New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
zdfiwm.F90 in NEMO/branches/2019/dev_r11943_MERGE_2019/src/OCE/ZDF – NEMO

source: NEMO/branches/2019/dev_r11943_MERGE_2019/src/OCE/ZDF/zdfiwm.F90 @ 12340

Last change on this file since 12340 was 12340, checked in by acc, 4 years ago

Branch 2019/dev_r11943_MERGE_2019. This commit introduces basic do loop macro
substitution to the 2019 option 1, merge branch. These changes have been SETTE
tested. The only addition is the do_loop_substitute.h90 file in the OCE directory but
the macros defined therein are used throughout the code to replace identifiable, 2D-
and 3D- nested loop opening and closing statements with single-line alternatives. Code
indents are also adjusted accordingly.

The following explanation is taken from comments in the new header file:

This header file contains preprocessor definitions and macros used in the do-loop
substitutions introduced between version 4.0 and 4.2. The primary aim of these macros
is to assist in future applications of tiling to improve performance. This is expected
to be achieved by alternative versions of these macros in selected locations. The
initial introduction of these macros simply replaces all identifiable nested 2D- and
3D-loops with single line statements (and adjusts indenting accordingly). Do loops
are identifiable if they comform to either:

DO jk = ....

DO jj = .... DO jj = ...

DO ji = .... DO ji = ...
. OR .
. .

END DO END DO

END DO END DO

END DO

and white-space variants thereof.

Additionally, only loops with recognised jj and ji loops limits are treated; these are:
Lower limits of 1, 2 or fs_2
Upper limits of jpi, jpim1 or fs_jpim1 (for ji) or jpj, jpjm1 or fs_jpjm1 (for jj)

The macro naming convention takes the form: DO_2D_BT_LR where:

B is the Bottom offset from the PE's inner domain;
T is the Top offset from the PE's inner domain;
L is the Left offset from the PE's inner domain;
R is the Right offset from the PE's inner domain

So, given an inner domain of 2,jpim1 and 2,jpjm1, a typical example would replace:

DO jj = 2, jpj

DO ji = 1, jpim1
.
.

END DO

END DO

with:

DO_2D_01_10
.
.
END_2D

similar conventions apply to the 3D loops macros. jk loop limits are retained
through macro arguments and are not restricted. This includes the possibility of
strides for which an extra set of DO_3DS macros are defined.

In the example definition below the inner PE domain is defined by start indices of
(kIs, kJs) and end indices of (kIe, KJe)

#define DO_2D_00_00 DO jj = kJs, kJe ; DO ji = kIs, kIe
#define END_2D END DO ; END DO

TO DO:


Only conventional nested loops have been identified and replaced by this step. There are constructs such as:

DO jk = 2, jpkm1

z2d(:,:) = z2d(:,:) + e3w(:,:,jk,Kmm) * z3d(:,:,jk) * wmask(:,:,jk)

END DO

which may need to be considered.

  • Property svn:keywords set to Id
File size: 24.6 KB
Line 
1MODULE zdfiwm
2   !!========================================================================
3   !!                       ***  MODULE  zdfiwm  ***
4   !! Ocean physics: Internal gravity wave-driven vertical mixing
5   !!========================================================================
6   !! History :  1.0  !  2004-04  (L. Bessieres, G. Madec)  Original code
7   !!             -   !  2006-08  (A. Koch-Larrouy)  Indonesian strait
8   !!            3.3  !  2010-10  (C. Ethe, G. Madec)  reorganisation of initialisation phase
9   !!            3.6  !  2016-03  (C. de Lavergne)  New param: internal wave-driven mixing
10   !!            4.0  !  2017-04  (G. Madec)  renamed module, remove the old param. and the CPP keys
11   !!----------------------------------------------------------------------
12
13   !!----------------------------------------------------------------------
14   !!   zdf_iwm       : global     momentum & tracer Kz with wave induced Kz
15   !!   zdf_iwm_init  : global     momentum & tracer Kz with wave induced Kz
16   !!----------------------------------------------------------------------
17   USE oce            ! ocean dynamics and tracers variables
18   USE dom_oce        ! ocean space and time domain variables
19   USE zdf_oce        ! ocean vertical physics variables
20   USE zdfddm         ! ocean vertical physics: double diffusive mixing
21   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
22   USE eosbn2         ! ocean equation of state
23   USE phycst         ! physical constants
24   !
25   USE prtctl         ! Print control
26   USE in_out_manager ! I/O manager
27   USE iom            ! I/O Manager
28   USE lib_mpp        ! MPP library
29   USE lib_fortran    ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) 
30
31   IMPLICIT NONE
32   PRIVATE
33
34   PUBLIC   zdf_iwm        ! called in step module
35   PUBLIC   zdf_iwm_init   ! called in nemogcm module
36
37   !                      !!* Namelist  namzdf_iwm : internal wave-driven mixing *
38   INTEGER ::  nn_zpyc     ! pycnocline-intensified mixing energy proportional to N (=1) or N^2 (=2)
39   LOGICAL ::  ln_mevar    ! variable (=T) or constant (=F) mixing efficiency
40   LOGICAL ::  ln_tsdiff   ! account for differential T/S wave-driven mixing (=T) or not (=F)
41
42   REAL(wp)::  r1_6 = 1._wp / 6._wp
43
44   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ebot_iwm   ! power available from high-mode wave breaking (W/m2)
45   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   epyc_iwm   ! power available from low-mode, pycnocline-intensified wave breaking (W/m2)
46   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ecri_iwm   ! power available from low-mode, critical slope wave breaking (W/m2)
47   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   hbot_iwm   ! WKB decay scale for high-mode energy dissipation (m)
48   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   hcri_iwm   ! decay scale for low-mode critical slope dissipation (m)
49
50   !! * Substitutions
51#  include "vectopt_loop_substitute.h90"
52#  include "do_loop_substitute.h90"
53   !!----------------------------------------------------------------------
54   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
55   !! $Id$
56   !! Software governed by the CeCILL license (see ./LICENSE)
57   !!----------------------------------------------------------------------
58CONTAINS
59
60   INTEGER FUNCTION zdf_iwm_alloc()
61      !!----------------------------------------------------------------------
62      !!                ***  FUNCTION zdf_iwm_alloc  ***
63      !!----------------------------------------------------------------------
64      ALLOCATE( ebot_iwm(jpi,jpj),  epyc_iwm(jpi,jpj),  ecri_iwm(jpi,jpj) ,     &
65      &         hbot_iwm(jpi,jpj),  hcri_iwm(jpi,jpj)                     , STAT=zdf_iwm_alloc )
66      !
67      CALL mpp_sum ( 'zdfiwm', zdf_iwm_alloc )
68      IF( zdf_iwm_alloc /= 0 )   CALL ctl_stop( 'STOP', 'zdf_iwm_alloc: failed to allocate arrays' )
69   END FUNCTION zdf_iwm_alloc
70
71
72   SUBROUTINE zdf_iwm( kt, Kmm, p_avm, p_avt, p_avs )
73      !!----------------------------------------------------------------------
74      !!                  ***  ROUTINE zdf_iwm  ***
75      !!                   
76      !! ** Purpose :   add to the vertical mixing coefficients the effect of
77      !!              breaking internal waves.
78      !!
79      !! ** Method  : - internal wave-driven vertical mixing is given by:
80      !!                  Kz_wave = min(  100 cm2/s, f(  Reb = zemx_iwm /( Nu * N^2 )  )
81      !!              where zemx_iwm is the 3D space distribution of the wave-breaking
82      !!              energy and Nu the molecular kinematic viscosity.
83      !!              The function f(Reb) is linear (constant mixing efficiency)
84      !!              if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T.
85      !!
86      !!              - Compute zemx_iwm, the 3D power density that allows to compute
87      !!              Reb and therefrom the wave-induced vertical diffusivity.
88      !!              This is divided into three components:
89      !!                 1. Bottom-intensified low-mode dissipation at critical slopes
90      !!                     zemx_iwm(z) = ( ecri_iwm / rau0 ) * EXP( -(H-z)/hcri_iwm )
91      !!                                   / ( 1. - EXP( - H/hcri_iwm ) ) * hcri_iwm
92      !!              where hcri_iwm is the characteristic length scale of the bottom
93      !!              intensification, ecri_iwm a map of available power, and H the ocean depth.
94      !!                 2. Pycnocline-intensified low-mode dissipation
95      !!                     zemx_iwm(z) = ( epyc_iwm / rau0 ) * ( sqrt(rn2(z))^nn_zpyc )
96      !!                                   / SUM( sqrt(rn2(z))^nn_zpyc * e3w(z) )
97      !!              where epyc_iwm is a map of available power, and nn_zpyc
98      !!              is the chosen stratification-dependence of the internal wave
99      !!              energy dissipation.
100      !!                 3. WKB-height dependent high mode dissipation
101      !!                     zemx_iwm(z) = ( ebot_iwm / rau0 ) * rn2(z) * EXP(-z_wkb(z)/hbot_iwm)
102      !!                                   / SUM( rn2(z) * EXP(-z_wkb(z)/hbot_iwm) * e3w(z) )
103      !!              where hbot_iwm is the characteristic length scale of the WKB bottom
104      !!              intensification, ebot_iwm is a map of available power, and z_wkb is the
105      !!              WKB-stretched height above bottom defined as
106      !!                    z_wkb(z) = H * SUM( sqrt(rn2(z'>=z)) * e3w(z'>=z) )
107      !!                                 / SUM( sqrt(rn2(z'))    * e3w(z')    )
108      !!
109      !!              - update the model vertical eddy viscosity and diffusivity:
110      !!                     avt  = avt  +    av_wave
111      !!                     avm  = avm  +    av_wave
112      !!
113      !!              - if namelist parameter ln_tsdiff = T, account for differential mixing:
114      !!                     avs  = avt  +    av_wave * diffusivity_ratio(Reb)
115      !!
116      !! ** Action  : - avt, avs, avm, increased by tide internal wave-driven mixing   
117      !!
118      !! References :  de Lavergne et al. 2015, JPO; 2016, in prep.
119      !!----------------------------------------------------------------------
120      INTEGER                    , INTENT(in   ) ::   kt             ! ocean time step
121      INTEGER                    , INTENT(in   ) ::   Kmm            ! time level index
122      REAL(wp), DIMENSION(:,:,:) , INTENT(inout) ::   p_avm          ! momentum Kz (w-points)
123      REAL(wp), DIMENSION(:,:,:) , INTENT(inout) ::   p_avt, p_avs   ! tracer   Kz (w-points)
124      !
125      INTEGER  ::   ji, jj, jk   ! dummy loop indices
126      REAL(wp) ::   zztmp, ztmp1, ztmp2        ! scalar workspace
127      REAL(wp), DIMENSION(jpi,jpj)     ::   zfact       ! Used for vertical structure
128      REAL(wp), DIMENSION(jpi,jpj)     ::   zhdep       ! Ocean depth
129      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zwkb        ! WKB-stretched height above bottom
130      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zweight     ! Weight for high mode vertical distribution
131      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   znu_t       ! Molecular kinematic viscosity (T grid)
132      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   znu_w       ! Molecular kinematic viscosity (W grid)
133      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zReb        ! Turbulence intensity parameter
134      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zemx_iwm    ! local energy density available for mixing (W/kg)
135      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zav_ratio   ! S/T diffusivity ratio (only for ln_tsdiff=T)
136      REAL(wp), DIMENSION(jpi,jpj,jpk) ::   zav_wave    ! Internal wave-induced diffusivity
137      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   z3d  ! 3D workspace used for iom_put
138      REAL(wp), ALLOCATABLE, DIMENSION(:,:)   ::   z2d  ! 2D     -      -    -     -
139      !!----------------------------------------------------------------------
140      !
141      !                       !* Set to zero the 1st and last vertical levels of appropriate variables
142      zemx_iwm (:,:,1) = 0._wp   ;   zemx_iwm (:,:,jpk) = 0._wp
143      zav_ratio(:,:,1) = 0._wp   ;   zav_ratio(:,:,jpk) = 0._wp
144      zav_wave (:,:,1) = 0._wp   ;   zav_wave (:,:,jpk) = 0._wp
145      !
146      !                       ! ----------------------------- !
147      !                       !  Internal wave-driven mixing  !  (compute zav_wave)
148      !                       ! ----------------------------- !
149      !                             
150      !                       !* Critical slope mixing: distribute energy over the time-varying ocean depth,
151      !                                                 using an exponential decay from the seafloor.
152      DO_2D_11_11
153         zhdep(ji,jj) = gdepw_0(ji,jj,mbkt(ji,jj)+1)       ! depth of the ocean
154         zfact(ji,jj) = rau0 * (  1._wp - EXP( -zhdep(ji,jj) / hcri_iwm(ji,jj) )  )
155         IF( zfact(ji,jj) /= 0._wp )   zfact(ji,jj) = ecri_iwm(ji,jj) / zfact(ji,jj)
156      END_2D
157!!gm gde3w ==>>>  check for ssh taken into account.... seem OK gde3w_n=gdept(:,:,:,Kmm) - ssh(:,:,Kmm)
158      DO_3D_11_11( 2, jpkm1 )
159         IF ( zfact(ji,jj) == 0._wp .OR. wmask(ji,jj,jk) == 0._wp ) THEN   ! optimization
160            zemx_iwm(ji,jj,jk) = 0._wp
161         ELSE
162            zemx_iwm(ji,jj,jk) = zfact(ji,jj) * (  EXP( ( gde3w(ji,jj,jk  ) - zhdep(ji,jj) ) / hcri_iwm(ji,jj) )     &
163                 &                               - EXP( ( gde3w(ji,jj,jk-1) - zhdep(ji,jj) ) / hcri_iwm(ji,jj) ) )   &
164                 &                            / ( gde3w(ji,jj,jk) - gde3w(ji,jj,jk-1) )
165         ENDIF
166      END_3D
167!!gm delta(gde3w) = e3t(:,:,:,Kmm)  !!  Please verify the grid-point position w versus t-point
168!!gm it seems to me that only 1/hcri_iwm  is used ==>  compute it one for all
169
170
171      !                        !* Pycnocline-intensified mixing: distribute energy over the time-varying
172      !                        !* ocean depth as proportional to sqrt(rn2)^nn_zpyc
173      !                                          ! (NB: N2 is masked, so no use of wmask here)
174      SELECT CASE ( nn_zpyc )
175      !
176      CASE ( 1 )               ! Dissipation scales as N (recommended)
177         !
178         zfact(:,:) = 0._wp
179         DO jk = 2, jpkm1              ! part independent of the level
180            zfact(:,:) = zfact(:,:) + e3w(:,:,jk,Kmm) * SQRT(  MAX( 0._wp, rn2(:,:,jk) )  ) * wmask(:,:,jk)
181         END DO
182         !
183         DO_2D_11_11
184            IF( zfact(ji,jj) /= 0 )   zfact(ji,jj) = epyc_iwm(ji,jj) / ( rau0 * zfact(ji,jj) )
185         END_2D
186         !
187         DO jk = 2, jpkm1              ! complete with the level-dependent part
188            zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zfact(:,:) * SQRT(  MAX( 0._wp, rn2(:,:,jk) )  ) * wmask(:,:,jk)
189         END DO
190         !
191      CASE ( 2 )               ! Dissipation scales as N^2
192         !
193         zfact(:,:) = 0._wp
194         DO jk = 2, jpkm1              ! part independent of the level
195            zfact(:,:) = zfact(:,:) + e3w(:,:,jk,Kmm) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk)
196         END DO
197         !
198         DO_2D_11_11
199            IF( zfact(ji,jj) /= 0 )   zfact(ji,jj) = epyc_iwm(ji,jj) / ( rau0 * zfact(ji,jj) )
200         END_2D
201         !
202         DO jk = 2, jpkm1              ! complete with the level-dependent part
203            zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zfact(:,:) * MAX( 0._wp, rn2(:,:,jk) ) * wmask(:,:,jk)
204         END DO
205         !
206      END SELECT
207
208      !                        !* WKB-height dependent mixing: distribute energy over the time-varying
209      !                        !* ocean depth as proportional to rn2 * exp(-z_wkb/rn_hbot)
210      !
211      zwkb (:,:,:) = 0._wp
212      zfact(:,:)   = 0._wp
213      DO jk = 2, jpkm1
214         zfact(:,:) = zfact(:,:) + e3w(:,:,jk,Kmm) * SQRT(  MAX( 0._wp, rn2(:,:,jk) )  ) * wmask(:,:,jk)
215         zwkb(:,:,jk) = zfact(:,:)
216      END DO
217!!gm even better:
218!      DO jk = 2, jpkm1
219!         zwkb(:,:) = zwkb(:,:) + e3w(:,:,jk,Kmm) * SQRT(  MAX( 0._wp, rn2(:,:,jk) )  )
220!      END DO
221!      zfact(:,:) = zwkb(:,:,jpkm1)
222!!gm or just use zwkb(k=jpk-1) instead of zfact...
223!!gm
224      !
225      DO_3D_11_11( 2, jpkm1 )
226         IF( zfact(ji,jj) /= 0 )   zwkb(ji,jj,jk) = zhdep(ji,jj) * ( zfact(ji,jj) - zwkb(ji,jj,jk) )   &
227            &                                     * wmask(ji,jj,jk) / zfact(ji,jj)
228      END_3D
229      zwkb(:,:,1) = zhdep(:,:) * wmask(:,:,1)
230      !
231      DO_3D_11_11( 2, jpkm1 )
232         IF ( rn2(ji,jj,jk) <= 0._wp .OR. wmask(ji,jj,jk) == 0._wp ) THEN   ! optimization
233            zweight(ji,jj,jk) = 0._wp
234         ELSE
235            zweight(ji,jj,jk) = rn2(ji,jj,jk) * hbot_iwm(ji,jj)    &
236               &   * (  EXP( -zwkb(ji,jj,jk) / hbot_iwm(ji,jj) ) - EXP( -zwkb(ji,jj,jk-1) / hbot_iwm(ji,jj) )  )
237         ENDIF
238      END_3D
239      !
240      zfact(:,:) = 0._wp
241      DO jk = 2, jpkm1              ! part independent of the level
242         zfact(:,:) = zfact(:,:) + zweight(:,:,jk)
243      END DO
244      !
245      DO_2D_11_11
246         IF( zfact(ji,jj) /= 0 )   zfact(ji,jj) = ebot_iwm(ji,jj) / ( rau0 * zfact(ji,jj) )
247      END_2D
248      !
249      DO jk = 2, jpkm1              ! complete with the level-dependent part
250         zemx_iwm(:,:,jk) = zemx_iwm(:,:,jk) + zweight(:,:,jk) * zfact(:,:) * wmask(:,:,jk)   &
251            &                                / ( gde3w(:,:,jk) - gde3w(:,:,jk-1) )
252!!gm  use of e3t(:,:,:,Kmm) just above?
253      END DO
254      !
255!!gm  this is to be replaced by just a constant value znu=1.e-6 m2/s
256      ! Calculate molecular kinematic viscosity
257      znu_t(:,:,:) = 1.e-4_wp * (  17.91_wp - 0.53810_wp * ts(:,:,:,jp_tem,Kmm) + 0.00694_wp * ts(:,:,:,jp_tem,Kmm) * ts(:,:,:,jp_tem,Kmm)  &
258         &                                  + 0.02305_wp * ts(:,:,:,jp_sal,Kmm)  ) * tmask(:,:,:) * r1_rau0
259      DO jk = 2, jpkm1
260         znu_w(:,:,jk) = 0.5_wp * ( znu_t(:,:,jk-1) + znu_t(:,:,jk) ) * wmask(:,:,jk)
261      END DO
262!!gm end
263      !
264      ! Calculate turbulence intensity parameter Reb
265      DO jk = 2, jpkm1
266         zReb(:,:,jk) = zemx_iwm(:,:,jk) / MAX( 1.e-20_wp, znu_w(:,:,jk) * rn2(:,:,jk) )
267      END DO
268      !
269      ! Define internal wave-induced diffusivity
270      DO jk = 2, jpkm1
271         zav_wave(:,:,jk) = znu_w(:,:,jk) * zReb(:,:,jk) * r1_6   ! This corresponds to a constant mixing efficiency of 1/6
272      END DO
273      !
274      IF( ln_mevar ) THEN              ! Variable mixing efficiency case : modify zav_wave in the
275         DO_3D_11_11( 2, jpkm1 )
276            IF( zReb(ji,jj,jk) > 480.00_wp ) THEN
277               zav_wave(ji,jj,jk) = 3.6515_wp * znu_w(ji,jj,jk) * SQRT( zReb(ji,jj,jk) )
278            ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN
279               zav_wave(ji,jj,jk) = 0.052125_wp * znu_w(ji,jj,jk) * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) )
280            ENDIF
281         END_3D
282      ENDIF
283      !
284      DO jk = 2, jpkm1                 ! Bound diffusivity by molecular value and 100 cm2/s
285         zav_wave(:,:,jk) = MIN(  MAX( 1.4e-7_wp, zav_wave(:,:,jk) ), 1.e-2_wp  ) * wmask(:,:,jk)
286      END DO
287      !
288      IF( kt == nit000 ) THEN        !* Control print at first time-step: diagnose the energy consumed by zav_wave
289         zztmp = 0._wp
290!!gm used of glosum 3D....
291         DO_3D_11_11( 2, jpkm1 )
292            zztmp = zztmp + e3w(ji,jj,jk,Kmm) * e1e2t(ji,jj)   &
293               &          * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj)
294         END_3D
295         CALL mpp_sum( 'zdfiwm', zztmp )
296         zztmp = rau0 * zztmp ! Global integral of rauo * Kz * N^2 = power contributing to mixing
297         !
298         IF(lwp) THEN
299            WRITE(numout,*)
300            WRITE(numout,*) 'zdf_iwm : Internal wave-driven mixing (iwm)'
301            WRITE(numout,*) '~~~~~~~ '
302            WRITE(numout,*)
303            WRITE(numout,*) '      Total power consumption by av_wave =  ', zztmp * 1.e-12_wp, 'TW'
304         ENDIF
305      ENDIF
306
307      !                          ! ----------------------- !
308      !                          !   Update  mixing coefs  !                         
309      !                          ! ----------------------- !
310      !     
311      IF( ln_tsdiff ) THEN          !* Option for differential mixing of salinity and temperature
312         ztmp1 = 0.505_wp + 0.495_wp * TANH( 0.92_wp * ( LOG10( 1.e-20_wp ) - 0.60_wp ) )
313         DO_3D_11_11( 2, jpkm1 )
314            ztmp2 = zReb(ji,jj,jk) * 5._wp * r1_6
315            IF ( ztmp2 > 1.e-20_wp .AND. wmask(ji,jj,jk) == 1._wp ) THEN
316               zav_ratio(ji,jj,jk) = 0.505_wp + 0.495_wp * TANH( 0.92_wp * ( LOG10(ztmp2) - 0.60_wp ) )
317            ELSE
318               zav_ratio(ji,jj,jk) = ztmp1 * wmask(ji,jj,jk)
319            ENDIF
320         END_3D
321         CALL iom_put( "av_ratio", zav_ratio )
322         DO jk = 2, jpkm1           !* update momentum & tracer diffusivity with wave-driven mixing
323            p_avs(:,:,jk) = p_avs(:,:,jk) + zav_wave(:,:,jk) * zav_ratio(:,:,jk)
324            p_avt(:,:,jk) = p_avt(:,:,jk) + zav_wave(:,:,jk)
325            p_avm(:,:,jk) = p_avm(:,:,jk) + zav_wave(:,:,jk)
326         END DO
327         !
328      ELSE                          !* update momentum & tracer diffusivity with wave-driven mixing
329         DO jk = 2, jpkm1
330            p_avs(:,:,jk) = p_avs(:,:,jk) + zav_wave(:,:,jk)
331            p_avt(:,:,jk) = p_avt(:,:,jk) + zav_wave(:,:,jk)
332            p_avm(:,:,jk) = p_avm(:,:,jk) + zav_wave(:,:,jk)
333         END DO
334      ENDIF
335
336      !                             !* output internal wave-driven mixing coefficient
337      CALL iom_put( "av_wave", zav_wave )
338                                    !* output useful diagnostics: Kz*N^2 ,
339!!gm Kz*N2 should take into account the ratio avs/avt if it is used.... (see diaar5)
340                                    !  vertical integral of rau0 * Kz * N^2 , energy density (zemx_iwm)
341      IF( iom_use("bflx_iwm") .OR. iom_use("pcmap_iwm") ) THEN
342         ALLOCATE( z2d(jpi,jpj) , z3d(jpi,jpj,jpk) )
343         z3d(:,:,:) = MAX( 0._wp, rn2(:,:,:) ) * zav_wave(:,:,:)
344         z2d(:,:) = 0._wp
345         DO jk = 2, jpkm1
346            z2d(:,:) = z2d(:,:) + e3w(:,:,jk,Kmm) * z3d(:,:,jk) * wmask(:,:,jk)
347         END DO
348         z2d(:,:) = rau0 * z2d(:,:)
349         CALL iom_put( "bflx_iwm", z3d )
350         CALL iom_put( "pcmap_iwm", z2d )
351         DEALLOCATE( z2d , z3d )
352      ENDIF
353      CALL iom_put( "emix_iwm", zemx_iwm )
354     
355      IF(sn_cfctl%l_prtctl)   CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' iwm - av_wave: ', tab3d_2=avt, clinfo2=' avt: ', kdim=jpk)
356      !
357   END SUBROUTINE zdf_iwm
358
359
360   SUBROUTINE zdf_iwm_init
361      !!----------------------------------------------------------------------
362      !!                  ***  ROUTINE zdf_iwm_init  ***
363      !!                     
364      !! ** Purpose :   Initialization of the wave-driven vertical mixing, reading
365      !!              of input power maps and decay length scales in netcdf files.
366      !!
367      !! ** Method  : - Read the namzdf_iwm namelist and check the parameters
368      !!
369      !!              - Read the input data in NetCDF files :
370      !!              power available from high-mode wave breaking (mixing_power_bot.nc)
371      !!              power available from pycnocline-intensified wave-breaking (mixing_power_pyc.nc)
372      !!              power available from critical slope wave-breaking (mixing_power_cri.nc)
373      !!              WKB decay scale for high-mode wave-breaking (decay_scale_bot.nc)
374      !!              decay scale for critical slope wave-breaking (decay_scale_cri.nc)
375      !!
376      !! ** input   : - Namlist namzdf_iwm
377      !!              - NetCDF files : mixing_power_bot.nc, mixing_power_pyc.nc, mixing_power_cri.nc,
378      !!              decay_scale_bot.nc decay_scale_cri.nc
379      !!
380      !! ** Action  : - Increase by 1 the nstop flag is setting problem encounter
381      !!              - Define ebot_iwm, epyc_iwm, ecri_iwm, hbot_iwm, hcri_iwm
382      !!
383      !! References : de Lavergne et al. JPO, 2015 ; de Lavergne PhD 2016
384      !!              de Lavergne et al. in prep., 2017
385      !!----------------------------------------------------------------------
386      INTEGER  ::   inum         ! local integer
387      INTEGER  ::   ios
388      REAL(wp) ::   zbot, zpyc, zcri   ! local scalars
389      !!
390      NAMELIST/namzdf_iwm/ nn_zpyc, ln_mevar, ln_tsdiff
391      !!----------------------------------------------------------------------
392      !
393      READ  ( numnam_ref, namzdf_iwm, IOSTAT = ios, ERR = 901)
394901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namzdf_iwm in reference namelist' )
395      !
396      READ  ( numnam_cfg, namzdf_iwm, IOSTAT = ios, ERR = 902 )
397902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namzdf_iwm in configuration namelist' )
398      IF(lwm) WRITE ( numond, namzdf_iwm )
399      !
400      IF(lwp) THEN                  ! Control print
401         WRITE(numout,*)
402         WRITE(numout,*) 'zdf_iwm_init : internal wave-driven mixing'
403         WRITE(numout,*) '~~~~~~~~~~~~'
404         WRITE(numout,*) '   Namelist namzdf_iwm : set wave-driven mixing parameters'
405         WRITE(numout,*) '      Pycnocline-intensified diss. scales as N (=1) or N^2 (=2) = ', nn_zpyc
406         WRITE(numout,*) '      Variable (T) or constant (F) mixing efficiency            = ', ln_mevar
407         WRITE(numout,*) '      Differential internal wave-driven mixing (T) or not (F)   = ', ln_tsdiff
408      ENDIF
409     
410      ! The new wave-driven mixing parameterization elevates avt and avm in the interior, and
411      ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should
412      ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6).
413      avmb(:) = 1.4e-6_wp        ! viscous molecular value
414      avtb(:) = 1.e-10_wp        ! very small diffusive minimum (background avt is specified in zdf_iwm)   
415      avtb_2d(:,:) = 1.e0_wp     ! uniform
416      IF(lwp) THEN                  ! Control print
417         WRITE(numout,*)
418         WRITE(numout,*) '   Force the background value applied to avm & avt in TKE to be everywhere ',   &
419            &               'the viscous molecular value & a very small diffusive value, resp.'
420      ENDIF
421           
422      !                             ! allocate iwm arrays
423      IF( zdf_iwm_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'zdf_iwm_init : unable to allocate iwm arrays' )
424      !
425      !                             ! read necessary fields
426      CALL iom_open('mixing_power_bot',inum)       ! energy flux for high-mode wave breaking [W/m2]
427      CALL iom_get  (inum, jpdom_data, 'field', ebot_iwm, 1 ) 
428      CALL iom_close(inum)
429      !
430      CALL iom_open('mixing_power_pyc',inum)       ! energy flux for pynocline-intensified wave breaking [W/m2]
431      CALL iom_get  (inum, jpdom_data, 'field', epyc_iwm, 1 )
432      CALL iom_close(inum)
433      !
434      CALL iom_open('mixing_power_cri',inum)       ! energy flux for critical slope wave breaking [W/m2]
435      CALL iom_get  (inum, jpdom_data, 'field', ecri_iwm, 1 )
436      CALL iom_close(inum)
437      !
438      CALL iom_open('decay_scale_bot',inum)        ! spatially variable decay scale for high-mode wave breaking [m]
439      CALL iom_get  (inum, jpdom_data, 'field', hbot_iwm, 1 )
440      CALL iom_close(inum)
441      !
442      CALL iom_open('decay_scale_cri',inum)        ! spatially variable decay scale for critical slope wave breaking [m]
443      CALL iom_get  (inum, jpdom_data, 'field', hcri_iwm, 1 )
444      CALL iom_close(inum)
445
446      ebot_iwm(:,:) = ebot_iwm(:,:) * ssmask(:,:)
447      epyc_iwm(:,:) = epyc_iwm(:,:) * ssmask(:,:)
448      ecri_iwm(:,:) = ecri_iwm(:,:) * ssmask(:,:)
449
450      zbot = glob_sum( 'zdfiwm', e1e2t(:,:) * ebot_iwm(:,:) )
451      zpyc = glob_sum( 'zdfiwm', e1e2t(:,:) * epyc_iwm(:,:) )
452      zcri = glob_sum( 'zdfiwm', e1e2t(:,:) * ecri_iwm(:,:) )
453      IF(lwp) THEN
454         WRITE(numout,*) '      High-mode wave-breaking energy:             ', zbot * 1.e-12_wp, 'TW'
455         WRITE(numout,*) '      Pycnocline-intensifed wave-breaking energy: ', zpyc * 1.e-12_wp, 'TW'
456         WRITE(numout,*) '      Critical slope wave-breaking energy:        ', zcri * 1.e-12_wp, 'TW'
457      ENDIF
458      !
459   END SUBROUTINE zdf_iwm_init
460
461   !!======================================================================
462END MODULE zdfiwm
Note: See TracBrowser for help on using the repository browser.