source: trunk/SRC/Interpolation/spl_incr.pro

Last change on this file was 493, checked in by pinsard, 10 years ago

fix some typos in comments

  • Property svn:keywords set to Id
File size: 19.4 KB
Line 
1;+
2;
3; @file_comments
4; Given the arrays X and Y, which tabulate a function (with the X[i]
5; AND Y[i] in ascending order), and given an input value X2, the
6; spl_incr function returns an interpolated value for the given values
7; of X2. The interpolation method is based on cubic spline, corrected
8; in a way that interpolated values are also monotonically increasing.
9;
10; @param x1 {in}{required}
11; An n-elements (at least 2) input vector that specifies the tabulate points in
12; a strict ascending order.
13;
14; @param y1 {in}{required}
15; f(x) = y. An n-elements input vector that specifies the values
16; of the tabulated function F(Xi) corresponding to Xi. As f is
17; supposed to be monotonically increasing, y values must be
18; monotonically increasing. y can have equal consecutive values.
19;
20; @param x2 {in}{required}
21; The input values for which the interpolated values are
22; desired. Its values must be strictly monotonically increasing.
23;
24; @param der2
25;
26; @param x
27;
28; @returns
29; y2: f(x2) = y2. Double precision array
30;
31; @restrictions
32; It might be possible that y2[i+1]-y2[i] has very small negative
33; values (amplitude smaller than 1.e-6)...
34;
35; @examples
36;
37;   IDL> n = 100L
38;   IDL> x = (dindgen(n))^2
39;   IDL> y = abs(randomn(0, n))
40;   IDL> y[n/2:n/2+1] = 0.
41;   IDL> y[n-n/3] = 0.
42;   IDL> y[n-n/6:n-n/6+5] = 0.
43;   IDL> y = total(y, /cumulative, /double)
44;   IDL> x2 = dindgen((n-1)^2)
45;   IDL> n2 = n_elements(x2)
46;   IDL> print, min(y[1:n-1]-y[0:n-2]) LT 0
47;   IDL> y2 = spl_incr( x, y, x2)
48;   IDL> splot, x, y, xstyle = 1, ystyle = 1, ysurx=.25, petit = [1, 2, 1], /land
49;   IDL> oplot, x2, y2, color = 100
50;   IDL> c = y2[1:n2-1] - y2[0:n2-2]
51;   IDL> print, min(c) LT 0
52;   IDL> print, min(c, max = ma), ma
53;   IDL> splot,c,xstyle=1,ystyle=1, yrange=[-.01,.05], ysurx=.25, petit = [1, 2, 2], /noerase
54;   IDL> oplot,[0, n_elements(c)], [0, 0], linestyle = 1
55;
56; @history
57;  Sebastien Masson (smasson\@lodyc.jussieu.fr): May-Dec 2005
58;
59; @version
60; $Id$
61;
62;-
63FUNCTION pure_concave, x1, x2, y1, y2, der2, x
64;
65  compile_opt idl2, strictarrsubs
66;
67; X^n type
68;
69  xx = (double(x)-double(x1))/(double(x2)-double(x1))
70  f = (double(x2)-double(x1))/(double(y2)-double(y1))
71  n = der2*temporary(f)
72  res = xx^(n)
73;   IF check_math() GT 0 THEN BEGIN
74;       zero = where(abs(res) LT 1.e-10)
75;       IF zero[0] NE -1 THEN res[zero] = 0.0d
76;   END
77  res = temporary(res)*(double(y2)-double(y1))+y1
78;
79;  IF array_equal(sort(res), lindgen(n_elements(res)) ) NE 1 THEN stop
80  RETURN, res
81END
82;
83;+
84;
85; @param x1 {in}{required}
86; An n-elements (at least 2) input vector that specifies the tabulate points in
87; a strict ascending order.
88;
89; @param y1 {in}{required}
90; f(x) = y. An n-elements input vector that specifies the values
91;    of the tabulated function F(Xi) corresponding to Xi. As f is
92;    supposed to be monotonically increasing, y values must be
93;    monotonically increasing. y can have equal consecutive values.
94;
95; @param x2 {in}{required}
96; The input values for which the interpolated values are
97; desired. Its values must be strictly monotonically increasing.
98;
99; @param der2
100;
101; @param x
102;
103;-
104FUNCTION pure_convex, x1, x2, y1, y2, der2, x
105;
106  compile_opt idl2, strictarrsubs
107;
108; 1-(1-X)^n type
109;
110  xx = 1.0d - (double(x)-double(x1))/(double(x2)-double(x1))
111  f = (double(x2)-double(x1))/(double(y2)-double(y1))
112  n = der2*temporary(f)
113  res = xx^(n)
114;   IF check_math() GT 0 THEN BEGIN
115;       zero = where(abs(res) LT 1.e-10)
116;       IF zero[0] NE -1 THEN res[zero] = 0.0d
117;   END
118  res = 1.0d - temporary(res)
119  res = temporary(res)*(y2-y1)+y1
120;
121;  IF array_equal(sort(res), lindgen(n_elements(res)) ) NE 1 THEN stop
122  RETURN, res
123END
124;
125;+
126;
127; @param x
128; @param y
129; @param x2
130; @keyword YP0
131; The first derivative of the interpolating function at the
132;    point X0. If YP0 is omitted, the second derivative at the
133;    boundary is set to zero, resulting in a "natural spline."
134;
135; @keyword YPN_1
136; The first derivative of the interpolating function at the
137;    point Xn-1. If YPN_1 is omitted, the second derivative at the
138;    boundary is set to zero, resulting in a "natural spline."
139;-
140FUNCTION spl_incr, x, y, x2, YP0=yp0, YPN_1=ypn_1
141;
142  compile_opt idl2, strictarrsubs
143;
144;---------------------------------
145; check and initialization ...
146;---------------------------------
147;
148  nx = n_elements(x)
149  ny = n_elements(y)
150  nx2 = n_elements(x2)
151; x must have at least 2 elements
152  IF nx LT 2 THEN stop
153; y must have the same number of elements than x
154  IF nx NE ny THEN stop
155; x be monotonically increasing
156  IF min(x[1:nx-1]-x[0:nx-2]) LE 0 THEN stop
157; x2 be monotonically increasing
158  IF N_ELEMENTS(X2) GE 2 THEN $
159  IF min(x2[1:nx2-1]-x2[0:nx2-2])  LE 0 THEN stop
160; y be monotonically increasing
161  IF min(y[1:ny-1]-y[0:ny-2]) LT 0 THEN stop
162;---------------------------------
163; first check: check if two consecutive values are equal
164;---------------------------------
165  bad = where(y[1:ny-1]-y[0:ny-2] EQ 0, cntbad)
166  IF cntbad NE 0 THEN BEGIN
167; define the results: y2
168      y2 = dblarr(nx2)
169; define xinx2: see help of value_locate
170;  if xinx2[i] eq -1   :                 x[bad[i]] <  x2[0]
171;  if xinx2[i] eq nx2-1:                 x[bad[i]] >= x2[nx2-1]
172;  else                : x2[xinx2[i]] <= x[bad[i]] <  x2[xinx2[i]+1]
173    xinx2 = value_locate(x2, x[bad])
174    xinx2_1 = value_locate(x2, x[bad+1])
175;
176; left side ... if there is x2 values smaller that x[bad[0]].
177; we force ypn_1 = 0.0d
178    IF xinx2[0] NE -1 THEN BEGIN
179      IF bad[0] EQ 0 THEN BEGIN
180        IF xinx2[0] NE 0 THEN stop
181        y2[0] = y[0]
182      ENDIF ELSE BEGIN
183        y2[0:xinx2[0]] $
184          = spl_incr(x[0:bad[0]], y[0:bad[0]], x2[0:xinx2[0]] $
185                     , yp0 = yp0, ypn_1 = 0.0d)
186      ENDELSE
187    ENDIF
188; flat section
189    IF xinx2_1[0] NE -1 THEN $
190      y2[(xinx2[0]+1) < xinx2_1[0] : xinx2_1[0]] = y[bad[0]]
191; middle pieces ... if cntbad gt 1 then we have to cut spl_incr in
192; more than 2 pieces...
193      IF cntbad GT 1 THEN BEGIN
194; we take care of the piece located between bad[ib-1]+1 and bad[ib]
195        FOR ib = 1, cntbad-1 DO BEGIN
196; if there is x2 values smaller that x[bad[ib]], then the x2 values
197; located between bad[ib-1]+1 and bad[ib] are (xinx2_1[ib-1]+1:xinx2[ib]
198; and if we don't have two consecutive flat sections
199          IF xinx2[ib] NE -1 AND (bad[ib-1] NE bad[ib]-1) THEN begin
200            y2[(xinx2_1[ib-1]+1) < xinx2[ib]:xinx2[ib]] $
201              = spl_incr(x[bad[ib-1]+1:bad[ib]], y[bad[ib-1]+1:bad[ib]] $
202                         , x2[(xinx2_1[ib-1]+1) < xinx2[ib]:xinx2[ib]] $
203                         , yp0 = 0.0d, ypn_1 = 0.0d)
204          ENDIF
205; flat section
206          IF xinx2_1[ib] NE -1 THEN $
207            y2[(xinx2[ib]+1) < xinx2_1[ib] : xinx2_1[ib]] = y[bad[ib]]
208        ENDFOR
209      ENDIF
210; right side ... if there is x2 values larger that x[bad[cntbad-1]+1].
211; we force yp0 = 0.0d
212      IF xinx2_1[cntbad-1] NE nx2-1 THEN $
213        y2[xinx2_1[cntbad-1]+1:nx2-1] $
214        = spl_incr(x[bad[cntbad-1]+1:nx-1], y[bad[cntbad-1]+1:nx-1] $
215                        , x2[xinx2_1[cntbad-1]+1:nx2-1] $
216                        , yp0 = 0.0d, ypn_1 = ypn_1new)
217
218    RETURN, y2
219
220  ENDIF
221;-----------
222; compute the second derivative of the cubic spline on each x.
223;-----------
224  yscd = spl_init(x, y, yp0 = yp0, ypn_1 = ypn_1, /double)
225;---------------------------------
226; second check: none of the first derivative on x values must be negative.
227;---------------------------------
228;
229; compute the first derivative on x
230;
231  yifrst = spl_fstdrv(x, y, yscd, x)
232;
233; we force the negative first derivative to 0 by calling again
234; spl_incr with the keywords yp0 and ypn_1 to specify the
235; first derivative equal to 0
236;
237  bad = where(yifrst LT 0.0d, cntbad)
238  IF cntbad NE 0 THEN BEGIN
239;
240; we define the new values of the keyword ypn_1:
241; if the first derivative of the last value of x is negative
242; we define the new values of the keyword ypn_1 to 0.0d0
243    IF bad[cntbad-1] EQ nx-1 THEN BEGIN
244      ypn_1new = 0.0d
245; we remove this case from the list
246      IF cntbad GE 2 THEN bad = bad[0:cntbad-2]
247      cntbad = cntbad-1
248; else we take the value of ypn_1 if it was already defined
249    ENDIF ELSE IF n_elements(ypn_1) NE 0 THEN ypn_1new = ypn_1
250;
251; we define the new values of the keyword yp0:
252; if the first derivative of the first value of x is negative
253; we define the new values of the keyword yp0 to 0.0
254    IF bad[0] EQ 0 THEN BEGIN
255      yp0new = 0.0d
256; we remove this case from the list
257      IF cntbad GE 2 THEN bad = bad[1:cntbad-1]
258      cntbad = cntbad-1
259; else we take the value of yp0 if it was already defined
260    ENDIF ELSE IF n_elements(yp0) NE 0 THEN yp0new = yp0
261;
262; if all the negative derivative corresponded to one of the cases above,
263; then we can directly call spl_incr with the new yp0new and ypn_1new
264    IF cntbad LE 0 THEN BEGIN
265      y2 = spl_incr(x, y, x2, yp0 = yp0new, ypn_1 = ypn_1new)
266;
267; else: there is still cases with negative derivative ...
268; we will cut spl_incr in n spl_incr and specify yp0, ypn_1
269; for each of this n spl_incr
270    ENDIF ELSE BEGIN
271; define xinx2: see help of value_locate
272;  if xinx2[i] eq -1   :                 x[bad[i]] <  x2[0]
273;  if xinx2[i] eq nx2-1:                 x[bad[i]] >= x2[nx2-1]
274;  else                : x2[xinx2[i]] <= x[bad[i]] <  x2[xinx2[i]+1]
275      xinx2 = value_locate(x2, x[bad])
276      y2 = dblarr(nx2)
277; left side ... if there is x2 values smaller that x[bad[0]].
278; we force ypn_1 = 0.0d
279      IF xinx2[0] NE -1 THEN $
280        y2[0:xinx2[0]] $
281        = spl_incr(x[0:bad[0]], y[0:bad[0]], x2[0:xinx2[0]] $
282                        , yp0 = yp0new, ypn_1 = 0.0d)
283; middle pieces ... if cntbad gt 1 then we have to cut spl_incr in
284; more than 2 pieces -> we have middle pieces for which
285; we force yp0 = 0.0d and ypn_1 = 0.0d
286      IF cntbad GT 1 THEN BEGIN
287; we take care of the piece located between bad[ib-1] and bad[ib]
288        FOR ib = 1, cntbad-1 DO BEGIN
289; if there is x2 values smaller that x[bad[ib]], then the x2 values
290; located between bad[ib-1] and bad[ib] are (xinx2[ib-1]+1:xinx2[ib]
291          IF xinx2[ib] NE -1 THEN begin
292            y2[(xinx2[ib-1]+1) < xinx2[ib]:xinx2[ib]] $
293              = spl_incr(x[bad[ib-1]:bad[ib]], y[bad[ib-1]:bad[ib]] $
294                              , x2[(xinx2[ib-1]+1) < xinx2[ib]:xinx2[ib]] $
295                              , yp0 = 0.0d, ypn_1 = 0.0d)
296          endif
297        ENDFOR
298      ENDIF
299; right side ... if there is x2 values larger that x[bad[cntbad-1]].
300; we force yp0 = 0.0d
301      IF xinx2[cntbad-1] NE nx2-1 THEN $
302        y2[xinx2[cntbad-1]+1:nx2-1] $
303        = spl_incr(x[bad[cntbad-1]:nx-1], y[bad[cntbad-1]:nx-1] $
304                        , x2[xinx2[cntbad-1]+1:nx2-1] $
305                        , yp0 = 0.0d, ypn_1 = ypn_1new)
306    ENDELSE
307; we return the checked and corrected value of yfrst
308;       FOR i = 0, nx-1 DO BEGIN
309;         same = where(abs(x2- x[i]) LT 1.e-10, cnt)
310; ;        IF cnt NE 0 THEN y2[same] = y[i]
311;       ENDFOR
312    RETURN, y2
313  ENDIF
314;
315; we can be in this part of the code only if:
316;  (1) spl_incr is called by itself
317;  (2) none are the first derivative in x are negative (because they have been
318;      checked and corrected by the previous call to spl_incr, see above)
319;---------------------------------
320; third check: we have to make sure that the first derivative cannot
321;               have negative values between on x[0] and x[nx-1]
322;---------------------------------
323;
324; first we compute the first derivative, next we correct the values
325; where we know that the first derivative can be negative.
326;
327  y2 = spl_interp(x, y, yscd, x2, /double)
328;
329; between x[i] and x[i+1], the cubic spline is a cubic function:
330; y  =  a*X^3 +  b*X^2 + c*X + d
331; y' = 3a*X^2 + 2b*X   + c
332; y''= 6a*X   + 2b
333; if we take X = x[i+1]-x[i] then
334;    d = y[i]; c = y'[i]; b = 0.5 * y''[i],
335;    a = 1/6 * (y''[i+1]-y''[i])/(x[i+1]-x[i])
336;
337; y'[i] and y'[i+1] are positive so y' can be negative
338; between x[i] and x[i+1] only if
339;   1) a > 0
340;            ==> y''[i+1] > y''[i]
341;   2) y' reach its minimum value between  x[i] and x[i+1]
342;      -> 0 < - b/(3a) < x[i+1]-x[i]
343;            ==> y''[i+1] > 0 > y''[i]
344;
345; we do a first selection by looking for those points...
346;
347  loc = lindgen(nx-1)
348  maybebad = where(yscd[loc] LE 0.0d AND yscd[loc+1] GE 0.0d, cntbad)
349;
350  IF cntbad NE 0 THEN BEGIN
351
352    mbbloc = loc[maybebad]
353
354    aaa = (yscd[mbbloc+1]-yscd[mbbloc])/(6.0d*(x[mbbloc+1]-x[mbbloc]))
355    bbb = 0.5d * yscd[mbbloc]
356    ccc = yifrst[mbbloc]
357    ddd = y[mbbloc]
358;
359; definitive selection:
360; y' can become negative if and only if (2b)^2 - 4(3a)c > 0
361; y' can become negative if and only if    b^2  - (3a)c > 0
362;
363    delta = bbb*bbb - 3.0d*aaa*ccc
364;
365    bad = where(delta GT 0, cntbad)
366;
367    IF cntbad NE 0 THEN BEGIN
368      delta = delta[bad]
369      aaa = aaa[bad]
370      bbb = bbb[bad]
371      ccc = ccc[bad]
372      ddd = ddd[bad]
373      bad = maybebad[bad]
374; define xinx2_1: see help of value_locate
375;  if xinx2_1[i] eq -1   :                   x[bad[i]] <  x2[0]
376;  if xinx2_1[i] eq nx2-1:                   x[bad[i]] >= x2[nx2-1]
377;  else                  : x2[xinx2_1[i]] <= x[bad[i]] <  x2[xinx2_1[i]+1]
378      xinx2_1 = value_locate(x2, x[bad])
379; define xinx2_2: see help of value_locate
380;  if xinx2_2[i] eq -1   :                   x[bad[i]+1] <  x2[0]
381;  if xinx2_2[i] eq nx2-1:                   x[bad[i]+1] >= x2[nx2-1]
382;  else                  : x2[xinx2_2[i]] <= x[bad[i]+1] <  x2[xinx2_2[i]+1]
383      xinx2_2 = value_locate(x2, x[bad+1])
384; to avoid the particular case when x2 = x[bad[i]]
385; and there is no other x2 point until x[bad[i]+1]
386      xinx2_1 = xinx2_1 < (xinx2_2-1)
387;
388      FOR ib = 0, cntbad-1 DO BEGIN
389;
390; at least one of the x2 points must be located between
391; x[bad[ib]] and x[bad[ib]+1]
392        IF x2[0] LE x[bad[ib]+1] AND x2[nx2-1] GE x[bad[ib]] THEN BEGIN
393;
394          CASE 1 OF
395            yifrst[bad[ib]+1] EQ 0.0d:BEGIN
396; case pur convex: we use the first derivative of 1-(1-x)^n
397; and adjust n to get the good value: yifrst[bad[ib]] in x[bad[ib]]
398              y2[xinx2_1[ib]+1:xinx2_2[ib]] $
399                = pure_convex(x[bad[ib]], x[bad[ib]+1] $
400                              , y[bad[ib]], y[bad[ib]+1]  $
401                              , yifrst[bad[ib]] $
402                              , x2[xinx2_1[ib]+1:xinx2_2[ib]])
403            END
404            yifrst[bad[ib]] EQ 0.0d:BEGIN
405; case pur concave: we use the first derivative of x^n
406; and adjust n to get the good value: yifrst[bad[ib]+1] in x[bad[ib]+1]
407              y2[xinx2_1[ib]+1:xinx2_2[ib]] $
408                = pure_concave(x[bad[ib]], x[bad[ib]+1] $
409                               , y[bad[ib]], y[bad[ib]+1] $
410                               , yifrst[bad[ib]+1] $
411                               , x2[xinx2_1[ib]+1:xinx2_2[ib]])
412            END
413            ELSE:BEGIN
414; in those cases, the first derivative has 2 zero between
415; x[bad[ib]] and x[bad[ib]+1]. We look for the minimum value of the
416; first derivative that correspond to the inflection point of y
417              xinfl = -bbb[ib]/(3.0d*aaa[ib])
418; we compute the y value for xinfl
419              yinfl = aaa[ib]*xinfl*xinfl*xinfl + bbb[ib]*xinfl*xinfl $
420                + ccc[ib]*xinfl + ddd[ib]
421;
422              CASE 1 OF
423; if y[xinfl] smaller than y[bad[ib]] then we conserve y2 until
424; the first zero of y2 and from this point we use x^n and adjust n to
425; get the good value: yifrst[bad[ib]+1] in x[bad[ib]+1]
426                yinfl LT y[bad[ib]]:BEGIN
427; value of the first zero (y'[xzero]=0)
428                  xzero = (-bbb[ib]-sqrt(delta[ib]))/(3.0d*aaa[ib])
429; value of y[xzero]...
430                  yzero = aaa[ib]*xzero*xzero*xzero + bbb[ib]*xzero*xzero $
431                    + ccc[ib]*xzero + ddd[ib]
432; if yzero > y[bad[ib]+1] then we cannot apply the method we want to
433; apply => we use then convex-concave case by changing by hand the
434; value of yinfl and xinfl
435                  IF yzero GT y[bad[ib]+1] THEN BEGIN
436                    yinfl = 0.5d*(y[bad[ib]+1]+y[bad[ib]])
437                    xinfl = 0.5d*(x[bad[ib]+1]-x[bad[ib]])
438                    GOTO, convexconcave
439                  ENDIF
440; define xinx2_3: see help of value_locate
441;  if xinx2_3[ib] eq -1   :                x[bad[ib]]+xzero <  x2[0]
442;  if xinx2_3[ib] eq nx2-1:                x[bad[ib]]+xzero >= x2[nx2-1]
443;  else                   : x2[xinx2_3] <= x[bad[ib]]+xzero <  x2[xinx3_2+1]
444                  xinx2_3 = value_locate(x2, x[bad[ib]]+xzero)
445; to avoid the particular case when x2 = x[bad[ib]]+xzero
446; and there is no other x2 point until x[bad[ib]+1]
447                  xinx2_3 = xinx2_3 < (xinx2_2[ib]-1)
448                  IF xinx2_2[ib] GE xinx2_3+1 THEN BEGIN
449                    y2[xinx2_3+1:xinx2_2[ib]] $
450                      = pure_concave(x[bad[ib]]+xzero, x[bad[ib]+1] $
451                                     , yzero, y[bad[ib]+1] $
452                                     , yifrst[bad[ib]+1] $
453                                     , x2[xinx2_3+1:xinx2_2[ib]])
454                  ENDIF
455                END
456; if y[xinfl] bigger than y[bad[ib]+1] then we conserve y2 from
457; the second zero of y2 and before this point we use 1-(1-x)^n and
458; adjust n to get the good value: yifrst[bad[ib]] in x[bad[ib]]
459                yinfl GT y[bad[ib]+1]:BEGIN
460; value of the second zero (y'[xzero]=0)
461                  xzero = (-bbb[ib]+sqrt(delta[ib]))/(3.0d*aaa[ib])
462; value of y[xzero]...
463                  yzero = aaa[ib]*xzero*xzero*xzero + bbb[ib]*xzero*xzero $
464                    + ccc[ib]*xzero + ddd[ib]
465; if yzero < y[bad[ib]] then we cannot apply the method we want to
466; apply => we use then convex-concave case by changing by hand the
467; value of yinfl and xinfl
468                  IF yzero lt y[bad[ib]] THEN BEGIN
469                    yinfl = 0.5d*(y[bad[ib]+1]+y[bad[ib]])
470                    xinfl = 0.5d*(x[bad[ib]+1]-x[bad[ib]])
471                    GOTO, convexconcave
472                  ENDIF
473; define xinx2_3: see help of value_locate
474;  if xinx2_3[ib] eq -1   :                x[bad[ib]]+xzero <  x2[0]
475;  if xinx2_3[ib] eq nx2-1:                x[bad[ib]]+xzero >= x2[nx2-1]
476;  else                   : x2[xinx2_3] <= x[bad[ib]]+xzero <  x2[xinx3_2+1]
477                  xinx2_3 = value_locate(x2, x[bad[ib]]+xzero)
478                  IF xinx2_3 ge xinx2_1[ib]+1 THEN BEGIN
479                    y2[xinx2_1[ib]+1:xinx2_3] $
480                      = pure_convex(x[bad[ib]], x[bad[ib]]+xzero  $
481                                    , y[bad[ib]], yzero   $
482                                    , yifrst[bad[ib]] $
483                                    , x2[xinx2_1[ib]+1:xinx2_3])
484                  ENDIF
485                END
486                ELSE:BEGIN
487convexconcave:
488; define xinx2_3: see help of value_locate
489;  if xinx2_3[ib] eq -1   :                x[bad[ib]]+xzero <  x2[0]
490;  if xinx2_3[ib] eq nx2-1:                x[bad[ib]]+xzero >= x2[nx2-1]
491;  else                   : x2[xinx2_3] <= x[bad[ib]]+xzero <  x2[xinx3_2+1]
492                  xinx2_3 = value_locate(x2, x[bad[ib]]+xinfl)
493
494                  IF xinx2_3 ge xinx2_1[ib]+1 THEN BEGIN
495                    y2[xinx2_1[ib]+1:xinx2_3] $
496                      = pure_convex(x[bad[ib]], x[bad[ib]]+xinfl  $
497                                    , y[bad[ib]], yinfl  $
498                                    , yifrst[bad[ib]] $
499                                    , x2[xinx2_1[ib]+1:xinx2_3])
500
501                  ENDIF
502                  IF xinx2_2[ib] GE xinx2_3+1 THEN BEGIN
503                    y2[xinx2_3+1:xinx2_2[ib]] $
504                      = pure_concave(x[bad[ib]]+xinfl, x[bad[ib]+1] $
505                                     , yinfl, y[bad[ib]+1] $
506                                     , yifrst[bad[ib]+1] $
507                                     , x2[xinx2_3+1:xinx2_2[ib]])
508                  ENDIF
509                END
510              ENDCASE
511
512            END
513          ENDCASE
514        ENDIF
515      ENDFOR
516
517    ENDIF
518  ENDIF
519;
520  RETURN, y2
521;
522END
Note: See TracBrowser for help on using the repository browser.