New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
annex_B.tex in NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles – NEMO

source: NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/annex_B.tex @ 10368

Last change on this file since 10368 was 10368, checked in by smasson, 5 years ago

dev_r10164_HPC09_ESIWACE_PREP_MERGE: merge with trunk@10365, see #2133

File size: 21.9 KB
RevLine 
[9389]1\documentclass[../tex_main/NEMO_manual]{subfiles}
[6997]2\begin{document}
[707]3% ================================================================
4% Chapter Ñ Appendix B : Diffusive Operators
5% ================================================================
6\chapter{Appendix B : Diffusive Operators}
[9407]7\label{apdx:B}
[707]8\minitoc
9
[2282]10
11\newpage
12$\ $\newline    % force a new ligne
13
[707]14% ================================================================
15% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
16% ================================================================
[9393]17\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
[9407]18\label{sec:B_1}
[707]19
[3294]20\subsubsection*{In z-coordinates}
[10368]21In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:
[9407]22\begin{eqnarray} \label{apdx:B1}
[3294]23 &D^T = \frac{1}{e_1 \, e_2}      \left[
24  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
[2282]25                       \left.
[3294]26+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
[817]27+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
[2282]28\end{eqnarray}
[707]29
[3294]30\subsubsection*{In generalized vertical coordinates}
[10368]31In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{apdx:A_s_slope} and
32the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$.
33The diffusion operator is given by:
[707]34
[9407]35\begin{equation} \label{apdx:B2}
[3294]36D^T = \left. \nabla \right|_s \cdot
[817]37           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
38\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
[707]39 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
40 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
[3294]41 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
[707]42^2+\sigma _2 ^2} \hfill \\
43\end{array} }} \right)
44\end{equation}
[1223]45or in expanded form:
[2282]46\begin{subequations}
[3294]47\begin{align*} {\begin{array}{*{20}l}
48D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.
[2282]49{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right\\
50&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
[3294]51&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.
52 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]
53\end{array} }
[2282]54\end{align*}
55\end{subequations}
[707]56
[10368]57Equation \autoref{apdx:B2} is obtained from \autoref{apdx:B1} without any additional assumption.
58Indeed, for the special case $k=z$ and thus $e_3 =1$,
59we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:A} and
60use \autoref{apdx:A_s_slope} and \autoref{apdx:A_s_chain_rule}.
61Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{apdx:B1},
62the ($i$,$z$) and ($j$,$z$) planes are independent.
63The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without
64any loss of generality:
[707]65
[3294]66\begin{subequations}
67\begin{align*} {\begin{array}{*{20}l}
68D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
[2282]69                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\
[3294]70 \\
71%
72&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
73                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
74& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
75\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\
76 \\
77%
78&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
[2282]79&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
[3294]80&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
[2282]81\end{array} }     \\
[3294]82%
[2282]83 {\begin{array}{*{20}l}
84\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:}
85%
[3294]86& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
87& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
88& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\
[2282]89\\
[3294]90&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
91& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
92& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
93& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
94\end{array} } \\
95{\begin{array}{*{20}l}
[2282]96%
97\intertext{using the same remark as just above, it becomes:}
98%
[3294]99&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
100& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
101& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
102& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }
103 \end{array} } \\
104{\begin{array}{*{20}l}
[2282]105%
[3294]106\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
107the last term of the first line and the first term of the last line cancel, while
[2282]108the second line reduces to a single vertical derivative, so it becomes:}
109%
[3294]110& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
111& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]}
112 \\
[2282]113%
[3294]114\intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
115\end{array} } \\
[2282]116%
[3294]117{\frac{1}{e_1\,e_2\,e_3}}
[817]118\left( {{\begin{array}{*{30}c}
[707]119{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
120{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
121\end{array}}}\right)
122\cdot \left[ {A^{lT}
[817]123\left( {{\begin{array}{*{30}c}
[707]124 {1} \hfill & {-\sigma_1 } \hfill \\
[3294]125 {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
[707]126\end{array} }} \right)
[3294]127\cdot
[817]128\left( {{\begin{array}{*{30}c}
[707]129{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
130{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
[2282]131\end{array}}}       \right) \left( T \right)} \right]
132\end{align*}
133\end{subequations}
[3294]134\addtocounter{equation}{-2}
[707]135
136% ================================================================
[817]137% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
[707]138% ================================================================
[9393]139\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
[9407]140\label{sec:B_2}
[707]141
[3294]142\subsubsection*{In z-coordinates}
[707]143
[10368]144The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in
145the ($i$,$j$,$k$) curvilinear coordinate system in which
146the equations of the ocean circulation model are formulated,
147takes the following form \citep{Redi_JPO82}:
[707]148
[9407]149\begin{equation} \label{apdx:B3}
[707]150\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
151\left[ {{\begin{array}{*{20}c}
152 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
153 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
154 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
155\end{array} }} \right]
[3294]156\end{equation}
[10368]157where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials:
[707]158\begin{equation*}
159a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
[817]160\qquad , \qquad
[3294]161a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
[707]162\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
163\end{equation*}
[817]164
[10368]165In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean,
166so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
[9407]167\begin{subequations} \label{apdx:B4}
168\begin{equation} \label{apdx:B4a}
[3294]169{\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
[707]170\left[ {{\begin{array}{*{20}c}
171 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
172 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
173 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
[3294]174\end{array} }} \right],
175\end{equation}
176and the iso/dianeutral diffusive operator in $z$-coordinates is then
[9407]177\begin{equation}\label{apdx:B4b}
[3294]178 D^T = \left. \nabla \right|_z \cdot
179           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
180\end{equation}
181\end{subequations}
[817]182
[3294]183
[10368]184Physically, the full tensor \autoref{apdx:B3} represents strong isoneutral diffusion on a plane parallel to
185the isoneutral surface and weak dianeutral diffusion perpendicular to this plane.
186However,
187the approximate `weak-slope' tensor \autoref{apdx:B4a} represents strong diffusion along the isoneutral surface,
188with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal.
189This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor.
190The weak-slope operator therefore takes the same form, \autoref{apdx:B4}, as \autoref{apdx:B2},
191the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates.
192Written out explicitly,
[3294]193
[9407]194\begin{multline} \label{apdx:B_ldfiso}
[3294]195 D^T=\frac{1}{e_1 e_2 }\left\{
196 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
197 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
198\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
199\end{multline}
200
201
[9407]202The isopycnal diffusion operator \autoref{apdx:B4},
[10368]203\autoref{apdx:B_ldfiso} conserves tracer quantity and dissipates its square.
204The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes.
205Let us demonstrate the second one:
[707]206\begin{equation*}
[3294]207\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
208          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
[707]209\end{equation*}
[3294]210and since
211\begin{subequations}
212\begin{align*} {\begin{array}{*{20}l}
213\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T}
214\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
215\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
216{\frac{\partial T}{\partial j}} \right)^2} \right. \\
[2282]217&\qquad \qquad \qquad
[3294]218{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
219&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
220          T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
221          j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
222  +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
[2282]223& \geq 0
[3294]224\end{array} }
[817]225\end{align*}
[2282]226\end{subequations}
[3294]227\addtocounter{equation}{-1}
[10368]228the property becomes obvious.
[707]229
[3294]230\subsubsection*{In generalized vertical coordinates}
[707]231
[10368]232Because the weak-slope operator \autoref{apdx:B4},
233\autoref{apdx:B_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes,
234it may be transformed into generalized $s$-coordinates in the same way as
235\autoref{sec:B_1} was transformed into \autoref{sec:B_2}.
236The resulting operator then takes the simple form
[707]237
[9407]238\begin{equation} \label{apdx:B_ldfiso_s}
[3294]239D^T = \left. \nabla \right|_s \cdot
240           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
241\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
242 1 \hfill & 0 \hfill & {-r _1 } \hfill \\
243 0 \hfill & 1 \hfill & {-r _2 } \hfill \\
244 {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
245^2+r _2 ^2} \hfill \\
246\end{array} }} \right),
247\end{equation}
248
[10368]249where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions,
250relative to $s$-coordinate surfaces:
[3294]251\begin{equation*}
252r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
253\qquad , \qquad
254r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
255\right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
256\end{equation*}
257
[10368]258To prove \autoref{apdx:B5} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious.
259An easier way is first to note (by reversing the derivation of \autoref{sec:B_2} from \autoref{sec:B_1} ) that
260the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as
[3294]261
[9407]262\begin{equation} \label{apdx:B5}
[3294]263D^T = \left. \nabla \right|_\rho \cdot
264           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
265\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
266 1 \hfill & 0 \hfill &0 \hfill \\
267 0 \hfill & 1 \hfill & 0 \hfill \\
2680 \hfill & 0 \hfill & \varepsilon \hfill \\
269\end{array} }} \right).
270\end{equation}
[10368]271Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives
272\autoref{apdx:B_ldfiso_s} immediately.
[3294]273
[10368]274Note that the weak-slope approximation is only made in transforming from
275the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates.
276The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces,
277in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates,
[9407]278\autoref{sec:B_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
[3294]279
280
[707]281% ================================================================
282% Lateral/Vertical Momentum Diffusive Operators
283% ================================================================
[9393]284\section{Lateral/Vertical momentum diffusive operators}
[9407]285\label{sec:B_3}
[707]286
[10368]287The second order momentum diffusion operator (Laplacian) in the $z$-coordinate is found by
288applying \autoref{eq:PE_lap_vector}, the expression for the Laplacian of a vector,
289to the horizontal velocity vector:
[817]290\begin{align*}
[3294]291\Delta {\textbf{U}}_h
[817]292&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
293\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
294\\
295&=\left( {{\begin{array}{*{20}c}
[707]296 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
297 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
298 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
299\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
[3294]300 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
301}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
[707]302u}{\partial k}} \right)} \hfill \\
[3294]303 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
304}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
[707]305}{\partial i}} \hfill \\
[3294]306 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
307}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
308j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
[707]309\hfill \\
310\end{array} }} \right)
[817]311\\
312\\
313&=\left( {{\begin{array}{*{20}c}
[707]314{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
315{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
3160 \\
317\end{array} }} \right)
318+\frac{1}{e_3 }
319\left( {{\begin{array}{*{20}c}
320{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
321{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
322{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
323\end{array} }} \right)
[817]324\end{align*}
[10368]325Using \autoref{eq:PE_div}, the definition of the horizontal divergence,
326the third componant of the second vector is obviously zero and thus :
[707]327\begin{equation*}
328\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
329\end{equation*}
330
[10368]331Note that this operator ensures a full separation between
332the vorticity and horizontal divergence fields (see \autoref{apdx:C}).
333It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere.
[707]334
[10368]335The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in
336the $z$-coordinate therefore takes the following form:
[9407]337\begin{equation} \label{apdx:B_Lap_U}
[3294]338 {\textbf{D}}^{\textbf{U}} =
[817]339     \nabla _h \left( {A^{lm}\;\chi } \right)
340   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
341   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
[3294]342            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\
[817]343\end{equation}
[1223]344that is, in expanded form:
[817]345\begin{align*}
[3294]346D^{\textbf{U}}_u
[817]347& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
348     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
349     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
[3294]350D^{\textbf{U}}_v
[817]351& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
352     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
353     +\frac{1}{e_3} \frac{\partial v}{\partial k}
354\end{align*}
[707]355
[10368]356Note Bene: introducing a rotation in \autoref{apdx:B_Lap_U} does not lead to
357a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
358Similarly, we did not found an expression of practical use for
359the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate.
360Generally, \autoref{apdx:B_Lap_U} is used in both $z$- and $s$-coordinate systems,
361that is a Laplacian diffusion is applied on momentum along the coordinate directions.
[6997]362\end{document}
Note: See TracBrowser for help on using the repository browser.