New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
sbcdcy.F90 in NEMO/branches/2019/dev_r11943_MERGE_2019/src/OCE/SBC – NEMO

source: NEMO/branches/2019/dev_r11943_MERGE_2019/src/OCE/SBC/sbcdcy.F90 @ 12350

Last change on this file since 12350 was 12340, checked in by acc, 4 years ago

Branch 2019/dev_r11943_MERGE_2019. This commit introduces basic do loop macro
substitution to the 2019 option 1, merge branch. These changes have been SETTE
tested. The only addition is the do_loop_substitute.h90 file in the OCE directory but
the macros defined therein are used throughout the code to replace identifiable, 2D-
and 3D- nested loop opening and closing statements with single-line alternatives. Code
indents are also adjusted accordingly.

The following explanation is taken from comments in the new header file:

This header file contains preprocessor definitions and macros used in the do-loop
substitutions introduced between version 4.0 and 4.2. The primary aim of these macros
is to assist in future applications of tiling to improve performance. This is expected
to be achieved by alternative versions of these macros in selected locations. The
initial introduction of these macros simply replaces all identifiable nested 2D- and
3D-loops with single line statements (and adjusts indenting accordingly). Do loops
are identifiable if they comform to either:

DO jk = ....

DO jj = .... DO jj = ...

DO ji = .... DO ji = ...
. OR .
. .

END DO END DO

END DO END DO

END DO

and white-space variants thereof.

Additionally, only loops with recognised jj and ji loops limits are treated; these are:
Lower limits of 1, 2 or fs_2
Upper limits of jpi, jpim1 or fs_jpim1 (for ji) or jpj, jpjm1 or fs_jpjm1 (for jj)

The macro naming convention takes the form: DO_2D_BT_LR where:

B is the Bottom offset from the PE's inner domain;
T is the Top offset from the PE's inner domain;
L is the Left offset from the PE's inner domain;
R is the Right offset from the PE's inner domain

So, given an inner domain of 2,jpim1 and 2,jpjm1, a typical example would replace:

DO jj = 2, jpj

DO ji = 1, jpim1
.
.

END DO

END DO

with:

DO_2D_01_10
.
.
END_2D

similar conventions apply to the 3D loops macros. jk loop limits are retained
through macro arguments and are not restricted. This includes the possibility of
strides for which an extra set of DO_3DS macros are defined.

In the example definition below the inner PE domain is defined by start indices of
(kIs, kJs) and end indices of (kIe, KJe)

#define DO_2D_00_00 DO jj = kJs, kJe ; DO ji = kIs, kIe
#define END_2D END DO ; END DO

TO DO:


Only conventional nested loops have been identified and replaced by this step. There are constructs such as:

DO jk = 2, jpkm1

z2d(:,:) = z2d(:,:) + e3w(:,:,jk,Kmm) * z3d(:,:,jk) * wmask(:,:,jk)

END DO

which may need to be considered.

  • Property svn:keywords set to Id
File size: 12.4 KB
RevLine 
[2198]1MODULE sbcdcy
2   !!======================================================================
3   !!                    ***  MODULE  sbcdcy  ***
4   !! Ocean forcing:  compute the diurnal cycle
5   !!======================================================================
6   !! History : OPA  !  2005-02  (D. Bernie)  Original code
7   !!   NEMO    2.0  !  2006-02  (S. Masson, G. Madec)  adaptation to NEMO
8   !!           3.1  !  2009-07  (J.M. Molines)  adaptation to v3.1
[12182]9   !!           4.*  !  2019-10  (L. Brodeau)  nothing really new, but the routine
10   !!                ! "sbc_dcy_param" has been extracted from old function "sbc_dcy"
11   !!                ! => this allows the warm-layer param of COARE3* to know the time
12   !!                ! of dawn and dusk even if "ln_dm2dc=.false." (rdawn_dcy & rdusk_dcy
13   !!                ! are now public)
[2198]14   !!----------------------------------------------------------------------
15
16   !!----------------------------------------------------------------------
[2715]17   !!  sbc_dcy : solar flux at kt from daily mean, taking diurnal cycle into account
[2198]18   !!----------------------------------------------------------------------
19   USE oce              ! ocean dynamics and tracers
20   USE phycst           ! ocean physics
21   USE dom_oce          ! ocean space and time domain
[2228]22   USE sbc_oce          ! Surface boundary condition: ocean fields
[9124]23   !
[2198]24   USE in_out_manager   ! I/O manager
[2715]25   USE lib_mpp          ! MPP library
[2198]26
27   IMPLICIT NONE
28   PRIVATE
[12182]29
[2715]30   INTEGER, PUBLIC ::   nday_qsr   !: day when parameters were computed
[12182]31
[2715]32   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   raa , rbb  , rcc  , rab     ! diurnal cycle parameters
[12182]33   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   rtmd, rscal   !    -      -       -
34   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: rdawn_dcy, rdusk_dcy   !    -      -       -
35
[2715]36   PUBLIC   sbc_dcy        ! routine called by sbc
[12182]37   PUBLIC   sbc_dcy_param  ! routine used here and called by warm-layer parameterization (sbcblk_skin_coare*)
[2198]38
[12340]39   !! * Substitutions
40#  include "do_loop_substitute.h90"
[2198]41   !!----------------------------------------------------------------------
[10068]42   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
[12182]43   !! $Id$
[10068]44   !! Software governed by the CeCILL license (see ./LICENSE)
[2198]45   !!----------------------------------------------------------------------
46CONTAINS
47
[12182]48   INTEGER FUNCTION sbc_dcy_alloc()
49      !!----------------------------------------------------------------------
50      !!                ***  FUNCTION sbc_dcy_alloc  ***
51      !!----------------------------------------------------------------------
52      ALLOCATE( raa (jpi,jpj) , rbb  (jpi,jpj) , rcc  (jpi,jpj) , rab  (jpi,jpj) ,     &
53         &      rtmd(jpi,jpj) , rdawn_dcy(jpi,jpj) , rdusk_dcy(jpi,jpj) , rscal(jpi,jpj) , STAT=sbc_dcy_alloc )
54      !
55      CALL mpp_sum ( 'sbcdcy', sbc_dcy_alloc )
56      IF( sbc_dcy_alloc /= 0 )   CALL ctl_stop( 'STOP', 'sbc_dcy_alloc: failed to allocate arrays' )
57   END FUNCTION sbc_dcy_alloc
[2715]58
59
[3651]60   FUNCTION sbc_dcy( pqsrin, l_mask ) RESULT( zqsrout )
[2198]61      !!----------------------------------------------------------------------
62      !!                  ***  ROUTINE sbc_dcy  ***
63      !!
64      !! ** Purpose : introduce a diurnal cycle of qsr from daily values
65      !!
66      !! ** Method  : see Appendix A of Bernie et al. 2007.
67      !!
68      !! ** Action  : redistribute daily QSR on each time step following the diurnal cycle
69      !!
70      !! reference  : Bernie, DJ, E Guilyardi, G Madec, JM Slingo, and SJ Woolnough, 2007
[12182]71      !!              Impact of resolving the diurnal cycle in an ocean--atmosphere GCM.
[2198]72      !!              Part 1: a diurnally forced OGCM. Climate Dynamics 29:6, 575-590.
73      !!----------------------------------------------------------------------
[9124]74      LOGICAL , OPTIONAL          , INTENT(in) ::   l_mask    ! use the routine for night mask computation
[12182]75      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) ::   pqsrin    ! input daily QSR flux
[9124]76      REAL(wp), DIMENSION(jpi,jpj)             ::   zqsrout   ! output QSR flux with diurnal cycle
[2198]77      !!
[2228]78      INTEGER  ::   ji, jj                                       ! dummy loop indices
[3651]79      INTEGER, DIMENSION(jpi,jpj) :: imask_night ! night mask
[2198]80      REAL(wp) ::   zlo, zup, zlousd, zupusd
[12182]81      REAL(wp) ::   ztmp, ztmp1, ztmp2
[3651]82      REAL(wp) ::   ztmpm, ztmpm1, ztmpm2
[2198]83      !!---------------------------------------------------------------------
[3294]84      !
[2198]85      ! Initialization
86      ! --------------
87      ! When are we during the day (from 0 to 1)
[6140]88      zlo = ( REAL(nsec_day, wp) - 0.5_wp * rdt ) / rday
89      zup = zlo + ( REAL(nn_fsbc, wp)     * rdt ) / rday
[12182]90      !
91      IF( nday_qsr == -1 ) THEN       ! first time step only
[2198]92         IF(lwp) THEN
93            WRITE(numout,*)
94            WRITE(numout,*) 'sbc_dcy : introduce diurnal cycle from daily mean qsr'
95            WRITE(numout,*) '~~~~~~~'
96            WRITE(numout,*)
97         ENDIF
[12182]98      ENDIF
99
100      ! Setting parameters for each new day:
101      CALL sbc_dcy_param()
102
103      !CALL iom_put( "rdusk_dcy", rdusk_dcy(:,:)*tmask(:,:,1) ) !LB
104      !CALL iom_put( "rdawn_dcy", rdawn_dcy(:,:)*tmask(:,:,1) ) !LB
105      !CALL iom_put( "rscal_dcy", rscal(:,:)*tmask(:,:,1) ) !LB
106
107
108      !     3. update qsr with the diurnal cycle
109      !     ------------------------------------
110
111      imask_night(:,:) = 0
[12340]112      DO_2D_11_11
113         ztmpm = 0._wp
114         IF( ABS(rab(ji,jj)) < 1. ) THEN         ! day duration is less than 24h
115            !
116            IF( rdawn_dcy(ji,jj) < rdusk_dcy(ji,jj) ) THEN       ! day time in one part
117               zlousd = MAX(zlo, rdawn_dcy(ji,jj))
118               zlousd = MIN(zlousd, zup)
119               zupusd = MIN(zup, rdusk_dcy(ji,jj))
120               zupusd = MAX(zupusd, zlo)
121               ztmp = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
122               zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
123               ztmpm = zupusd - zlousd
124               IF( ztmpm .EQ. 0 ) imask_night(ji,jj) = 1
[12182]125               !
[12340]126            ELSE                                         ! day time in two parts
127               zlousd = MIN(zlo, rdusk_dcy(ji,jj))
128               zupusd = MIN(zup, rdusk_dcy(ji,jj))
129               ztmp1 = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
130               ztmpm1=zupusd-zlousd
131               zlousd = MAX(zlo, rdawn_dcy(ji,jj))
132               zupusd = MAX(zup, rdawn_dcy(ji,jj))
133               ztmp2 = fintegral(zlousd, zupusd, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
134               ztmpm2 =zupusd-zlousd
135               ztmp = ztmp1 + ztmp2
136               ztmpm = ztmpm1 + ztmpm2
137               zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
138               IF(ztmpm .EQ. 0.) imask_night(ji,jj) = 1
139            ENDIF
140         ELSE                                   ! 24h light or 24h night
141            !
142            IF( raa(ji,jj) > rbb(ji,jj) ) THEN           ! 24h day
143               ztmp = fintegral(zlo, zup, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
144               zqsrout(ji,jj) = pqsrin(ji,jj) * ztmp * rscal(ji,jj)
145               imask_night(ji,jj) = 0
[12182]146               !
[12340]147            ELSE                                         ! No day
148               zqsrout(ji,jj) = 0.0_wp
149               imask_night(ji,jj) = 1
[12182]150            ENDIF
[12340]151         ENDIF
152      END_2D
[12182]153      !
154      IF( PRESENT(l_mask) .AND. l_mask ) THEN
155         zqsrout(:,:) = float(imask_night(:,:))
156      ENDIF
157      !
158   END FUNCTION sbc_dcy
159
160
161   SUBROUTINE sbc_dcy_param( )
162      !!
163      INTEGER  ::   ji, jj                                       ! dummy loop indices
164      !INTEGER, DIMENSION(jpi,jpj) :: imask_night ! night mask
165      REAL(wp) ::   zdsws, zdecrad, ztx, zsin, zcos
166      REAL(wp) ::   ztmp, ztest
167      !---------------------------statement functions------------------------
168      !
169      IF( nday_qsr == -1 ) THEN       ! first time step only
[2715]170         ! allocate sbcdcy arrays
171         IF( sbc_dcy_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'sbc_dcy_alloc : unable to allocate arrays' )
[2198]172         ! Compute rcc needed to compute the time integral of the diurnal cycle
[12182]173         rcc(:,:) = rad * glamt(:,:) - rpi
[2198]174         ! time of midday
[3764]175         rtmd(:,:) = 0.5_wp - glamt(:,:) / 360._wp
176         rtmd(:,:) = MOD( (rtmd(:,:) + 1._wp) , 1._wp)
[2198]177      ENDIF
178
[12182]179      ! If this is a new day, we have to update the dawn, dusk and scaling function
[2198]180      !----------------------
181
[12182]182      !     2.1 dawn and dusk
183
184      ! nday is the number of days since the beginning of the current month
185      IF( nday_qsr /= nday ) THEN
[2198]186         ! save the day of the year and the daily mean of qsr
[12182]187         nday_qsr = nday
188         ! number of days since the previous winter solstice (supposed to be always 21 December)
[2228]189         zdsws = REAL(11 + nday_year, wp)
[2198]190         ! declination of the earths orbit
[12182]191         zdecrad = (-23.5_wp * rad) * COS( zdsws * 2._wp*rpi / REAL(nyear_len(1),wp) )
[2198]192         ! Compute A and B needed to compute the time integral of the diurnal cycle
[3651]193
[2228]194         zsin = SIN( zdecrad )   ;   zcos = COS( zdecrad )
[12340]195         DO_2D_11_11
196            ztmp = rad * gphit(ji,jj)
197            raa(ji,jj) = SIN( ztmp ) * zsin
198            rbb(ji,jj) = COS( ztmp ) * zcos
199         END_2D
[2198]200         ! Compute the time of dawn and dusk
201
[12182]202         ! rab to test if the day time is equal to 0, less than 24h of full day
[2198]203         rab(:,:) = -raa(:,:) / rbb(:,:)
[12340]204         DO_2D_11_11
205            IF( ABS(rab(ji,jj)) < 1._wp ) THEN         ! day duration is less than 24h
206               ! When is it night?
207               ztx = 1._wp/(2._wp*rpi) * (ACOS(rab(ji,jj)) - rcc(ji,jj))
208               ztest = -rbb(ji,jj) * SIN( rcc(ji,jj) + 2._wp*rpi * ztx )
209               ! is it dawn or dusk?
210               IF( ztest > 0._wp ) THEN
211                  rdawn_dcy(ji,jj) = ztx
212                  rdusk_dcy(ji,jj) = rtmd(ji,jj) + ( rtmd(ji,jj) - rdawn_dcy(ji,jj) )
[2198]213               ELSE
[12340]214                  rdusk_dcy(ji,jj) = ztx
215                  rdawn_dcy(ji,jj) = rtmd(ji,jj) - ( rdusk_dcy(ji,jj) - rtmd(ji,jj) )
[2198]216               ENDIF
[12340]217            ELSE
218               rdawn_dcy(ji,jj) = rtmd(ji,jj) + 0.5_wp
219               rdusk_dcy(ji,jj) = rdawn_dcy(ji,jj)
220            ENDIF
221         END_2D
[12182]222         rdawn_dcy(:,:) = MOD( (rdawn_dcy(:,:) + 1._wp), 1._wp )
223         rdusk_dcy(:,:) = MOD( (rdusk_dcy(:,:) + 1._wp), 1._wp )
[3764]224         !     2.2 Compute the scaling function:
225         !         S* = the inverse of the time integral of the diurnal cycle from dawn to dusk
226         !         Avoid possible infinite scaling factor, associated with very short daylight
227         !         periods, by ignoring periods less than 1/1000th of a day (ticket #1040)
[12340]228         DO_2D_11_11
229            IF( ABS(rab(ji,jj)) < 1._wp ) THEN         ! day duration is less than 24h
230               rscal(ji,jj) = 0.0_wp
231               IF( rdawn_dcy(ji,jj) < rdusk_dcy(ji,jj) ) THEN      ! day time in one part
232                  IF( (rdusk_dcy(ji,jj) - rdawn_dcy(ji,jj) ) .ge. 0.001_wp ) THEN
233                     rscal(ji,jj) = fintegral(rdawn_dcy(ji,jj), rdusk_dcy(ji,jj), raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
[3764]234                     rscal(ji,jj) = 1._wp / rscal(ji,jj)
[2198]235                  ENDIF
[12340]236               ELSE                                         ! day time in two parts
237                  IF( (rdusk_dcy(ji,jj) + (1._wp - rdawn_dcy(ji,jj)) ) .ge. 0.001_wp ) THEN
238                     rscal(ji,jj) = fintegral(0._wp, rdusk_dcy(ji,jj), raa(ji,jj), rbb(ji,jj), rcc(ji,jj))   &
239                        &         + fintegral(rdawn_dcy(ji,jj), 1._wp, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
240                     rscal(ji,jj) = 1. / rscal(ji,jj)
241                  ENDIF
[2198]242               ENDIF
[12340]243            ELSE
244               IF( raa(ji,jj) > rbb(ji,jj) ) THEN         ! 24h day
245                  rscal(ji,jj) = fintegral(0._wp, 1._wp, raa(ji,jj), rbb(ji,jj), rcc(ji,jj))
246                  rscal(ji,jj) = 1._wp / rscal(ji,jj)
247               ELSE                                          ! No day
248                  rscal(ji,jj) = 0.0_wp
249               ENDIF
250            ENDIF
251         END_2D
[2198]252         !
[6140]253         ztmp = rday / ( rdt * REAL(nn_fsbc, wp) )
[2198]254         rscal(:,:) = rscal(:,:) * ztmp
[2715]255         !
[12182]256      ENDIF !IF( nday_qsr /= nday )
[2198]257      !
[12182]258   END SUBROUTINE sbc_dcy_param
[2198]259
[12182]260
261   FUNCTION fintegral( pt1, pt2, paaa, pbbb, pccc )
262      REAL(wp), INTENT(in) :: pt1, pt2, paaa, pbbb, pccc
263      REAL(wp) :: fintegral
264      fintegral =   paaa * pt2 + 1._wp/(2._wp*rpi) * pbbb * SIN(pccc + 2._wp*rpi*pt2)   &
265         &        - paaa * pt1 - 1._wp/(2._wp*rpi) * pbbb * SIN(pccc + 2._wp*rpi*pt1)
266   END FUNCTION fintegral
267
[2198]268   !!======================================================================
269END MODULE sbcdcy
Note: See TracBrowser for help on using the repository browser.