Changeset 9363
- Timestamp:
- 2018-02-28T10:29:22+01:00 (7 years ago)
- Location:
- branches/2017/dev_merge_2017/DOC/TexFiles/Chapters
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Annex_C.tex
r6997 r9363 363 363 % Vorticity Term with ENE scheme 364 364 % ------------------------------------------------------------------------------------------------------------- 365 \subsubsection{Vorticity Term with ENE scheme (\ np{ln\_dynvor\_ene}=.true.)}365 \subsubsection{Vorticity Term with ENE scheme (\protect\np{ln\_dynvor\_ene}=.true.)} 366 366 \label{Apdx_C_vorENE} 367 367 … … 400 400 % Vorticity Term with EEN scheme 401 401 % ------------------------------------------------------------------------------------------------------------- 402 \subsubsection{Vorticity Term with EEN scheme (\ np{ln\_dynvor\_een}=.true.)}402 \subsubsection{Vorticity Term with EEN scheme (\protect\np{ln\_dynvor\_een}=.true.)} 403 403 \label{Apdx_C_vorEEN} 404 404 … … 883 883 % Vorticity Term with ENS scheme 884 884 % ------------------------------------------------------------------------------------------------------------- 885 \subsubsection{Vorticity Term with ENS scheme (\ np{ln\_dynvor\_ens}=.true.)}885 \subsubsection{Vorticity Term with ENS scheme (\protect\np{ln\_dynvor\_ens}=.true.)} 886 886 \label{Apdx_C_vorENS} 887 887 … … 943 943 % Vorticity Term with EEN scheme 944 944 % ------------------------------------------------------------------------------------------------------------- 945 \subsubsection{Vorticity Term with EEN scheme (\ np{ln\_dynvor\_een}=.true.)}945 \subsubsection{Vorticity Term with EEN scheme (\protect\np{ln\_dynvor\_een}=.true.)} 946 946 \label{Apdx_C_vorEEN} 947 947 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Annex_E.tex
r6997 r9363 19 19 % UBS scheme 20 20 % ------------------------------------------------------------------------------------------------------------- 21 \section{Upstream Biased Scheme (UBS) (\ np{ln\_traadv\_ubs}=T)}21 \section{Upstream Biased Scheme (UBS) (\protect\np{ln\_traadv\_ubs}=T)} 22 22 \label{TRA_adv_ubs} 23 23 … … 302 302 \begin{center} 303 303 \includegraphics[width=0.70\textwidth]{Fig_ISO_triad} 304 \caption{ \ label{Fig_ISO_triad}304 \caption{ \protect\label{Fig_ISO_triad} 305 305 Triads used in the Griffies's like iso-neutral diffision scheme for 306 306 $u$-component (upper panel) and $w$-component (lower panel).} -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_CFG.tex
r9038 r9363 32 32 % 1D model configuration 33 33 % ================================================================ 34 \section{Water column model: 1D model (C1D) (\ key{c1d}) }34 \section{Water column model: 1D model (C1D) (\protect\key{c1d}) } 35 35 \label{CFG_c1d} 36 36 … … 95 95 \begin{figure}[!t] \begin{center} 96 96 \includegraphics[width=0.98\textwidth]{Fig_ORCA_NH_mesh} 97 \caption{ \ label{Fig_MISC_ORCA_msh}97 \caption{ \protect\label{Fig_MISC_ORCA_msh} 98 98 ORCA mesh conception. The departure from an isotropic Mercator grid start poleward of 20\degN. 99 99 The two "north pole" are the foci of a series of embedded ellipses (blue curves) … … 123 123 \includegraphics[width=1.0\textwidth]{Fig_ORCA_NH_msh05_e1_e2} 124 124 \includegraphics[width=0.80\textwidth]{Fig_ORCA_aniso} 125 \caption { \ label{Fig_MISC_ORCA_e1e2}125 \caption { \protect\label{Fig_MISC_ORCA_e1e2} 126 126 \textit{Top}: Horizontal scale factors ($e_1$, $e_2$) and 127 127 \textit{Bottom}: ratio of anisotropy ($e_1 / e_2$) … … 175 175 \hline \hline 176 176 \end{tabular} 177 \caption{ \ label{Tab_ORCA}177 \caption{ \protect\label{Tab_ORCA} 178 178 Domain size of ORCA family configurations. 179 179 The flag for configurations of ORCA family need to be set in \textit{domain\_cfg} file. } … … 267 267 \begin{figure}[!t] \begin{center} 268 268 \includegraphics[width=1.0\textwidth]{Fig_GYRE} 269 \caption{ \ label{Fig_GYRE}269 \caption{ \protect\label{Fig_GYRE} 270 270 Snapshot of relative vorticity at the surface of the model domain 271 271 in GYRE R9, R27 and R54. From \citet{Levy_al_OM10}.} -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_DIA.tex
r6997 r9363 1092 1092 % NetCDF4 support 1093 1093 % ================================================================ 1094 \section{NetCDF4 Support (\ key{netcdf4})}1094 \section{NetCDF4 Support (\protect\key{netcdf4})} 1095 1095 \label{DIA_iom} 1096 1096 … … 1198 1198 ORCA2\_2d\_grid\_W\_0007.nc & 4416 & 1368 & 70\%\\ 1199 1199 \end{tabular} 1200 \caption{ \ label{Tab_NC4}1200 \caption{ \protect\label{Tab_NC4} 1201 1201 Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression} 1202 1202 \end{table} … … 1218 1218 % ------------------------------------------------------------------------------------------------------------- 1219 1219 \section[Tracer/Dynamics Trends (TRD)] 1220 {Tracer/Dynamics Trends (\ ngn{namtrd})}1220 {Tracer/Dynamics Trends (\protect\ngn{namtrd})} 1221 1221 \label{DIA_trd} 1222 1222 … … 1258 1258 % On-line Floats trajectories 1259 1259 % ------------------------------------------------------------------------------------------------------------- 1260 \section{On-line Floats trajectories (FLO) (\ key{floats})}1260 \section{On-line Floats trajectories (FLO) (\protect\key{floats})} 1261 1261 \label{FLO} 1262 1262 %--------------------------------------------namflo------------------------------------------------------- … … 1371 1371 % Harmonic analysis of tidal constituents 1372 1372 % ------------------------------------------------------------------------------------------------------------- 1373 \section{Harmonic analysis of tidal constituents (\ key{diaharm}) }1373 \section{Harmonic analysis of tidal constituents (\protect\key{diaharm}) } 1374 1374 \label{DIA_diag_harm} 1375 1375 … … 1413 1413 % Sections transports 1414 1414 % ------------------------------------------------------------------------------------------------------------- 1415 \section{Transports across sections (\ key{diadct}) }1415 \section{Transports across sections (\protect\key{diadct}) } 1416 1416 \label{DIA_diag_dct} 1417 1417 … … 1719 1719 % Other Diagnostics 1720 1720 % ------------------------------------------------------------------------------------------------------------- 1721 \section{Other Diagnostics (\ key{diahth},\key{diaar5})}1721 \section{Other Diagnostics (\protect\key{diahth}, \protect\key{diaar5})} 1722 1722 \label{DIA_diag_others} 1723 1723 … … 1726 1726 The available ready-to-add diagnostics modules can be found in directory DIA. 1727 1727 1728 \subsection{Depth of various quantities (\ mdl{diahth})}1728 \subsection{Depth of various quantities (\protect\mdl{diahth})} 1729 1729 1730 1730 Among the available diagnostics the following ones are obtained when defining … … 1743 1743 % ----------------------------------------------------------- 1744 1744 1745 \subsection{Poleward heat and salt transports (\ mdl{diaptr})}1745 \subsection{Poleward heat and salt transports (\protect\mdl{diaptr})} 1746 1746 1747 1747 %------------------------------------------namptr----------------------------------------- … … 1761 1761 \begin{figure}[!t] \begin{center} 1762 1762 \includegraphics[width=1.0\textwidth]{Fig_mask_subasins} 1763 \caption{ \ label{Fig_mask_subasins}1763 \caption{ \protect\label{Fig_mask_subasins} 1764 1764 Decomposition of the World Ocean (here ORCA2) into sub-basin used in to compute 1765 1765 the heat and salt transports as well as the meridional stream-function: Atlantic basin (red), … … 1775 1775 % CMIP specific diagnostics 1776 1776 % ----------------------------------------------------------- 1777 \subsection{CMIP specific diagnostics (\ mdl{diaar5})}1777 \subsection{CMIP specific diagnostics (\protect\mdl{diaar5})} 1778 1778 1779 1779 A series of diagnostics has been added in the \mdl{diaar5}. -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_DOM.tex
r9019 r9363 43 43 \begin{figure}[!tb] \begin{center} 44 44 \includegraphics[width=0.90\textwidth]{Fig_cell} 45 \caption{ \ label{Fig_cell}45 \caption{ \protect\label{Fig_cell} 46 46 Arrangement of variables. $t$ indicates scalar points where temperature, 47 47 salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$) … … 95 95 fw & $i+1/2$ & $j+1/2$ & $k+1/2$ \\ \hline 96 96 \end{tabular} 97 \caption{ \ label{Tab_cell}97 \caption{ \protect\label{Tab_cell} 98 98 Location of grid-points as a function of integer or integer and a half value of the column, 99 99 line or level. This indexing is only used for the writing of the semi-discrete equation. … … 204 204 \begin{figure}[!tb] \begin{center} 205 205 \includegraphics[width=0.90\textwidth]{Fig_index_hor} 206 \caption{ \ label{Fig_index_hor}206 \caption{ \protect\label{Fig_index_hor} 207 207 Horizontal integer indexing used in the \textsc{Fortran} code. The dashed area indicates 208 208 the cell in which variables contained in arrays have the same $i$- and $j$-indices} … … 254 254 \begin{figure}[!pt] \begin{center} 255 255 \includegraphics[width=.90\textwidth]{Fig_index_vert} 256 \caption{ \ label{Fig_index_vert}256 \caption{ \protect\label{Fig_index_vert} 257 257 Vertical integer indexing used in the \textsc{Fortran } code. Note that 258 258 the $k$-axis is orientated downward. The dashed area indicates the cell in … … 324 324 % ================================================================ 325 325 \section [Domain: Horizontal Grid (mesh) (\textit{domhgr})] 326 {Domain: Horizontal Grid (mesh) \small{(\ mdl{domhgr} module)} }326 {Domain: Horizontal Grid (mesh) \small{(\protect\mdl{domhgr} module)} } 327 327 \label{DOM_hgr} 328 328 … … 388 388 \begin{figure}[!t] \begin{center} 389 389 \includegraphics[width=0.90\textwidth]{Fig_zgr_e3} 390 \caption{ \ label{Fig_zgr_e3}390 \caption{ \protect\label{Fig_zgr_e3} 391 391 Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, 392 392 and (b) analytically derived grid-point position and scale factors. … … 428 428 % ================================================================ 429 429 \section [Domain: Vertical Grid (\textit{domzgr})] 430 {Domain: Vertical Grid \small{(\ mdl{domzgr} module)} }430 {Domain: Vertical Grid \small{(\protect\mdl{domzgr} module)} } 431 431 \label{DOM_zgr} 432 432 %-----------------------------------------nam_zgr & namdom------------------------------------------- … … 447 447 \begin{figure}[!tb] \begin{center} 448 448 \includegraphics[width=1.0\textwidth]{Fig_z_zps_s_sps} 449 \caption{ \ label{Fig_z_zps_s_sps}449 \caption{ \protect\label{Fig_z_zps_s_sps} 450 450 The ocean bottom as seen by the model: 451 451 (a) $z$-coordinate with full step, … … 454 454 (d) hybrid $s-z$ coordinate, 455 455 (e) hybrid $s-z$ coordinate with partial step, and 456 (f) same as (e) but in the non-linear free surface (\ np{ln\_linssh}=false).456 (f) same as (e) but in the non-linear free surface (\protect\np{ln\_linssh}=false). 457 457 Note that the non-linear free surface can be used with any of the 458 458 5 coordinates (a) to (e).} … … 550 550 % z-coordinate and reference coordinate transformation 551 551 % ------------------------------------------------------------------------------------------------------------- 552 \subsection[$z$-coordinate (\ np{ln\_zco}]553 {$z$-coordinate (\ np{ln\_zco}=true) and reference coordinate}552 \subsection[$z$-coordinate (\protect\np{ln\_zco}] 553 {$z$-coordinate (\protect\np{ln\_zco}=true) and reference coordinate} 554 554 \label{DOM_zco} 555 555 … … 557 557 \begin{figure}[!tb] \begin{center} 558 558 \includegraphics[width=0.90\textwidth]{Fig_zgr} 559 \caption{ \ label{Fig_zgr}559 \caption{ \protect\label{Fig_zgr} 560 560 Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level functions for 561 561 (a) T-point depth and (b) the associated scale factor as computed … … 679 679 31 & \textbf{5250.23}& 5000.00 & \textbf{500.56} & 500.33 \\ \hline 680 680 \end{tabular} \end{center} 681 \caption{ \ label{Tab_orca_zgr}681 \caption{ \protect\label{Tab_orca_zgr} 682 682 Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as computed 683 683 from \eqref{DOM_zgr_ana} using the coefficients given in \eqref{DOM_zgr_coef}} … … 688 688 % z-coordinate with partial step 689 689 % ------------------------------------------------------------------------------------------------------------- 690 \subsection [$z$-coordinate with partial step (\ np{ln\_zps})]691 {$z$-coordinate with partial step (\ np{ln\_zps}=.true.)}690 \subsection [$z$-coordinate with partial step (\protect\np{ln\_zps})] 691 {$z$-coordinate with partial step (\protect\np{ln\_zps}=.true.)} 692 692 \label{DOM_zps} 693 693 %--------------------------------------------namdom------------------------------------------------------- … … 721 721 % s-coordinate 722 722 % ------------------------------------------------------------------------------------------------------------- 723 \subsection [$s$-coordinate (\ np{ln\_sco})]724 {$s$-coordinate (\ np{ln\_sco}=true)}723 \subsection [$s$-coordinate (\protect\np{ln\_sco})] 724 {$s$-coordinate (\protect\np{ln\_sco}=true)} 725 725 \label{DOM_sco} 726 726 %------------------------------------------nam_zgr_sco--------------------------------------------------- … … 790 790 \begin{figure}[!ht] \begin{center} 791 791 \includegraphics[width=1.0\textwidth]{Fig_sco_function} 792 \caption{ \ label{Fig_sco_function}792 \caption{ \protect\label{Fig_sco_function} 793 793 Examples of the stretching function applied to a seamount; from left to right: 794 794 surface, surface and bottom, and bottom intensified resolutions} … … 850 850 % z*- or s*-coordinate 851 851 % ------------------------------------------------------------------------------------------------------------- 852 \subsection{$z^*$- or $s^*$-coordinate (\ np{ln\_linssh}=false) }852 \subsection{$z^*$- or $s^*$-coordinate (\protect\np{ln\_linssh}=false) } 853 853 \label{DOM_zgr_star} 854 854 … … 913 913 % ================================================================ 914 914 \section [Domain: Initial State (\textit{istate and dtatsd})] 915 {Domain: Initial State \small{(\ mdl{istate} and\mdl{dtatsd} modules)} }915 {Domain: Initial State \small{(\protect\mdl{istate} and \protect\mdl{dtatsd} modules)} } 916 916 \label{DTA_tsd} 917 917 %-----------------------------------------namtsd------------------------------------------- -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_DYN.tex
r7646 r9363 70 70 %-------------------------------------------------------------------------------------------------------------- 71 71 \subsection [Horizontal divergence and relative vorticity (\textit{divcur})] 72 {Horizontal divergence and relative vorticity (\ mdl{divcur})}72 {Horizontal divergence and relative vorticity (\protect\mdl{divcur})} 73 73 \label{DYN_divcur} 74 74 … … 103 103 %-------------------------------------------------------------------------------------------------------------- 104 104 \subsection [Sea surface height evolution and vertical velocity (\textit{sshwzv})] 105 {Horizontal divergence and relative vorticity (\ mdl{sshwzv})}105 {Horizontal divergence and relative vorticity (\protect\mdl{sshwzv})} 106 106 \label{DYN_sshwzv} 107 107 … … 179 179 % ------------------------------------------------------------------------------------------------------------- 180 180 \subsection [Vorticity term (\textit{dynvor}) ] 181 {Vorticity term (\ mdl{dynvor})}181 {Vorticity term (\protect\mdl{dynvor})} 182 182 \label{DYN_vor} 183 183 %------------------------------------------nam_dynvor---------------------------------------------------- … … 200 200 % enstrophy conserving scheme 201 201 %------------------------------------------------------------- 202 \subsubsection{Enstrophy conserving scheme (\ np{ln\_dynvor\_ens}=true)}202 \subsubsection{Enstrophy conserving scheme (\protect\np{ln\_dynvor\_ens}=true)} 203 203 \label{DYN_vor_ens} 204 204 … … 221 221 % energy conserving scheme 222 222 %------------------------------------------------------------- 223 \subsubsection{Energy conserving scheme (\ np{ln\_dynvor\_ene}=true)}223 \subsubsection{Energy conserving scheme (\protect\np{ln\_dynvor\_ene}=true)} 224 224 \label{DYN_vor_ene} 225 225 … … 238 238 % mix energy/enstrophy conserving scheme 239 239 %------------------------------------------------------------- 240 \subsubsection{Mixed energy/enstrophy conserving scheme (\ np{ln\_dynvor\_mix}=true) }240 \subsubsection{Mixed energy/enstrophy conserving scheme (\protect\np{ln\_dynvor\_mix}=true) } 241 241 \label{DYN_vor_mix} 242 242 … … 261 261 % energy and enstrophy conserving scheme 262 262 %------------------------------------------------------------- 263 \subsubsection{Energy and enstrophy conserving scheme (\ np{ln\_dynvor\_een}=true) }263 \subsubsection{Energy and enstrophy conserving scheme (\protect\np{ln\_dynvor\_een}=true) } 264 264 \label{DYN_vor_een} 265 265 … … 297 297 \begin{figure}[!ht] \begin{center} 298 298 \includegraphics[width=0.70\textwidth]{Fig_DYN_een_triad} 299 \caption{ \ label{Fig_DYN_een_triad}299 \caption{ \protect\label{Fig_DYN_een_triad} 300 300 Triads used in the energy and enstrophy conserving scheme (een) for 301 301 $u$-component (upper panel) and $v$-component (lower panel).} … … 347 347 %-------------------------------------------------------------------------------------------------------------- 348 348 \subsection [Kinetic Energy Gradient term (\textit{dynkeg})] 349 {Kinetic Energy Gradient term (\ mdl{dynkeg})}349 {Kinetic Energy Gradient term (\protect\mdl{dynkeg})} 350 350 \label{DYN_keg} 351 351 … … 364 364 %-------------------------------------------------------------------------------------------------------------- 365 365 \subsection [Vertical advection term (\textit{dynzad}) ] 366 {Vertical advection term (\ mdl{dynzad}) }366 {Vertical advection term (\protect\mdl{dynzad}) } 367 367 \label{DYN_zad} 368 368 … … 406 406 %-------------------------------------------------------------------------------------------------------------- 407 407 \subsection [Coriolis plus curvature metric terms (\textit{dynvor}) ] 408 {Coriolis plus curvature metric terms (\ mdl{dynvor}) }408 {Coriolis plus curvature metric terms (\protect\mdl{dynvor}) } 409 409 \label{DYN_cor_flux} 410 410 … … 428 428 %-------------------------------------------------------------------------------------------------------------- 429 429 \subsection [Flux form Advection term (\textit{dynadv}) ] 430 {Flux form Advection term (\ mdl{dynadv}) }430 {Flux form Advection term (\protect\mdl{dynadv}) } 431 431 \label{DYN_adv_flux} 432 432 … … 460 460 % 2nd order centred scheme 461 461 %------------------------------------------------------------- 462 \subsubsection{$2^{nd}$ order centred scheme (cen2) (\ np{ln\_dynadv\_cen2}=true)}462 \subsubsection{$2^{nd}$ order centred scheme (cen2) (\protect\np{ln\_dynadv\_cen2}=true)} 463 463 \label{DYN_adv_cen2} 464 464 … … 481 481 % UBS scheme 482 482 %------------------------------------------------------------- 483 \subsubsection{Upstream Biased Scheme (UBS) (\ np{ln\_dynadv\_ubs}=true)}483 \subsubsection{Upstream Biased Scheme (UBS) (\protect\np{ln\_dynadv\_ubs}=true)} 484 484 \label{DYN_adv_ubs} 485 485 … … 533 533 % ================================================================ 534 534 \section [Hydrostatic pressure gradient (\textit{dynhpg})] 535 {Hydrostatic pressure gradient (\ mdl{dynhpg})}535 {Hydrostatic pressure gradient (\protect\mdl{dynhpg})} 536 536 \label{DYN_hpg} 537 537 %------------------------------------------nam_dynhpg--------------------------------------------------- … … 554 554 % z-coordinate with full step 555 555 %-------------------------------------------------------------------------------------------------------------- 556 \subsection [$z$-coordinate with full step (\ np{ln\_dynhpg\_zco}) ]557 {$z$-coordinate with full step (\ np{ln\_dynhpg\_zco}=true)}556 \subsection [$z$-coordinate with full step (\protect\np{ln\_dynhpg\_zco}) ] 557 {$z$-coordinate with full step (\protect\np{ln\_dynhpg\_zco}=true)} 558 558 \label{DYN_hpg_zco} 559 559 … … 595 595 % z-coordinate with partial step 596 596 %-------------------------------------------------------------------------------------------------------------- 597 \subsection [$z$-coordinate with partial step (\ np{ln\_dynhpg\_zps})]598 {$z$-coordinate with partial step (\ np{ln\_dynhpg\_zps}=true)}597 \subsection [$z$-coordinate with partial step (\protect\np{ln\_dynhpg\_zps})] 598 {$z$-coordinate with partial step (\protect\np{ln\_dynhpg\_zps}=true)} 599 599 \label{DYN_hpg_zps} 600 600 … … 673 673 % Time-scheme 674 674 %-------------------------------------------------------------------------------------------------------------- 675 \subsection [Time-scheme (\ np{ln\_dynhpg\_imp}) ]676 {Time-scheme (\ np{ln\_dynhpg\_imp}= true/false)}675 \subsection [Time-scheme (\protect\np{ln\_dynhpg\_imp}) ] 676 {Time-scheme (\protect\np{ln\_dynhpg\_imp}= true/false)} 677 677 \label{DYN_hpg_imp} 678 678 … … 733 733 % ================================================================ 734 734 \section [Surface pressure gradient (\textit{dynspg}) ] 735 {Surface pressure gradient (\ mdl{dynspg})}735 {Surface pressure gradient (\protect\mdl{dynspg})} 736 736 \label{DYN_spg} 737 737 %-----------------------------------------nam_dynspg---------------------------------------------------- … … 772 772 % Explicit free surface formulation 773 773 %-------------------------------------------------------------------------------------------------------------- 774 \subsection{Explicit free surface (\ key{dynspg\_exp})}774 \subsection{Explicit free surface (\protect\key{dynspg\_exp})} 775 775 \label{DYN_spg_exp} 776 776 … … 793 793 % Split-explict free surface formulation 794 794 %-------------------------------------------------------------------------------------------------------------- 795 \subsection{Split-Explicit free surface (\ key{dynspg\_ts})}795 \subsection{Split-Explicit free surface (\protect\key{dynspg\_ts})} 796 796 \label{DYN_spg_ts} 797 797 %------------------------------------------namsplit----------------------------------------------------------- … … 830 830 \begin{figure}[!t] \begin{center} 831 831 \includegraphics[width=0.7\textwidth]{Fig_DYN_dynspg_ts} 832 \caption{ \ label{Fig_DYN_dynspg_ts}832 \caption{ \protect\label{Fig_DYN_dynspg_ts} 833 833 Schematic of the split-explicit time stepping scheme for the external 834 834 and internal modes. Time increases to the right. In this particular exemple, … … 839 839 The former are used to obtain time filtered quantities at $t+\rdt$ while the latter are used to obtain time averaged 840 840 transports to advect tracers. 841 a) Forward time integration: \ np{ln\_bt\_fw}=true,\np{ln\_bt\_av}=true.842 b) Centred time integration: \ np{ln\_bt\_fw}=false,\np{ln\_bt\_av}=true.843 c) Forward time integration with no time filtering (POM-like scheme): \ np{ln\_bt\_fw}=true,\np{ln\_bt\_av}=false. }841 a) Forward time integration: \protect\np{ln\_bt\_fw}=true, \protect\np{ln\_bt\_av}=true. 842 b) Centred time integration: \protect\np{ln\_bt\_fw}=false, \protect\np{ln\_bt\_av}=true. 843 c) Forward time integration with no time filtering (POM-like scheme): \protect\np{ln\_bt\_fw}=true, \protect\np{ln\_bt\_av}=false. } 844 844 \end{center} \end{figure} 845 845 %> > > > > > > > > > > > > > > > > > > > > > > > > > > > … … 975 975 % Filtered free surface formulation 976 976 %-------------------------------------------------------------------------------------------------------------- 977 \subsection{Filtered free surface (\ key{dynspg\_flt})}977 \subsection{Filtered free surface (\protect\key{dynspg\_flt})} 978 978 \label{DYN_spg_fltp} 979 979 … … 1002 1002 % ================================================================ 1003 1003 \section [Lateral diffusion term (\textit{dynldf})] 1004 {Lateral diffusion term (\ mdl{dynldf})}1004 {Lateral diffusion term (\protect\mdl{dynldf})} 1005 1005 \label{DYN_ldf} 1006 1006 %------------------------------------------nam_dynldf---------------------------------------------------- … … 1036 1036 1037 1037 % ================================================================ 1038 \subsection [Iso-level laplacian operator (\ np{ln\_dynldf\_lap}) ]1039 {Iso-level laplacian operator (\ np{ln\_dynldf\_lap}=true)}1038 \subsection [Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}) ] 1039 {Iso-level laplacian operator (\protect\np{ln\_dynldf\_lap}=true)} 1040 1040 \label{DYN_ldf_lap} 1041 1041 … … 1060 1060 % Rotated laplacian operator 1061 1061 %-------------------------------------------------------------------------------------------------------------- 1062 \subsection [Rotated laplacian operator (\ np{ln\_dynldf\_iso}) ]1063 {Rotated laplacian operator (\ np{ln\_dynldf\_iso}=true)}1062 \subsection [Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}) ] 1063 {Rotated laplacian operator (\protect\np{ln\_dynldf\_iso}=true)} 1064 1064 \label{DYN_ldf_iso} 1065 1065 … … 1129 1129 % Iso-level bilaplacian operator 1130 1130 %-------------------------------------------------------------------------------------------------------------- 1131 \subsection [Iso-level bilaplacian operator (\ np{ln\_dynldf\_bilap})]1132 {Iso-level bilaplacian operator (\ np{ln\_dynldf\_bilap}=true)}1131 \subsection [Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap})] 1132 {Iso-level bilaplacian operator (\protect\np{ln\_dynldf\_bilap}=true)} 1133 1133 \label{DYN_ldf_bilap} 1134 1134 … … 1145 1145 % Vertical diffusion term 1146 1146 % ================================================================ 1147 \section [Vertical diffusion term (\ mdl{dynzdf})]1148 {Vertical diffusion term (\ mdl{dynzdf})}1147 \section [Vertical diffusion term (\protect\mdl{dynzdf})] 1148 {Vertical diffusion term (\protect\mdl{dynzdf})} 1149 1149 \label{DYN_zdf} 1150 1150 %----------------------------------------------namzdf------------------------------------------------------ … … 1223 1223 % ================================================================ 1224 1224 \section [Time evolution term (\textit{dynnxt})] 1225 {Time evolution term (\ mdl{dynnxt})}1225 {Time evolution term (\protect\mdl{dynnxt})} 1226 1226 \label{DYN_nxt} 1227 1227 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_LBC.tex
r7646 r9363 17 17 % Boundary Condition at the Coast 18 18 % ================================================================ 19 \section{Boundary Condition at the Coast (\ np{rn\_shlat})}19 \section{Boundary Condition at the Coast (\protect\np{rn\_shlat})} 20 20 \label{LBC_coast} 21 21 %--------------------------------------------nam_lbc------------------------------------------------------- … … 56 56 \begin{figure}[!t] \begin{center} 57 57 \includegraphics[width=0.90\textwidth]{Fig_LBC_uv} 58 \caption{ \ label{Fig_LBC_uv}58 \caption{ \protect\label{Fig_LBC_uv} 59 59 Lateral boundary (thick line) at T-level. The velocity normal to the boundary is set to zero.} 60 60 \end{center} \end{figure} … … 79 79 \begin{figure}[!p] \begin{center} 80 80 \includegraphics[width=0.90\textwidth]{Fig_LBC_shlat} 81 \caption{ \ label{Fig_LBC_shlat}81 \caption{ \protect\label{Fig_LBC_shlat} 82 82 lateral boundary condition (a) free-slip ($rn\_shlat=0$) ; (b) no-slip ($rn\_shlat=2$) 83 83 ; (c) "partial" free-slip ($0<rn\_shlat<2$) and (d) "strong" no-slip ($2<rn\_shlat$). … … 133 133 % Boundary Condition around the Model Domain 134 134 % ================================================================ 135 \section{Model Domain Boundary Condition (\ np{jperio})}135 \section{Model Domain Boundary Condition (\protect\np{jperio})} 136 136 \label{LBC_jperio} 137 137 … … 143 143 % Closed, cyclic, south symmetric (\np{jperio} = 0, 1 or 2) 144 144 % ------------------------------------------------------------------------------------------------------------- 145 \subsection{Closed, cyclic, south symmetric (\ np{jperio} = 0, 1 or 2)}145 \subsection{Closed, cyclic, south symmetric (\protect\np{jperio} = 0, 1 or 2)} 146 146 \label{LBC_jperio012} 147 147 … … 180 180 \begin{figure}[!t] \begin{center} 181 181 \includegraphics[width=1.0\textwidth]{Fig_LBC_jperio} 182 \caption{ \ label{Fig_LBC_jperio}182 \caption{ \protect\label{Fig_LBC_jperio} 183 183 setting of (a) east-west cyclic (b) symmetric across the equator boundary conditions.} 184 184 \end{center} \end{figure} … … 199 199 \begin{figure}[!t] \begin{center} 200 200 \includegraphics[width=0.90\textwidth]{Fig_North_Fold_T} 201 \caption{ \ label{Fig_North_Fold_T}201 \caption{ \protect\label{Fig_North_Fold_T} 202 202 North fold boundary with a $T$-point pivot and cyclic east-west boundary condition 203 203 ($jperio=4$), as used in ORCA 2, 1/4, and 1/12. Pink shaded area corresponds … … 210 210 % ==================================================================== 211 211 \section [Exchange with neighbouring processors (\textit{lbclnk}, \textit{lib\_mpp})] 212 {Exchange with neighbouring processors (\ mdl{lbclnk},\mdl{lib\_mpp})}212 {Exchange with neighbouring processors (\protect\mdl{lbclnk}, \protect\mdl{lib\_mpp})} 213 213 \label{LBC_mpp} 214 214 … … 262 262 \begin{figure}[!t] \begin{center} 263 263 \includegraphics[width=0.90\textwidth]{Fig_mpp} 264 \caption{ \ label{Fig_mpp}264 \caption{ \protect\label{Fig_mpp} 265 265 Positioning of a sub-domain when massively parallel processing is used. } 266 266 \end{center} \end{figure} … … 336 336 \begin{figure}[!ht] \begin{center} 337 337 \includegraphics[width=0.90\textwidth]{Fig_mppini2} 338 \caption { \ label{Fig_mppini2}338 \caption { \protect\label{Fig_mppini2} 339 339 Example of Atlantic domain defined for the CLIPPER projet. Initial grid is 340 340 composed of 773 x 1236 horizontal points. … … 567 567 \begin{figure}[!t] \begin{center} 568 568 \includegraphics[width=1.0\textwidth]{Fig_LBC_bdy_geom} 569 \caption { \ label{Fig_LBC_bdy_geom}569 \caption { \protect\label{Fig_LBC_bdy_geom} 570 570 Example of geometry of unstructured open boundary} 571 571 \end{center} \end{figure} … … 608 608 \begin{figure}[!t] \begin{center} 609 609 \includegraphics[width=1.0\textwidth]{Fig_LBC_nc_header} 610 \caption { \ label{Fig_LBC_nc_header}610 \caption { \protect\label{Fig_LBC_nc_header} 611 611 Example of the header for a coordinates.bdy.nc file} 612 612 \end{center} \end{figure} -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_LDF.tex
r6997 r9363 37 37 % ================================================================ 38 38 \section [Direction of Lateral Mixing (\textit{ldfslp})] 39 {Direction of Lateral Mixing (\ mdl{ldfslp})}39 {Direction of Lateral Mixing (\protect\mdl{ldfslp})} 40 40 \label{LDF_slp} 41 41 … … 231 231 \begin{figure}[!ht] \begin{center} 232 232 \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 233 \caption { \ label{Fig_LDF_ZDF1}233 \caption { \protect\label{Fig_LDF_ZDF1} 234 234 averaging procedure for isopycnal slope computation.} 235 235 \end{center} \end{figure} … … 259 259 \begin{figure}[!ht] \begin{center} 260 260 \includegraphics[width=0.70\textwidth]{Fig_eiv_slp} 261 \caption { \ label{Fig_eiv_slp}261 \caption { \protect\label{Fig_eiv_slp} 262 262 Vertical profile of the slope used for lateral mixing in the mixed layer : 263 263 \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, … … 307 307 % ================================================================ 308 308 \section [Lateral Mixing Operators (\textit{ldftra}, \textit{ldfdyn})] 309 {Lateral Mixing Operators (\ mdl{traldf},\mdl{traldf}) }309 {Lateral Mixing Operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 310 310 \label{LDF_op} 311 311 … … 316 316 % ================================================================ 317 317 \section [Lateral Mixing Coefficient (\textit{ldftra}, \textit{ldfdyn})] 318 {Lateral Mixing Coefficient (\ mdl{ldftra},\mdl{ldfdyn}) }318 {Lateral Mixing Coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 319 319 \label{LDF_coef} 320 320 … … 350 350 parameters. 351 351 352 \subsubsection{Vertically varying Mixing Coefficients (\ key{traldf\_c1d} and \key{dynldf\_c1d})}352 \subsubsection{Vertically varying Mixing Coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})} 353 353 The 1D option is only available when using the $z$-coordinate with full step. 354 354 Indeed in all the other types of vertical coordinate, the depth is a 3D function … … 361 361 This profile is hard coded in file \hf{traldf\_c1d}, but can be easily modified by users. 362 362 363 \subsubsection{Horizontally Varying Mixing Coefficients (\ key{traldf\_c2d} and\key{dynldf\_c2d})}363 \subsubsection{Horizontally Varying Mixing Coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 364 364 By default the horizontal variation of the eddy coefficient depends on the local mesh 365 365 size and the type of operator used: … … 391 391 sub-domain options of ORCA2 and ORCA05 (see \&namcfg namelist). 392 392 393 \subsubsection{Space Varying Mixing Coefficients (\ key{traldf\_c3d} and \key{dynldf\_c3d})}393 \subsubsection{Space Varying Mixing Coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 394 394 395 395 The 3D space variation of the mixing coefficient is simply the combination of the … … 447 447 % ================================================================ 448 448 \section [Eddy Induced Velocity (\textit{traadv\_eiv}, \textit{ldfeiv})] 449 {Eddy Induced Velocity (\ mdl{traadv\_eiv},\mdl{ldfeiv})}449 {Eddy Induced Velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 450 450 \label{LDF_eiv} 451 451 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_MISC.tex
r9019 r9363 64 64 \includegraphics[width=0.80\textwidth]{Fig_Gibraltar} 65 65 \includegraphics[width=0.80\textwidth]{Fig_Gibraltar2} 66 \caption{ \ label{Fig_MISC_strait_hand}66 \caption{ \protect\label{Fig_MISC_strait_hand} 67 67 Example of the Gibraltar strait defined in a $1^{\circ} \times 1^{\circ}$ mesh. 68 68 \textit{Top}: using partially open cells. The meridional scale factor at $v$-point … … 80 80 % Closed seas 81 81 % ================================================================ 82 \section{Closed seas (\ mdl{closea})}82 \section{Closed seas (\protect\mdl{closea})} 83 83 \label{MISC_closea} 84 84 … … 151 151 \begin{figure}[!ht] \begin{center} 152 152 \includegraphics[width=0.90\textwidth]{Fig_LBC_zoom} 153 \caption{ \ label{Fig_LBC_zoom}153 \caption{ \protect\label{Fig_LBC_zoom} 154 154 Position of a model domain compared to the data input domain when the zoom functionality is used.} 155 155 \end{center} \end{figure} … … 160 160 % Accuracy and Reproducibility 161 161 % ================================================================ 162 \section{Accuracy and Reproducibility (\ mdl{lib\_fortran})}162 \section{Accuracy and Reproducibility (\protect\mdl{lib\_fortran})} 163 163 \label{MISC_fortran} 164 164 165 \subsection{Issues with intrinsinc SIGN function (\ key{nosignedzero})}165 \subsection{Issues with intrinsinc SIGN function (\protect\key{nosignedzero})} 166 166 \label{MISC_sign} 167 167 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_Model_Basics.tex
r9347 r9363 117 117 \begin{figure}[!ht] \begin{center} 118 118 \includegraphics[width=0.90\textwidth]{Fig_I_ocean_bc} 119 \caption{ \ label{Fig_ocean_bc}119 \caption{ \protect\label{Fig_ocean_bc} 120 120 The ocean is bounded by two surfaces, $z=-H(i,j)$ and $z=\eta(i,j,t)$, where $H$ 121 121 is the depth of the sea floor and $\eta$ the height of the sea surface. … … 315 315 \begin{figure}[!tb] \begin{center} 316 316 \includegraphics[width=0.60\textwidth]{Fig_I_earth_referential} 317 \caption{ \ label{Fig_referential}317 \caption{ \protect\label{Fig_referential} 318 318 the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 319 319 coordinate system (\textbf{i},\textbf{j},\textbf{k}). } … … 810 810 \begin{figure}[!b] \begin{center} 811 811 \includegraphics[width=1.0\textwidth]{Fig_z_zstar} 812 \caption{ \ label{Fig_z_zstar}812 \caption{ \protect\label{Fig_z_zstar} 813 813 (a) $z$-coordinate in linear free-surface case ; 814 814 (b) $z-$coordinate in non-linear free surface case ; -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_Model_Basics_zstar.tex
r6997 r9363 75 75 % Surface Pressure Gradient and Sea Surface Height 76 76 % ================================================================ 77 \section{Surface pressure gradient and Sea Surface Heigth (\ mdl{dynspg})}77 \section{Surface pressure gradient and Sea Surface Heigth (\protect\mdl{dynspg})} 78 78 \label{DYN_hpg_spg} 79 79 %-----------------------------------------nam_dynspg---------------------------------------------------- … … 86 86 % Explicit 87 87 %------------------------------------------------------------- 88 \subsubsection{Explicit (\ key{dynspg\_exp})}88 \subsubsection{Explicit (\protect\key{dynspg\_exp})} 89 89 \label{DYN_spg_exp} 90 90 … … 112 112 % Split-explicit time-stepping 113 113 %------------------------------------------------------------- 114 \subsubsection{Split-explicit time-stepping (\ key{dynspg\_ts})}114 \subsubsection{Split-explicit time-stepping (\protect\key{dynspg\_ts})} 115 115 \label{DYN_spg_ts} 116 116 %--------------------------------------------namdom---------------------------------------------------- … … 124 124 \begin{figure}[!t] \begin{center} 125 125 \includegraphics[width=0.90\textwidth]{Fig_DYN_dynspg_ts} 126 \caption{ \ label{Fig_DYN_dynspg_ts}126 \caption{ \protect\label{Fig_DYN_dynspg_ts} 127 127 Schematic of the split-explicit time stepping scheme for the barotropic and baroclinic modes, 128 128 after \citet{Griffies2004}. Time increases to the right. Baroclinic time steps are denoted by … … 241 241 % Filtered formulation 242 242 %------------------------------------------------------------- 243 \subsubsection{Filtered formulation (\ key{dynspg\_flt})}243 \subsubsection{Filtered formulation (\protect\key{dynspg\_flt})} 244 244 \label{DYN_spg_flt} 245 245 … … 252 252 % Non-linear free surface formulation 253 253 %------------------------------------------------------------- 254 \subsection{Non-linear free surface formulation (\ key{vvl})}254 \subsection{Non-linear free surface formulation (\protect\key{vvl})} 255 255 \label{DYN_spg_vvl} 256 256 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_OBS.tex
r9350 r9363 700 700 \begin{figure} \begin{center} 701 701 \includegraphics[width=0.90\textwidth]{Fig_OBS_avg_rec} 702 \caption{ \ label{fig:obsavgrec}702 \caption{ \protect\label{fig:obsavgrec} 703 703 Weights associated with each model grid box (blue lines and numbers) for an observation at -170.5E, 56.0N with a rectangular footprint of 1\deg x 1\deg.} 704 704 \end{center} \end{figure} … … 708 708 \begin{figure} \begin{center} 709 709 \includegraphics[width=0.90\textwidth]{Fig_OBS_avg_rad} 710 \caption{ \ label{fig:obsavgrad}710 \caption{ \protect\label{fig:obsavgrad} 711 711 Weights associated with each model grid box (blue lines and numbers) for an observation at -170.5E, 56.0N with a radial footprint with diameter 1\deg.} 712 712 \end{center} \end{figure} … … 800 800 \begin{figure} \begin{center} 801 801 \includegraphics[width=10cm,height=12cm,angle=-90.]{Fig_ASM_obsdist_local} 802 \caption{ \ label{fig:obslocal}802 \caption{ \protect\label{fig:obslocal} 803 803 Example of the distribution of observations with the geographical distribution of observational data.} 804 804 \end{center} \end{figure} … … 827 827 \begin{figure} \begin{center} 828 828 \includegraphics[width=10cm,height=12cm,angle=-90.]{Fig_ASM_obsdist_global} 829 \caption{ \ label{fig:obsglobal}829 \caption{ \protect\label{fig:obsglobal} 830 830 Example of the distribution of observations with the round-robin distribution of observational data.} 831 831 \end{center} \end{figure} … … 1445 1445 %\includegraphics[width=10cm,height=12cm,angle=-90.]{Fig_OBS_dataplot_main} 1446 1446 \includegraphics[width=9cm,angle=-90.]{Fig_OBS_dataplot_main} 1447 \caption{ \ label{fig:obsdataplotmain}1447 \caption{ \protect\label{fig:obsdataplotmain} 1448 1448 Main window of dataplot.} 1449 1449 \end{center} \end{figure} … … 1457 1457 %\includegraphics[width=10cm,height=12cm,angle=-90.]{Fig_OBS_dataplot_prof} 1458 1458 \includegraphics[width=7cm,angle=-90.]{Fig_OBS_dataplot_prof} 1459 \caption{ \ label{fig:obsdataplotprofile}1459 \caption{ \protect\label{fig:obsdataplotprofile} 1460 1460 Profile plot from dataplot produced by right clicking on a point in the main window.} 1461 1461 \end{center} \end{figure} -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_SBC.tex
r9345 r9363 144 144 Sea surface salinty & sss\_m & $psu$ & T \\ \hline 145 145 \end{tabular} 146 \caption{ \ label{Tab_ssm}146 \caption{ \protect\label{Tab_ssm} 147 147 Ocean variables provided by the ocean to the surface module (SBC). 148 148 The variable are averaged over nn{\_}fsbc time step, … … 192 192 % Input Data specification (\mdl{fldread}) 193 193 % ------------------------------------------------------------------------------------------------------------- 194 \subsection{Input Data specification (\ mdl{fldread})}194 \subsection{Input Data specification (\protect\mdl{fldread})} 195 195 \label{SBC_fldread} 196 196 … … 220 220 \end{tabular} 221 221 \end{center} 222 \caption{ \ label{Tab_fldread} naming nomenclature for climatological or interannual input file,222 \caption{ \protect\label{Tab_fldread} naming nomenclature for climatological or interannual input file, 223 223 as a function of the Open/close frequency. The stem name is assumed to be 'fn'. 224 224 For weekly files, the 'LLL' corresponds to the first three letters of the first day of the week ($i.e.$ 'sun','sat','fri','thu','wed','tue','mon'). The 'YYYY', 'MM' and 'DD' should be replaced by the … … 484 484 % ================================================================ 485 485 \section [Analytical formulation (\textit{sbcana}) ] 486 {Analytical formulation (\ mdl{sbcana} module) }486 {Analytical formulation (\protect\mdl{sbcana} module) } 487 487 \label{SBC_ana} 488 488 … … 509 509 % ================================================================ 510 510 \section [Flux formulation (\textit{sbcflx}) ] 511 {Flux formulation (\ mdl{sbcflx} module) }511 {Flux formulation (\protect\mdl{sbcflx} module) } 512 512 \label{SBC_flx} 513 513 %------------------------------------------namsbc_flx---------------------------------------------------- … … 531 531 % ================================================================ 532 532 \section [Bulk formulation (\textit{sbcblk\_core}, \textit{sbcblk\_clio} or \textit{sbcblk\_mfs}) ] 533 {Bulk formulation \small{(\ mdl{sbcblk\_core} \mdl{sbcblk\_clio}\mdl{sbcblk\_mfs} modules)} }533 {Bulk formulation \small{(\protect\mdl{sbcblk\_core} \protect\mdl{sbcblk\_clio} \protect\mdl{sbcblk\_mfs} modules)} } 534 534 \label{SBC_blk} 535 535 … … 548 548 % CORE Bulk formulea 549 549 % ------------------------------------------------------------------------------------------------------------- 550 \subsection [CORE Bulk formulea (\ np{ln\_core}=true)]551 {CORE Bulk formulea (\ np{ln\_core}=true,\mdl{sbcblk\_core})}550 \subsection [CORE Bulk formulea (\protect\np{ln\_core}=true)] 551 {CORE Bulk formulea (\protect\np{ln\_core}=true, \protect\mdl{sbcblk\_core})} 552 552 \label{SBC_blk_core} 553 553 %------------------------------------------namsbc_core---------------------------------------------------- … … 613 613 % CLIO Bulk formulea 614 614 % ------------------------------------------------------------------------------------------------------------- 615 \subsection [CLIO Bulk formulea (\ np{ln\_clio}=true)]616 {CLIO Bulk formulea (\ np{ln\_clio}=true,\mdl{sbcblk\_clio})}615 \subsection [CLIO Bulk formulea (\protect\np{ln\_clio}=true)] 616 {CLIO Bulk formulea (\protect\np{ln\_clio}=true, \protect\mdl{sbcblk\_clio})} 617 617 \label{SBC_blk_clio} 618 618 %------------------------------------------namsbc_clio---------------------------------------------------- … … 654 654 % MFS Bulk formulae 655 655 % ------------------------------------------------------------------------------------------------------------- 656 \subsection [MFS Bulk formulea (\ np{ln\_mfs}=true)]657 {MFS Bulk formulea (\ np{ln\_mfs}=true,\mdl{sbcblk\_mfs})}656 \subsection [MFS Bulk formulea (\protect\np{ln\_mfs}=true)] 657 {MFS Bulk formulea (\protect\np{ln\_mfs}=true, \protect\mdl{sbcblk\_mfs})} 658 658 \label{SBC_blk_mfs} 659 659 %------------------------------------------namsbc_mfs---------------------------------------------------- … … 694 694 % ================================================================ 695 695 \section [Coupled formulation (\textit{sbccpl}) ] 696 {Coupled formulation (\ mdl{sbccpl} module)}696 {Coupled formulation (\protect\mdl{sbccpl} module)} 697 697 \label{SBC_cpl} 698 698 %------------------------------------------namsbc_cpl---------------------------------------------------- … … 733 733 % ================================================================ 734 734 \section [Atmospheric pressure (\textit{sbcapr})] 735 {Atmospheric pressure (\ mdl{sbcapr})}735 {Atmospheric pressure (\protect\mdl{sbcapr})} 736 736 \label{SBC_apr} 737 737 %------------------------------------------namsbc_apr---------------------------------------------------- … … 768 768 % ================================================================ 769 769 \section [Tidal Potential (\textit{sbctide})] 770 {Tidal Potential (\ mdl{sbctide})}770 {Tidal Potential (\protect\mdl{sbctide})} 771 771 \label{SBC_tide} 772 772 … … 824 824 % ================================================================ 825 825 \section [River runoffs (\textit{sbcrnf})] 826 {River runoffs (\ mdl{sbcrnf})}826 {River runoffs (\protect\mdl{sbcrnf})} 827 827 \label{SBC_rnf} 828 828 %------------------------------------------namsbc_rnf---------------------------------------------------- … … 940 940 % ================================================================ 941 941 \section [Ice shelf melting (\textit{sbcisf})] 942 {Ice shelf melting (\ mdl{sbcisf})}942 {Ice shelf melting (\protect\mdl{sbcisf})} 943 943 \label{SBC_isf} 944 944 %------------------------------------------namsbc_isf---------------------------------------------------- … … 1131 1131 % ------------------------------------------------------------------------------------------------------------- 1132 1132 \subsection [Diurnal cycle (\textit{sbcdcy})] 1133 {Diurnal cycle (\ mdl{sbcdcy})}1133 {Diurnal cycle (\protect\mdl{sbcdcy})} 1134 1134 \label{SBC_dcy} 1135 1135 %------------------------------------------namsbc_rnf---------------------------------------------------- … … 1140 1140 \begin{figure}[!t] \begin{center} 1141 1141 \includegraphics[width=0.8\textwidth]{Fig_SBC_diurnal} 1142 \caption{ \ label{Fig_SBC_diurnal}1142 \caption{ \protect\label{Fig_SBC_diurnal} 1143 1143 Example of recontruction of the diurnal cycle variation of short wave flux 1144 1144 from daily mean values. The reconstructed diurnal cycle (black line) is chosen … … 1173 1173 \begin{figure}[!t] \begin{center} 1174 1174 \includegraphics[width=0.7\textwidth]{Fig_SBC_dcy} 1175 \caption{ \ label{Fig_SBC_dcy}1175 \caption{ \protect\label{Fig_SBC_dcy} 1176 1176 Example of recontruction of the diurnal cycle variation of short wave flux 1177 1177 from daily mean values on an ORCA2 grid with a time sampling of 2~hours (from 1am to 11pm). … … 1208 1208 % ------------------------------------------------------------------------------------------------------------- 1209 1209 \subsection [Surface restoring to observed SST and/or SSS (\textit{sbcssr})] 1210 {Surface restoring to observed SST and/or SSS (\ mdl{sbcssr})}1210 {Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 1211 1211 \label{SBC_ssr} 1212 1212 %------------------------------------------namsbc_ssr---------------------------------------------------- … … 1278 1278 1279 1279 \subsection [Interface to CICE (\textit{sbcice\_cice})] 1280 {Interface to CICE (\ mdl{sbcice\_cice})}1280 {Interface to CICE (\protect\mdl{sbcice\_cice})} 1281 1281 \label{SBC_cice} 1282 1282 … … 1306 1306 % ------------------------------------------------------------------------------------------------------------- 1307 1307 \subsection [Freshwater budget control (\textit{sbcfwb})] 1308 {Freshwater budget control (\ mdl{sbcfwb})}1308 {Freshwater budget control (\protect\mdl{sbcfwb})} 1309 1309 \label{SBC_fwb} 1310 1310 … … 1328 1328 % ------------------------------------------------------------------------------------------------------------- 1329 1329 \subsection [Neutral drag coefficient from external wave model (\textit{sbcwave})] 1330 {Neutral drag coefficient from external wave model (\ mdl{sbcwave})}1330 {Neutral drag coefficient from external wave model (\protect\mdl{sbcwave})} 1331 1331 \label{SBC_wave} 1332 1332 %------------------------------------------namwave---------------------------------------------------- -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_STP.tex
r9360 r9363 207 207 \begin{figure}[!t] \begin{center} 208 208 \includegraphics[width=0.7\textwidth]{Fig_TimeStepping_flowchart} 209 \caption{ \ label{Fig_TimeStep_flowchart}209 \caption{ \protect\label{Fig_TimeStep_flowchart} 210 210 Sketch of the leapfrog time stepping sequence in \NEMO from \citet{Leclair_Madec_OM09}. 211 211 The use of a semi-implicit computation of the hydrostatic pressure gradient requires … … 269 269 \begin{figure}[!t] \begin{center} 270 270 \includegraphics[width=0.90\textwidth]{Fig_MLF_forcing} 271 \caption{ \ label{Fig_MLF_forcing}271 \caption{ \protect\label{Fig_MLF_forcing} 272 272 Illustration of forcing integration methods. 273 273 (top) ''Traditional'' formulation : the forcing is defined at the same time as the variable -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_TRA.tex
r9350 r9363 64 64 % ================================================================ 65 65 \section [Tracer Advection (\textit{traadv})] 66 {Tracer Advection (\ mdl{traadv})}66 {Tracer Advection (\protect\mdl{traadv})} 67 67 \label{TRA_adv} 68 68 %------------------------------------------namtra_adv----------------------------------------------------- … … 93 93 \begin{figure}[!t] \begin{center} 94 94 \includegraphics[width=0.9\textwidth]{Fig_adv_scheme} 95 \caption{ \ label{Fig_adv_scheme}95 \caption{ \protect\label{Fig_adv_scheme} 96 96 Schematic representation of some ways used to evaluate the tracer value 97 97 at $u$-point and the amount of tracer exchanged between two neighbouring grid … … 174 174 % 2nd and 4th order centred schemes 175 175 % ------------------------------------------------------------------------------------------------------------- 176 \subsection [Centred schemes (CEN) (\ np{ln\_traadv\_cen})]177 {Centred schemes (CEN) (\ np{ln\_traadv\_cen}=true)}176 \subsection [Centred schemes (CEN) (\protect\np{ln\_traadv\_cen})] 177 {Centred schemes (CEN) (\protect\np{ln\_traadv\_cen}=true)} 178 178 \label{TRA_adv_cen} 179 179 … … 246 246 % FCT scheme 247 247 % ------------------------------------------------------------------------------------------------------------- 248 \subsection [Flux Corrected Transport schemes (FCT) (\ np{ln\_traadv\_fct})]249 {Flux Corrected Transport schemes (FCT) (\ np{ln\_traadv\_fct}=true)}248 \subsection [Flux Corrected Transport schemes (FCT) (\protect\np{ln\_traadv\_fct})] 249 {Flux Corrected Transport schemes (FCT) (\protect\np{ln\_traadv\_fct}=true)} 250 250 \label{TRA_adv_tvd} 251 251 … … 293 293 % MUSCL scheme 294 294 % ------------------------------------------------------------------------------------------------------------- 295 \subsection[MUSCL scheme (\ np{ln\_traadv\_mus})]296 {Monotone Upstream Scheme for Conservative Laws (MUSCL) (\ np{ln\_traadv\_mus}=T)}295 \subsection[MUSCL scheme (\protect\np{ln\_traadv\_mus})] 296 {Monotone Upstream Scheme for Conservative Laws (MUSCL) (\protect\np{ln\_traadv\_mus}=T)} 297 297 \label{TRA_adv_mus} 298 298 … … 326 326 % UBS scheme 327 327 % ------------------------------------------------------------------------------------------------------------- 328 \subsection [Upstream-Biased Scheme (UBS) (\ np{ln\_traadv\_ubs})]329 {Upstream-Biased Scheme (UBS) (\ np{ln\_traadv\_ubs}=true)}328 \subsection [Upstream-Biased Scheme (UBS) (\protect\np{ln\_traadv\_ubs})] 329 {Upstream-Biased Scheme (UBS) (\protect\np{ln\_traadv\_ubs}=true)} 330 330 \label{TRA_adv_ubs} 331 331 … … 401 401 % QCK scheme 402 402 % ------------------------------------------------------------------------------------------------------------- 403 \subsection [QUICKEST scheme (QCK) (\ np{ln\_traadv\_qck})]404 {QUICKEST scheme (QCK) (\ np{ln\_traadv\_qck}=true)}403 \subsection [QUICKEST scheme (QCK) (\protect\np{ln\_traadv\_qck})] 404 {QUICKEST scheme (QCK) (\protect\np{ln\_traadv\_qck}=true)} 405 405 \label{TRA_adv_qck} 406 406 … … 429 429 % ================================================================ 430 430 \section [Tracer Lateral Diffusion (\textit{traldf})] 431 {Tracer Lateral Diffusion (\ mdl{traldf})}431 {Tracer Lateral Diffusion (\protect\mdl{traldf})} 432 432 \label{TRA_ldf} 433 433 %-----------------------------------------nam_traldf------------------------------------------------------ … … 455 455 % Type of operator 456 456 % ------------------------------------------------------------------------------------------------------------- 457 \subsection [Type of operator (\ np{ln\_traldf\{\_NONE, \_lap, \_blp\}})]458 {Type of operator (\ np{ln\_traldf\_NONE}, \np{ln\_traldf\_lap}, or\np{ln\_traldf\_blp} = true) }457 \subsection [Type of operator (\protect\np{ln\_traldf\{\_NONE, \_lap, \_blp\}})] 458 {Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp} = true) } 459 459 \label{TRA_ldf_op} 460 460 … … 488 488 % Direction of action 489 489 % ------------------------------------------------------------------------------------------------------------- 490 \subsection [Direction of action (\ np{ln\_traldf\{\_lev, \_hor, \_iso, \_triad\}})]491 {Direction of action (\ np{ln\_traldf\_lev}, \textit{...\_hor}, \textit{...\_iso}, or \textit{...\_triad} = true) }490 \subsection [Direction of action (\protect\np{ln\_traldf\{\_lev, \_hor, \_iso, \_triad\}})] 491 {Direction of action (\protect\np{ln\_traldf\_lev}, \textit{...\_hor}, \textit{...\_iso}, or \textit{...\_triad} = true) } 492 492 \label{TRA_ldf_dir} 493 493 … … 515 515 % iso-level operator 516 516 % ------------------------------------------------------------------------------------------------------------- 517 \subsection [Iso-level (bi-)laplacian operator ( \ np{ln\_traldf\_iso})]518 {Iso-level (bi-)laplacian operator ( \ np{ln\_traldf\_iso}) }517 \subsection [Iso-level (bi-)laplacian operator ( \protect\np{ln\_traldf\_iso})] 518 {Iso-level (bi-)laplacian operator ( \protect\np{ln\_traldf\_iso}) } 519 519 \label{TRA_ldf_lev} 520 520 … … 555 555 %&& Standard rotated (bi-)laplacian operator 556 556 %&& ---------------------------------------------- 557 \subsubsection [Standard rotated (bi-)laplacian operator (\ mdl{traldf\_iso})]558 {Standard rotated (bi-)laplacian operator (\ mdl{traldf\_iso})}557 \subsubsection [Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})] 558 {Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})} 559 559 \label{TRA_ldf_iso} 560 560 The general form of the second order lateral tracer subgrid scale physics … … 609 609 %&& Triad rotated (bi-)laplacian operator 610 610 %&& ------------------------------------------- 611 \subsubsection [Triad rotated (bi-)laplacian operator (\ np{ln\_traldf\_triad})]612 {Triad rotated (bi-)laplacian operator (\ np{ln\_traldf\_triad})}611 \subsubsection [Triad rotated (bi-)laplacian operator (\protect\np{ln\_traldf\_triad})] 612 {Triad rotated (bi-)laplacian operator (\protect\np{ln\_traldf\_triad})} 613 613 \label{TRA_ldf_triad} 614 614 … … 649 649 % ================================================================ 650 650 \section [Tracer Vertical Diffusion (\textit{trazdf})] 651 {Tracer Vertical Diffusion (\ mdl{trazdf})}651 {Tracer Vertical Diffusion (\protect\mdl{trazdf})} 652 652 \label{TRA_zdf} 653 653 %--------------------------------------------namzdf--------------------------------------------------------- … … 703 703 % ------------------------------------------------------------------------------------------------------------- 704 704 \subsection [Surface boundary condition (\textit{trasbc})] 705 {Surface boundary condition (\ mdl{trasbc})}705 {Surface boundary condition (\protect\mdl{trasbc})} 706 706 \label{TRA_sbc} 707 707 … … 774 774 % ------------------------------------------------------------------------------------------------------------- 775 775 \subsection [Solar Radiation Penetration (\textit{traqsr})] 776 {Solar Radiation Penetration (\ mdl{traqsr})}776 {Solar Radiation Penetration (\protect\mdl{traqsr})} 777 777 \label{TRA_qsr} 778 778 %--------------------------------------------namqsr-------------------------------------------------------- … … 872 872 \begin{figure}[!t] \begin{center} 873 873 \includegraphics[width=1.0\textwidth]{Fig_TRA_Irradiance} 874 \caption{ \ label{Fig_traqsr_irradiance}874 \caption{ \protect\label{Fig_traqsr_irradiance} 875 875 Penetration profile of the downward solar irradiance calculated by four models. 876 876 Two waveband chlorophyll-independent formulation (blue), a chlorophyll-dependent … … 885 885 % ------------------------------------------------------------------------------------------------------------- 886 886 \subsection [Bottom Boundary Condition (\textit{trabbc})] 887 {Bottom Boundary Condition (\ mdl{trabbc})}887 {Bottom Boundary Condition (\protect\mdl{trabbc})} 888 888 \label{TRA_bbc} 889 889 %--------------------------------------------nambbc-------------------------------------------------------- … … 893 893 \begin{figure}[!t] \begin{center} 894 894 \includegraphics[width=1.0\textwidth]{Fig_TRA_geoth} 895 \caption{ \ label{Fig_geothermal}895 \caption{ \protect\label{Fig_geothermal} 896 896 Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}. 897 897 It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}.} … … 923 923 % Bottom Boundary Layer 924 924 % ================================================================ 925 \section [Bottom Boundary Layer (\ mdl{trabbl} -\key{trabbl})]926 {Bottom Boundary Layer (\ mdl{trabbl} -\key{trabbl})}925 \section [Bottom Boundary Layer (\protect\mdl{trabbl} - \protect\key{trabbl})] 926 {Bottom Boundary Layer (\protect\mdl{trabbl} - \protect\key{trabbl})} 927 927 \label{TRA_bbl} 928 928 %--------------------------------------------nambbl--------------------------------------------------------- … … 959 959 % Diffusive BBL 960 960 % ------------------------------------------------------------------------------------------------------------- 961 \subsection{Diffusive Bottom Boundary layer (\ np{nn\_bbl\_ldf}=1)}961 \subsection{Diffusive Bottom Boundary layer (\protect\np{nn\_bbl\_ldf}=1)} 962 962 \label{TRA_bbl_diff} 963 963 … … 994 994 % Advective BBL 995 995 % ------------------------------------------------------------------------------------------------------------- 996 \subsection {Advective Bottom Boundary Layer (\ np{nn\_bbl\_adv}= 1 or 2)}996 \subsection {Advective Bottom Boundary Layer (\protect\np{nn\_bbl\_adv}= 1 or 2)} 997 997 \label{TRA_bbl_adv} 998 998 … … 1003 1003 \begin{figure}[!t] \begin{center} 1004 1004 \includegraphics[width=0.7\textwidth]{Fig_BBL_adv} 1005 \caption{ \ label{Fig_bbl}1005 \caption{ \protect\label{Fig_bbl} 1006 1006 Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is 1007 1007 activated when $\rho^i_{kup}$ is larger than $\rho^{i+1}_{kdnw}$. … … 1084 1084 % ================================================================ 1085 1085 \section [Tracer damping (\textit{tradmp})] 1086 {Tracer damping (\ mdl{tradmp})}1086 {Tracer damping (\protect\mdl{tradmp})} 1087 1087 \label{TRA_dmp} 1088 1088 %--------------------------------------------namtra_dmp------------------------------------------------- … … 1169 1169 % ================================================================ 1170 1170 \section [Tracer time evolution (\textit{tranxt})] 1171 {Tracer time evolution (\ mdl{tranxt})}1171 {Tracer time evolution (\protect\mdl{tranxt})} 1172 1172 \label{TRA_nxt} 1173 1173 %--------------------------------------------namdom----------------------------------------------------- … … 1208 1208 % ================================================================ 1209 1209 \section [Equation of State (\textit{eosbn2}) ] 1210 {Equation of State (\ mdl{eosbn2}) }1210 {Equation of State (\protect\mdl{eosbn2}) } 1211 1211 \label{TRA_eosbn2} 1212 1212 %--------------------------------------------nameos----------------------------------------------------- … … 1217 1217 % Equation of State 1218 1218 % ------------------------------------------------------------------------------------------------------------- 1219 \subsection{Equation Of Seawater (\ np{nn\_eos} = -1, 0, or 1)}1219 \subsection{Equation Of Seawater (\protect\np{nn\_eos} = -1, 0, or 1)} 1220 1220 \label{TRA_eos} 1221 1221 … … 1323 1323 $\mu_2$ & \np{rn\_mu2} & 1.1090 $10^{-5}$ & thermobaric coeff. in S \\ \hline 1324 1324 \end{tabular} 1325 \caption{ \ label{Tab_SEOS}1325 \caption{ \protect\label{Tab_SEOS} 1326 1326 Standard value of S-EOS coefficients. } 1327 1327 \end{center} … … 1333 1333 % Brunt-V\"{a}is\"{a}l\"{a} Frequency 1334 1334 % ------------------------------------------------------------------------------------------------------------- 1335 \subsection{Brunt-V\"{a}is\"{a}l\"{a} Frequency (\ np{nn\_eos} = 0, 1 or 2)}1335 \subsection{Brunt-V\"{a}is\"{a}l\"{a} Frequency (\protect\np{nn\_eos} = 0, 1 or 2)} 1336 1336 \label{TRA_bn2} 1337 1337 … … 1389 1389 % ================================================================ 1390 1390 \section [Horizontal Derivative in \textit{zps}-coordinate (\textit{zpshde})] 1391 {Horizontal Derivative in \textit{zps}-coordinate (\ mdl{zpshde})}1391 {Horizontal Derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})} 1392 1392 \label{TRA_zpshde} 1393 1393 … … 1411 1411 \begin{figure}[!p] \begin{center} 1412 1412 \includegraphics[width=0.9\textwidth]{Partial_step_scheme} 1413 \caption{ \ label{Fig_Partial_step_scheme}1413 \caption{ \protect\label{Fig_Partial_step_scheme} 1414 1414 Discretisation of the horizontal difference and average of tracers in the $z$-partial 1415 step coordinate (\ np{ln\_zps}=true) in the case $( e3w_k^{i+1} - e3w_k^i )>0$.1415 step coordinate (\protect\np{ln\_zps}=true) in the case $( e3w_k^{i+1} - e3w_k^i )>0$. 1416 1416 A linear interpolation is used to estimate $\widetilde{T}_k^{i+1}$, the tracer value 1417 1417 at the depth of the shallower tracer point of the two adjacent bottom $T$-points. -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Chap_ZDF.tex
r9350 r9363 49 49 % Constant 50 50 % ------------------------------------------------------------------------------------------------------------- 51 \subsection{Constant (\ key{zdfcst})}51 \subsection{Constant (\protect\key{zdfcst})} 52 52 \label{ZDF_cst} 53 53 %--------------------------------------------namzdf--------------------------------------------------------- … … 74 74 % Richardson Number Dependent 75 75 % ------------------------------------------------------------------------------------------------------------- 76 \subsection{Richardson Number Dependent (\ key{zdfric})}76 \subsection{Richardson Number Dependent (\protect\key{zdfric})} 77 77 \label{ZDF_ric} 78 78 … … 132 132 % TKE Turbulent Closure Scheme 133 133 % ------------------------------------------------------------------------------------------------------------- 134 \subsection{TKE Turbulent Closure Scheme (\ key{zdftke})}134 \subsection{TKE Turbulent Closure Scheme (\protect\key{zdftke})} 135 135 \label{ZDF_tke} 136 136 … … 237 237 \begin{figure}[!t] \begin{center} 238 238 \includegraphics[width=1.00\textwidth]{Fig_mixing_length} 239 \caption{ \ label{Fig_mixing_length}239 \caption{ \protect\label{Fig_mixing_length} 240 240 Illustration of the mixing length computation. } 241 241 \end{center} … … 405 405 % TKE discretization considerations 406 406 % ------------------------------------------------------------------------------------------------------------- 407 \subsection{TKE discretization considerations (\ key{zdftke})}407 \subsection{TKE discretization considerations (\protect\key{zdftke})} 408 408 \label{ZDF_tke_ene} 409 409 … … 411 411 \begin{figure}[!t] \begin{center} 412 412 \includegraphics[width=1.00\textwidth]{Fig_ZDF_TKE_time_scheme} 413 \caption{ \ label{Fig_TKE_time_scheme}413 \caption{ \protect\label{Fig_TKE_time_scheme} 414 414 Illustration of the TKE time integration and its links to the momentum and tracer time integration. } 415 415 \end{center} … … 508 508 % GLS Generic Length Scale Scheme 509 509 % ------------------------------------------------------------------------------------------------------------- 510 \subsection{GLS Generic Length Scale (\ key{zdfgls})}510 \subsection{GLS Generic Length Scale (\protect\key{zdfgls})} 511 511 \label{ZDF_gls} 512 512 … … 579 579 \hline 580 580 \end{tabular} 581 \caption{ \ label{Tab_GLS}581 \caption{ \protect\label{Tab_GLS} 582 582 Set of predefined GLS parameters, or equivalently predefined turbulence models available 583 with \ key{zdfgls} and controlled by the \np{nn\_clos} namelist variable in\ngn{namzdf\_gls} .}583 with \protect\key{zdfgls} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\ngn{namzdf\_gls} .} 584 584 \end{center} \end{table} 585 585 %-------------------------------------------------------------------------------------------------------------- … … 615 615 % OSM OSMOSIS BL Scheme 616 616 % ------------------------------------------------------------------------------------------------------------- 617 \subsection{OSM OSMOSIS Boundary Layer scheme (\ key{zdfosm})}617 \subsection{OSM OSMOSIS Boundary Layer scheme (\protect\key{zdfosm})} 618 618 \label{ZDF_osm} 619 619 … … 646 646 % Non-Penetrative Convective Adjustment 647 647 % ------------------------------------------------------------------------------------------------------------- 648 \subsection [Non-Penetrative Convective Adjustment (\ np{ln\_tranpc}) ]649 {Non-Penetrative Convective Adjustment (\ np{ln\_tranpc}=.true.) }648 \subsection [Non-Penetrative Convective Adjustment (\protect\np{ln\_tranpc}) ] 649 {Non-Penetrative Convective Adjustment (\protect\np{ln\_tranpc}=.true.) } 650 650 \label{ZDF_npc} 651 651 … … 657 657 \begin{figure}[!htb] \begin{center} 658 658 \includegraphics[width=0.90\textwidth]{Fig_npc} 659 \caption{ \ label{Fig_npc}659 \caption{ \protect\label{Fig_npc} 660 660 Example of an unstable density profile treated by the non penetrative 661 661 convective adjustment algorithm. $1^{st}$ step: the initial profile is checked from … … 713 713 % Enhanced Vertical Diffusion 714 714 % ------------------------------------------------------------------------------------------------------------- 715 \subsection [Enhanced Vertical Diffusion (\ np{ln\_zdfevd})]716 {Enhanced Vertical Diffusion (\ np{ln\_zdfevd}=true)}715 \subsection [Enhanced Vertical Diffusion (\protect\np{ln\_zdfevd})] 716 {Enhanced Vertical Diffusion (\protect\np{ln\_zdfevd}=true)} 717 717 \label{ZDF_evd} 718 718 … … 745 745 % Turbulent Closure Scheme 746 746 % ------------------------------------------------------------------------------------------------------------- 747 \subsection[Turbulent Closure Scheme (\ key{zdf\{tke, gls, osm\}})]{Turbulent Closure Scheme (\key{zdftke}, \key{zdfgls} or\key{zdfosm})}747 \subsection[Turbulent Closure Scheme (\protect\key{zdf\{tke, gls, osm\}})]{Turbulent Closure Scheme (\protect\key{zdftke}, \protect\key{zdfgls} or \protect\key{zdfosm})} 748 748 \label{ZDF_tcs} 749 749 … … 772 772 % Double Diffusion Mixing 773 773 % ================================================================ 774 \section [Double Diffusion Mixing (\ key{zdfddm})]775 {Double Diffusion Mixing (\ key{zdfddm})}774 \section [Double Diffusion Mixing (\protect\key{zdfddm})] 775 {Double Diffusion Mixing (\protect\key{zdfddm})} 776 776 \label{ZDF_ddm} 777 777 … … 813 813 \begin{figure}[!t] \begin{center} 814 814 \includegraphics[width=0.99\textwidth]{Fig_zdfddm} 815 \caption{ \ label{Fig_zdfddm}815 \caption{ \protect\label{Fig_zdfddm} 816 816 From \citet{Merryfield1999} : (a) Diapycnal diffusivities $A_f^{vT}$ 817 817 and $A_f^{vS}$ for temperature and salt in regions of salt fingering. Heavy … … 855 855 % Bottom Friction 856 856 % ================================================================ 857 \section [Bottom and Top Friction (\textit{zdfbfr})] {Bottom and Top Friction (\ mdl{zdfbfr} module)}857 \section [Bottom and Top Friction (\textit{zdfbfr})] {Bottom and Top Friction (\protect\mdl{zdfbfr} module)} 858 858 \label{ZDF_bfr} 859 859 … … 918 918 % Linear Bottom Friction 919 919 % ------------------------------------------------------------------------------------------------------------- 920 \subsection{Linear Bottom Friction (\ np{nn\_botfr} = 0 or 1) }920 \subsection{Linear Bottom Friction (\protect\np{nn\_botfr} = 0 or 1) } 921 921 \label{ZDF_bfr_linear} 922 922 … … 962 962 % Non-Linear Bottom Friction 963 963 % ------------------------------------------------------------------------------------------------------------- 964 \subsection{Non-Linear Bottom Friction (\ np{nn\_botfr} = 2)}964 \subsection{Non-Linear Bottom Friction (\protect\np{nn\_botfr} = 2)} 965 965 \label{ZDF_bfr_nonlinear} 966 966 … … 1003 1003 % Bottom Friction Log-layer 1004 1004 % ------------------------------------------------------------------------------------------------------------- 1005 \subsection[Log-layer Bottom Friction enhancement (\ np{ln\_loglayer} = .true.)]{Log-layer Bottom Friction enhancement (\np{nn\_botfr} = 2,\np{ln\_loglayer} = .true.)}1005 \subsection[Log-layer Bottom Friction enhancement (\protect\np{ln\_loglayer} = .true.)]{Log-layer Bottom Friction enhancement (\protect\np{nn\_botfr} = 2, \protect\np{ln\_loglayer} = .true.)} 1006 1006 \label{ZDF_bfr_loglayer} 1007 1007 … … 1082 1082 % Implicit Bottom Friction 1083 1083 % ------------------------------------------------------------------------------------------------------------- 1084 \subsection[Implicit Bottom Friction (\ np{ln\_bfrimp})]{Implicit Bottom Friction (\np{ln\_bfrimp}$=$\textit{T})}1084 \subsection[Implicit Bottom Friction (\protect\np{ln\_bfrimp})]{Implicit Bottom Friction (\protect\np{ln\_bfrimp}$=$\textit{T})} 1085 1085 \label{ZDF_bfr_imp} 1086 1086 … … 1135 1135 % Bottom Friction with split-explicit time splitting 1136 1136 % ------------------------------------------------------------------------------------------------------------- 1137 \subsection[Bottom Friction with split-explicit time splitting]{Bottom Friction with split-explicit time splitting (\ np{ln\_bfrimp})}1137 \subsection[Bottom Friction with split-explicit time splitting]{Bottom Friction with split-explicit time splitting (\protect\np{ln\_bfrimp})} 1138 1138 \label{ZDF_bfr_ts} 1139 1139 … … 1192 1192 % Tidal Mixing 1193 1193 % ================================================================ 1194 \section{Tidal Mixing (\ key{zdftmx})}1194 \section{Tidal Mixing (\protect\key{zdftmx})} 1195 1195 \label{ZDF_tmx} 1196 1196 … … 1258 1258 \begin{figure}[!t] \begin{center} 1259 1259 \includegraphics[width=0.90\textwidth]{Fig_ZDF_M2_K1_tmx} 1260 \caption{ \ label{Fig_ZDF_M2_K1_tmx}1260 \caption{ \protect\label{Fig_ZDF_M2_K1_tmx} 1261 1261 (a) M2 and (b) K1 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). } 1262 1262 \end{center} \end{figure} … … 1266 1266 % Indonesian area specific treatment 1267 1267 % ------------------------------------------------------------------------------------------------------------- 1268 \subsection{Indonesian area specific treatment (\ np{ln\_zdftmx\_itf})}1268 \subsection{Indonesian area specific treatment (\protect\np{ln\_zdftmx\_itf})} 1269 1269 \label{ZDF_tmx_itf} 1270 1270 … … 1314 1314 % Internal wave-driven mixing 1315 1315 % ================================================================ 1316 \section{Internal wave-driven mixing (\ key{zdftmx\_new})}1316 \section{Internal wave-driven mixing (\protect\key{zdftmx\_new})} 1317 1317 \label{ZDF_tmx_new} 1318 1318 -
branches/2017/dev_merge_2017/DOC/TexFiles/Chapters/Introduction.tex
r9360 r9363 155 155 \begin{table}[!t] 156 156 %\begin{center} \begin{tabular}{|p{143pt}|l|l|} \hline 157 \caption{ \ label{Tab_chap} Organization of Chapters mimicking the one of the model directories. }157 \caption{ \protect\label{Tab_chap} Organization of Chapters mimicking the one of the model directories. } 158 158 \begin{center} \begin{tabular}{|l|l|l|} \hline 159 159 Chapter \ref{STP} & - & model time STePping environment \\ \hline
Note: See TracChangeset
for help on using the changeset viewer.