0.66\textwidth]{ Fig_OBS_dataplot_prof}1176 \includegraphics[width=0.66\textwidth]{OBS_dataplot_prof} 1177 1177 \caption[Profile plot from dataplot]{ 1178 1178 Profile plot from dataplot produced by right clicking on a point in the main window} -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_SBC.tex
r11599 r11690 986 986 \begin{figure}[!t] 987 987 \centering 988 \includegraphics[width=0.66\textwidth]{ Fig_SBC_isf}988 \includegraphics[width=0.66\textwidth]{SBC_isf} 989 989 \caption[Ice shelf location and fresh water flux definition]{ 990 990 Illustration of the location where the fwf is injected and … … 1307 1307 \begin{figure}[!t] 1308 1308 \centering 1309 \includegraphics[width=0.66\textwidth]{ Fig_SBC_diurnal}1309 \includegraphics[width=0.66\textwidth]{SBC_diurnal} 1310 1310 \caption[Reconstruction of the diurnal cycle variation of short wave flux]{ 1311 1311 Example of reconstruction of the diurnal cycle variation of short wave flux from … … 1341 1341 \begin{figure}[!t] 1342 1342 \centering 1343 \includegraphics[width=0.66\textwidth]{ Fig_SBC_dcy}1343 \includegraphics[width=0.66\textwidth]{SBC_dcy} 1344 1344 \caption[Reconstruction of the diurnal cycle variation of short wave flux on an ORCA2 grid]{ 1345 1345 Example of reconstruction of the diurnal cycle variation of short wave flux from -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex
r11630 r11690 110 110 \begin{figure} 111 111 \centering 112 \includegraphics[width=0.66\textwidth]{ Fig_adv_scheme}112 \includegraphics[width=0.66\textwidth]{TRA_adv_scheme} 113 113 \caption[Ways to evaluate the tracer value and the amount of tracer exchanged]{ 114 114 Schematic representation of some ways used to evaluate the tracer value at $u$-point and … … 880 880 \begin{figure} 881 881 \centering 882 \includegraphics[width=0.66\textwidth]{ Fig_TRA_Irradiance}882 \includegraphics[width=0.66\textwidth]{TRA_Irradiance} 883 883 \caption[Penetration profile of the downward solar irradiance calculated by four models]{ 884 884 Penetration profile of the downward solar irradiance calculated by four models. … … 904 904 \begin{figure} 905 905 \centering 906 \includegraphics[width=0.66\textwidth]{ Fig_TRA_geoth}906 \includegraphics[width=0.66\textwidth]{TRA_geoth} 907 907 \caption[Geothermal heat flux]{ 908 908 Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. … … 1020 1020 \begin{figure} 1021 1021 \centering 1022 \includegraphics[width=0.33\textwidth]{ Fig_BBL_adv}1022 \includegraphics[width=0.33\textwidth]{TRA_BBL_adv} 1023 1023 \caption[Advective/diffusive bottom boundary layer]{ 1024 1024 Advective/diffusive Bottom Boundary Layer. … … 1394 1394 \begin{figure} 1395 1395 \centering 1396 \includegraphics[width=0.33\textwidth]{ Fig_partial_step_scheme}1396 \includegraphics[width=0.33\textwidth]{TRA_partial_step_scheme} 1397 1397 \caption[Discretisation of the horizontal difference and average of tracers in 1398 1398 the $z$-partial step coordinate]{ -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11685 r11690 248 248 \begin{figure}[!t] 249 249 \centering 250 \includegraphics[width=0.66\textwidth]{ Fig_mixing_length}250 \includegraphics[width=0.66\textwidth]{ZDF_mixing_length} 251 251 \caption[Mixing length computation]{Illustration of the mixing length computation} 252 252 \label{fig:ZDF_mixing_length} … … 534 534 535 535 % ------------------------------------------------------------------------------------------------------------- 536 % OSM OSMOSIS BL Scheme 536 % OSM OSMOSIS BL Scheme 537 537 % ------------------------------------------------------------------------------------------------------------- 538 538 \subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})] … … 559 559 depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value 560 560 of 5~m. 561 561 562 562 \item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 563 563 assumed to be parallel to the surface wind stress, with … … 566 566 wave-mean period taken from this spectrum are used to calculate the Stokes penetration 567 567 depth, following the approach set out in \citet{breivik.janssen.ea_JPO14}. 568 568 569 569 \item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 570 570 taken from ECMWF wave model output, though only the component parallel … … 585 585 \item \protect\np{rn_difri} {rn\_difri} Maximum value of Ri \#-dependent mixing at $\mathrm{Ri}=0$. 586 586 \item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify 587 diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$). 587 diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$). 588 588 \end{description} 589 589 Diagnostic output is controlled by: … … 618 618 parameterization (KPP) scheme of \citet{large.ea_RG97}. 619 619 A specified shape of diffusivity, scaled by the (OSBL) depth 620 $h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 620 $h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 621 621 boundary layer 622 622 $-h_{\mathrm{BL}}<z<\eta$. The turbulent closure model … … 627 627 as in KPP, it is set by a prognostic equation that is informed by 628 628 energy budget considerations reminiscent of the classical mixed layer 629 models of \citet{kraus.turner_tellus67}. 629 models of \citet{kraus.turner_tellus67}. 630 630 The model also includes an explicit parametrization of the structure 631 631 of the pycnocline (the stratified region at the bottom of the OSBL). … … 643 643 \begin{figure}[!t] 644 644 \begin{center} 645 \includegraphics[width=0.7\textwidth]{Fig_ZDF_OSM_structure_of_OSBL}645 %\includegraphics[width=0.7\textwidth]{ZDF_OSM_structure_of_OSBL} 646 646 \caption{ 647 647 \protect\label{fig: OSBL_structure} … … 655 655 \begin{equation}\label{eq:w_La} 656 656 w_{*L}= \left(u_*^2 u_{s\,0}\right)^{1/3}; 657 \end{equation} 657 \end{equation} 658 658 but at times the Stokes drift may be weak due to e.g.\ ice cover, short fetch, misalignment with the surface stress, etc.\ so a composite velocity scale is assumed for the stable (warming) boundary layer: 659 659 \begin{equation}\label{eq:composite-nu} … … 690 690 where $\beta_d$ and $\beta_\nu$ are parameters that are determined by matching Eqs \ref{eq:diff-unstable} and \ref{eq:visc-unstable} to the eddy diffusivity and viscosity at the base of the well-mixed layer, given by 691 691 % 692 \begin{equation}\label{eq:diff-wml-base} 692 \begin{equation}\label{eq:diff-wml-base} 693 693 K_{d,\mathrm{ml}}=K_{\nu,\mathrm{ml}}=\,0.16\,\omega_* \Delta h. 694 694 \end{equation} … … 702 702 % 703 703 The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The eddy diffusivity/viscosity depends on the stability parameter $h_{\mathrm{bl}}/{L_L}$ where $ L_L$ is analogous to the Obukhov length, but for Langmuir turbulence: 704 \begin{equation}\label{eq:L_L} 704 \begin{equation}\label{eq:L_L} 705 705 L_L=-w_{*L}^3/\left<\overline{w^\prime b^\prime}\right>_L, 706 706 \end{equation} … … 745 745 \begin{equation}\label{eq:dhdt-stable} 746 746 \max\left(\Delta B_{bl},\frac{w_{*L}^2}{h_\mathrm{bl}}\right)\frac{\partial h_\mathrm{bl}}{\partial t} = \left(0.06 + 0.52\,\frac{ h_\mathrm{bl}}{L_L}\right) \frac{w_{*L}^3}{h_\mathrm{bl}} +\left<\overline{w^\prime b^\prime}\right>_L. 747 \end{equation} 747 \end{equation} 748 748 749 749 Equation. \ref{eq:dhdt-unstable} always leads to the depth of the entraining OSBL increasing (ignoring the effect of the mean vertical motion), but the change in the thickness of the stable OSBL given by Eq. \ref{eq:dhdt-stable} can be positive or negative, depending on the magnitudes of $\left<\overline{w^\prime b^\prime}\right>_L$ and $h_\mathrm{bl}/L_L$. The rate at which the depth of the OSBL can decrease is limited by choosing an effective buoyancy $w_{*L}^2/h_\mathrm{bl}$, in place of $\Delta B_{bl}$ which will be $\approx 0$ for the collapsing OSBL. … … 756 756 \begin{figure}[!t] 757 757 \centering 758 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_TKE_time_scheme}758 \includegraphics[width=0.66\textwidth]{ZDF_TKE_time_scheme} 759 759 \caption[Subgrid kinetic energy integration in GLS and TKE schemes]{ 760 760 Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and … … 868 868 \begin{figure}[!htb] 869 869 \centering 870 \includegraphics[width=0.66\textwidth]{ Fig_npc}870 \includegraphics[width=0.66\textwidth]{ZDF_npc} 871 871 \caption[Unstable density profile treated by the non penetrative convective adjustment algorithm]{ 872 872 Example of an unstable density profile treated by … … 1013 1013 \begin{figure}[!t] 1014 1014 \centering 1015 \includegraphics[width=0.66\textwidth]{ Fig_zdfddm}1015 \includegraphics[width=0.66\textwidth]{ZDF_ddm} 1016 1016 \caption[Diapycnal diffusivities for temperature and salt in regions of salt fingering and 1017 1017 diffusive convection]{ … … 1491 1491 \begin{figure}[!t] 1492 1492 \centering 1493 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_coeff}1493 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_coeff} 1494 1494 \caption[Partitioning coefficient used to partition vertical velocities into parts]{ 1495 1495 The value of the partitioning coefficient (\cf) used to partition vertical velocities into … … 1531 1531 \begin{figure}[!t] 1532 1532 \centering 1533 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_overflow_frames}1533 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_frames} 1534 1534 \caption[OVERFLOW: time-series of temperature vertical cross-sections]{ 1535 1535 A time-series of temperature vertical cross-sections for the OVERFLOW test case. … … 1611 1611 \begin{figure}[!t] 1612 1612 \centering 1613 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_overflow_all_rdt}1613 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_all_rdt} 1614 1614 \caption[OVERFLOW: sample temperature vertical cross-sections from mid- and end-run]{ 1615 1615 Sample temperature vertical cross-sections from mid- and end-run using … … 1624 1624 \begin{figure}[!t] 1625 1625 \centering 1626 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_maxCf}1626 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf} 1627 1627 \caption[OVERFLOW: maximum partitioning coefficient during a series of test runs]{ 1628 1628 The maximum partitioning coefficient during a series of test runs with … … 1635 1635 \begin{figure}[!t] 1636 1636 \centering 1637 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_maxCf_loc}1637 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf_loc} 1638 1638 \caption[OVERFLOW: maximum partitioning coefficient for the case overlaid]{ 1639 1639 The maximum partitioning coefficient for the \forcode{nn_rdt=10.0} case overlaid with -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_cfgs.tex
r11598 r11690 93 93 \begin{figure}[!t] 94 94 \centering 95 \includegraphics[width=0.66\textwidth]{ Fig_ORCA_NH_mesh}95 \includegraphics[width=0.66\textwidth]{CFGS_ORCA_NH_mesh} 96 96 \caption[ORCA mesh conception]{ 97 97 ORCA mesh conception. … … 120 120 \begin{figure}[!tbp] 121 121 \centering 122 \includegraphics[width=0.66\textwidth]{ Fig_ORCA_NH_msh05_e1_e2}123 \includegraphics[width=0.66\textwidth]{ Fig_ORCA_aniso}122 \includegraphics[width=0.66\textwidth]{CFGS_ORCA_NH_msh05_e1_e2} 123 \includegraphics[width=0.66\textwidth]{CFGS_ORCA_aniso} 124 124 \caption[Horizontal scale factors and ratio of anisotropy for ORCA 0.5\deg\ mesh]{ 125 125 \textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and … … 264 264 \begin{figure}[!t] 265 265 \centering 266 \includegraphics[width=0.66\textwidth]{ Fig_GYRE}266 \includegraphics[width=0.66\textwidth]{CFGS_GYRE} 267 267 \caption[Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54]{ 268 268 Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_misc.tex
r11598 r11690 94 94 \begin{figure}[!tbp] 95 95 \centering 96 \includegraphics[width=0.66\textwidth]{ Fig_Gibraltar}97 \includegraphics[width=0.66\textwidth]{ Fig_Gibraltar2}96 \includegraphics[width=0.66\textwidth]{MISC_Gibraltar} 97 \includegraphics[width=0.66\textwidth]{MISC_Gibraltar2} 98 98 \caption[Two methods to defined the Gibraltar strait]{ 99 99 Example of the Gibraltar strait defined in a 1\deg\ $\times$ 1\deg\ mesh. … … 111 111 \begin{figure}[!tbp] 112 112 \centering 113 \includegraphics[width=0.66\textwidth]{ Fig_closea_mask_example}113 \includegraphics[width=0.66\textwidth]{MISC_closea_mask_example} 114 114 \caption[Mask fields for the \protect\mdl{closea} module]{ 115 115 Example of mask fields for the \protect\mdl{closea} module. -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex
r11630 r11690 130 130 \begin{figure} 131 131 \centering 132 \includegraphics[width=0.66\textwidth]{ Fig_I_ocean_bc}132 \includegraphics[width=0.66\textwidth]{MB_ocean_bc} 133 133 \caption[Ocean boundary conditions]{ 134 134 The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, … … 327 327 \begin{figure} 328 328 \centering 329 \includegraphics[width=0.33\textwidth]{ Fig_I_earth_referential}329 \includegraphics[width=0.33\textwidth]{MB_earth_referential} 330 330 \caption[Geographical and curvilinear coordinate systems]{ 331 331 the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear … … 692 692 \begin{figure} 693 693 \centering 694 \includegraphics[width=0.66\textwidth]{ Fig_z_zstar}694 \includegraphics[width=0.66\textwidth]{MB_z_zstar} 695 695 \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 696 696 \begin{enumerate*}[label=(\textit{\alph*})] -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex
r11599 r11690 147 147 \begin{figure}[!t] 148 148 \centering 149 \includegraphics[width=0.66\textwidth]{ Fig_DYN_dynspg_ts}149 \includegraphics[width=0.66\textwidth]{MBZ_DYN_dynspg_ts} 150 150 \caption[Schematic of the split-explicit time stepping scheme for 151 151 the barotropic and baroclinic modes, after \citet{Griffies2004?}]{ -
NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex
r11630 r11690 216 216 \begin{figure} 217 217 \centering 218 \includegraphics[width=0.66\textwidth]{ Fig_TimeStepping_flowchart_v4}218 \includegraphics[width=0.66\textwidth]{TD_TimeStepping_flowchart_v4} 219 219 \caption[Leapfrog time stepping sequence with split-explicit free surface]{ 220 220 Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface. … … 276 276 \begin{figure} 277 277 \centering 278 \includegraphics[width=0.66\textwidth]{ Fig_MLF_forcing}278 \includegraphics[width=0.66\textwidth]{TD_MLF_forcing} 279 279 \caption[Forcing integration methods for modified leapfrog (top and bottom)]{ 280 280 Illustration of forcing integration methods.
Note: See TracChangeset
for help on using the changeset viewer.