Ignore:
Timestamp:
2020-01-27T15:31:53+01:00 (9 months ago)
Author:
acc
Message:

Branch 2019/dev_r11943_MERGE_2019. This commit introduces basic do loop macro
substitution to the 2019 option 1, merge branch. These changes have been SETTE
tested. The only addition is the do_loop_substitute.h90 file in the OCE directory but
the macros defined therein are used throughout the code to replace identifiable, 2D-
and 3D- nested loop opening and closing statements with single-line alternatives. Code
indents are also adjusted accordingly.

The following explanation is taken from comments in the new header file:

This header file contains preprocessor definitions and macros used in the do-loop
substitutions introduced between version 4.0 and 4.2. The primary aim of these macros
is to assist in future applications of tiling to improve performance. This is expected
to be achieved by alternative versions of these macros in selected locations. The
initial introduction of these macros simply replaces all identifiable nested 2D- and
3D-loops with single line statements (and adjusts indenting accordingly). Do loops
are identifiable if they comform to either:

DO jk = ….

DO jj = …. DO jj = …

DO ji = …. DO ji = …
. OR .
. .

END DO END DO

END DO END DO

END DO

and white-space variants thereof.

Additionally, only loops with recognised jj and ji loops limits are treated; these are:
Lower limits of 1, 2 or fs_2
Upper limits of jpi, jpim1 or fs_jpim1 (for ji) or jpj, jpjm1 or fs_jpjm1 (for jj)

The macro naming convention takes the form: DO_2D_BT_LR where:

B is the Bottom offset from the PE's inner domain;
T is the Top offset from the PE's inner domain;
L is the Left offset from the PE's inner domain;
R is the Right offset from the PE's inner domain

So, given an inner domain of 2,jpim1 and 2,jpjm1, a typical example would replace:

DO jj = 2, jpj

DO ji = 1, jpim1
.
.

END DO

END DO

with:

DO_2D_01_10
.
.
END_2D

similar conventions apply to the 3D loops macros. jk loop limits are retained
through macro arguments and are not restricted. This includes the possibility of
strides for which an extra set of DO_3DS macros are defined.

In the example definition below the inner PE domain is defined by start indices of
(kIs, kJs) and end indices of (kIe, KJe)

#define DO_2D_00_00 DO jj = kJs, kJe ; DO ji = kIs, kIe
#define END_2D END DO ; END DO

TO DO:


Only conventional nested loops have been identified and replaced by this step. There are constructs such as:

DO jk = 2, jpkm1

z2d(:,:) = z2d(:,:) + e3w(:,:,jk,Kmm) * z3d(:,:,jk) * wmask(:,:,jk)

END DO

which may need to be considered.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11943_MERGE_2019/src/OCE/ISF/isfload.F90

    r12077 r12340  
    2424 
    2525   PUBLIC isf_load 
     26   !! * Substitutions 
     27#  include "do_loop_substitute.h90" 
    2628 
    2729CONTAINS 
     
    9193      !                                !- Surface value + ice shelf gradient 
    9294      pisfload(:,:) = 0._wp                       ! compute pressure due to ice shelf load  
    93       DO jj = 1, jpj                         ! (used to compute hpgi/j for all the level from 1 to miku/v) 
    94          DO ji = 1, jpi                      ! divided by 2 later 
    95             ikt = mikt(ji,jj) 
     95      DO_2D_11_11 
     96         ikt = mikt(ji,jj) 
     97         ! 
     98         IF ( ikt > 1 ) THEN 
    9699            ! 
    97             IF ( ikt > 1 ) THEN 
    98                ! 
    99                ! top layer of the ice shelf 
    100                pisfload(ji,jj) = pisfload(ji,jj) + (znad + zrhd(ji,jj,1) ) * e3w(ji,jj,1,Kmm) 
    101                ! 
    102                ! core layers of the ice shelf 
    103                DO jk = 2, ikt-1 
    104                   pisfload(ji,jj) = pisfload(ji,jj) + (2._wp * znad + zrhd(ji,jj,jk-1) + zrhd(ji,jj,jk)) * e3w(ji,jj,jk,Kmm) 
    105                END DO 
    106                ! 
    107                ! deepest part of the ice shelf (between deepest T point and ice/ocean interface 
    108                pisfload(ji,jj) = pisfload(ji,jj) + (2._wp * znad + zrhdtop_isf(ji,jj) + zrhd(ji,jj,ikt-1)) & 
    109                   &                                              * ( risfdep(ji,jj) - gdept(ji,jj,ikt-1,Kmm) ) 
    110                ! 
    111             END IF 
    112          END DO 
    113       END DO 
     100            ! top layer of the ice shelf 
     101            pisfload(ji,jj) = pisfload(ji,jj) + (znad + zrhd(ji,jj,1) ) * e3w(ji,jj,1,Kmm) 
     102            ! 
     103            ! core layers of the ice shelf 
     104            DO jk = 2, ikt-1 
     105               pisfload(ji,jj) = pisfload(ji,jj) + (2._wp * znad + zrhd(ji,jj,jk-1) + zrhd(ji,jj,jk)) * e3w(ji,jj,jk,Kmm) 
     106            END DO 
     107            ! 
     108            ! deepest part of the ice shelf (between deepest T point and ice/ocean interface 
     109            pisfload(ji,jj) = pisfload(ji,jj) + (2._wp * znad + zrhdtop_isf(ji,jj) + zrhd(ji,jj,ikt-1)) & 
     110               &                                              * ( risfdep(ji,jj) - gdept(ji,jj,ikt-1,Kmm) ) 
     111            ! 
     112         END IF 
     113      END_2D 
    114114      ! 
    115115   END SUBROUTINE isf_load_uniform 
Note: See TracChangeset for help on using the changeset viewer.