Changeset 11690 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
 Timestamp:
 20191011T19:05:10+02:00 (5 years ago)
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex
r11685 r11690 248 248 \begin{figure}[!t] 249 249 \centering 250 \includegraphics[width=0.66\textwidth]{ Fig_mixing_length}250 \includegraphics[width=0.66\textwidth]{ZDF_mixing_length} 251 251 \caption[Mixing length computation]{Illustration of the mixing length computation} 252 252 \label{fig:ZDF_mixing_length} … … 534 534 535 535 %  536 % OSM OSMOSIS BL Scheme 536 % OSM OSMOSIS BL Scheme 537 537 %  538 538 \subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})] … … 559 559 depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value 560 560 of 5~m. 561 561 562 562 \item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 563 563 assumed to be parallel to the surface wind stress, with … … 566 566 wavemean period taken from this spectrum are used to calculate the Stokes penetration 567 567 depth, following the approach set out in \citet{breivik.janssen.ea_JPO14}. 568 568 569 569 \item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is 570 570 taken from ECMWF wave model output, though only the component parallel … … 585 585 \item \protect\np{rn_difri} {rn\_difri} Maximum value of Ri \#dependent mixing at $\mathrm{Ri}=0$. 586 586 \item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify 587 diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{2}$). 587 diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{2}$). 588 588 \end{description} 589 589 Diagnostic output is controlled by: … … 618 618 parameterization (KPP) scheme of \citet{large.ea_RG97}. 619 619 A specified shape of diffusivity, scaled by the (OSBL) depth 620 $h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 620 $h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the 621 621 boundary layer 622 622 $h_{\mathrm{BL}}<z<\eta$. The turbulent closure model … … 627 627 as in KPP, it is set by a prognostic equation that is informed by 628 628 energy budget considerations reminiscent of the classical mixed layer 629 models of \citet{kraus.turner_tellus67}. 629 models of \citet{kraus.turner_tellus67}. 630 630 The model also includes an explicit parametrization of the structure 631 631 of the pycnocline (the stratified region at the bottom of the OSBL). … … 643 643 \begin{figure}[!t] 644 644 \begin{center} 645 \includegraphics[width=0.7\textwidth]{Fig_ZDF_OSM_structure_of_OSBL}645 %\includegraphics[width=0.7\textwidth]{ZDF_OSM_structure_of_OSBL} 646 646 \caption{ 647 647 \protect\label{fig: OSBL_structure} … … 655 655 \begin{equation}\label{eq:w_La} 656 656 w_{*L}= \left(u_*^2 u_{s\,0}\right)^{1/3}; 657 \end{equation} 657 \end{equation} 658 658 but at times the Stokes drift may be weak due to e.g.\ ice cover, short fetch, misalignment with the surface stress, etc.\ so a composite velocity scale is assumed for the stable (warming) boundary layer: 659 659 \begin{equation}\label{eq:compositenu} … … 690 690 where $\beta_d$ and $\beta_\nu$ are parameters that are determined by matching Eqs \ref{eq:diffunstable} and \ref{eq:viscunstable} to the eddy diffusivity and viscosity at the base of the wellmixed layer, given by 691 691 % 692 \begin{equation}\label{eq:diffwmlbase} 692 \begin{equation}\label{eq:diffwmlbase} 693 693 K_{d,\mathrm{ml}}=K_{\nu,\mathrm{ml}}=\,0.16\,\omega_* \Delta h. 694 694 \end{equation} … … 702 702 % 703 703 The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The eddy diffusivity/viscosity depends on the stability parameter $h_{\mathrm{bl}}/{L_L}$ where $ L_L$ is analogous to the Obukhov length, but for Langmuir turbulence: 704 \begin{equation}\label{eq:L_L} 704 \begin{equation}\label{eq:L_L} 705 705 L_L=w_{*L}^3/\left<\overline{w^\prime b^\prime}\right>_L, 706 706 \end{equation} … … 745 745 \begin{equation}\label{eq:dhdtstable} 746 746 \max\left(\Delta B_{bl},\frac{w_{*L}^2}{h_\mathrm{bl}}\right)\frac{\partial h_\mathrm{bl}}{\partial t} = \left(0.06 + 0.52\,\frac{ h_\mathrm{bl}}{L_L}\right) \frac{w_{*L}^3}{h_\mathrm{bl}} +\left<\overline{w^\prime b^\prime}\right>_L. 747 \end{equation} 747 \end{equation} 748 748 749 749 Equation. \ref{eq:dhdtunstable} always leads to the depth of the entraining OSBL increasing (ignoring the effect of the mean vertical motion), but the change in the thickness of the stable OSBL given by Eq. \ref{eq:dhdtstable} can be positive or negative, depending on the magnitudes of $\left<\overline{w^\prime b^\prime}\right>_L$ and $h_\mathrm{bl}/L_L$. The rate at which the depth of the OSBL can decrease is limited by choosing an effective buoyancy $w_{*L}^2/h_\mathrm{bl}$, in place of $\Delta B_{bl}$ which will be $\approx 0$ for the collapsing OSBL. … … 756 756 \begin{figure}[!t] 757 757 \centering 758 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_TKE_time_scheme}758 \includegraphics[width=0.66\textwidth]{ZDF_TKE_time_scheme} 759 759 \caption[Subgrid kinetic energy integration in GLS and TKE schemes]{ 760 760 Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and … … 868 868 \begin{figure}[!htb] 869 869 \centering 870 \includegraphics[width=0.66\textwidth]{ Fig_npc}870 \includegraphics[width=0.66\textwidth]{ZDF_npc} 871 871 \caption[Unstable density profile treated by the non penetrative convective adjustment algorithm]{ 872 872 Example of an unstable density profile treated by … … 1013 1013 \begin{figure}[!t] 1014 1014 \centering 1015 \includegraphics[width=0.66\textwidth]{ Fig_zdfddm}1015 \includegraphics[width=0.66\textwidth]{ZDF_ddm} 1016 1016 \caption[Diapycnal diffusivities for temperature and salt in regions of salt fingering and 1017 1017 diffusive convection]{ … … 1491 1491 \begin{figure}[!t] 1492 1492 \centering 1493 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_coeff}1493 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_coeff} 1494 1494 \caption[Partitioning coefficient used to partition vertical velocities into parts]{ 1495 1495 The value of the partitioning coefficient (\cf) used to partition vertical velocities into … … 1531 1531 \begin{figure}[!t] 1532 1532 \centering 1533 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_overflow_frames}1533 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_frames} 1534 1534 \caption[OVERFLOW: timeseries of temperature vertical crosssections]{ 1535 1535 A timeseries of temperature vertical crosssections for the OVERFLOW test case. … … 1611 1611 \begin{figure}[!t] 1612 1612 \centering 1613 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_overflow_all_rdt}1613 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_overflow_all_rdt} 1614 1614 \caption[OVERFLOW: sample temperature vertical crosssections from mid and endrun]{ 1615 1615 Sample temperature vertical crosssections from mid and endrun using … … 1624 1624 \begin{figure}[!t] 1625 1625 \centering 1626 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_maxCf}1626 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf} 1627 1627 \caption[OVERFLOW: maximum partitioning coefficient during a series of test runs]{ 1628 1628 The maximum partitioning coefficient during a series of test runs with … … 1635 1635 \begin{figure}[!t] 1636 1636 \centering 1637 \includegraphics[width=0.66\textwidth]{ Fig_ZDF_zad_Aimp_maxCf_loc}1637 \includegraphics[width=0.66\textwidth]{ZDF_zad_Aimp_maxCf_loc} 1638 1638 \caption[OVERFLOW: maximum partitioning coefficient for the case overlaid]{ 1639 1639 The maximum partitioning coefficient for the \forcode{nn_rdt=10.0} case overlaid with
Note: See TracChangeset
for help on using the changeset viewer.