Changeset 12660
- Timestamp:
- 2020-04-03T13:09:33+02:00 (3 years ago)
- Location:
- NEMO/branches/UKMO/NEMO_4.0.2_GO8_package
- Files:
-
- 20 edited
- 2 copied
Legend:
- Unmodified
- Added
- Removed
-
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/cfgs/SHARED/domain_def_nemo.xml
r12276 r12660 181 181 <domain id="EqW" domain_ref="grid_W" > <zoom_domain id="EqW"/> </domain> 182 182 183 <!-- zonal mean grid --> 184 <domain_group id="gznl"> 185 <domain id="gznl" long_name="gznl"/> 186 <domain id="ptr" domain_ref="gznl" > 187 <zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" /> 188 </domain> 189 </domain_group> 183 184 <!-- zonal mean grid --> 185 <domain id="gznl" long_name="gznl"/> 186 <domain id="ptr" domain_ref="gznl" > 187 <zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" /> 188 </domain> 189 <domain id="znl_T" domain_ref="gznl" > <zoom_domain id="znl_T"/> </domain> 190 <domain id="znl_W" domain_ref="gznl" > <zoom_domain id="znl_W"/> </domain> 190 191 191 192 -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/cfgs/SHARED/field_def_nemo-ice.xml
r12337 r12660 163 163 164 164 <!-- sbcssm variables --> 165 <field id="sst_m" unit="degC" /> 166 <field id="sss_m" unit="psu" /> 165 <field id="sst_m_pot" unit="degC" /> 166 <!-- EOS-80 --> 167 <field id="sss_m_pra" unit="psu" /> 168 <!-- TEOS-10 --> 169 <field id="sss_m_abs" unit="psu" /> 170 167 171 <field id="ssu_m" unit="m/s" /> 168 172 <field id="ssv_m" unit="m/s" /> … … 360 364 <field field_ref="icevpnd" name="sivpnd" /> 361 365 <field field_ref="iceage" name="siage" /> 362 <field field_ref="sst_m" name="sst_m" /> 363 <field field_ref="sss_m" name="sss_m" /> 366 <field id="sst_m_pot" unit="degC" /> 367 <!-- EOS-80 --> 368 <field id="sss_m_pra" unit="psu" /> 369 <!-- TEOS-10 --> 370 <field id="sss_m_abs" unit="psu" /> 364 371 365 372 <!-- heat --> -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/cfgs/SHARED/field_def_nemo-oce.xml
r12288 r12660 19 19 20 20 <field_group id="grid_T" grid_ref="grid_T_2D" > 21 <field id="e3t" long_name="T-cell thickness" standard_name="cell_thickness" unit="m" grid_ref="grid_T_3D" /> 22 <field id="e3ts" long_name="T-cell thickness" field_ref="e3t" standard_name="cell_thickness" unit="m" grid_ref="grid_T_SFC"/> 23 <field id="e3t_0" long_name="Initial T-cell thickness" standard_name="ref_cell_thickness" unit="m" grid_ref="grid_T_3D" /> 24 <field id="e3tb" long_name="bottom T-cell thickness" standard_name="bottom_cell_thickness" unit="m" grid_ref="grid_T_2D"/> 25 <field id="e3t_300" field_ref="e3t" grid_ref="grid_T_zoom_300" detect_missing_value="true" /> 26 <field id="e3t_vsum300" field_ref="e3t_300" grid_ref="grid_T_vsum" detect_missing_value="true" /> 27 <field id="masscello" long_name="Sea Water Mass per unit area" standard_name="sea_water_mass_per_unit_area" unit="kg/m2" grid_ref="grid_T_3D"/> 28 <field id="volcello" long_name="Ocean Volume" standard_name="ocean_volume" unit="m3" grid_ref="grid_T_3D"/> 29 <field id="toce" long_name="temperature" standard_name="sea_water_potential_temperature" unit="degC" grid_ref="grid_T_3D"/> 30 <field id="toce_e3t" long_name="temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce * e3t </field > 31 <field id="soce" long_name="salinity" standard_name="sea_water_practical_salinity" unit="1e-3" grid_ref="grid_T_3D"/> 32 <field id="soce_e3t" long_name="salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce * e3t </field > 21 <field id="e3t" long_name="T-cell thickness" standard_name="cell_thickness" unit="m" grid_ref="grid_T_3D" /> 22 <field id="e3t_surf" long_name="T-cell thickness" field_ref="e3t" standard_name="cell_thickness" unit="m" grid_ref="grid_T_surface_extract"/> 23 <field id="e3t_0" long_name="Initial T-cell thickness" standard_name="ref_cell_thickness" unit="m" grid_ref="grid_T_3D" /> 24 25 <!-- EOS80 --> 26 <field id="toce_pot" long_name="potential temperature" standard_name="sea_water_potential_temperature" unit="degC" grid_ref="grid_T_3D"/> 27 <field id="toce_pot_e3t" long_name="potential temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce_pot * e3t </field > 28 <field id="soce_pra" long_name="practical salinity" standard_name="sea_water_practical_salinity" unit="1e-3" grid_ref="grid_T_3D"/> 29 <field id="soce_pra_e3t" long_name="practical salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce_pra * e3t </field > 30 <!-- TEOS10 --> 31 <field id="toce_con" long_name="conservative temperature" standard_name="sea_water_conservative_temperature" unit="degC" grid_ref="grid_T_3D"/> 32 <field id="toce_con_e3t" long_name="conservative temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce_con * e3t </field > 33 <field id="soce_abs" long_name="absolute salinity" standard_name="sea_water_absolute_salinity" unit="1e-3" grid_ref="grid_T_3D"/> 34 <field id="soce_abs_e3t" long_name="absolute salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce_abs * e3t </field > 33 35 34 36 <field id="toce_e3t_300" field_ref="toce_e3t" unit="degree_C" grid_ref="grid_T_zoom_300" detect_missing_value="true" /> … … 41 43 <field id="ahmt_3d" long_name=" 3D t-eddy viscosity coefficient" unit="m2/s or m4/s" grid_ref="grid_T_3D"/> 42 44 43 <field id="sst" long_name="sea surface temperature" standard_name="sea_surface_temperature" unit="degC" /> 44 <field id="sst2" long_name="square of sea surface temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst * sst </field > 45 <field id="sstmax" long_name="max of sea surface temperature" field_ref="sst" operation="maximum" /> 46 <field id="sstmin" long_name="min of sea surface temperature" field_ref="sst" operation="minimum" /> 47 <field id="sstgrad" long_name="module of sst gradient" unit="degC/m" /> 48 <field id="sstgrad2" long_name="square of module of sst gradient" unit="degC2/m2" /> 49 <field id="sbt" long_name="sea bottom temperature" unit="degC" /> 50 <field id="tosmint" long_name="vertical integral of temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_potential_temperature" unit="(kg m2) degree_C" /> 51 <field id="sst_wl" long_name="Delta SST of warm layer" unit="degC" /> 52 <field id="sst_cs" long_name="Delta SST of cool skin" unit="degC" /> 53 <field id="temp_3m" long_name="temperature at 3m" unit="degC" /> 54 55 <field id="sss" long_name="sea surface salinity" standard_name="sea_surface_salinity" unit="1e-3" /> 56 <field id="sss2" long_name="square of sea surface salinity" unit="1e-6" > sss * sss </field > 57 <field id="sssmax" long_name="max of sea surface salinity" field_ref="sss" operation="maximum" /> 58 <field id="sssmin" long_name="min of sea surface salinity" field_ref="sss" operation="minimum" /> 59 <field id="sbs" long_name="sea bottom salinity" unit="0.001" /> 60 <field id="somint" long_name="vertical integral of salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_salinity" unit="(kg m2) x (1e-3)" /> 45 <!-- EOS80 --> 46 <field id="sst_pot" long_name="sea surface potential temperature" standard_name="sea_surface_temperature" unit="degC" /> 47 <field id="sst2_pot" long_name="square of sea surface potential temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst_pot * sst_pot </field > 48 <field id="sstmax_pot" long_name="max of sea surface potential temperature" field_ref="sst_pot" operation="maximum" /> 49 <field id="sstmin_pot" long_name="min of sea surface potential temperature" field_ref="sst_pot" operation="minimum" /> 50 <field id="sstgrad_pot" long_name="module of potential sst gradient" unit="degC/m" /> 51 <field id="sstgrad2_pot" long_name="square of module of potential sst gradient" unit="degC2/m2" /> 52 <field id="sbt_pot" long_name="sea bottom potential temperature" unit="degC" /> 53 <field id="tosmint_pot" long_name="vertical integral of potential temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_potential_temperature" unit="(kg m2) degree_C" /> 54 <field id="sst_wl_pot" long_name="Delta potential SST of warm layer" unit="degC" /> 55 <field id="sst_cs_pot" long_name="Delta potential SST of cool skin" unit="degC" /> 56 <field id="temp_3m_pot" long_name="potential temperature at 3m" unit="degC" /> 57 58 <field id="sss_pra" long_name="sea surface practical salinity" standard_name="sea_surface_practical_salinity" unit="1e-3" /> 59 <field id="sss2_pra" long_name="square of sea surface practical salinity" unit="1e-6" > sss_pra * sss_pra </field > 60 <field id="sssmax_pra" long_name="max of sea surface practical salinity" field_ref="sss_pra" operation="maximum" /> 61 <field id="sssmin_pra" long_name="min of sea surface practical salinity" field_ref="sss_pra" operation="minimum" /> 62 <field id="sbs_pra" long_name="sea bottom practical salinity" unit="0.001" /> 63 <field id="somint_pra" long_name="vertical integral of practical salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_practical_salinity" unit="(kg m2) x (1e-3)" /> 64 <!-- TEOS10 --> 65 <field id="sst_con" long_name="sea surface conservative temperature" standard_name="sea_surface_conservative_temperature" unit="degC" /> 66 <field id="sst2_con" long_name="square of sea surface conservative temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst_con * sst_con </field > 67 <field id="sstmax_con" long_name="max of sea surface conservative temperature" field_ref="sst_con" operation="maximum" /> 68 <field id="sstmin_con" long_name="min of sea surface conservative temperature" field_ref="sst_con" operation="minimum" /> 69 <field id="sstgrad_con" long_name="module of conservative sst gradient" unit="degC/m" /> 70 <field id="sstgrad2_con" long_name="square of module of conservative sst gradient" unit="degC2/m2" /> 71 <field id="sbt_con" long_name="sea bottom conservative temperature" unit="degC" /> 72 <field id="tosmint_con" long_name="vertical integral of conservative temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_conservative_temperature" unit="(kg m2) degree_C" /> 73 <field id="sst_wl_con" long_name="Delta conservative SST of warm layer" unit="degC" /> 74 <field id="sst_cs_con" long_name="Delta conservative SST of cool skin" unit="degC" /> 75 <field id="temp_3m_con" long_name="conservative temperature at 3m" unit="degC" /> 76 77 <field id="sss_abs" long_name="sea surface absolute salinity" standard_name="sea_surface_absolute_salinity" unit="1e-3" /> 78 <field id="sss2_abs" long_name="square of sea surface absolute salinity" unit="1e-6" > sss_abs * sss_abs </field > 79 <field id="sssmax_abs" long_name="max of sea surface absolute salinity" field_ref="sss_abs" operation="maximum" /> 80 <field id="sssmin_abs" long_name="min of sea surface absolute salinity" field_ref="sss_abs" operation="minimum" /> 81 <field id="sbs_abs" long_name="sea bottom absolute salinity" unit="0.001" /> 82 <field id="somint_abs" long_name="vertical integral of absolute salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_absolute_salinity" unit="(kg m2) x (1e-3)" /> 61 83 62 84 <field id="taubot" long_name="bottom stress module" unit="N/m2" /> … … 77 99 <field id="mldr10_1max" long_name="Max of Mixed Layer Depth (dsigma = 0.01 wrt 10m)" field_ref="mldr10_1" operation="maximum" /> 78 100 <field id="mldr10_1min" long_name="Min of Mixed Layer Depth (dsigma = 0.01 wrt 10m)" field_ref="mldr10_1" operation="minimum" /> 101 <field id="mldzint_1" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" /> 102 <field id="mldzint_2" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" /> 103 <field id="mldzint_3" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" /> 104 <field id="mldzint_4" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" /> 105 <field id="mldzint_5" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" /> 106 <field id="mldhtc_1" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 107 <field id="mldhtc_2" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 108 <field id="mldhtc_3" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 109 <field id="mldhtc_4" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 110 <field id="mldhtc_5" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 79 111 <field id="heatc" long_name="Heat content vertically integrated" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" /> 80 112 <field id="saltc" long_name="Salt content vertically integrated" unit="1e-3*kg/m2" /> … … 353 385 354 386 <!-- sbcssm variables --> 355 <field id="sst_m" unit="degC" /> 356 <field id="sss_m" unit="psu" /> 387 <field id="sst_m_pot" unit="degC" /> 388 <!-- EOS-80 --> 389 <field id="sss_m_pra" unit="psu" /> 390 <!-- TEOS-10 --> 391 <field id="sss_m_abs" unit="psu" /> 392 357 393 <field id="ssu_m" unit="m/s" /> 358 394 <field id="ssv_m" unit="m/s" /> … … 386 422 387 423 424 <field id="uoce2_e3u" long_name="ocean current along i-axis squared (thickness weighted)" unit="m3/s2" grid_ref="grid_U_3D" > uoce * uoce * e3u </field> 388 425 <field id="ssu" long_name="ocean surface current along i-axis" unit="m/s" /> 389 426 <field id="sbu" long_name="ocean bottom current along i-axis" unit="m/s" /> … … 443 480 <field id="voce" long_name="ocean current along j-axis" standard_name="sea_water_y_velocity" unit="m/s" grid_ref="grid_V_3D" /> 444 481 <field id="voce_e3v" long_name="ocean current along j-axis (thickness weighted)" unit="m/s" grid_ref="grid_V_3D" > voce * e3v </field> 482 <field id="voce2_e3v" long_name="ocean current along j-axis squared (thickness weighted)" unit="m3/s2" grid_ref="grid_V_3D" > voce * voce * e3v </field> 445 483 <field id="ssv" long_name="ocean surface current along j-axis" unit="m/s" /> 446 484 <field id="sbv" long_name="ocean bottom current along j-axis" unit="m/s" /> … … 541 579 <field id="ahmf_2d" long_name=" surface f-eddy viscosity coefficient" unit="m2/s or m4/s" /> 542 580 <field id="ahmf_3d" long_name=" 3D f-eddy viscosity coefficient" unit="m2/s or m4/s" grid_ref="grid_T_3D"/> 581 582 <!-- product fields --> 583 <field_group id="diaprod"> 584 <field id="ut" long_name="product_of_sea_water_x_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_U_3D" /> 585 <field id="ut_e3u" long_name="product_of_sea_water_x_velocity_and_potential_temperature * e3u" unit="degree_C m2/s" grid_ref="grid_U_3D" > ut * e3u </field > 586 <field id="us" long_name="product_of_sea_water_x_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_U_3D" /> 587 <field id="us_e3u" long_name="product_of_sea_water_x_velocity_and_salinity * e3u" unit="PSU m2/s" grid_ref="grid_U_3D" > us * e3u </field > 588 <field id="urhop" long_name="product_of_sea_water_x_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_U_3D" /> 589 <field id="urhop_e3u" long_name="product_of_sea_water_x_velocity_and_potential_density * e3u" unit="(kg/m3).(m2/s)" grid_ref="grid_U_3D" > urhop * e3u </field > 590 <field id="vt" long_name="product_of_sea_water_y_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_V_3D" /> 591 <field id="vt_e3v" long_name="product_of_sea_water_y_velocity_and_potential_temperature * e3v" unit="degree_C m2/s" grid_ref="grid_V_3D" > vt * e3v </field > 592 <field id="vs" long_name="product_of_sea_water_y_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_V_3D" /> 593 <field id="vs_e3v" long_name="product_of_sea_water_y_velocity_and_salinity * e3t" unit="PSU m2/s" grid_ref="grid_V_3D" > vs * e3v </field > 594 <field id="vrhop" long_name="product_of_sea_water_y_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_V_3D" /> 595 <field id="vrhop_e3v" long_name="product_of_sea_water_y_velocity_and_potential_density * e3t" unit="(kg/m3).(m2/s)" grid_ref="grid_V_3D" > vrhop * e3v </field > 596 <field id="wt" long_name="product_of_upward_sea_water_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_W_3D" /> 597 <field id="ws" long_name="product_of_upward_sea_water_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_W_3D" /> 598 <field id="wrhop" long_name="product_of_upward_sea_water_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_W_3D" /> 599 <field id="uv" long_name="product_of_sea_water_x_velocity_and_sea_water_y_velocity" unit="m2/s2 " grid_ref="grid_T_3D" /> 600 <field id="uw" long_name="product_of_upward_sea_water_velocity_and_sea_water_x_velocity" unit="m2/s2 " grid_ref="grid_W_3D" /> 601 <field id="vw" long_name="product_of_upward_sea_water_velocity_and_sea_water_y_velocity" unit="m2/s2" grid_ref="grid_W_3D" /> 602 </field_group> 543 603 544 604 <field_group id="scalar" grid_ref="grid_scalar" > … … 887 947 888 948 <field_group id="mooring" > 889 <field field_ref="toce" name="thetao" long_name="sea_water_potential_temperature" /> 890 <field field_ref="soce" name="so" long_name="sea_water_salinity" /> 949 <!-- EOS80 --> 950 <field field_ref="toce_pot" name="thetao_pot" long_name="sea_water_potential_temperature" /> 951 <field field_ref="soce_pra" name="so_pra" long_name="sea_water_practical_salinity" /> 952 <!-- TEOS10 --> 953 <field field_ref="toce_con" name="thetao_con" long_name="sea_water_conservative_temperature" /> 954 <field field_ref="soce_abs" name="so_con" long_name="sea_water_absolute_salinity" /> 955 891 956 <field field_ref="uoce" name="uo" long_name="sea_water_x_velocity" /> 892 957 <field field_ref="voce" name="vo" long_name="sea_water_y_velocity" /> … … 894 959 <field field_ref="avt" name="difvho" long_name="ocean_vertical_heat_diffusivity" /> 895 960 <field field_ref="avm" name="difvmo" long_name="ocean_vertical_momentum_diffusivity" /> 896 897 <field field_ref="sst" name="tos" long_name="sea_surface_temperature" /> 898 <field field_ref="sst2" name="tossq" long_name="square_of_sea_surface_temperature" /> 899 <field field_ref="sstgrad" name="tosgrad" long_name="module_of_sea_surface_temperature_gradient" /> 900 <field field_ref="sss" name="sos" long_name="sea_surface_salinity" /> 961 962 <!-- EOS80 --> 963 <field field_ref="sst_pot" name="tos_pot" long_name="sea_surface_potential_temperature" /> 964 <field field_ref="sst2_pot" name="tossq_pot" long_name="square_of_sea_surface_potential_temperature" /> 965 <field field_ref="sstgrad_pot" name="tosgrad_pot" long_name="module_of_sea_surface_potential_temperature_gradient" /> 966 <field field_ref="sss_pra" name="sos_pra" long_name="sea_surface_absolute_salinity" /> 967 <!-- TEOS10 --> 968 <field field_ref="sst_con" name="tos_con" long_name="sea_surface_conservative_temperature" /> 969 <field field_ref="sst2_con" name="tossq_con" long_name="square_of_sea_surface_conservative_temperature" /> 970 <field field_ref="sstgrad_con" name="tosgrad_con" long_name="module_of_sea_surface_conservative_temperature_gradient" /> 971 <field field_ref="sss_abs" name="sos" long_name="sea_surface_absolute_salinity" /> 972 901 973 <field field_ref="ssh" name="zos" long_name="sea_surface_height_above_geoid" /> 902 974 <field field_ref="empmr" name="wfo" long_name="water_flux_into_sea_water" /> … … 921 993 922 994 <field_group id="groupT" > 923 <field field_ref="toce" name="thetao" long_name="sea_water_potential_temperature" /> 924 <field field_ref="soce" name="so" long_name="sea_water_salinity" /> 925 <field field_ref="sst" name="tos" long_name="sea_surface_temperature" /> 926 <field field_ref="sst2" name="tossq" long_name="square_of_sea_surface_temperature" /> 927 <field field_ref="sss" name="sos" long_name="sea_surface_salinity" /> 995 <!-- EOS80 --> 996 <field field_ref="toce_pot" name="thetao_pot" long_name="sea_water_potential_temperature" /> 997 <field field_ref="soce_pra" name="so_pra" long_name="sea_water_practical_salinity" /> 998 <field field_ref="sst_pot" name="tos_pot" long_name="sea_surface_potential_temperature" /> 999 <field field_ref="sst2_pot" name="tossq_pot" long_name="square_of_sea_surface_potential_temperature" /> 1000 <field field_ref="sss_pra" name="sos_pra" long_name="sea_surface_practical_salinity" /> 1001 <!-- TEOS10 --> 1002 <field field_ref="toce_con" name="thetao_con" long_name="sea_water_conservative_temperature" /> 1003 <field field_ref="soce_abs" name="so_abs" long_name="sea_water_absolute_salinity" /> 1004 <field field_ref="sst_con" name="tos_con" long_name="sea_surface_conservative_temperature" /> 1005 <field field_ref="sst2_con" name="tossq_con" long_name="square_of_sea_surface_conservative_temperature" /> 1006 <field field_ref="sss_abs" name="sos_abs" long_name="sea_surface_absolute_salinity" /> 1007 928 1008 <field field_ref="ssh" name="zos" long_name="sea_surface_height_above_geoid" /> 929 1009 <field field_ref="empmr" name="wfo" long_name="water_flux_into_sea_water" /> … … 957 1037 </field_group> 958 1038 1039 <!-- TMB diagnostic output --> 1040 <field_group id="1h_grid_T_tmb" grid_ref="grid_T_2D" operation="instant"> 1041 <!-- EOS80 --> 1042 <field id="top_temp_pot" name="votemper_top_pot" unit="degC" /> 1043 <field id="mid_temp_pot" name="votemper_mid_pot" unit="degC" /> 1044 <field id="bot_temp_pot" name="votemper_bot_pot" unit="degC" /> 1045 <field id="top_sal_pra" name="vosaline_top_pra" unit="psu" /> 1046 <field id="mid_sal_pra" name="vosaline_mid_pra" unit="psu" /> 1047 <field id="bot_sal_pra" name="vosaline_bot_pra" unit="psu" /> 1048 <!-- TEOS10 --> 1049 <field id="top_temp_con" name="votemper_top_con" unit="degC" /> 1050 <field id="mid_temp_con" name="votemper_mid_con" unit="degC" /> 1051 <field id="bot_temp_con" name="votemper_bot_con" unit="degC" /> 1052 <field id="top_sal_abs" name="vosaline_top_abs" unit="psu" /> 1053 <field id="mid_sal_abs" name="vosaline_mid_abs" unit="psu" /> 1054 <field id="bot_sal_abs" name="vosaline_bot_abs" unit="psu" /> 1055 1056 <field id="sshnmasked" name="sossheig" unit="m" /> 1057 </field_group> 1058 959 1059 <field_group id="1h_grid_U_tmb" grid_ref="grid_U_2D" operation="instant"> 960 1060 <field id="top_u" name="vozocrtx_top" unit="m/s" /> … … 973 1073 <!-- 25h diagnostic output --> 974 1074 <field_group id="25h_grid_T" grid_ref="grid_T_3D" operation="instant"> 975 <field id="temper25h" name="potential temperature 25h mean" unit="degC" /> 1075 <!-- EOS80 --> 1076 <field id="temper25h_pot" name="potential temperature 25h mean" unit="degC" /> 976 1077 <field id="tempis25h" name="insitu temperature 25h mean" unit="degC" /> 977 <field id="salin25h" name="salinity 25h mean" unit="psu" /> 1078 <field id="salin25h_pra" name="practical salinity 25h mean" unit="psu" /> 1079 <!-- TEOS10 --> 1080 <field id="temper25h_con" name="conservative temperature 25h mean" unit="degC" /> 1081 <field id="tempis25h" name="insitu temperature 25h mean" unit="degC" /> 1082 <field id="salin25h_abs" name="absolute salinity 25h mean" unit="psu" /> 1083 978 1084 <field id="ssh25h" name="sea surface height 25h mean" grid_ref="grid_T_2D" unit="m" /> 979 1085 </field_group> -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/cfgs/SHARED/grid_def_nemo.xml
r12331 r12660 264 264 <scalar/> 265 265 </grid> 266 267 </grid_definition> 268 266 <!-- --> 267 <grid id="grid_EqT" > 268 <domain id="EqT" /> 269 </grid> 270 <!-- --> 271 <grid id="gznl_T_2D"> 272 <domain id="ptr" /> 273 </grid> 274 <!-- --> 275 <grid id="gznl_T_3D"> 276 <domain id="ptr" /> 277 <axis axis_ref="deptht" /> 278 </grid> 279 <!-- --> 280 <grid id="gznl_W_2D"> 281 <domain id="ptr" /> 282 </grid> 283 <!-- --> 284 <grid id="gznl_W_3D"> 285 <domain id="ptr" /> 286 <axis axis_ref="depthw" /> 287 </grid> 288 <grid id="vert_sum"> 289 <domain id="grid_T"/> 290 <scalar> 291 <reduce_axis operation="sum" /> 292 </scalar> 293 </grid> 294 <grid id="zoom_300"> 295 <domain id="grid_T" /> 296 <axis axis_ref="deptht300"/> 297 </grid> 298 <grid id="zoom_300_sum"> 299 <domain id="grid_T" /> 300 <scalar> 301 <reduce_axis operation="sum" /> 302 </scalar> 303 </grid> 304 <grid id="grid_T_surface_extract"> 305 <domain id="grid_T" /> 306 <axis axis_ref="deptht_surface" /> 307 </grid> 308 309 </grid_definition> 310 -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/cfgs/SHARED/namelist_ref
r12658 r12660 67 67 ln_xios_read = .FALSE. ! use XIOS to read restart file (only for a single file restart) 68 68 nn_wxios = 0 ! use XIOS to write restart file 0 - no, 1 - single file output, 2 - multiple file output 69 ln_rst_eos = .TRUE. ! check if the equation of state used to produce the restart is consistent with model 69 70 / 70 71 !----------------------------------------------------------------------- -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/ICE/icerst.F90
r12658 r12660 23 23 USE in_out_manager ! I/O manager 24 24 USE iom ! I/O manager library 25 USE ioipsl, ONLY : ju2ymds ! for calendar 25 26 USE lib_mpp ! MPP library 26 27 USE lib_fortran ! fortran utilities (glob_sum + no signed zero) … … 48 49 INTEGER, INTENT(in) :: kt ! number of iteration 49 50 ! 51 INTEGER :: iyear, imonth, iday 52 REAL (wp) :: zsec 53 REAL (wp) :: zfjulday 50 54 CHARACTER(len=20) :: clkt ! ocean time-step define as a character 51 55 CHARACTER(len=50) :: clname ! ice output restart file name … … 63 67 IF( nitrst <= nitend .AND. nitrst > 0 ) THEN 64 68 ! beware of the format used to write kt (default is i8.8, that should be large enough...) 65 IF( nitrst > 99999999 ) THEN ; WRITE(clkt, * ) nitrst 66 ELSE ; WRITE(clkt, '(i8.8)') nitrst 69 IF ( ln_rstdate ) THEN 70 zfjulday = fjulday + (2*nn_fsbc+1)*rdt / rday 71 IF( ABS(zfjulday - REAL(NINT(zfjulday),wp)) < 0.1 / rday ) zfjulday = REAL(NINT(zfjulday),wp) ! avoid truncation error 72 CALL ju2ymds( zfjulday, iyear, imonth, iday, zsec ) 73 WRITE(clkt, '(i4.4,2i2.2)') iyear, imonth, iday 74 ELSE 75 IF( nitrst > 99999999 ) THEN ; WRITE(clkt, * ) nitrst 76 ELSE ; WRITE(clkt, '(i8.8)') nitrst 77 ENDIF 67 78 ENDIF 68 79 ! create the file -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/ICE/icewri.F90
r12658 r12660 104 104 IF( iom_use('snwthic' ) ) CALL iom_put( 'snwthic', hm_s * zmsk00 ) ! snw thickness 105 105 IF( iom_use('icebrv' ) ) CALL iom_put( 'icebrv' , bvm_i* 100. * zmsk00 ) ! brine volume 106 IF( iom_use('iceage' ) ) CALL iom_put( 'iceage' , om_i / rday * zmsk15 + zmiss_val * ( 1._wp - zmsk15 ) )! ice age106 IF( iom_use('iceage' ) ) CALL iom_put( 'iceage' , om_i / rday * zmsk15 ) ! ice age 107 107 IF( iom_use('icehnew' ) ) CALL iom_put( 'icehnew', ht_i_new ) ! new ice thickness formed in the leads 108 108 IF( iom_use('snwvolu' ) ) CALL iom_put( 'snwvolu', vt_s * zmsksn ) ! snow volume … … 117 117 IF( iom_use('icevpnd' ) ) CALL iom_put( 'icevpnd', vt_ip * zmsk00 ) ! melt pond total volume per unit area 118 118 ! salt 119 IF( iom_use('icesalt' ) ) CALL iom_put( 'icesalt', sm_i * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )! mean ice salinity119 IF( iom_use('icesalt' ) ) CALL iom_put( 'icesalt', sm_i * zmsk00 ) ! mean ice salinity 120 120 IF( iom_use('icesalm' ) ) CALL iom_put( 'icesalm', st_i * rhoi * 1.0e-3 * zmsk00 ) ! Mass of salt in sea ice per cell area 121 121 ! heat 122 IF( iom_use('icetemp' ) ) CALL iom_put( 'icetemp', ( tm_i - rt0 ) * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )! ice mean temperature123 IF( iom_use('snwtemp' ) ) CALL iom_put( 'snwtemp', ( tm_s - rt0 ) * zmsksn + zmiss_val * ( 1._wp - zmsksn ) )! snw mean temperature124 IF( iom_use('icettop' ) ) CALL iom_put( 'icettop', ( tm_su - rt0 ) * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )! temperature at the ice surface125 IF( iom_use('icetbot' ) ) CALL iom_put( 'icetbot', ( t_bo - rt0 ) * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )! temperature at the ice bottom126 IF( iom_use('icetsni' ) ) CALL iom_put( 'icetsni', ( tm_si - rt0 ) * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )! temperature at the snow-ice interface122 IF( iom_use('icetemp' ) ) CALL iom_put( 'icetemp', ( tm_i - rt0 ) * zmsk00 ) ! ice mean temperature 123 IF( iom_use('snwtemp' ) ) CALL iom_put( 'snwtemp', ( tm_s - rt0 ) * zmsksn ) ! snw mean temperature 124 IF( iom_use('icettop' ) ) CALL iom_put( 'icettop', ( tm_su - rt0 ) * zmsk00 ) ! temperature at the ice surface 125 IF( iom_use('icetbot' ) ) CALL iom_put( 'icetbot', ( t_bo - rt0 ) * zmsk00 ) ! temperature at the ice bottom 126 IF( iom_use('icetsni' ) ) CALL iom_put( 'icetsni', ( tm_si - rt0 ) * zmsk00 ) ! temperature at the snow-ice interface 127 127 IF( iom_use('icehc' ) ) CALL iom_put( 'icehc' , -et_i * zmsk00 ) ! ice heat content 128 128 IF( iom_use('snwhc' ) ) CALL iom_put( 'snwhc' , -et_s * zmsksn ) ! snow heat content … … 151 151 IF( iom_use('icemask_cat' ) ) CALL iom_put( 'icemask_cat' , zmsk00l ) ! ice mask 0% 152 152 IF( iom_use('iceconc_cat' ) ) CALL iom_put( 'iceconc_cat' , a_i * zmsk00l ) ! area for categories 153 IF( iom_use('icethic_cat' ) ) CALL iom_put( 'icethic_cat' , h_i * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! thickness for categories154 IF( iom_use('snwthic_cat' ) ) CALL iom_put( 'snwthic_cat' , h_s * zmsksnl + zmiss_val * ( 1._wp - zmsksnl )) ! snow depth for categories155 IF( iom_use('icesalt_cat' ) ) CALL iom_put( 'icesalt_cat' , s_i * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! salinity for categories156 IF( iom_use('iceage_cat' ) ) CALL iom_put( 'iceage_cat' , o_i / rday * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! ice age153 IF( iom_use('icethic_cat' ) ) CALL iom_put( 'icethic_cat' , h_i * zmsk00l ) ! thickness for categories 154 IF( iom_use('snwthic_cat' ) ) CALL iom_put( 'snwthic_cat' , h_s * zmsksnl ) ! snow depth for categories 155 IF( iom_use('icesalt_cat' ) ) CALL iom_put( 'icesalt_cat' , s_i * zmsk00l ) ! salinity for categories 156 IF( iom_use('iceage_cat' ) ) CALL iom_put( 'iceage_cat' , o_i / rday * zmsk00l ) ! ice age 157 157 IF( iom_use('icetemp_cat' ) ) CALL iom_put( 'icetemp_cat' , ( SUM( t_i, dim=3 ) * r1_nlay_i - rt0 ) & 158 & * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! ice temperature158 & * zmsk00l ) ! ice temperature 159 159 IF( iom_use('snwtemp_cat' ) ) CALL iom_put( 'snwtemp_cat' , ( SUM( t_s, dim=3 ) * r1_nlay_s - rt0 ) & 160 & * zmsksnl + zmiss_val * ( 1._wp - zmsksnl )) ! snow temperature161 IF( iom_use('icettop_cat' ) ) CALL iom_put( 'icettop_cat' , ( t_su - rt0 ) * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! surface temperature162 IF( iom_use('icebrv_cat' ) ) CALL iom_put( 'icebrv_cat' , bv_i * 100. * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! brine volume160 & * zmsksnl ) ! snow temperature 161 IF( iom_use('icettop_cat' ) ) CALL iom_put( 'icettop_cat' , ( t_su - rt0 ) * zmsk00l ) ! surface temperature 162 IF( iom_use('icebrv_cat' ) ) CALL iom_put( 'icebrv_cat' , bv_i * 100. * zmsk00l ) ! brine volume 163 163 IF( iom_use('iceapnd_cat' ) ) CALL iom_put( 'iceapnd_cat' , a_ip * zmsk00l ) ! melt pond frac for categories 164 IF( iom_use('icehpnd_cat' ) ) CALL iom_put( 'icehpnd_cat' , h_ip * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! melt pond frac for categories164 IF( iom_use('icehpnd_cat' ) ) CALL iom_put( 'icehpnd_cat' , h_ip * zmsk00l ) ! melt pond frac for categories 165 165 IF( iom_use('iceafpnd_cat') ) CALL iom_put( 'iceafpnd_cat', a_ip_frac * zmsk00l ) ! melt pond frac for categories 166 IF( iom_use('icealb_cat' ) ) CALL iom_put( 'icealb_cat' , alb_ice * zmsk00l + zmiss_val * ( 1._wp - zmsk00l )) ! ice albedo for categories166 IF( iom_use('icealb_cat' ) ) CALL iom_put( 'icealb_cat' , alb_ice * zmsk00l ) ! ice albedo for categories 167 167 168 168 !------------------ -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/DIA/diawri.F90
r12658 r12660 49 49 USE iom ! 50 50 USE ioipsl ! 51 51 USE eosbn2 52 52 #if defined key_si3 53 53 USE ice … … 113 113 REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace 114 114 REAL(wp), DIMENSION(jpi,jpj,jpk) :: z3d ! 3D workspace 115 CHARACTER(len=4),SAVE :: ttype , stype ! temperature and salinity type 115 116 !!---------------------------------------------------------------------- 116 117 ! 118 IF( kt == nit000 ) THEN 119 IF( ln_TEOS10 ) THEN 120 IF ( iom_use("toce_pot") .OR. iom_use("soce_pra") .OR. iom_use("sst_pot") .OR. iom_use("sss_pra") & 121 & .OR. iom_use("sbt_pot") .OR. iom_use("sbs_pra") .OR. iom_use("sstgrad_pot") .OR. iom_use("sstgrad2_pot") & 122 & .OR. iom_use("tosmint_pot") .OR. iom_use("somint_pra")) THEN 123 CALL ctl_stop( 'diawri: potential temperature and practical salinity not available with ln_TEOS10' ) 124 ELSE 125 ttype='con' ; stype='abs' ! teos-10 using conservative temperature and absolute salinity 126 ENDIF 127 ELSE IF( ln_EOS80 ) THEN 128 IF ( iom_use("toce_con") .OR. iom_use("soce_abs") .OR. iom_use("sst_con") .OR. iom_use("sss_abs") & 129 & .OR. iom_use("sbt_con") .OR. iom_use("sbs_abs") .OR. iom_use("sstgrad_con") .OR. iom_use("sstgrad2_con") & 130 & .OR. iom_use("tosmint_con") .OR. iom_use("somint_abs")) THEN 131 CALL ctl_stop( 'diawri: conservative temperature and absolute salinity not available with ln_EOS80' ) 132 ELSE 133 ttype='pot' ; stype='pra' ! eos-80 using potential temperature and practical salinity 134 ENDIF 135 ELSE IF ( ln_SEOS) THEN 136 ttype='seos' ; stype='seos' ! seos using Simplified Equation of state 137 ENDIF 138 ENDIF 139 117 140 IF( ln_timing ) CALL timing_start('dia_wri') 118 141 ! … … 144 167 CALL iom_put( "wetdep" , ht_0(:,:) + sshn(:,:) ) 145 168 146 CALL iom_put( "toce ", tsn(:,:,:,jp_tem) ) ! 3D temperature147 CALL iom_put( "sst ", tsn(:,:,1,jp_tem) ) ! surface temperature148 IF ( iom_use("sbt ") ) THEN169 CALL iom_put( "toce_"//ttype, tsn(:,:,:,jp_tem) ) ! 3D temperature 170 CALL iom_put( "sst_"//ttype, tsn(:,:,1,jp_tem) ) ! surface temperature 171 IF ( iom_use("sbt_"//ttype) ) THEN 149 172 DO jj = 1, jpj 150 173 DO ji = 1, jpi … … 153 176 END DO 154 177 END DO 155 CALL iom_put( "sbt ", z2d ) ! bottom temperature178 CALL iom_put( "sbt_"//ttype, z2d ) ! bottom temperature 156 179 ENDIF 157 180 158 CALL iom_put( "soce ", tsn(:,:,:,jp_sal) ) ! 3D salinity159 CALL iom_put( "sss ", tsn(:,:,1,jp_sal) ) ! surface salinity160 IF ( iom_use("sbs ") ) THEN181 CALL iom_put( "soce_"//stype, tsn(:,:,:,jp_sal) ) ! 3D salinity 182 CALL iom_put( "sss_"//stype, tsn(:,:,1,jp_sal) ) ! surface salinity 183 IF ( iom_use("sbs_"//stype) ) THEN 161 184 DO jj = 1, jpj 162 185 DO ji = 1, jpi … … 165 188 END DO 166 189 END DO 167 CALL iom_put( "sbs ", z2d ) ! bottom salinity190 CALL iom_put( "sbs_"//stype, z2d ) ! bottom salinity 168 191 ENDIF 169 192 … … 231 254 IF( iom_use('logavs') ) CALL iom_put( "logavs", LOG( MAX( 1.e-20_wp, avs(:,:,:) ) ) ) 232 255 233 IF ( iom_use("sstgrad ") .OR. iom_use("sstgrad2") ) THEN256 IF ( iom_use("sstgrad_"//ttype) .OR. iom_use("sstgrad2_"//ttype) ) THEN 234 257 DO jj = 2, jpjm1 ! sst gradient 235 258 DO ji = fs_2, fs_jpim1 ! vector opt. … … 242 265 END DO 243 266 CALL lbc_lnk( 'diawri', z2d, 'T', 1. ) 244 CALL iom_put( "sstgrad2 ", z2d ) ! square of module of sst gradient267 CALL iom_put( "sstgrad2_"//ttype, z2d ) ! square of module of sst gradient 245 268 z2d(:,:) = SQRT( z2d(:,:) ) 246 CALL iom_put( "sstgrad ", z2d ) ! module of sst gradient269 CALL iom_put( "sstgrad_"//ttype , z2d ) ! module of sst gradient 247 270 ENDIF 248 271 … … 363 386 ENDIF 364 387 365 IF( iom_use("tosmint ") ) THEN388 IF( iom_use("tosmint_"//ttype) ) THEN 366 389 z2d(:,:) = 0._wp 367 390 DO jk = 1, jpkm1 … … 373 396 END DO 374 397 CALL lbc_lnk( 'diawri', z2d, 'T', -1. ) 375 CALL iom_put( "tosmint ", rau0 * z2d ) ! Vertical integral of temperature376 ENDIF 377 IF( iom_use("somint ") ) THEN398 CALL iom_put( "tosmint_"//ttype, rau0 * z2d ) ! Vertical integral of temperature 399 ENDIF 400 IF( iom_use("somint_"//stype) ) THEN 378 401 z2d(:,:)=0._wp 379 402 DO jk = 1, jpkm1 … … 385 408 END DO 386 409 CALL lbc_lnk( 'diawri', z2d, 'T', -1. ) 387 CALL iom_put( "somint ", rau0 * z2d ) ! Vertical integral of salinity410 CALL iom_put( "somint_"//stype, rau0 * z2d ) ! Vertical integral of salinity 388 411 ENDIF 389 412 … … 923 946 CALL iom_rstput( 0, 0, inum, 'sdvecrtz', wsd ) ! now StokesDrift k-velocity 924 947 ENDIF 925 926 948 #if defined key_si3 927 949 IF( nn_ice == 2 ) THEN ! condition needed in case agrif + ice-model but no-ice in child grid -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/DOM/domain.F90
r12658 r12660 292 292 & nn_it000, nn_itend , nn_date0 , nn_time0 , nn_leapy , nn_istate , & 293 293 & nn_stock, nn_write , ln_mskland , ln_clobber , nn_chunksz, nn_euler , & 294 & ln_cfmeta, ln_iscpl, ln_xios_read, nn_wxios 294 & ln_cfmeta, ln_iscpl, ln_xios_read, nn_wxios, ln_rstdate, ln_rst_eos 295 295 296 NAMELIST/namdom/ ln_linssh, rn_isfhmin, rn_rdt, rn_atfp, ln_crs, ln_meshmask 296 297 #if defined key_netcdf4 … … 340 341 #endif 341 342 WRITE(numout,*) ' mask land points ln_mskland = ', ln_mskland 343 WRITE(numout,*) ' date-stamp restart files ln_rstdate = ', ln_rstdate 342 344 WRITE(numout,*) ' additional CF standard metadata ln_cfmeta = ', ln_cfmeta 343 345 WRITE(numout,*) ' overwrite an existing file ln_clobber = ', ln_clobber 344 346 WRITE(numout,*) ' NetCDF chunksize (bytes) nn_chunksz = ', nn_chunksz 345 347 WRITE(numout,*) ' IS coupling at the restart step ln_iscpl = ', ln_iscpl 348 WRITE(numout,*) ' check restart equation of state ln_rst_eos = ', ln_rst_eos 349 346 350 IF( TRIM(Agrif_CFixed()) == '0' ) THEN 347 351 WRITE(numout,*) ' READ restart for a single file using XIOS ln_xios_read =', ln_xios_read -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/DOM/dommsk.F90
r12658 r12660 32 32 USE lbclnk ! ocean lateral boundary conditions (or mpp link) 33 33 USE lib_mpp ! Massively Parallel Processing library 34 USE iom ! For shlat2d 35 USE fldread ! for sn_shlat2d 34 36 35 37 IMPLICIT NONE … … 92 94 INTEGER :: iktop, ikbot ! - - 93 95 INTEGER :: ios, inum 94 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zwf ! 2D workspace 95 !! 96 NAMELIST/namlbc/ rn_shlat, ln_vorlat 96 !! 97 INTEGER :: inum ! logical unit for shlat2d 98 REAL(wp) :: zshlat !: locally modified shlat for some strait 99 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zshlat2d 100 LOGICAL :: ln_shlat2d 101 CHARACTER(len = 256) :: cn_shlat2d_file, cn_shlat2d_var 102 !! 103 NAMELIST/namlbc/ rn_shlat, ln_vorlat, ln_shlat2d, cn_shlat2d_file, cn_shlat2d_var 97 104 NAMELIST/nambdy/ ln_bdy ,nb_bdy, ln_coords_file, cn_coords_file, & 98 105 & ln_mask_file, cn_mask_file, cn_dyn2d, nn_dyn2d_dta, & … … 121 128 ! 122 129 IF(lwp) WRITE(numout,*) 123 IF ( rn_shlat == 0. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral free-slip' 124 ELSEIF ( rn_shlat == 2. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral no-slip' 125 ELSEIF ( 0. < rn_shlat .AND. rn_shlat < 2. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral partial-slip' 126 ELSEIF ( 2. < rn_shlat ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral strong-slip' 130 131 IF ( ln_shlat2d ) THEN 132 IF(lwp) WRITE(numout,*) ' READ shlat as a 2D coefficient in a file ' 133 ALLOCATE( zshlat2d(jpi,jpj) ) 134 CALL iom_open(TRIM(cn_shlat2d_file), inum) 135 CALL iom_get (inum, jpdom_data, TRIM(cn_shlat2d_var), zshlat2d, 1) ! 136 CALL iom_close(inum) 127 137 ELSE 128 CALL ctl_stop( 'dom_msk: wrong value for rn_shlat (i.e. a negalive value). We stop.' ) 138 IF ( rn_shlat == 0. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral free-slip' 139 ELSEIF ( rn_shlat == 2. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral no-slip' 140 ELSEIF ( 0. < rn_shlat .AND. rn_shlat < 2. ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral partial-slip' 141 ELSEIF ( 2. < rn_shlat ) THEN ; IF(lwp) WRITE(numout,*) ' ==>>> ocean lateral strong-slip' 142 ELSE 143 CALL ctl_stop( 'dom_msk: wrong value for rn_shlat (i.e. a negalive value). We stop.' ) 144 ENDIF 129 145 ENDIF 130 146 … … 241 257 ! Lateral boundary conditions on velocity (modify fmask) 242 258 ! --------------------------------------- 243 IF( rn_shlat /= 0 ) THEN ! Not free-slip lateral boundary condition 244 ! 245 ALLOCATE( zwf(jpi,jpj) ) 259 IF( rn_shlat /= 0 .or. ln_shlat2d ) THEN ! Not free-slip lateral boundary condition everywhere 246 260 ! 247 261 DO jk = 1, jpk 248 zwf(:,:) = fmask(:,:,jk) 249 DO jj = 2, jpjm1 250 DO ji = fs_2, fs_jpim1 ! vector opt. 251 IF( fmask(ji,jj,jk) == 0._wp ) THEN 252 fmask(ji,jj,jk) = rn_shlat * MIN( 1._wp , MAX( zwf(ji+1,jj), zwf(ji,jj+1), & 253 & zwf(ji-1,jj), zwf(ji,jj-1) ) ) 254 ENDIF 262 IF ( ln_shlat2d ) THEN 263 DO jj = 2, jpjm1 264 DO ji = fs_2, fs_jpim1 ! vector opt. 265 IF( fmask(ji,jj,jk) == 0._wp ) THEN 266 fmask(ji,jj,jk) = zshlat2d(ji,jj) * MIN( 1._wp , MAX( umask(ji,jj,jk), umask(ji,jj+1,jk), & 267 & vmask(ji,jj,jk), vmask(ji+1,jj,jk) ) ) 268 ENDIF 269 END DO 255 270 END DO 256 END DO 271 ELSE 272 DO jj = 2, jpjm1 273 DO ji = fs_2, fs_jpim1 ! vector opt. 274 IF( fmask(ji,jj,jk) == 0._wp ) THEN 275 fmask(ji,jj,jk) = rn_shlat * MIN( 1._wp , MAX( umask(ji,jj,jk), umask(ji,jj+1,jk), & 276 & vmask(ji,jj,jk), vmask(ji+1,jj,jk) ) ) 277 ENDIF 278 END DO 279 END DO 280 ENDIF 257 281 DO jj = 2, jpjm1 258 282 IF( fmask(1,jj,jk) == 0._wp ) THEN 259 fmask(1 ,jj,jk) = rn_shlat * MIN( 1._wp , MAX( zwf(2,jj), zwf(1,jj+1), zwf(1,jj-1) ) )283 fmask(1 ,jj,jk) = rn_shlat * MIN( 1._wp , MAX( vmask(2,jj,jk), umask(1,jj+1,jk), umask(1,jj,jk) ) ) 260 284 ENDIF 261 285 IF( fmask(jpi,jj,jk) == 0._wp ) THEN 262 fmask(jpi,jj,jk) = rn_shlat * MIN( 1._wp , MAX( zwf(jpi,jj+1), zwf(jpim1,jj), zwf(jpi,jj-1) ) )286 fmask(jpi,jj,jk) = rn_shlat * MIN( 1._wp , MAX( umask(jpi,jj+1,jk), vmask(jpim1,jj,jk), umask(jpi,jj-1,jk) ) ) 263 287 ENDIF 264 288 END DO 265 289 DO ji = 2, jpim1 266 290 IF( fmask(ji,1,jk) == 0._wp ) THEN 267 fmask(ji, 1 ,jk) = rn_shlat * MIN( 1._wp , MAX( zwf(ji+1,1), zwf(ji,2), zwf(ji-1,1) ) )291 fmask(ji, 1 ,jk) = rn_shlat * MIN( 1._wp , MAX( vmask(ji+1,1,jk), umask(ji,2,jk), vmask(ji,1,jk) ) ) 268 292 ENDIF 269 293 IF( fmask(ji,jpj,jk) == 0._wp ) THEN 270 fmask(ji,jpj,jk) = rn_shlat * MIN( 1._wp , MAX( zwf(ji+1,jpj), zwf(ji-1,jpj), zwf(ji,jpjm1) ) )294 fmask(ji,jpj,jk) = rn_shlat * MIN( 1._wp , MAX( vmask(ji+1,jpj,jk), vmask(ji-1,jpj,jk), umask(ji,jpjm1,jk) ) ) 271 295 ENDIF 272 296 END DO … … 281 305 END DO 282 306 ! 283 DEALLOCATE( zwf)307 IF( ln_shlat2d ) DEALLOCATE( zshlat2d ) 284 308 ! 285 309 CALL lbc_lnk( 'dommsk', fmask, 'F', 1._wp ) ! Lateral boundary conditions on fmask -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/ICB/icbrst.F90
r12658 r12660 25 25 USE netcdf ! netcdf routines for IO 26 26 USE iom 27 USE ioipsl, ONLY : ju2ymds ! for calendar 27 28 USE icb_oce ! define iceberg arrays 28 29 USE icbutl ! iceberg utility routines … … 190 191 INTEGER :: jn ! dummy loop index 191 192 INTEGER :: ix_dim, iy_dim, ik_dim, in_dim 192 CHARACTER(len=256) :: cl_path 193 CHARACTER(len=256) :: cl_filename 193 INTEGER :: iyear, imonth, iday 194 REAL (wp) :: zsec 195 REAL (wp) :: zfjulday 196 CHARACTER(len=256) :: cl_path 197 CHARACTER(len=256) :: cl_filename 198 CHARACTER(LEN=20) :: clkt ! ocean time-step deine as a character 194 199 TYPE(iceberg), POINTER :: this 195 200 TYPE(point) , POINTER :: pt … … 206 211 cl_path = TRIM(cn_ocerst_outdir) 207 212 IF( cl_path(LEN_TRIM(cl_path):) /= '/' ) cl_path = TRIM(cl_path) // '/' 213 IF ( ln_rstdate ) THEN 214 zfjulday = fjulday + rdt / rday 215 IF( ABS(zfjulday - REAL(NINT(zfjulday),wp)) < 0.1 / rday ) zfjulday = REAL(NINT(zfjulday),wp) ! avoid truncation error 216 CALL ju2ymds( zfjulday, iyear, imonth, iday, zsec ) 217 WRITE(clkt, '(i4.4,2i2.2)') iyear, imonth, iday 218 ELSE 219 IF( kt > 999999999 ) THEN ; WRITE(clkt, * ) kt 220 ELSE ; WRITE(clkt, '(i8.8)') kt 221 ENDIF 222 ENDIF 208 223 IF( lk_mpp ) THEN 209 WRITE(cl_filename,'(A,"_icebergs_", I8.8,"_restart_",I4.4,".nc")') TRIM(cexper), kt, narea-1224 WRITE(cl_filename,'(A,"_icebergs_",A,"_restart_",I4.4,".nc")') TRIM(cexper), TRIM(ADJUSTL(clkt)), narea-1 210 225 ELSE 211 WRITE(cl_filename,'(A,"_icebergs_", I8.8,"_restart.nc")') TRIM(cexper), kt226 WRITE(cl_filename,'(A,"_icebergs_",A,"_restart.nc")') TRIM(cexper), TRIM(ADJUSTL(clkt)) 212 227 ENDIF 213 228 IF ( lwp .AND. nn_verbose_level >= 0) WRITE(numout,'(2a)') 'icebergs, write_restart: creating ', & -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/IOM/in_out_manager.F90
r12658 r12660 28 28 LOGICAL :: ln_rstart !: start from (F) rest or (T) a restart file 29 29 LOGICAL :: ln_rst_list !: output restarts at list of times (T) or by frequency (F) 30 LOGICAL :: ln_rst_eos !: check equation of state used for the restart is consistent with model 30 31 INTEGER :: nn_rstctl !: control of the time step (0, 1 or 2) 31 32 INTEGER :: nn_rstssh = 0 !: hand made initilization of ssh or not (1/0) … … 40 41 INTEGER, DIMENSION(10) :: nn_stocklist !: restart dump times 41 42 LOGICAL :: ln_mskland !: mask land points in NetCDF outputs (costly: + ~15%) 43 LOGICAL :: ln_rstdate !: T=> stamp output restart files with date instead of timestep 42 44 LOGICAL :: ln_cfmeta !: output additional data to netCDF files required for compliance with the CF metadata standard 43 45 LOGICAL :: ln_clobber !: clobber (overwrite) an existing file -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/IOM/iom.F90
r12658 r12660 369 369 !from restart.F90 370 370 CALL iom_set_rstw_var_active("rdt") 371 CALL iom_set_rstw_var_active("neos") 372 371 373 IF ( .NOT. ln_diurnal_only ) THEN 372 374 CALL iom_set_rstw_var_active('ub' ) … … 418 420 i = 0 419 421 i = i + 1; fields(i)%vname="rdt"; fields(i)%grid="grid_scalar" 422 i = i + 1; fields(i)%vname="neos"; fields(i)%grid="grid_scalar" 420 423 i = i + 1; fields(i)%vname="un"; fields(i)%grid="grid_N_3D" 421 424 i = i + 1; fields(i)%vname="ub"; fields(i)%grid="grid_N_3D" -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/IOM/restart.F90
r12658 r12660 27 27 USE in_out_manager ! I/O manager 28 28 USE iom ! I/O module 29 USE ioipsl, ONLY : ju2ymds ! for calendar 29 30 USE diurnal_bulk 30 31 USE lib_mpp ! distribued memory computing library … … 59 60 INTEGER, INTENT(in) :: kt ! ocean time-step 60 61 !! 62 INTEGER :: iyear, imonth, iday 63 REAL (wp) :: zsec 64 REAL (wp) :: zfjulday 61 65 CHARACTER(LEN=20) :: clkt ! ocean time-step deine as a character 62 66 CHARACTER(LEN=50) :: clname ! ocean output restart file name … … 90 94 IF( nitrst <= nitend .AND. nitrst > 0 ) THEN 91 95 ! beware of the format used to write kt (default is i8.8, that should be large enough...) 92 IF( nitrst > 999999999 ) THEN ; WRITE(clkt, * ) nitrst 93 ELSE ; WRITE(clkt, '(i8.8)') nitrst 96 IF ( ln_rstdate ) THEN 97 zfjulday = fjulday + rdt / rday 98 IF( ABS(zfjulday - REAL(NINT(zfjulday),wp)) < 0.1 / rday ) zfjulday = REAL(NINT(zfjulday),wp) ! avoid truncation error 99 CALL ju2ymds( zfjulday, iyear, imonth, iday, zsec ) 100 WRITE(clkt, '(i4.4,2i2.2)') iyear, imonth, iday 101 ELSE 102 IF( nitrst > 999999999 ) THEN ; WRITE(clkt, * ) nitrst 103 ELSE ; WRITE(clkt, '(i8.8)') nitrst 104 ENDIF 94 105 ENDIF 95 106 ! create the file … … 173 184 END IF 174 185 ENDIF 186 CALL iom_rstput( kt, nitrst, numrow, 'neos' , REAL(neos) , ldxios = lwxios) ! equation of state 187 !CALL iom_rstput( kt, nitrst, numrow, 'neos' , neos , ktype = jp_i1, ldxios = lwxios) ! equation of state 188 175 189 176 190 IF (ln_diurnal) CALL iom_rstput( kt, nitrst, numrow, 'Dsst', x_dsst, ldxios = lwxios ) … … 249 263 !!---------------------------------------------------------------------- 250 264 REAL(wp) :: zrdt 265 REAL(wp) :: zeos 251 266 INTEGER :: jk 252 267 REAL(wp), DIMENSION(jpi, jpj, jpk) :: w3d … … 255 270 CALL rst_read_open ! open restart for reading (if not already opened) 256 271 272 IF ( ln_rst_eos ) THEN 273 ! Check equation of state used is consistent with the restart 274 IF( iom_varid( numror, 'neos') == -1) THEN 275 CALL ctl_stop( 'restart, rst_read: variable neos not found. STOP check that the equations of state in the restart file and in the namelist nameos are consistent and use ln_rst_eos=F') 276 ELSE 277 CALL iom_get( numror, 'neos', zeos, ldxios = lrxios ) 278 IF ( INT(zeos) /= neos ) CALL ctl_stop( 'restart, rst_read: equation of state used in restart file differs from namelist nameos') 279 ENDIF 280 ENDIF 281 257 282 ! Check dynamics and tracer time-step consistency and force Euler restart if changed 258 IF( iom_varid( numror, 'rdt', ldstop = .FALSE. ) > 0 ) THEN 283 IF( iom_varid( numror, 'rdt', ldstop = .FALSE. ) > 0 ) THEN 259 284 CALL iom_get( numror, 'rdt', zrdt, ldxios = lrxios ) 260 285 IF( zrdt /= rdt ) neuler = 0 -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/SBC/sbcssm.F90
r12658 r12660 57 57 REAL(wp) :: zcoef, zf_sbc ! local scalar 58 58 REAL(wp), DIMENSION(jpi,jpj,jpts) :: zts 59 CHARACTER(len=4),SAVE :: stype 59 60 !!--------------------------------------------------------------------- 61 IF( kt == nit000 ) THEN 62 IF( ln_TEOS10 ) THEN 63 stype='abs' ! teos-10: using absolute salinity (sst is converted to potential temperature for the surface module) 64 ELSE IF( ln_EOS80 ) THEN 65 stype='pra' ! eos-80: using practical salinity 66 ELSE IF ( ln_SEOS) THEN 67 stype='seos' ! seos using Simplified Equation of state (sst is converted to potential temperature for the surface module) 68 ENDIF 69 ENDIF 60 70 ! 61 71 ! !* surface T-, U-, V- ocean level variables (T, S, depth, velocity) … … 174 184 CALL iom_put( 'ssu_m', ssu_m ) 175 185 CALL iom_put( 'ssv_m', ssv_m ) 176 CALL iom_put( 'sst_m ', sst_m )177 CALL iom_put( 'sss_m ', sss_m )186 CALL iom_put( 'sst_m_pot', sst_m ) 187 CALL iom_put( 'sss_m_'//stype, sss_m ) 178 188 CALL iom_put( 'ssh_m', ssh_m ) 179 189 CALL iom_put( 'e3t_m', e3t_m ) -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/TRA/trabbl.F90
r12658 r12660 513 513 IF( tra_bbl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'tra_bbl_init : unable to allocate arrays' ) 514 514 ! 515 IF( nn_bbl_adv == 1 ) WRITE(numout,*) ' * Advective BBL using upper velocity' 516 IF( nn_bbl_adv == 2 ) WRITE(numout,*) ' * Advective BBL using velocity = F( delta rho)' 515 IF(lwp) THEN 516 IF( nn_bbl_adv == 1 ) WRITE(numout,*) ' * Advective BBL using upper velocity' 517 IF( nn_bbl_adv == 2 ) WRITE(numout,*) ' * Advective BBL using velocity = F( delta rho)' 518 ENDIF 517 519 ! 518 520 ! !* vertical index of "deep" bottom u- and v-points -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/ZDF/zdfmxl.F90
r12658 r12660 15 15 USE trc_oce , ONLY: l_offline ! ocean space and time domain variables 16 16 USE zdf_oce ! ocean vertical physics 17 USE eosbn2 ! for zdf_mxl_zint 17 18 ! 18 19 USE in_out_manager ! I/O manager … … 31 32 REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlp !: mixed layer depth (rho=rho0+zdcrit) [m] (used by LDF) 32 33 REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlpt !: depth of the last T-point inside the mixed layer [m] (used by LDF) 34 REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hmld_zint !: vertically-interpolated mixed layer depth [m] 35 REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: htc_mld ! Heat content of hmld_zint 36 LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ll_found ! Is T_b to be found by interpolation ? 37 LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ll_belowml ! Flag points below mixed layer when ll_found=F 33 38 34 39 REAL(wp), PUBLIC :: rho_c = 0.01_wp !: density criterion for mixed layer depth 35 40 REAL(wp), PUBLIC :: avt_c = 5.e-4_wp ! Kz criterion for the turbocline depth 41 42 TYPE, PUBLIC :: MXL_ZINT !: Structure for MLD defs 43 INTEGER :: mld_type ! mixed layer type 44 REAL(wp) :: zref ! depth of initial T_ref 45 REAL(wp) :: dT_crit ! Critical temp diff 46 REAL(wp) :: iso_frac ! Fraction of rn_dT_crit 47 END TYPE MXL_ZINT 36 48 37 49 !!---------------------------------------------------------------------- … … 48 60 zdf_mxl_alloc = 0 ! set to zero if no array to be allocated 49 61 IF( .NOT. ALLOCATED( nmln ) ) THEN 50 ALLOCATE( nmln(jpi,jpj), hmld(jpi,jpj), hmlp(jpi,jpj), hmlpt(jpi,jpj), STAT= zdf_mxl_alloc ) 62 ALLOCATE( nmln(jpi,jpj), hmld(jpi,jpj), hmlp(jpi,jpj), hmlpt(jpi,jpj), hmld_zint(jpi,jpj), & 63 & htc_mld(jpi,jpj), ll_found(jpi,jpj), ll_belowml(jpi,jpj,jpk), STAT= zdf_mxl_alloc ) 51 64 ! 52 65 CALL mpp_sum ( 'zdfmxl', zdf_mxl_alloc ) … … 137 150 ENDIF 138 151 ! 152 ! Vertically-interpolated mixed-layer depth diagnostic 153 CALL zdf_mxl_zint( kt ) 154 ! 139 155 IF(ln_ctl) CALL prt_ctl( tab2d_1=REAL(nmln,wp), clinfo1=' nmln : ', tab2d_2=hmlp, clinfo2=' hmlp : ' ) 140 156 ! 141 157 END SUBROUTINE zdf_mxl 158 159 SUBROUTINE zdf_mxl_zint_mld( sf ) 160 !!---------------------------------------------------------------------------------- 161 !! *** ROUTINE zdf_mxl_zint_mld *** 162 ! 163 ! Calculate vertically-interpolated mixed layer depth diagnostic. 164 ! 165 ! This routine can calculate the mixed layer depth diagnostic suggested by 166 ! Kara et al, 2000, JGR, 105, 16803, but is more general and can calculate 167 ! vertically-interpolated mixed-layer depth diagnostics with other parameter 168 ! settings set in the namzdf_mldzint namelist. 169 ! 170 ! If mld_type=1 the mixed layer depth is calculated as the depth at which the 171 ! density has increased by an amount equivalent to a temperature difference of 172 ! 0.8C at the surface. 173 ! 174 ! For other values of mld_type the mixed layer is calculated as the depth at 175 ! which the temperature differs by 0.8C from the surface temperature. 176 ! 177 ! David Acreman, Daley Calvert 178 ! 179 !!----------------------------------------------------------------------------------- 180 181 TYPE(MXL_ZINT), INTENT(in) :: sf 182 183 ! Diagnostic criteria 184 INTEGER :: nn_mld_type ! mixed layer type 185 REAL(wp) :: rn_zref ! depth of initial T_ref 186 REAL(wp) :: rn_dT_crit ! Critical temp diff 187 REAL(wp) :: rn_iso_frac ! Fraction of rn_dT_crit used 188 189 ! Local variables 190 REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value 191 INTEGER, DIMENSION(jpi,jpj) :: ikmt ! number of active tracer levels 192 INTEGER, DIMENSION(jpi,jpj) :: ik_ref ! index of reference level 193 INTEGER, DIMENSION(jpi,jpj) :: ik_iso ! index of last uniform temp level 194 REAL, DIMENSION(jpi,jpj,jpk) :: zT ! Temperature or density 195 REAL, DIMENSION(jpi,jpj) :: ppzdep ! depth for use in calculating d(rho) 196 REAL, DIMENSION(jpi,jpj) :: zT_ref ! reference temperature 197 REAL :: zT_b ! base temperature 198 REAL, DIMENSION(jpi,jpj,jpk) :: zdTdz ! gradient of zT 199 REAL, DIMENSION(jpi,jpj,jpk) :: zmoddT ! Absolute temperature difference 200 REAL :: zdz ! depth difference 201 REAL :: zdT ! temperature difference 202 REAL, DIMENSION(jpi,jpj) :: zdelta_T ! difference critereon 203 REAL, DIMENSION(jpi,jpj) :: zRHO1, zRHO2 ! Densities 204 INTEGER :: ji, jj, jk ! loop counter 205 206 !!------------------------------------------------------------------------------------- 207 ! 208 ! Unpack structure 209 nn_mld_type = sf%mld_type 210 rn_zref = sf%zref 211 rn_dT_crit = sf%dT_crit 212 rn_iso_frac = sf%iso_frac 213 214 ! Set the mixed layer depth criterion at each grid point 215 IF( nn_mld_type == 0 ) THEN 216 zdelta_T(:,:) = rn_dT_crit 217 zT(:,:,:) = rhop(:,:,:) 218 ELSE IF( nn_mld_type == 1 ) THEN 219 ppzdep(:,:)=0.0 220 call eos ( tsn(:,:,1,:), ppzdep(:,:), zRHO1(:,:) ) 221 ! Use zT temporarily as a copy of tsn with rn_dT_crit added to SST 222 ! [assumes number of tracers less than number of vertical levels] 223 zT(:,:,1:jpts)=tsn(:,:,1,1:jpts) 224 zT(:,:,jp_tem)=zT(:,:,1)+rn_dT_crit 225 CALL eos( zT(:,:,1:jpts), ppzdep(:,:), zRHO2(:,:) ) 226 zdelta_T(:,:) = abs( zRHO1(:,:) - zRHO2(:,:) ) * rau0 227 ! RHO from eos (2d version) doesn't calculate north or east halo: 228 CALL lbc_lnk( 'zdfmxl', zdelta_T, 'T', 1. ) 229 zT(:,:,:) = rhop(:,:,:) 230 ELSE 231 zdelta_T(:,:) = rn_dT_crit 232 zT(:,:,:) = tsn(:,:,:,jp_tem) 233 END IF 234 235 ! Calculate the gradient of zT and absolute difference for use later 236 DO jk = 1 ,jpk-2 237 zdTdz(:,:,jk) = ( zT(:,:,jk+1) - zT(:,:,jk) ) / e3w_n(:,:,jk+1) 238 zmoddT(:,:,jk) = abs( zT(:,:,jk+1) - zT(:,:,jk) ) 239 END DO 240 241 ! Find density/temperature at the reference level (Kara et al use 10m). 242 ! ik_ref is the index of the box centre immediately above or at the reference level 243 ! Find rn_zref in the array of model level depths and find the ref 244 ! density/temperature by linear interpolation. 245 DO jk = jpkm1, 2, -1 246 WHERE ( gdept_n(:,:,jk) > rn_zref ) 247 ik_ref(:,:) = jk - 1 248 zT_ref(:,:) = zT(:,:,jk-1) + zdTdz(:,:,jk-1) * ( rn_zref - gdept_n(:,:,jk-1) ) 249 END WHERE 250 END DO 251 252 ! If the first grid box centre is below the reference level then use the 253 ! top model level to get zT_ref 254 WHERE ( gdept_n(:,:,1) > rn_zref ) 255 zT_ref = zT(:,:,1) 256 ik_ref = 1 257 END WHERE 258 259 ! The number of active tracer levels is 1 less than the number of active w levels 260 ikmt(:,:) = mbkt(:,:) - 1 261 262 ! Initialize / reset 263 ll_found(:,:) = .false. 264 265 IF ( rn_iso_frac - zepsilon > 0. ) THEN 266 ! Search for a uniform density/temperature region where adjacent levels 267 ! differ by less than rn_iso_frac * deltaT. 268 ! ik_iso is the index of the last level in the uniform layer 269 ! ll_found indicates whether the mixed layer depth can be found by interpolation 270 ik_iso(:,:) = ik_ref(:,:) 271 DO jj = 1, nlcj 272 DO ji = 1, nlci 273 !CDIR NOVECTOR 274 DO jk = ik_ref(ji,jj), ikmt(ji,jj)-1 275 IF ( zmoddT(ji,jj,jk) > ( rn_iso_frac * zdelta_T(ji,jj) ) ) THEN 276 ik_iso(ji,jj) = jk 277 ll_found(ji,jj) = ( zmoddT(ji,jj,jk) > zdelta_T(ji,jj) ) 278 EXIT 279 END IF 280 END DO 281 END DO 282 END DO 283 284 ! Use linear interpolation to find depth of mixed layer base where possible 285 hmld_zint(:,:) = rn_zref 286 DO jj = 1, jpj 287 DO ji = 1, jpi 288 IF (ll_found(ji,jj) .and. tmask(ji,jj,1) == 1.0) THEN 289 zdz = abs( zdelta_T(ji,jj) / zdTdz(ji,jj,ik_iso(ji,jj)) ) 290 hmld_zint(ji,jj) = gdept_n(ji,jj,ik_iso(ji,jj)) + zdz 291 END IF 292 END DO 293 END DO 294 END IF 295 296 ! If ll_found = .false. then calculate MLD using difference of zdelta_T 297 ! from the reference density/temperature 298 299 ! Prevent this section from working on land points 300 WHERE ( tmask(:,:,1) /= 1.0 ) 301 ll_found = .true. 302 END WHERE 303 304 DO jk=1, jpk 305 ll_belowml(:,:,jk) = abs( zT(:,:,jk) - zT_ref(:,:) ) >= zdelta_T(:,:) 306 END DO 307 308 ! Set default value where interpolation cannot be used (ll_found=false) 309 DO jj = 1, jpj 310 DO ji = 1, jpi 311 IF ( .not. ll_found(ji,jj) ) hmld_zint(ji,jj) = gdept_n(ji,jj,ikmt(ji,jj)) 312 END DO 313 END DO 314 315 DO jj = 1, jpj 316 DO ji = 1, jpi 317 !CDIR NOVECTOR 318 DO jk = ik_ref(ji,jj)+1, ikmt(ji,jj) 319 IF ( ll_found(ji,jj) ) EXIT 320 IF ( ll_belowml(ji,jj,jk) ) THEN 321 zT_b = zT_ref(ji,jj) + zdelta_T(ji,jj) * SIGN(1.0, zdTdz(ji,jj,jk-1) ) 322 zdT = zT_b - zT(ji,jj,jk-1) 323 zdz = zdT / zdTdz(ji,jj,jk-1) 324 hmld_zint(ji,jj) = gdept_n(ji,jj,jk-1) + zdz 325 EXIT 326 END IF 327 END DO 328 END DO 329 END DO 330 331 hmld_zint(:,:) = hmld_zint(:,:)*tmask(:,:,1) 332 ! 333 END SUBROUTINE zdf_mxl_zint_mld 334 335 SUBROUTINE zdf_mxl_zint_htc( kt ) 336 !!---------------------------------------------------------------------- 337 !! *** ROUTINE zdf_mxl_zint_htc *** 338 !! 339 !! ** Purpose : 340 !! 341 !! ** Method : 342 !!---------------------------------------------------------------------- 343 344 INTEGER, INTENT(in) :: kt ! ocean time-step index 345 346 INTEGER :: ji, jj, jk 347 INTEGER :: ikmax 348 REAL(wp) :: zc, zcoef 349 ! 350 INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ilevel 351 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zthick_0, zthick 352 353 !!---------------------------------------------------------------------- 354 355 IF( .NOT. ALLOCATED(ilevel) ) THEN 356 ALLOCATE( ilevel(jpi,jpj), zthick_0(jpi,jpj), & 357 & zthick(jpi,jpj), STAT=ji ) 358 IF( lk_mpp ) CALL mpp_sum( 'zdfmxl', ji ) 359 IF( ji /= 0 ) CALL ctl_stop( 'STOP', 'zdf_mxl_zint_htc : unable to allocate arrays' ) 360 ENDIF 361 362 ! Find last whole model T level above the MLD 363 ilevel(:,:) = 0 364 zthick_0(:,:) = 0._wp 365 366 DO jk = 1, jpkm1 367 DO jj = 1, jpj 368 DO ji = 1, jpi 369 zthick_0(ji,jj) = zthick_0(ji,jj) + e3t_n(ji,jj,jk) 370 IF( zthick_0(ji,jj) < hmld_zint(ji,jj) ) ilevel(ji,jj) = jk 371 END DO 372 END DO 373 WRITE(numout,*) 'zthick_0(jk =',jk,') =',zthick_0(2,2) 374 WRITE(numout,*) 'gdepw_n(jk+1 =',jk+1,') =',gdepw_n(2,2,jk+1) 375 END DO 376 377 ! Surface boundary condition 378 IF( ln_linssh ) THEN ; zthick(:,:) = sshn(:,:) ; htc_mld(:,:) = tsn(:,:,1,jp_tem) * sshn(:,:) * tmask(:,:,1) 379 ELSE ; zthick(:,:) = 0._wp ; htc_mld(:,:) = 0._wp 380 ENDIF 381 382 ! Deepest whole T level above the MLD 383 ikmax = MIN( MAXVAL( ilevel(:,:) ), jpkm1 ) 384 385 ! Integration down to last whole model T level 386 DO jk = 1, ikmax 387 DO jj = 1, jpj 388 DO ji = 1, jpi 389 zc = e3t_n(ji,jj,jk) * REAL( MIN( MAX( 0, ilevel(ji,jj) - jk + 1 ) , 1 ) ) ! 0 below ilevel 390 zthick(ji,jj) = zthick(ji,jj) + zc 391 htc_mld(ji,jj) = htc_mld(ji,jj) + zc * tsn(ji,jj,jk,jp_tem) * tmask(ji,jj,jk) 392 END DO 393 END DO 394 END DO 395 396 ! Subsequent partial T level 397 zthick(:,:) = hmld_zint(:,:) - zthick(:,:) ! remaining thickness to reach MLD 398 399 DO jj = 1, jpj 400 DO ji = 1, jpi 401 htc_mld(ji,jj) = htc_mld(ji,jj) + tsn(ji,jj,ilevel(ji,jj)+1,jp_tem) & 402 & * MIN( e3t_n(ji,jj,ilevel(ji,jj)+1), zthick(ji,jj) ) * tmask(ji,jj,ilevel(ji,jj)+1) 403 END DO 404 END DO 405 406 WRITE(numout,*) 'htc_mld(after) =',htc_mld(2,2) 407 408 ! Convert to heat content 409 zcoef = rau0 * rcp 410 htc_mld(:,:) = zcoef * htc_mld(:,:) 411 412 END SUBROUTINE zdf_mxl_zint_htc 413 414 SUBROUTINE zdf_mxl_zint( kt ) 415 !!---------------------------------------------------------------------- 416 !! *** ROUTINE zdf_mxl_zint *** 417 !! 418 !! ** Purpose : 419 !! 420 !! ** Method : 421 !!---------------------------------------------------------------------- 422 423 INTEGER, INTENT(in) :: kt ! ocean time-step index 424 425 INTEGER :: ios 426 INTEGER :: jn 427 428 INTEGER :: nn_mld_diag = 0 ! number of diagnostics 429 430 CHARACTER(len=1) :: cmld 431 432 TYPE(MXL_ZINT) :: sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 433 TYPE(MXL_ZINT), SAVE, DIMENSION(5) :: mld_diags 434 435 NAMELIST/namzdf_mldzint/ nn_mld_diag, sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 436 437 !!---------------------------------------------------------------------- 438 439 IF( kt == nit000 ) THEN 440 REWIND( numnam_ref ) ! Namelist namzdf_mldzint in reference namelist 441 READ ( numnam_ref, namzdf_mldzint, IOSTAT = ios, ERR = 901) 442 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in reference namelist' ) 443 444 REWIND( numnam_cfg ) ! Namelist namzdf_mldzint in configuration namelist 445 READ ( numnam_cfg, namzdf_mldzint, IOSTAT = ios, ERR = 902 ) 446 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in configuration namelist' ) 447 IF(lwm) WRITE ( numond, namzdf_mldzint ) 448 449 IF( nn_mld_diag > 5 ) CALL ctl_stop( 'STOP', 'zdf_mxl_ini: Specify no more than 5 MLD definitions' ) 450 451 mld_diags(1) = sn_mld1 452 mld_diags(2) = sn_mld2 453 mld_diags(3) = sn_mld3 454 mld_diags(4) = sn_mld4 455 mld_diags(5) = sn_mld5 456 457 IF( lwp .AND. (nn_mld_diag > 0) ) THEN 458 WRITE(numout,*) '=============== Vertically-interpolated mixed layer ================' 459 WRITE(numout,*) '(Diagnostic number, nn_mld_type, rn_zref, rn_dT_crit, rn_iso_frac)' 460 DO jn = 1, nn_mld_diag 461 WRITE(numout,*) 'MLD criterion',jn,':' 462 WRITE(numout,*) ' nn_mld_type =', mld_diags(jn)%mld_type 463 WRITE(numout,*) ' rn_zref =' , mld_diags(jn)%zref 464 WRITE(numout,*) ' rn_dT_crit =' , mld_diags(jn)%dT_crit 465 WRITE(numout,*) ' rn_iso_frac =', mld_diags(jn)%iso_frac 466 END DO 467 WRITE(numout,*) '====================================================================' 468 ENDIF 469 ENDIF 470 471 IF( nn_mld_diag > 0 ) THEN 472 DO jn = 1, nn_mld_diag 473 WRITE(cmld,'(I1)') jn 474 IF( iom_use( "mldzint_"//cmld ) .OR. iom_use( "mldhtc_"//cmld ) ) THEN 475 CALL zdf_mxl_zint_mld( mld_diags(jn) ) 476 477 IF( iom_use( "mldzint_"//cmld ) ) THEN 478 CALL iom_put( "mldzint_"//cmld, hmld_zint(:,:) ) 479 ENDIF 480 481 IF( iom_use( "mldhtc_"//cmld ) ) THEN 482 CALL zdf_mxl_zint_htc( kt ) 483 CALL iom_put( "mldhtc_"//cmld , htc_mld(:,:) ) 484 ENDIF 485 ENDIF 486 END DO 487 ENDIF 488 489 END SUBROUTINE zdf_mxl_zint 142 490 143 491 !!====================================================================== -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/step.F90
r12658 r12660 209 209 IF( ln_diaptr ) CALL dia_ptr ! Poleward adv/ldf TRansports diagnostics 210 210 IF( ln_diaharm ) CALL dia_harm( kstp ) ! Tidal harmonic analysis 211 CALL dia_prod( kstp ) ! ocean model: product diagnostics 211 212 CALL dia_wri ( kstp ) ! ocean model: outputs 212 213 ! -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/OCE/step_oce.F90
r12658 r12660 80 80 USE diahsb ! heat, salt and volume budgets (dia_hsb routine) 81 81 USE diaharm 82 USE diaprod 82 83 USE diacfl 83 84 USE diaobs ! Observation operator -
NEMO/branches/UKMO/NEMO_4.0.2_GO8_package/src/SAS/sbcssm.F90
r12658 r12660 77 77 REAL(wp) :: ztinta ! ratio applied to after records when doing time interpolation 78 78 REAL(wp) :: ztintb ! ratio applied to before records when doing time interpolation 79 !!---------------------------------------------------------------------- 79 CHARACTER(len=4),SAVE :: stype 80 !!--------------------------------------------------------------------- 81 IF( kt == nit000 ) THEN 82 IF( ln_TEOS10 ) THEN 83 stype='abs' ! teos-10: using absolute salinity (sst is converted to potential temperature for the surface module) 84 ELSE IF( ln_EOS80 ) THEN 85 stype='pra' ! eos-80: using practical salinity 86 ELSE IF ( ln_SEOS) THEN 87 stype='seos' ! seos using Simplified Equation of state (sst is converted to potential temperature for the surface module) 88 ENDIF 89 ENDIF 80 90 ! 81 91 IF( ln_timing ) CALL timing_start( 'sbc_ssm') … … 144 154 CALL iom_put( 'ssu_m', ssu_m ) 145 155 CALL iom_put( 'ssv_m', ssv_m ) 146 CALL iom_put( 'sst_m ', sst_m )147 CALL iom_put( 'sss_m ', sss_m )156 CALL iom_put( 'sst_m_pot', sst_m ) 157 CALL iom_put( 'sss_m_'//stype, sss_m ) 148 158 CALL iom_put( 'ssh_m', ssh_m ) 149 159 IF( .NOT.ln_linssh ) CALL iom_put( 'e3t_m', e3t_m )
Note: See TracChangeset
for help on using the changeset viewer.