New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
sbccpl.F90 in NEMO/branches/2019/dev_r12072_MERGE_OPTION2_2019/src/OCE/SBC – NEMO

source: NEMO/branches/2019/dev_r12072_MERGE_OPTION2_2019/src/OCE/SBC/sbccpl.F90 @ 12202

Last change on this file since 12202 was 12202, checked in by cetlod, 4 years ago

dev_merge_option2 : merge in dev_r11613_ENHANCE-04_namelists_as_internalfiles

  • Property svn:keywords set to Id
File size: 152.4 KB
Line 
1MODULE sbccpl
2   !!======================================================================
3   !!                       ***  MODULE  sbccpl  ***
4   !! Surface Boundary Condition :  momentum, heat and freshwater fluxes in coupled mode
5   !!======================================================================
6   !! History :  2.0  ! 2007-06  (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod
7   !!            3.0  ! 2008-02  (G. Madec, C Talandier)  surface module
8   !!            3.1  ! 2009_02  (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface
9   !!            3.4  ! 2011_11  (C. Harris) more flexibility + multi-category fields
10   !!----------------------------------------------------------------------
11
12   !!----------------------------------------------------------------------
13   !!   namsbc_cpl      : coupled formulation namlist
14   !!   sbc_cpl_init    : initialisation of the coupled exchanges
15   !!   sbc_cpl_rcv     : receive fields from the atmosphere over the ocean (ocean only)
16   !!                     receive stress from the atmosphere over the ocean (ocean-ice case)
17   !!   sbc_cpl_ice_tau : receive stress from the atmosphere over ice
18   !!   sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice
19   !!   sbc_cpl_snd     : send     fields to the atmosphere
20   !!----------------------------------------------------------------------
21   USE dom_oce         ! ocean space and time domain
22   USE sbc_oce         ! Surface boundary condition: ocean fields
23   USE trc_oce         ! share SMS/Ocean variables
24   USE sbc_ice         ! Surface boundary condition: ice fields
25   USE sbcapr          ! Stochastic param. : ???
26   USE sbcdcy          ! surface boundary condition: diurnal cycle
27   USE sbcwave         ! surface boundary condition: waves
28   USE phycst          ! physical constants
29   USE isf_oce , ONLY : l_isfoasis, fwfisf_oasis ! ice shelf boundary condition
30#if defined key_si3
31   USE ice            ! ice variables
32#endif
33   USE cpl_oasis3     ! OASIS3 coupling
34   USE geo2ocean      !
35   USE oce     , ONLY : tsn, un, vn, sshn, ub, vb, sshb, fraqsr_1lev
36   USE ocealb         !
37   USE eosbn2         !
38   USE sbcrnf  , ONLY : l_rnfcpl
39#if defined key_cice
40   USE ice_domain_size, only: ncat
41#endif
42#if defined key_si3
43   USE icethd_dh      ! for CALL ice_thd_snwblow
44#endif
45   !
46   USE in_out_manager ! I/O manager
47   USE iom            ! NetCDF library
48   USE lib_mpp        ! distribued memory computing library
49   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
50
51   IMPLICIT NONE
52   PRIVATE
53
54   PUBLIC   sbc_cpl_init      ! routine called by sbcmod.F90
55   PUBLIC   sbc_cpl_rcv       ! routine called by icestp.F90
56   PUBLIC   sbc_cpl_snd       ! routine called by step.F90
57   PUBLIC   sbc_cpl_ice_tau   ! routine called by icestp.F90
58   PUBLIC   sbc_cpl_ice_flx   ! routine called by icestp.F90
59   PUBLIC   sbc_cpl_alloc     ! routine called in sbcice_cice.F90
60
61   INTEGER, PARAMETER ::   jpr_otx1   =  1   ! 3 atmosphere-ocean stress components on grid 1
62   INTEGER, PARAMETER ::   jpr_oty1   =  2   !
63   INTEGER, PARAMETER ::   jpr_otz1   =  3   !
64   INTEGER, PARAMETER ::   jpr_otx2   =  4   ! 3 atmosphere-ocean stress components on grid 2
65   INTEGER, PARAMETER ::   jpr_oty2   =  5   !
66   INTEGER, PARAMETER ::   jpr_otz2   =  6   !
67   INTEGER, PARAMETER ::   jpr_itx1   =  7   ! 3 atmosphere-ice   stress components on grid 1
68   INTEGER, PARAMETER ::   jpr_ity1   =  8   !
69   INTEGER, PARAMETER ::   jpr_itz1   =  9   !
70   INTEGER, PARAMETER ::   jpr_itx2   = 10   ! 3 atmosphere-ice   stress components on grid 2
71   INTEGER, PARAMETER ::   jpr_ity2   = 11   !
72   INTEGER, PARAMETER ::   jpr_itz2   = 12   !
73   INTEGER, PARAMETER ::   jpr_qsroce = 13   ! Qsr above the ocean
74   INTEGER, PARAMETER ::   jpr_qsrice = 14   ! Qsr above the ice
75   INTEGER, PARAMETER ::   jpr_qsrmix = 15 
76   INTEGER, PARAMETER ::   jpr_qnsoce = 16   ! Qns above the ocean
77   INTEGER, PARAMETER ::   jpr_qnsice = 17   ! Qns above the ice
78   INTEGER, PARAMETER ::   jpr_qnsmix = 18
79   INTEGER, PARAMETER ::   jpr_rain   = 19   ! total liquid precipitation (rain)
80   INTEGER, PARAMETER ::   jpr_snow   = 20   ! solid precipitation over the ocean (snow)
81   INTEGER, PARAMETER ::   jpr_tevp   = 21   ! total evaporation
82   INTEGER, PARAMETER ::   jpr_ievp   = 22   ! solid evaporation (sublimation)
83   INTEGER, PARAMETER ::   jpr_sbpr   = 23   ! sublimation - liquid precipitation - solid precipitation
84   INTEGER, PARAMETER ::   jpr_semp   = 24   ! solid freshwater budget (sublimation - snow)
85   INTEGER, PARAMETER ::   jpr_oemp   = 25   ! ocean freshwater budget (evap - precip)
86   INTEGER, PARAMETER ::   jpr_w10m   = 26   ! 10m wind
87   INTEGER, PARAMETER ::   jpr_dqnsdt = 27   ! d(Q non solar)/d(temperature)
88   INTEGER, PARAMETER ::   jpr_rnf    = 28   ! runoffs
89   INTEGER, PARAMETER ::   jpr_cal    = 29   ! calving
90   INTEGER, PARAMETER ::   jpr_taum   = 30   ! wind stress module
91   INTEGER, PARAMETER ::   jpr_co2    = 31
92   INTEGER, PARAMETER ::   jpr_topm   = 32   ! topmeltn
93   INTEGER, PARAMETER ::   jpr_botm   = 33   ! botmeltn
94   INTEGER, PARAMETER ::   jpr_sflx   = 34   ! salt flux
95   INTEGER, PARAMETER ::   jpr_toce   = 35   ! ocean temperature
96   INTEGER, PARAMETER ::   jpr_soce   = 36   ! ocean salinity
97   INTEGER, PARAMETER ::   jpr_ocx1   = 37   ! ocean current on grid 1
98   INTEGER, PARAMETER ::   jpr_ocy1   = 38   !
99   INTEGER, PARAMETER ::   jpr_ssh    = 39   ! sea surface height
100   INTEGER, PARAMETER ::   jpr_fice   = 40   ! ice fraction         
101   INTEGER, PARAMETER ::   jpr_e3t1st = 41   ! first T level thickness
102   INTEGER, PARAMETER ::   jpr_fraqsr = 42   ! fraction of solar net radiation absorbed in the first ocean level
103   INTEGER, PARAMETER ::   jpr_mslp   = 43   ! mean sea level pressure
104   INTEGER, PARAMETER ::   jpr_hsig   = 44   ! Hsig
105   INTEGER, PARAMETER ::   jpr_phioc  = 45   ! Wave=>ocean energy flux
106   INTEGER, PARAMETER ::   jpr_sdrftx = 46   ! Stokes drift on grid 1
107   INTEGER, PARAMETER ::   jpr_sdrfty = 47   ! Stokes drift on grid 2
108   INTEGER, PARAMETER ::   jpr_wper   = 48   ! Mean wave period
109   INTEGER, PARAMETER ::   jpr_wnum   = 49   ! Mean wavenumber
110   INTEGER, PARAMETER ::   jpr_tauwoc = 50   ! Stress fraction adsorbed by waves
111   INTEGER, PARAMETER ::   jpr_wdrag  = 51   ! Neutral surface drag coefficient
112   INTEGER, PARAMETER ::   jpr_isf    = 52
113   INTEGER, PARAMETER ::   jpr_icb    = 53
114   INTEGER, PARAMETER ::   jpr_wfreq  = 54   ! Wave peak frequency
115   INTEGER, PARAMETER ::   jpr_tauwx  = 55   ! x component of the ocean stress from waves
116   INTEGER, PARAMETER ::   jpr_tauwy  = 56   ! y component of the ocean stress from waves
117   INTEGER, PARAMETER ::   jpr_ts_ice = 57   ! Sea ice surface temp
118
119   INTEGER, PARAMETER ::   jprcv      = 57   ! total number of fields received 
120
121   INTEGER, PARAMETER ::   jps_fice   =  1   ! ice fraction sent to the atmosphere
122   INTEGER, PARAMETER ::   jps_toce   =  2   ! ocean temperature
123   INTEGER, PARAMETER ::   jps_tice   =  3   ! ice   temperature
124   INTEGER, PARAMETER ::   jps_tmix   =  4   ! mixed temperature (ocean+ice)
125   INTEGER, PARAMETER ::   jps_albice =  5   ! ice   albedo
126   INTEGER, PARAMETER ::   jps_albmix =  6   ! mixed albedo
127   INTEGER, PARAMETER ::   jps_hice   =  7   ! ice  thickness
128   INTEGER, PARAMETER ::   jps_hsnw   =  8   ! snow thickness
129   INTEGER, PARAMETER ::   jps_ocx1   =  9   ! ocean current on grid 1
130   INTEGER, PARAMETER ::   jps_ocy1   = 10   !
131   INTEGER, PARAMETER ::   jps_ocz1   = 11   !
132   INTEGER, PARAMETER ::   jps_ivx1   = 12   ! ice   current on grid 1
133   INTEGER, PARAMETER ::   jps_ivy1   = 13   !
134   INTEGER, PARAMETER ::   jps_ivz1   = 14   !
135   INTEGER, PARAMETER ::   jps_co2    = 15
136   INTEGER, PARAMETER ::   jps_soce   = 16   ! ocean salinity
137   INTEGER, PARAMETER ::   jps_ssh    = 17   ! sea surface height
138   INTEGER, PARAMETER ::   jps_qsroce = 18   ! Qsr above the ocean
139   INTEGER, PARAMETER ::   jps_qnsoce = 19   ! Qns above the ocean
140   INTEGER, PARAMETER ::   jps_oemp   = 20   ! ocean freshwater budget (evap - precip)
141   INTEGER, PARAMETER ::   jps_sflx   = 21   ! salt flux
142   INTEGER, PARAMETER ::   jps_otx1   = 22   ! 2 atmosphere-ocean stress components on grid 1
143   INTEGER, PARAMETER ::   jps_oty1   = 23   !
144   INTEGER, PARAMETER ::   jps_rnf    = 24   ! runoffs
145   INTEGER, PARAMETER ::   jps_taum   = 25   ! wind stress module
146   INTEGER, PARAMETER ::   jps_fice2  = 26   ! ice fraction sent to OPA (by SAS when doing SAS-OPA coupling)
147   INTEGER, PARAMETER ::   jps_e3t1st = 27   ! first level depth (vvl)
148   INTEGER, PARAMETER ::   jps_fraqsr = 28   ! fraction of solar net radiation absorbed in the first ocean level
149   INTEGER, PARAMETER ::   jps_ficet  = 29   ! total ice fraction 
150   INTEGER, PARAMETER ::   jps_ocxw   = 30   ! currents on grid 1 
151   INTEGER, PARAMETER ::   jps_ocyw   = 31   ! currents on grid 2
152   INTEGER, PARAMETER ::   jps_wlev   = 32   ! water level
153   INTEGER, PARAMETER ::   jps_fice1  = 33   ! first-order ice concentration (for semi-implicit coupling of atmos-ice fluxes)
154   INTEGER, PARAMETER ::   jps_a_p    = 34   ! meltpond area
155   INTEGER, PARAMETER ::   jps_ht_p   = 35   ! meltpond thickness
156   INTEGER, PARAMETER ::   jps_kice   = 36   ! sea ice effective conductivity
157   INTEGER, PARAMETER ::   jps_sstfrz = 37   ! sea surface freezing temperature
158   INTEGER, PARAMETER ::   jps_ttilyr = 38   ! sea ice top layer temp
159
160   INTEGER, PARAMETER ::   jpsnd      = 38   ! total number of fields sent
161
162   !                                  !!** namelist namsbc_cpl **
163   TYPE ::   FLD_C                     !   
164      CHARACTER(len = 32) ::   cldes      ! desciption of the coupling strategy
165      CHARACTER(len = 32) ::   clcat      ! multiple ice categories strategy
166      CHARACTER(len = 32) ::   clvref     ! reference of vector ('spherical' or 'cartesian')
167      CHARACTER(len = 32) ::   clvor      ! orientation of vector fields ('eastward-northward' or 'local grid')
168      CHARACTER(len = 32) ::   clvgrd     ! grids on which is located the vector fields
169   END TYPE FLD_C
170   !                                   ! Send to the atmosphere 
171   TYPE(FLD_C) ::   sn_snd_temp  , sn_snd_alb , sn_snd_thick, sn_snd_crt   , sn_snd_co2,  &
172      &             sn_snd_thick1, sn_snd_cond, sn_snd_mpnd , sn_snd_sstfrz, sn_snd_ttilyr
173   !                                   ! Received from the atmosphere
174   TYPE(FLD_C) ::   sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_tauw, sn_rcv_dqnsdt, sn_rcv_qsr,  &
175      &             sn_rcv_qns , sn_rcv_emp   , sn_rcv_rnf, sn_rcv_ts_ice
176   TYPE(FLD_C) ::   sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2, sn_rcv_mslp, sn_rcv_icb, sn_rcv_isf
177   ! Send to waves
178   TYPE(FLD_C) ::   sn_snd_ifrac, sn_snd_crtw, sn_snd_wlev 
179   ! Received from waves
180   TYPE(FLD_C) ::   sn_rcv_hsig, sn_rcv_phioc, sn_rcv_sdrfx, sn_rcv_sdrfy, sn_rcv_wper, sn_rcv_wnum, sn_rcv_tauwoc, &
181                    sn_rcv_wdrag, sn_rcv_wfreq
182   !                                   ! Other namelist parameters
183   INTEGER     ::   nn_cplmodel           ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
184   LOGICAL     ::   ln_usecplmask         !  use a coupling mask file to merge data received from several models
185                                          !   -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
186   TYPE ::   DYNARR     
187      REAL(wp), POINTER, DIMENSION(:,:,:) ::   z3   
188   END TYPE DYNARR
189
190   TYPE( DYNARR ), SAVE, DIMENSION(jprcv) ::   frcv                ! all fields recieved from the atmosphere
191
192   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   alb_oce_mix    ! ocean albedo sent to atmosphere (mix clear/overcast sky)
193
194   REAL(wp) ::   rpref = 101000._wp   ! reference atmospheric pressure[N/m2]
195   REAL(wp) ::   r1_grau              ! = 1.e0 / (grav * rau0)
196
197   INTEGER , ALLOCATABLE, SAVE, DIMENSION(:) ::   nrcvinfo           ! OASIS info argument
198
199   !! Substitution
200#  include "vectopt_loop_substitute.h90"
201   !!----------------------------------------------------------------------
202   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
203   !! $Id$
204   !! Software governed by the CeCILL license (see ./LICENSE)
205   !!----------------------------------------------------------------------
206CONTAINS
207 
208   INTEGER FUNCTION sbc_cpl_alloc()
209      !!----------------------------------------------------------------------
210      !!             ***  FUNCTION sbc_cpl_alloc  ***
211      !!----------------------------------------------------------------------
212      INTEGER :: ierr(4)
213      !!----------------------------------------------------------------------
214      ierr(:) = 0
215      !
216      ALLOCATE( alb_oce_mix(jpi,jpj), nrcvinfo(jprcv),  STAT=ierr(1) )
217     
218#if ! defined key_si3 && ! defined key_cice
219      ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) )  ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init)
220#endif
221      ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) )
222      !
223      IF( .NOT. ln_apr_dyn ) ALLOCATE( ssh_ib(jpi,jpj), ssh_ibb(jpi,jpj), apr(jpi, jpj), STAT=ierr(4) ) 
224
225      sbc_cpl_alloc = MAXVAL( ierr )
226      CALL mpp_sum ( 'sbccpl', sbc_cpl_alloc )
227      IF( sbc_cpl_alloc > 0 )   CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed')
228      !
229   END FUNCTION sbc_cpl_alloc
230
231
232   SUBROUTINE sbc_cpl_init( k_ice )     
233      !!----------------------------------------------------------------------
234      !!             ***  ROUTINE sbc_cpl_init  ***
235      !!
236      !! ** Purpose :   Initialisation of send and received information from
237      !!                the atmospheric component
238      !!
239      !! ** Method  : * Read namsbc_cpl namelist
240      !!              * define the receive interface
241      !!              * define the send    interface
242      !!              * initialise the OASIS coupler
243      !!----------------------------------------------------------------------
244      INTEGER, INTENT(in) ::   k_ice   ! ice management in the sbc (=0/1/2/3)
245      !
246      INTEGER ::   jn          ! dummy loop index
247      INTEGER ::   ios, inum   ! Local integer
248      REAL(wp), DIMENSION(jpi,jpj) ::   zacs, zaos
249      !!
250      NAMELIST/namsbc_cpl/  sn_snd_temp  , sn_snd_alb   , sn_snd_thick, sn_snd_crt   , sn_snd_co2  ,   & 
251         &                  sn_snd_ttilyr, sn_snd_cond  , sn_snd_mpnd , sn_snd_sstfrz, sn_snd_thick1,  & 
252         &                  sn_snd_ifrac , sn_snd_crtw  , sn_snd_wlev , sn_rcv_hsig  , sn_rcv_phioc,   & 
253         &                  sn_rcv_w10m  , sn_rcv_taumod, sn_rcv_tau  , sn_rcv_dqnsdt, sn_rcv_qsr  ,   & 
254         &                  sn_rcv_sdrfx , sn_rcv_sdrfy , sn_rcv_wper , sn_rcv_wnum  , sn_rcv_tauwoc,  &
255         &                  sn_rcv_wdrag , sn_rcv_qns   , sn_rcv_emp  , sn_rcv_rnf   , sn_rcv_cal  ,   &
256         &                  sn_rcv_iceflx, sn_rcv_co2   , nn_cplmodel , ln_usecplmask, sn_rcv_mslp ,   &
257         &                  sn_rcv_icb   , sn_rcv_isf   , sn_rcv_wfreq , sn_rcv_tauw, nn_cats_cpl  ,   &
258         &                  sn_rcv_ts_ice
259
260      !!---------------------------------------------------------------------
261      !
262      ! ================================ !
263      !      Namelist informations       !
264      ! ================================ !
265      !
266      READ  ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901)
267901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist' )
268      !
269      READ  ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 )
270902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist' )
271      IF(lwm) WRITE ( numond, namsbc_cpl )
272      !
273      IF(lwp) THEN                        ! control print
274         WRITE(numout,*)
275         WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist '
276         WRITE(numout,*)'~~~~~~~~~~~~'
277      ENDIF
278      IF( lwp .AND. ln_cpl ) THEN                        ! control print
279         WRITE(numout,*)'  received fields (mutiple ice categogies)'
280         WRITE(numout,*)'      10m wind module                 = ', TRIM(sn_rcv_w10m%cldes  ), ' (', TRIM(sn_rcv_w10m%clcat  ), ')'
281         WRITE(numout,*)'      stress module                   = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')'
282         WRITE(numout,*)'      surface stress                  = ', TRIM(sn_rcv_tau%cldes   ), ' (', TRIM(sn_rcv_tau%clcat   ), ')'
283         WRITE(numout,*)'                     - referential    = ', sn_rcv_tau%clvref
284         WRITE(numout,*)'                     - orientation    = ', sn_rcv_tau%clvor
285         WRITE(numout,*)'                     - mesh           = ', sn_rcv_tau%clvgrd
286         WRITE(numout,*)'      non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')'
287         WRITE(numout,*)'      solar heat flux                 = ', TRIM(sn_rcv_qsr%cldes   ), ' (', TRIM(sn_rcv_qsr%clcat   ), ')'
288         WRITE(numout,*)'      non-solar heat flux             = ', TRIM(sn_rcv_qns%cldes   ), ' (', TRIM(sn_rcv_qns%clcat   ), ')'
289         WRITE(numout,*)'      freshwater budget               = ', TRIM(sn_rcv_emp%cldes   ), ' (', TRIM(sn_rcv_emp%clcat   ), ')'
290         WRITE(numout,*)'      runoffs                         = ', TRIM(sn_rcv_rnf%cldes   ), ' (', TRIM(sn_rcv_rnf%clcat   ), ')'
291         WRITE(numout,*)'      calving                         = ', TRIM(sn_rcv_cal%cldes   ), ' (', TRIM(sn_rcv_cal%clcat   ), ')'
292         WRITE(numout,*)'      iceberg                         = ', TRIM(sn_rcv_icb%cldes   ), ' (', TRIM(sn_rcv_icb%clcat   ), ')'
293         WRITE(numout,*)'      ice shelf                       = ', TRIM(sn_rcv_isf%cldes   ), ' (', TRIM(sn_rcv_isf%clcat   ), ')'
294         WRITE(numout,*)'      sea ice heat fluxes             = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')'
295         WRITE(numout,*)'      atm co2                         = ', TRIM(sn_rcv_co2%cldes   ), ' (', TRIM(sn_rcv_co2%clcat   ), ')'
296         WRITE(numout,*)'      significant wave heigth         = ', TRIM(sn_rcv_hsig%cldes  ), ' (', TRIM(sn_rcv_hsig%clcat  ), ')' 
297         WRITE(numout,*)'      wave to oce energy flux         = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')' 
298         WRITE(numout,*)'      Surface Stokes drift grid u     = ', TRIM(sn_rcv_sdrfx%cldes ), ' (', TRIM(sn_rcv_sdrfx%clcat ), ')' 
299         WRITE(numout,*)'      Surface Stokes drift grid v     = ', TRIM(sn_rcv_sdrfy%cldes ), ' (', TRIM(sn_rcv_sdrfy%clcat ), ')' 
300         WRITE(numout,*)'      Mean wave period                = ', TRIM(sn_rcv_wper%cldes  ), ' (', TRIM(sn_rcv_wper%clcat  ), ')' 
301         WRITE(numout,*)'      Mean wave number                = ', TRIM(sn_rcv_wnum%cldes  ), ' (', TRIM(sn_rcv_wnum%clcat  ), ')' 
302         WRITE(numout,*)'      Wave peak frequency             = ', TRIM(sn_rcv_wfreq%cldes ), ' (', TRIM(sn_rcv_wfreq%clcat ), ')'
303         WRITE(numout,*)'      Stress frac adsorbed by waves   = ', TRIM(sn_rcv_tauwoc%cldes), ' (', TRIM(sn_rcv_tauwoc%clcat ), ')' 
304         WRITE(numout,*)'      Stress components by waves      = ', TRIM(sn_rcv_tauw%cldes  ), ' (', TRIM(sn_rcv_tauw%clcat  ), ')'
305         WRITE(numout,*)'      Neutral surf drag coefficient   = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')' 
306         WRITE(numout,*)'      Sea ice surface skin temperature= ', TRIM(sn_rcv_ts_ice%cldes), ' (', TRIM(sn_rcv_ts_ice%clcat), ')' 
307         WRITE(numout,*)'  sent fields (multiple ice categories)'
308         WRITE(numout,*)'      surface temperature             = ', TRIM(sn_snd_temp%cldes  ), ' (', TRIM(sn_snd_temp%clcat  ), ')'
309         WRITE(numout,*)'      top ice layer temperature       = ', TRIM(sn_snd_ttilyr%cldes), ' (', TRIM(sn_snd_ttilyr%clcat), ')'
310         WRITE(numout,*)'      albedo                          = ', TRIM(sn_snd_alb%cldes   ), ' (', TRIM(sn_snd_alb%clcat   ), ')'
311         WRITE(numout,*)'      ice/snow thickness              = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')'
312         WRITE(numout,*)'      total ice fraction              = ', TRIM(sn_snd_ifrac%cldes ), ' (', TRIM(sn_snd_ifrac%clcat ), ')' 
313         WRITE(numout,*)'      surface current                 = ', TRIM(sn_snd_crt%cldes   ), ' (', TRIM(sn_snd_crt%clcat   ), ')'
314         WRITE(numout,*)'                      - referential   = ', sn_snd_crt%clvref 
315         WRITE(numout,*)'                      - orientation   = ', sn_snd_crt%clvor
316         WRITE(numout,*)'                      - mesh          = ', sn_snd_crt%clvgrd
317         WRITE(numout,*)'      oce co2 flux                    = ', TRIM(sn_snd_co2%cldes   ), ' (', TRIM(sn_snd_co2%clcat   ), ')'
318         WRITE(numout,*)'      ice effective conductivity      = ', TRIM(sn_snd_cond%cldes  ), ' (', TRIM(sn_snd_cond%clcat  ), ')'
319         WRITE(numout,*)'      meltponds fraction and depth    = ', TRIM(sn_snd_mpnd%cldes  ), ' (', TRIM(sn_snd_mpnd%clcat  ), ')'
320         WRITE(numout,*)'      sea surface freezing temp       = ', TRIM(sn_snd_sstfrz%cldes), ' (', TRIM(sn_snd_sstfrz%clcat), ')'
321         WRITE(numout,*)'      water level                     = ', TRIM(sn_snd_wlev%cldes  ), ' (', TRIM(sn_snd_wlev%clcat  ), ')' 
322         WRITE(numout,*)'      mean sea level pressure         = ', TRIM(sn_rcv_mslp%cldes  ), ' (', TRIM(sn_rcv_mslp%clcat  ), ')' 
323         WRITE(numout,*)'      surface current to waves        = ', TRIM(sn_snd_crtw%cldes  ), ' (', TRIM(sn_snd_crtw%clcat  ), ')' 
324         WRITE(numout,*)'                      - referential   = ', sn_snd_crtw%clvref 
325         WRITE(numout,*)'                      - orientation   = ', sn_snd_crtw%clvor 
326         WRITE(numout,*)'                      - mesh          = ', sn_snd_crtw%clvgrd 
327         WRITE(numout,*)'  nn_cplmodel                         = ', nn_cplmodel
328         WRITE(numout,*)'  ln_usecplmask                       = ', ln_usecplmask
329         WRITE(numout,*)'  nn_cats_cpl                         = ', nn_cats_cpl
330      ENDIF
331
332      !                                   ! allocate sbccpl arrays
333      IF( sbc_cpl_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )
334     
335      ! ================================ !
336      !   Define the receive interface   !
337      ! ================================ !
338      nrcvinfo(:) = OASIS_idle   ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress
339
340      ! for each field: define the OASIS name                              (srcv(:)%clname)
341      !                 define receive or not from the namelist parameters (srcv(:)%laction)
342      !                 define the north fold type of lbc                  (srcv(:)%nsgn)
343
344      ! default definitions of srcv
345      srcv(:)%laction = .FALSE.   ;   srcv(:)%clgrid = 'T'   ;   srcv(:)%nsgn = 1.   ;   srcv(:)%nct = 1
346
347      !                                                      ! ------------------------- !
348      !                                                      ! ice and ocean wind stress !   
349      !                                                      ! ------------------------- !
350      !                                                           ! Name
351      srcv(jpr_otx1)%clname = 'O_OTaux1'      ! 1st ocean component on grid ONE (T or U)
352      srcv(jpr_oty1)%clname = 'O_OTauy1'      ! 2nd   -      -         -     -
353      srcv(jpr_otz1)%clname = 'O_OTauz1'      ! 3rd   -      -         -     -
354      srcv(jpr_otx2)%clname = 'O_OTaux2'      ! 1st ocean component on grid TWO (V)
355      srcv(jpr_oty2)%clname = 'O_OTauy2'      ! 2nd   -      -         -     -
356      srcv(jpr_otz2)%clname = 'O_OTauz2'      ! 3rd   -      -         -     -
357      !
358      srcv(jpr_itx1)%clname = 'O_ITaux1'      ! 1st  ice  component on grid ONE (T, F, I or U)
359      srcv(jpr_ity1)%clname = 'O_ITauy1'      ! 2nd   -      -         -     -
360      srcv(jpr_itz1)%clname = 'O_ITauz1'      ! 3rd   -      -         -     -
361      srcv(jpr_itx2)%clname = 'O_ITaux2'      ! 1st  ice  component on grid TWO (V)
362      srcv(jpr_ity2)%clname = 'O_ITauy2'      ! 2nd   -      -         -     -
363      srcv(jpr_itz2)%clname = 'O_ITauz2'      ! 3rd   -      -         -     -
364      !
365      ! Vectors: change of sign at north fold ONLY if on the local grid
366      IF( TRIM( sn_rcv_tau%cldes ) == 'oce only' .OR. TRIM(sn_rcv_tau%cldes ) == 'oce and ice') THEN ! avoid working with the atmospheric fields if they are not coupled
367      IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' )   srcv(jpr_otx1:jpr_itz2)%nsgn = -1.
368     
369      !                                                           ! Set grid and action
370      SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) )      !  'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V'
371      CASE( 'T' ) 
372         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
373         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
374         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
375      CASE( 'U,V' ) 
376         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
377         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
378         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
379         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
380         srcv(jpr_otx1:jpr_itz2)%laction = .TRUE.     ! receive oce and ice components on both grid 1 & 2
381      CASE( 'U,V,T' )
382         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
383         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
384         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'T'        ! ice components given at T-point
385         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
386         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
387      CASE( 'U,V,I' )
388         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
389         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
390         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
391         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
392         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
393      CASE( 'U,V,F' )
394         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
395         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
396         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
397         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
398         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
399      CASE( 'T,I' ) 
400         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
401         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
402         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
403         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
404      CASE( 'T,F' ) 
405         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
406         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
407         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
408         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
409      CASE( 'T,U,V' )
410         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'T'        ! oce components given at T-point
411         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
412         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
413         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1 only
414         srcv(jpr_itx1:jpr_itz2)%laction = .TRUE.     ! receive ice components on grid 1 & 2
415      CASE default   
416         CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' )
417      END SELECT
418      !
419      IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' )   &           ! spherical: 3rd component not received
420         &     srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE. 
421      !
422      IF( TRIM( sn_rcv_tau%clvor  ) == 'local grid' ) THEN        ! already on local grid -> no need of the second grid
423            srcv(jpr_otx2:jpr_otz2)%laction = .FALSE. 
424            srcv(jpr_itx2:jpr_itz2)%laction = .FALSE. 
425            srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid   ! not needed but cleaner...
426            srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid   ! not needed but cleaner...
427      ENDIF
428      !
429      IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN        ! 'oce and ice' case ocean stress on ocean mesh used
430         srcv(jpr_itx1:jpr_itz2)%laction = .FALSE.    ! ice components not received
431         srcv(jpr_itx1)%clgrid = 'U'                  ! ocean stress used after its transformation
432         srcv(jpr_ity1)%clgrid = 'V'                  ! i.e. it is always at U- & V-points for i- & j-comp. resp.
433      ENDIF
434      ENDIF
435
436      !                                                      ! ------------------------- !
437      !                                                      !    freshwater budget      !   E-P
438      !                                                      ! ------------------------- !
439      ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid)
440      ! over ice of free ocean within the same atmospheric cell.cd
441      srcv(jpr_rain)%clname = 'OTotRain'      ! Rain = liquid precipitation
442      srcv(jpr_snow)%clname = 'OTotSnow'      ! Snow = solid precipitation
443      srcv(jpr_tevp)%clname = 'OTotEvap'      ! total evaporation (over oce + ice sublimation)
444      srcv(jpr_ievp)%clname = 'OIceEvap'      ! evaporation over ice = sublimation
445      srcv(jpr_sbpr)%clname = 'OSubMPre'      ! sublimation - liquid precipitation - solid precipitation
446      srcv(jpr_semp)%clname = 'OISubMSn'      ! ice solid water budget = sublimation - solid precipitation
447      srcv(jpr_oemp)%clname = 'OOEvaMPr'      ! ocean water budget = ocean Evap - ocean precip
448      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
449      CASE( 'none'          )       ! nothing to do
450      CASE( 'oce only'      )   ;   srcv(jpr_oemp)%laction = .TRUE. 
451      CASE( 'conservative'  )
452         srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE.
453         IF ( k_ice <= 1 )  srcv(jpr_ievp)%laction = .FALSE.
454      CASE( 'oce and ice'   )   ;   srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE.
455      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' )
456      END SELECT
457      !
458      !                                                      ! ------------------------- !
459      !                                                      !     Runoffs & Calving     !   
460      !                                                      ! ------------------------- !
461      srcv(jpr_rnf   )%clname = 'O_Runoff'
462      IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) THEN
463         srcv(jpr_rnf)%laction = .TRUE.
464         l_rnfcpl              = .TRUE.                      ! -> no need to read runoffs in sbcrnf
465         ln_rnf                = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas
466         IF(lwp) WRITE(numout,*)
467         IF(lwp) WRITE(numout,*) '   runoffs received from oasis -> force ln_rnf = ', ln_rnf
468      ENDIF
469      !
470      srcv(jpr_cal)%clname = 'OCalving'   ;  IF( TRIM( sn_rcv_cal%cldes) == 'coupled' )   srcv(jpr_cal)%laction = .TRUE.
471      srcv(jpr_isf)%clname = 'OIcshelf'   ;  IF( TRIM( sn_rcv_isf%cldes) == 'coupled' )   srcv(jpr_isf)%laction = .TRUE.
472      srcv(jpr_icb)%clname = 'OIceberg'   ;  IF( TRIM( sn_rcv_icb%cldes) == 'coupled' )   srcv(jpr_icb)%laction = .TRUE.
473
474      IF( srcv(jpr_isf)%laction ) THEN
475         l_isfoasis = .TRUE.  ! -> isf fwf comes from oasis
476         IF(lwp) WRITE(numout,*)
477         IF(lwp) WRITE(numout,*) '   iceshelf received from oasis '
478         CALL ctl_stop('STOP','not coded')
479      ENDIF
480      !
481      !                                                      ! ------------------------- !
482      !                                                      !    non solar radiation    !   Qns
483      !                                                      ! ------------------------- !
484      srcv(jpr_qnsoce)%clname = 'O_QnsOce'
485      srcv(jpr_qnsice)%clname = 'O_QnsIce'
486      srcv(jpr_qnsmix)%clname = 'O_QnsMix'
487      SELECT CASE( TRIM( sn_rcv_qns%cldes ) )
488      CASE( 'none'          )       ! nothing to do
489      CASE( 'oce only'      )   ;   srcv(               jpr_qnsoce   )%laction = .TRUE.
490      CASE( 'conservative'  )   ;   srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE.
491      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE.
492      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qnsmix   )%laction = .TRUE. 
493      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' )
494      END SELECT
495      IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
496         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
497      !
498      !                                                      ! ------------------------- !
499      !                                                      !    solar radiation        !   Qsr
500      !                                                      ! ------------------------- !
501      srcv(jpr_qsroce)%clname = 'O_QsrOce'
502      srcv(jpr_qsrice)%clname = 'O_QsrIce'
503      srcv(jpr_qsrmix)%clname = 'O_QsrMix'
504      SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )
505      CASE( 'none'          )       ! nothing to do
506      CASE( 'oce only'      )   ;   srcv(               jpr_qsroce   )%laction = .TRUE.
507      CASE( 'conservative'  )   ;   srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE.
508      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE.
509      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qsrmix   )%laction = .TRUE. 
510      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' )
511      END SELECT
512      IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
513         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
514      !
515      !                                                      ! ------------------------- !
516      !                                                      !   non solar sensitivity   !   d(Qns)/d(T)
517      !                                                      ! ------------------------- !
518      srcv(jpr_dqnsdt)%clname = 'O_dQnsdT'   
519      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' )   srcv(jpr_dqnsdt)%laction = .TRUE.
520      !
521      ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique
522      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' )  &
523         &   CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' )
524      !
525      !                                                      ! ------------------------- !
526      !                                                      !      10m wind module      !   
527      !                                                      ! ------------------------- !
528      srcv(jpr_w10m)%clname = 'O_Wind10'   ;   IF( TRIM(sn_rcv_w10m%cldes  ) == 'coupled' )   srcv(jpr_w10m)%laction = .TRUE. 
529      !
530      !                                                      ! ------------------------- !
531      !                                                      !   wind stress module      !   
532      !                                                      ! ------------------------- !
533      srcv(jpr_taum)%clname = 'O_TauMod'   ;   IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' )   srcv(jpr_taum)%laction = .TRUE.
534      !
535      !                                                      ! ------------------------- !
536      !                                                      !      Atmospheric CO2      !
537      !                                                      ! ------------------------- !
538      srcv(jpr_co2 )%clname = 'O_AtmCO2'   
539      IF( TRIM(sn_rcv_co2%cldes   ) == 'coupled' )  THEN
540         srcv(jpr_co2 )%laction = .TRUE.
541         l_co2cpl = .TRUE.
542         IF(lwp) WRITE(numout,*)
543         IF(lwp) WRITE(numout,*) '   Atmospheric pco2 received from oasis '
544         IF(lwp) WRITE(numout,*)
545      ENDIF
546      !
547      !                                                      ! ------------------------- !
548      !                                                      ! Mean Sea Level Pressure   !
549      !                                                      ! ------------------------- !
550      srcv(jpr_mslp)%clname = 'O_MSLP'     ;   IF( TRIM(sn_rcv_mslp%cldes  ) == 'coupled' )    srcv(jpr_mslp)%laction = .TRUE. 
551      !
552      !                                                      ! ------------------------- !
553      !                                                      !  ice topmelt and botmelt  !   
554      !                                                      ! ------------------------- !
555      srcv(jpr_topm )%clname = 'OTopMlt'
556      srcv(jpr_botm )%clname = 'OBotMlt'
557      IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN
558         IF ( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN
559            srcv(jpr_topm:jpr_botm)%nct = nn_cats_cpl
560         ELSE
561            CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' )
562         ENDIF
563         srcv(jpr_topm:jpr_botm)%laction = .TRUE.
564      ENDIF
565      !                                                      ! ------------------------- !
566      !                                                      !    ice skin temperature   !   
567      !                                                      ! ------------------------- !
568      srcv(jpr_ts_ice)%clname = 'OTsfIce'    ! needed by Met Office
569      IF ( TRIM( sn_rcv_ts_ice%cldes ) == 'ice' )   srcv(jpr_ts_ice)%laction = .TRUE.
570      IF ( TRIM( sn_rcv_ts_ice%clcat ) == 'yes' )   srcv(jpr_ts_ice)%nct     = nn_cats_cpl
571      IF ( TRIM( sn_rcv_emp%clcat    ) == 'yes' )   srcv(jpr_ievp)%nct       = nn_cats_cpl
572
573      !                                                      ! ------------------------- !
574      !                                                      !      Wave breaking        !   
575      !                                                      ! ------------------------- !
576      srcv(jpr_hsig)%clname  = 'O_Hsigwa'    ! significant wave height
577      IF( TRIM(sn_rcv_hsig%cldes  ) == 'coupled' )  THEN
578         srcv(jpr_hsig)%laction = .TRUE.
579         cpl_hsig = .TRUE.
580      ENDIF
581      srcv(jpr_phioc)%clname = 'O_PhiOce'    ! wave to ocean energy
582      IF( TRIM(sn_rcv_phioc%cldes ) == 'coupled' )  THEN
583         srcv(jpr_phioc)%laction = .TRUE.
584         cpl_phioc = .TRUE.
585      ENDIF
586      srcv(jpr_sdrftx)%clname = 'O_Sdrfx'    ! Stokes drift in the u direction
587      IF( TRIM(sn_rcv_sdrfx%cldes ) == 'coupled' )  THEN
588         srcv(jpr_sdrftx)%laction = .TRUE.
589         cpl_sdrftx = .TRUE.
590      ENDIF
591      srcv(jpr_sdrfty)%clname = 'O_Sdrfy'    ! Stokes drift in the v direction
592      IF( TRIM(sn_rcv_sdrfy%cldes ) == 'coupled' )  THEN
593         srcv(jpr_sdrfty)%laction = .TRUE.
594         cpl_sdrfty = .TRUE.
595      ENDIF
596      srcv(jpr_wper)%clname = 'O_WPer'       ! mean wave period
597      IF( TRIM(sn_rcv_wper%cldes  ) == 'coupled' )  THEN
598         srcv(jpr_wper)%laction = .TRUE.
599         cpl_wper = .TRUE.
600      ENDIF
601      srcv(jpr_wfreq)%clname = 'O_WFreq'     ! wave peak frequency
602      IF( TRIM(sn_rcv_wfreq%cldes ) == 'coupled' )  THEN
603         srcv(jpr_wfreq)%laction = .TRUE.
604         cpl_wfreq = .TRUE.
605      ENDIF
606      srcv(jpr_wnum)%clname = 'O_WNum'       ! mean wave number
607      IF( TRIM(sn_rcv_wnum%cldes ) == 'coupled' )  THEN
608         srcv(jpr_wnum)%laction = .TRUE.
609         cpl_wnum = .TRUE.
610      ENDIF
611      srcv(jpr_tauwoc)%clname = 'O_TauOce'   ! stress fraction adsorbed by the wave
612      IF( TRIM(sn_rcv_tauwoc%cldes ) == 'coupled' )  THEN
613         srcv(jpr_tauwoc)%laction = .TRUE.
614         cpl_tauwoc = .TRUE.
615      ENDIF
616      srcv(jpr_tauwx)%clname = 'O_Tauwx'      ! ocean stress from wave in the x direction
617      srcv(jpr_tauwy)%clname = 'O_Tauwy'      ! ocean stress from wave in the y direction
618      IF( TRIM(sn_rcv_tauw%cldes ) == 'coupled' )  THEN
619         srcv(jpr_tauwx)%laction = .TRUE.
620         srcv(jpr_tauwy)%laction = .TRUE.
621         cpl_tauw = .TRUE.
622      ENDIF
623      srcv(jpr_wdrag)%clname = 'O_WDrag'     ! neutral surface drag coefficient
624      IF( TRIM(sn_rcv_wdrag%cldes ) == 'coupled' )  THEN
625         srcv(jpr_wdrag)%laction = .TRUE.
626         cpl_wdrag = .TRUE.
627      ENDIF
628      IF( srcv(jpr_tauwoc)%laction .AND. srcv(jpr_tauwx)%laction .AND. srcv(jpr_tauwy)%laction ) &
629            CALL ctl_stop( 'More than one method for modifying the ocean stress has been selected ', &
630                                     '(sn_rcv_tauwoc=coupled and sn_rcv_tauw=coupled)' )
631      !
632      !                                                      ! ------------------------------- !
633      !                                                      !   OPA-SAS coupling - rcv by opa !   
634      !                                                      ! ------------------------------- !
635      srcv(jpr_sflx)%clname = 'O_SFLX'
636      srcv(jpr_fice)%clname = 'RIceFrc'
637      !
638      IF( nn_components == jp_iam_opa ) THEN    ! OPA coupled to SAS via OASIS: force received field by OPA (sent by SAS)
639         srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
640         srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
641         srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
642         srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE.
643         srcv(jpr_otx1)%clgrid = 'U'        ! oce components given at U-point
644         srcv(jpr_oty1)%clgrid = 'V'        !           and           V-point
645         ! Vectors: change of sign at north fold ONLY if on the local grid
646         srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1.
647         sn_rcv_tau%clvgrd = 'U,V'
648         sn_rcv_tau%clvor = 'local grid'
649         sn_rcv_tau%clvref = 'spherical'
650         sn_rcv_emp%cldes = 'oce only'
651         !
652         IF(lwp) THEN                        ! control print
653            WRITE(numout,*)
654            WRITE(numout,*)'               Special conditions for SAS-OPA coupling  '
655            WRITE(numout,*)'               OPA component  '
656            WRITE(numout,*)
657            WRITE(numout,*)'  received fields from SAS component '
658            WRITE(numout,*)'                  ice cover '
659            WRITE(numout,*)'                  oce only EMP  '
660            WRITE(numout,*)'                  salt flux  '
661            WRITE(numout,*)'                  mixed oce-ice solar flux  '
662            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
663            WRITE(numout,*)'                  wind stress U,V on local grid and sperical coordinates '
664            WRITE(numout,*)'                  wind stress module'
665            WRITE(numout,*)
666         ENDIF
667      ENDIF
668      !                                                      ! -------------------------------- !
669      !                                                      !   OPA-SAS coupling - rcv by sas  !   
670      !                                                      ! -------------------------------- !
671      srcv(jpr_toce  )%clname = 'I_SSTSST'
672      srcv(jpr_soce  )%clname = 'I_SSSal'
673      srcv(jpr_ocx1  )%clname = 'I_OCurx1'
674      srcv(jpr_ocy1  )%clname = 'I_OCury1'
675      srcv(jpr_ssh   )%clname = 'I_SSHght'
676      srcv(jpr_e3t1st)%clname = 'I_E3T1st'   
677      srcv(jpr_fraqsr)%clname = 'I_FraQsr'   
678      !
679      IF( nn_components == jp_iam_sas ) THEN
680         IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
681         IF( .NOT. ln_cpl ) srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
682         IF( .NOT. ln_cpl ) srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
683         srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE.
684         srcv( jpr_e3t1st )%laction = .NOT.ln_linssh
685         srcv(jpr_ocx1)%clgrid = 'U'        ! oce components given at U-point
686         srcv(jpr_ocy1)%clgrid = 'V'        !           and           V-point
687         ! Vectors: change of sign at north fold ONLY if on the local grid
688         srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1.
689         ! Change first letter to couple with atmosphere if already coupled OPA
690         ! this is nedeed as each variable name used in the namcouple must be unique:
691         ! for example O_Runoff received by OPA from SAS and therefore O_Runoff received by SAS from the Atmosphere
692         DO jn = 1, jprcv
693            IF ( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname))
694         END DO
695         !
696         IF(lwp) THEN                        ! control print
697            WRITE(numout,*)
698            WRITE(numout,*)'               Special conditions for SAS-OPA coupling  '
699            WRITE(numout,*)'               SAS component  '
700            WRITE(numout,*)
701            IF( .NOT. ln_cpl ) THEN
702               WRITE(numout,*)'  received fields from OPA component '
703            ELSE
704               WRITE(numout,*)'  Additional received fields from OPA component : '
705            ENDIF
706            WRITE(numout,*)'               sea surface temperature (Celsius) '
707            WRITE(numout,*)'               sea surface salinity ' 
708            WRITE(numout,*)'               surface currents ' 
709            WRITE(numout,*)'               sea surface height ' 
710            WRITE(numout,*)'               thickness of first ocean T level '       
711            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
712            WRITE(numout,*)
713         ENDIF
714      ENDIF
715     
716      ! =================================================== !
717      ! Allocate all parts of frcv used for received fields !
718      ! =================================================== !
719      DO jn = 1, jprcv
720         IF ( srcv(jn)%laction ) ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) )
721      END DO
722      ! Allocate taum part of frcv which is used even when not received as coupling field
723      IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) )
724      ! Allocate w10m part of frcv which is used even when not received as coupling field
725      IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) )
726      ! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field
727      IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) )
728      IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) )
729      ! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE.
730      IF( k_ice /= 0 ) THEN
731         IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) )
732         IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) )
733      END IF
734
735      ! ================================ !
736      !     Define the send interface    !
737      ! ================================ !
738      ! for each field: define the OASIS name                           (ssnd(:)%clname)
739      !                 define send or not from the namelist parameters (ssnd(:)%laction)
740      !                 define the north fold type of lbc               (ssnd(:)%nsgn)
741     
742      ! default definitions of nsnd
743      ssnd(:)%laction = .FALSE.   ;   ssnd(:)%clgrid = 'T'   ;   ssnd(:)%nsgn = 1.  ; ssnd(:)%nct = 1
744         
745      !                                                      ! ------------------------- !
746      !                                                      !    Surface temperature    !
747      !                                                      ! ------------------------- !
748      ssnd(jps_toce)%clname   = 'O_SSTSST'
749      ssnd(jps_tice)%clname   = 'O_TepIce'
750      ssnd(jps_ttilyr)%clname = 'O_TtiLyr'
751      ssnd(jps_tmix)%clname   = 'O_TepMix'
752      SELECT CASE( TRIM( sn_snd_temp%cldes ) )
753      CASE( 'none'                                 )       ! nothing to do
754      CASE( 'oce only'                             )   ;   ssnd( jps_toce )%laction = .TRUE.
755      CASE( 'oce and ice' , 'weighted oce and ice' , 'oce and weighted ice' )
756         ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE.
757         IF ( TRIM( sn_snd_temp%clcat ) == 'yes' )  ssnd(jps_tice)%nct = nn_cats_cpl
758      CASE( 'mixed oce-ice'                        )   ;   ssnd( jps_tmix )%laction = .TRUE.
759      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' )
760      END SELECT
761           
762      !                                                      ! ------------------------- !
763      !                                                      !          Albedo           !
764      !                                                      ! ------------------------- !
765      ssnd(jps_albice)%clname = 'O_AlbIce' 
766      ssnd(jps_albmix)%clname = 'O_AlbMix'
767      SELECT CASE( TRIM( sn_snd_alb%cldes ) )
768      CASE( 'none'                 )     ! nothing to do
769      CASE( 'ice' , 'weighted ice' )   ; ssnd(jps_albice)%laction = .TRUE.
770      CASE( 'mixed oce-ice'        )   ; ssnd(jps_albmix)%laction = .TRUE.
771      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' )
772      END SELECT
773      !
774      ! Need to calculate oceanic albedo if
775      !     1. sending mixed oce-ice albedo or
776      !     2. receiving mixed oce-ice solar radiation
777      IF ( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN
778         CALL oce_alb( zaos, zacs )
779         ! Due to lack of information on nebulosity : mean clear/overcast sky
780         alb_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5
781      ENDIF
782      !                                                      ! ------------------------- !
783      !                                                      !  Ice fraction & Thickness !
784      !                                                      ! ------------------------- !
785      ssnd(jps_fice)%clname  = 'OIceFrc'
786      ssnd(jps_ficet)%clname = 'OIceFrcT' 
787      ssnd(jps_hice)%clname  = 'OIceTck'
788      ssnd(jps_a_p)%clname   = 'OPndFrc'
789      ssnd(jps_ht_p)%clname  = 'OPndTck'
790      ssnd(jps_hsnw)%clname  = 'OSnwTck'
791      ssnd(jps_fice1)%clname = 'OIceFrd'
792      IF( k_ice /= 0 ) THEN
793         ssnd(jps_fice)%laction  = .TRUE.                 ! if ice treated in the ocean (even in climato case)
794         ssnd(jps_fice1)%laction = .TRUE.                 ! First-order regridded ice concentration, to be used producing atmos-to-ice fluxes (Met Office requirement)
795! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now
796         IF ( TRIM( sn_snd_thick%clcat  ) == 'yes' ) ssnd(jps_fice)%nct  = nn_cats_cpl
797         IF ( TRIM( sn_snd_thick1%clcat ) == 'yes' ) ssnd(jps_fice1)%nct = nn_cats_cpl
798      ENDIF
799     
800      IF (TRIM( sn_snd_ifrac%cldes )  == 'coupled') ssnd(jps_ficet)%laction = .TRUE. 
801
802      SELECT CASE ( TRIM( sn_snd_thick%cldes ) )
803      CASE( 'none'         )       ! nothing to do
804      CASE( 'ice and snow' ) 
805         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
806         IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN
807            ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
808         ENDIF
809      CASE ( 'weighted ice and snow' ) 
810         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
811         IF ( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
812      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' )
813      END SELECT
814
815      !                                                      ! ------------------------- !
816      !                                                      !      Ice Meltponds        !
817      !                                                      ! ------------------------- !
818      ! Needed by Met Office
819      ssnd(jps_a_p)%clname  = 'OPndFrc'   
820      ssnd(jps_ht_p)%clname = 'OPndTck'   
821      SELECT CASE ( TRIM( sn_snd_mpnd%cldes ) ) 
822      CASE ( 'none' ) 
823         ssnd(jps_a_p)%laction  = .FALSE. 
824         ssnd(jps_ht_p)%laction = .FALSE. 
825      CASE ( 'ice only' ) 
826         ssnd(jps_a_p)%laction  = .TRUE. 
827         ssnd(jps_ht_p)%laction = .TRUE. 
828         IF ( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
829            ssnd(jps_a_p)%nct  = nn_cats_cpl 
830            ssnd(jps_ht_p)%nct = nn_cats_cpl 
831         ELSE
832            IF ( nn_cats_cpl > 1 ) THEN
833               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_mpnd%cldes if not exchanging category fields' ) 
834            ENDIF
835         ENDIF
836      CASE ( 'weighted ice' ) 
837         ssnd(jps_a_p)%laction  = .TRUE. 
838         ssnd(jps_ht_p)%laction = .TRUE. 
839         IF ( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
840            ssnd(jps_a_p)%nct  = nn_cats_cpl 
841            ssnd(jps_ht_p)%nct = nn_cats_cpl 
842         ENDIF
843      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_mpnd%cldes; '//sn_snd_mpnd%cldes ) 
844      END SELECT 
845 
846      !                                                      ! ------------------------- !
847      !                                                      !      Surface current      !
848      !                                                      ! ------------------------- !
849      !        ocean currents              !            ice velocities
850      ssnd(jps_ocx1)%clname = 'O_OCurx1'   ;   ssnd(jps_ivx1)%clname = 'O_IVelx1'
851      ssnd(jps_ocy1)%clname = 'O_OCury1'   ;   ssnd(jps_ivy1)%clname = 'O_IVely1'
852      ssnd(jps_ocz1)%clname = 'O_OCurz1'   ;   ssnd(jps_ivz1)%clname = 'O_IVelz1'
853      ssnd(jps_ocxw)%clname = 'O_OCurxw' 
854      ssnd(jps_ocyw)%clname = 'O_OCuryw' 
855      !
856      ssnd(jps_ocx1:jps_ivz1)%nsgn = -1.   ! vectors: change of the sign at the north fold
857
858      IF( sn_snd_crt%clvgrd == 'U,V' ) THEN
859         ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V'
860      ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN 
861         CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' )
862         ssnd(jps_ocx1:jps_ivz1)%clgrid  = 'T'      ! all oce and ice components on the same unique grid
863      ENDIF
864      ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE.   ! default: all are send
865      IF( TRIM( sn_snd_crt%clvref ) == 'spherical' )   ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE. 
866      IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1.
867      SELECT CASE( TRIM( sn_snd_crt%cldes ) )
868      CASE( 'none'                 )   ;   ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE.
869      CASE( 'oce only'             )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
870      CASE( 'weighted oce and ice' )   !   nothing to do
871      CASE( 'mixed oce-ice'        )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
872      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' )
873      END SELECT
874
875      ssnd(jps_ocxw:jps_ocyw)%nsgn = -1.   ! vectors: change of the sign at the north fold
876       
877      IF( sn_snd_crtw%clvgrd == 'U,V' ) THEN
878         ssnd(jps_ocxw)%clgrid = 'U' ; ssnd(jps_ocyw)%clgrid = 'V' 
879      ELSE IF( sn_snd_crtw%clvgrd /= 'T' ) THEN
880         CALL ctl_stop( 'sn_snd_crtw%clvgrd must be equal to T' ) 
881      ENDIF
882      IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) ssnd(jps_ocxw:jps_ocyw)%nsgn = 1. 
883      SELECT CASE( TRIM( sn_snd_crtw%cldes ) ) 
884         CASE( 'none'                 )   ; ssnd(jps_ocxw:jps_ocyw)%laction = .FALSE. 
885         CASE( 'oce only'             )   ; ssnd(jps_ocxw:jps_ocyw)%laction = .TRUE. 
886         CASE( 'weighted oce and ice' )   !   nothing to do
887         CASE( 'mixed oce-ice'        )   ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE. 
888         CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crtw%cldes' ) 
889      END SELECT 
890
891      !                                                      ! ------------------------- !
892      !                                                      !          CO2 flux         !
893      !                                                      ! ------------------------- !
894      ssnd(jps_co2)%clname = 'O_CO2FLX' ;  IF( TRIM(sn_snd_co2%cldes) == 'coupled' )    ssnd(jps_co2 )%laction = .TRUE.
895      !
896      !                                                      ! ------------------------- !
897      !                                                      ! Sea surface freezing temp !
898      !                                                      ! ------------------------- !
899      ! needed by Met Office
900      ssnd(jps_sstfrz)%clname = 'O_SSTFrz' ; IF( TRIM(sn_snd_sstfrz%cldes) == 'coupled' )  ssnd(jps_sstfrz)%laction = .TRUE. 
901      !
902      !                                                      ! ------------------------- !
903      !                                                      !    Ice conductivity       !
904      !                                                      ! ------------------------- !
905      ! needed by Met Office
906      ! Note that ultimately we will move to passing an ocean effective conductivity as well so there
907      ! will be some changes to the parts of the code which currently relate only to ice conductivity
908      ssnd(jps_ttilyr )%clname = 'O_TtiLyr' 
909      SELECT CASE ( TRIM( sn_snd_ttilyr%cldes ) ) 
910      CASE ( 'none' ) 
911         ssnd(jps_ttilyr)%laction = .FALSE. 
912      CASE ( 'ice only' ) 
913         ssnd(jps_ttilyr)%laction = .TRUE. 
914         IF ( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) THEN
915            ssnd(jps_ttilyr)%nct = nn_cats_cpl 
916         ELSE
917            IF ( nn_cats_cpl > 1 ) THEN
918               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_ttilyr%cldes if not exchanging category fields' ) 
919            ENDIF
920         ENDIF
921      CASE ( 'weighted ice' ) 
922         ssnd(jps_ttilyr)%laction = .TRUE. 
923         IF ( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) ssnd(jps_ttilyr)%nct = nn_cats_cpl 
924      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_ttilyr%cldes;'//sn_snd_ttilyr%cldes ) 
925      END SELECT
926
927      ssnd(jps_kice )%clname = 'OIceKn' 
928      SELECT CASE ( TRIM( sn_snd_cond%cldes ) ) 
929      CASE ( 'none' ) 
930         ssnd(jps_kice)%laction = .FALSE. 
931      CASE ( 'ice only' ) 
932         ssnd(jps_kice)%laction = .TRUE. 
933         IF ( TRIM( sn_snd_cond%clcat ) == 'yes' ) THEN
934            ssnd(jps_kice)%nct = nn_cats_cpl 
935         ELSE
936            IF ( nn_cats_cpl > 1 ) THEN
937               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_cond%cldes if not exchanging category fields' ) 
938            ENDIF
939         ENDIF
940      CASE ( 'weighted ice' ) 
941         ssnd(jps_kice)%laction = .TRUE. 
942         IF ( TRIM( sn_snd_cond%clcat ) == 'yes' ) ssnd(jps_kice)%nct = nn_cats_cpl 
943      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_cond%cldes;'//sn_snd_cond%cldes ) 
944      END SELECT 
945      !
946      !                                                      ! ------------------------- !
947      !                                                      !     Sea surface height    !
948      !                                                      ! ------------------------- !
949      ssnd(jps_wlev)%clname = 'O_Wlevel' ;  IF( TRIM(sn_snd_wlev%cldes) == 'coupled' )   ssnd(jps_wlev)%laction = .TRUE. 
950
951      !                                                      ! ------------------------------- !
952      !                                                      !   OPA-SAS coupling - snd by opa !   
953      !                                                      ! ------------------------------- !
954      ssnd(jps_ssh   )%clname = 'O_SSHght' 
955      ssnd(jps_soce  )%clname = 'O_SSSal' 
956      ssnd(jps_e3t1st)%clname = 'O_E3T1st'   
957      ssnd(jps_fraqsr)%clname = 'O_FraQsr'
958      !
959      IF( nn_components == jp_iam_opa ) THEN
960         ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
961         ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE.
962         ssnd( jps_e3t1st )%laction = .NOT.ln_linssh
963         ! vector definition: not used but cleaner...
964         ssnd(jps_ocx1)%clgrid  = 'U'        ! oce components given at U-point
965         ssnd(jps_ocy1)%clgrid  = 'V'        !           and           V-point
966         sn_snd_crt%clvgrd = 'U,V'
967         sn_snd_crt%clvor = 'local grid'
968         sn_snd_crt%clvref = 'spherical'
969         !
970         IF(lwp) THEN                        ! control print
971            WRITE(numout,*)
972            WRITE(numout,*)'  sent fields to SAS component '
973            WRITE(numout,*)'               sea surface temperature (T before, Celsius) '
974            WRITE(numout,*)'               sea surface salinity ' 
975            WRITE(numout,*)'               surface currents U,V on local grid and spherical coordinates' 
976            WRITE(numout,*)'               sea surface height ' 
977            WRITE(numout,*)'               thickness of first ocean T level '       
978            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
979            WRITE(numout,*)
980         ENDIF
981      ENDIF
982      !                                                      ! ------------------------------- !
983      !                                                      !   OPA-SAS coupling - snd by sas !   
984      !                                                      ! ------------------------------- !
985      ssnd(jps_sflx  )%clname = 'I_SFLX'     
986      ssnd(jps_fice2 )%clname = 'IIceFrc'
987      ssnd(jps_qsroce)%clname = 'I_QsrOce'   
988      ssnd(jps_qnsoce)%clname = 'I_QnsOce'   
989      ssnd(jps_oemp  )%clname = 'IOEvaMPr' 
990      ssnd(jps_otx1  )%clname = 'I_OTaux1'   
991      ssnd(jps_oty1  )%clname = 'I_OTauy1'   
992      ssnd(jps_rnf   )%clname = 'I_Runoff'   
993      ssnd(jps_taum  )%clname = 'I_TauMod'   
994      !
995      IF( nn_components == jp_iam_sas ) THEN
996         IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
997         ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE.
998         !
999         ! Change first letter to couple with atmosphere if already coupled with sea_ice
1000         ! this is nedeed as each variable name used in the namcouple must be unique:
1001         ! for example O_SSTSST sent by OPA to SAS and therefore S_SSTSST sent by SAS to the Atmosphere
1002         DO jn = 1, jpsnd
1003            IF ( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname))
1004         END DO
1005         !
1006         IF(lwp) THEN                        ! control print
1007            WRITE(numout,*)
1008            IF( .NOT. ln_cpl ) THEN
1009               WRITE(numout,*)'  sent fields to OPA component '
1010            ELSE
1011               WRITE(numout,*)'  Additional sent fields to OPA component : '
1012            ENDIF
1013            WRITE(numout,*)'                  ice cover '
1014            WRITE(numout,*)'                  oce only EMP  '
1015            WRITE(numout,*)'                  salt flux  '
1016            WRITE(numout,*)'                  mixed oce-ice solar flux  '
1017            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
1018            WRITE(numout,*)'                  wind stress U,V components'
1019            WRITE(numout,*)'                  wind stress module'
1020         ENDIF
1021      ENDIF
1022
1023      !
1024      ! ================================ !
1025      !   initialisation of the coupler  !
1026      ! ================================ !
1027
1028      CALL cpl_define(jprcv, jpsnd, nn_cplmodel)
1029     
1030      IF (ln_usecplmask) THEN
1031         xcplmask(:,:,:) = 0.
1032         CALL iom_open( 'cplmask', inum )
1033         CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:nlci,1:nlcj,1:nn_cplmodel),   &
1034            &          kstart = (/ mig(1),mjg(1),1 /), kcount = (/ nlci,nlcj,nn_cplmodel /) )
1035         CALL iom_close( inum )
1036      ELSE
1037         xcplmask(:,:,:) = 1.
1038      ENDIF
1039      xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 )
1040      !
1041      ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' )
1042      IF( ln_dm2dc .AND. ln_cpl .AND. ncpl_qsr_freq /= 86400 )   &
1043         &   CALL ctl_stop( 'sbc_cpl_init: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' )
1044      IF( ln_dm2dc .AND. ln_cpl ) ncpl_qsr_freq = 86400 / ncpl_qsr_freq
1045      !
1046   END SUBROUTINE sbc_cpl_init
1047
1048
1049   SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice )     
1050      !!----------------------------------------------------------------------
1051      !!             ***  ROUTINE sbc_cpl_rcv  ***
1052      !!
1053      !! ** Purpose :   provide the stress over the ocean and, if no sea-ice,
1054      !!                provide the ocean heat and freshwater fluxes.
1055      !!
1056      !! ** Method  : - Receive all the atmospheric fields (stored in frcv array). called at each time step.
1057      !!                OASIS controls if there is something do receive or not. nrcvinfo contains the info
1058      !!                to know if the field was really received or not
1059      !!
1060      !!              --> If ocean stress was really received:
1061      !!
1062      !!                  - transform the received ocean stress vector from the received
1063      !!                 referential and grid into an atmosphere-ocean stress in
1064      !!                 the (i,j) ocean referencial and at the ocean velocity point.
1065      !!                    The received stress are :
1066      !!                     - defined by 3 components (if cartesian coordinate)
1067      !!                            or by 2 components (if spherical)
1068      !!                     - oriented along geographical   coordinate (if eastward-northward)
1069      !!                            or  along the local grid coordinate (if local grid)
1070      !!                     - given at U- and V-point, resp.   if received on 2 grids
1071      !!                            or at T-point               if received on 1 grid
1072      !!                    Therefore and if necessary, they are successively
1073      !!                  processed in order to obtain them
1074      !!                     first  as  2 components on the sphere
1075      !!                     second as  2 components oriented along the local grid
1076      !!                     third  as  2 components on the U,V grid
1077      !!
1078      !!              -->
1079      !!
1080      !!              - In 'ocean only' case, non solar and solar ocean heat fluxes
1081      !!             and total ocean freshwater fluxes 
1082      !!
1083      !! ** Method  :   receive all fields from the atmosphere and transform
1084      !!              them into ocean surface boundary condition fields
1085      !!
1086      !! ** Action  :   update  utau, vtau   ocean stress at U,V grid
1087      !!                        taum         wind stress module at T-point
1088      !!                        wndm         wind speed  module at T-point over free ocean or leads in presence of sea-ice
1089      !!                        qns          non solar heat fluxes including emp heat content    (ocean only case)
1090      !!                                     and the latent heat flux of solid precip. melting
1091      !!                        qsr          solar ocean heat fluxes   (ocean only case)
1092      !!                        emp          upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case)
1093      !!----------------------------------------------------------------------
1094      USE zdf_oce,  ONLY :   ln_zdfswm
1095      !
1096      INTEGER, INTENT(in) ::   kt          ! ocean model time step index
1097      INTEGER, INTENT(in) ::   k_fsbc      ! frequency of sbc (-> ice model) computation
1098      INTEGER, INTENT(in) ::   k_ice       ! ice management in the sbc (=0/1/2/3)
1099      !!
1100      LOGICAL  ::   llnewtx, llnewtau      ! update wind stress components and module??
1101      INTEGER  ::   ji, jj, jn             ! dummy loop indices
1102      INTEGER  ::   isec                   ! number of seconds since nit000 (assuming rdt did not change since nit000)
1103      REAL(wp) ::   zcumulneg, zcumulpos   ! temporary scalars     
1104      REAL(wp) ::   zcoef                  ! temporary scalar
1105      REAL(wp) ::   zrhoa  = 1.22          ! Air density kg/m3
1106      REAL(wp) ::   zcdrag = 1.5e-3        ! drag coefficient
1107      REAL(wp) ::   zzx, zzy               ! temporary variables
1108      REAL(wp), DIMENSION(jpi,jpj) ::   ztx, zty, zmsk, zemp, zqns, zqsr
1109      !!----------------------------------------------------------------------
1110      !
1111      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
1112      !
1113      !                                                      ! ======================================================= !
1114      !                                                      ! Receive all the atmos. fields (including ice information)
1115      !                                                      ! ======================================================= !
1116      isec = ( kt - nit000 ) * NINT( rdt )                      ! date of exchanges
1117      DO jn = 1, jprcv                                          ! received fields sent by the atmosphere
1118         IF( srcv(jn)%laction )   CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) )
1119      END DO
1120
1121      !                                                      ! ========================= !
1122      IF( srcv(jpr_otx1)%laction ) THEN                      !  ocean stress components  !
1123         !                                                   ! ========================= !
1124         ! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid
1125         ! => need to be done only when we receive the field
1126         IF(  nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN
1127            !
1128            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
1129               !                                                       ! (cartesian to spherical -> 3 to 2 components)
1130               !
1131               CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1),   &
1132                  &          srcv(jpr_otx1)%clgrid, ztx, zty )
1133               frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
1134               frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
1135               !
1136               IF( srcv(jpr_otx2)%laction ) THEN
1137                  CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1),   &
1138                     &          srcv(jpr_otx2)%clgrid, ztx, zty )
1139                  frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
1140                  frcv(jpr_oty2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
1141               ENDIF
1142               !
1143            ENDIF
1144            !
1145            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
1146               !                                                       ! (geographical to local grid -> rotate the components)
1147               CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx )   
1148               IF( srcv(jpr_otx2)%laction ) THEN
1149                  CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty )   
1150               ELSE
1151                  CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty ) 
1152               ENDIF
1153               frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
1154               frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 2nd grid
1155            ENDIF
1156            !                             
1157            IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN
1158               DO jj = 2, jpjm1                                          ! T ==> (U,V)
1159                  DO ji = fs_2, fs_jpim1   ! vector opt.
1160                     frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1) )
1161                     frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji  ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) )
1162                  END DO
1163               END DO
1164               CALL lbc_lnk_multi( 'sbccpl', frcv(jpr_otx1)%z3(:,:,1), 'U',  -1., frcv(jpr_oty1)%z3(:,:,1), 'V',  -1. )
1165            ENDIF
1166            llnewtx = .TRUE.
1167         ELSE
1168            llnewtx = .FALSE.
1169         ENDIF
1170         !                                                   ! ========================= !
1171      ELSE                                                   !   No dynamical coupling   !
1172         !                                                   ! ========================= !
1173         frcv(jpr_otx1)%z3(:,:,1) = 0.e0                               ! here simply set to zero
1174         frcv(jpr_oty1)%z3(:,:,1) = 0.e0                               ! an external read in a file can be added instead
1175         llnewtx = .TRUE.
1176         !
1177      ENDIF
1178      !                                                      ! ========================= !
1179      !                                                      !    wind stress module     !   (taum)
1180      !                                                      ! ========================= !
1181      IF( .NOT. srcv(jpr_taum)%laction ) THEN                    ! compute wind stress module from its components if not received
1182         ! => need to be done only when otx1 was changed
1183         IF( llnewtx ) THEN
1184            DO jj = 2, jpjm1
1185               DO ji = fs_2, fs_jpim1   ! vect. opt.
1186                  zzx = frcv(jpr_otx1)%z3(ji-1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1)
1187                  zzy = frcv(jpr_oty1)%z3(ji  ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1)
1188                  frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy )
1189               END DO
1190            END DO
1191            CALL lbc_lnk( 'sbccpl', frcv(jpr_taum)%z3(:,:,1), 'T', 1. )
1192            llnewtau = .TRUE.
1193         ELSE
1194            llnewtau = .FALSE.
1195         ENDIF
1196      ELSE
1197         llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv
1198         ! Stress module can be negative when received (interpolation problem)
1199         IF( llnewtau ) THEN
1200            frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) )
1201         ENDIF
1202      ENDIF
1203      !
1204      !                                                      ! ========================= !
1205      !                                                      !      10 m wind speed      !   (wndm)
1206      !                                                      ! ========================= !
1207      IF( .NOT. srcv(jpr_w10m)%laction ) THEN                    ! compute wind spreed from wind stress module if not received 
1208         ! => need to be done only when taumod was changed
1209         IF( llnewtau ) THEN
1210            zcoef = 1. / ( zrhoa * zcdrag ) 
1211            DO jj = 1, jpj
1212               DO ji = 1, jpi 
1213                  frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef )
1214               END DO
1215            END DO
1216         ENDIF
1217      ENDIF
1218
1219      ! u(v)tau and taum will be modified by ice model
1220      ! -> need to be reset before each call of the ice/fsbc     
1221      IF( MOD( kt-1, k_fsbc ) == 0 ) THEN
1222         !
1223         IF( ln_mixcpl ) THEN
1224            utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:)
1225            vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:)
1226            taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:)
1227            wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:)
1228         ELSE
1229            utau(:,:) = frcv(jpr_otx1)%z3(:,:,1)
1230            vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1)
1231            taum(:,:) = frcv(jpr_taum)%z3(:,:,1)
1232            wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1)
1233         ENDIF
1234         CALL iom_put( "taum_oce", taum )   ! output wind stress module
1235         
1236      ENDIF
1237
1238      !                                                      ! ================== !
1239      !                                                      ! atmosph. CO2 (ppm) !
1240      !                                                      ! ================== !
1241      IF( srcv(jpr_co2)%laction )   atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1)
1242      !
1243      !                                                      ! ================== !
1244      !                                                      !   ice skin temp.   !
1245      !                                                      ! ================== !
1246#if defined key_si3
1247      ! needed by Met Office
1248      IF( srcv(jpr_ts_ice)%laction ) THEN
1249         WHERE    ( frcv(jpr_ts_ice)%z3(:,:,:) > 0.0  )   ;   tsfc_ice(:,:,:) = 0.0 
1250         ELSEWHERE( frcv(jpr_ts_ice)%z3(:,:,:) < -60. )   ;   tsfc_ice(:,:,:) = -60.
1251         ELSEWHERE                                        ;   tsfc_ice(:,:,:) = frcv(jpr_ts_ice)%z3(:,:,:)
1252         END WHERE
1253      ENDIF 
1254#endif
1255      !                                                      ! ========================= !
1256      !                                                      ! Mean Sea Level Pressure   !   (taum)
1257      !                                                      ! ========================= !
1258      IF( srcv(jpr_mslp)%laction ) THEN                    ! UKMO SHELF effect of atmospheric pressure on SSH
1259          IF( kt /= nit000 )   ssh_ibb(:,:) = ssh_ib(:,:)    !* Swap of ssh_ib fields
1260
1261          r1_grau = 1.e0 / (grav * rau0)               !* constant for optimization
1262          ssh_ib(:,:) = - ( frcv(jpr_mslp)%z3(:,:,1) - rpref ) * r1_grau    ! equivalent ssh (inverse barometer)
1263          apr   (:,:) =     frcv(jpr_mslp)%z3(:,:,1)                         !atmospheric pressure
1264   
1265          IF( kt == nit000 ) ssh_ibb(:,:) = ssh_ib(:,:)  ! correct this later (read from restart if possible)
1266      END IF 
1267      !
1268      IF( ln_sdw ) THEN  ! Stokes Drift correction activated
1269      !                                                      ! ========================= !
1270      !                                                      !       Stokes drift u      !
1271      !                                                      ! ========================= !
1272         IF( srcv(jpr_sdrftx)%laction ) ut0sd(:,:) = frcv(jpr_sdrftx)%z3(:,:,1)
1273      !
1274      !                                                      ! ========================= !
1275      !                                                      !       Stokes drift v      !
1276      !                                                      ! ========================= !
1277         IF( srcv(jpr_sdrfty)%laction ) vt0sd(:,:) = frcv(jpr_sdrfty)%z3(:,:,1)
1278      !
1279      !                                                      ! ========================= !
1280      !                                                      !      Wave mean period     !
1281      !                                                      ! ========================= !
1282         IF( srcv(jpr_wper)%laction ) wmp(:,:) = frcv(jpr_wper)%z3(:,:,1)
1283      !
1284      !                                                      ! ========================= !
1285      !                                                      !  Significant wave height  !
1286      !                                                      ! ========================= !
1287         IF( srcv(jpr_hsig)%laction ) hsw(:,:) = frcv(jpr_hsig)%z3(:,:,1)
1288      !
1289      !                                                      ! ========================= ! 
1290      !                                                      !    Wave peak frequency    !
1291      !                                                      ! ========================= ! 
1292         IF( srcv(jpr_wfreq)%laction ) wfreq(:,:) = frcv(jpr_wfreq)%z3(:,:,1)
1293      !
1294      !                                                      ! ========================= !
1295      !                                                      !    Vertical mixing Qiao   !
1296      !                                                      ! ========================= !
1297         IF( srcv(jpr_wnum)%laction .AND. ln_zdfswm ) wnum(:,:) = frcv(jpr_wnum)%z3(:,:,1)
1298
1299         ! Calculate the 3D Stokes drift both in coupled and not fully uncoupled mode
1300         IF( srcv(jpr_sdrftx)%laction .OR. srcv(jpr_sdrfty)%laction .OR. srcv(jpr_wper)%laction &
1301                                      .OR. srcv(jpr_hsig)%laction   .OR. srcv(jpr_wfreq)%laction) THEN
1302            CALL sbc_stokes()
1303         ENDIF
1304      ENDIF
1305      !                                                      ! ========================= !
1306      !                                                      ! Stress adsorbed by waves  !
1307      !                                                      ! ========================= !
1308      IF( srcv(jpr_tauwoc)%laction .AND. ln_tauwoc ) tauoc_wave(:,:) = frcv(jpr_tauwoc)%z3(:,:,1)
1309
1310      !                                                      ! ========================= ! 
1311      !                                                      ! Stress component by waves !
1312      !                                                      ! ========================= ! 
1313      IF( srcv(jpr_tauwx)%laction .AND. srcv(jpr_tauwy)%laction .AND. ln_tauw ) THEN
1314         tauw_x(:,:) = frcv(jpr_tauwx)%z3(:,:,1)
1315         tauw_y(:,:) = frcv(jpr_tauwy)%z3(:,:,1)
1316      ENDIF
1317
1318      !                                                      ! ========================= !
1319      !                                                      !   Wave drag coefficient   !
1320      !                                                      ! ========================= !
1321      IF( srcv(jpr_wdrag)%laction .AND. ln_cdgw )   cdn_wave(:,:) = frcv(jpr_wdrag)%z3(:,:,1)
1322
1323      !  Fields received by SAS when OASIS coupling
1324      !  (arrays no more filled at sbcssm stage)
1325      !                                                      ! ================== !
1326      !                                                      !        SSS         !
1327      !                                                      ! ================== !
1328      IF( srcv(jpr_soce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1329         sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1)
1330         CALL iom_put( 'sss_m', sss_m )
1331      ENDIF
1332      !                                               
1333      !                                                      ! ================== !
1334      !                                                      !        SST         !
1335      !                                                      ! ================== !
1336      IF( srcv(jpr_toce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1337         sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1)
1338         IF( srcv(jpr_soce)%laction .AND. l_useCT ) THEN    ! make sure that sst_m is the potential temperature
1339            sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) )
1340         ENDIF
1341      ENDIF
1342      !                                                      ! ================== !
1343      !                                                      !        SSH         !
1344      !                                                      ! ================== !
1345      IF( srcv(jpr_ssh )%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1346         ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1)
1347         CALL iom_put( 'ssh_m', ssh_m )
1348      ENDIF
1349      !                                                      ! ================== !
1350      !                                                      !  surface currents  !
1351      !                                                      ! ================== !
1352      IF( srcv(jpr_ocx1)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
1353         ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1)
1354         ub (:,:,1) = ssu_m(:,:)                             ! will be used in icestp in the call of ice_forcing_tau
1355         un (:,:,1) = ssu_m(:,:)                             ! will be used in sbc_cpl_snd if atmosphere coupling
1356         CALL iom_put( 'ssu_m', ssu_m )
1357      ENDIF
1358      IF( srcv(jpr_ocy1)%laction ) THEN
1359         ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1)
1360         vb (:,:,1) = ssv_m(:,:)                             ! will be used in icestp in the call of ice_forcing_tau
1361         vn (:,:,1) = ssv_m(:,:)                             ! will be used in sbc_cpl_snd if atmosphere coupling
1362         CALL iom_put( 'ssv_m', ssv_m )
1363      ENDIF
1364      !                                                      ! ======================== !
1365      !                                                      !  first T level thickness !
1366      !                                                      ! ======================== !
1367      IF( srcv(jpr_e3t1st )%laction ) THEN                   ! received by sas in case of opa <-> sas coupling
1368         e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1)
1369         CALL iom_put( 'e3t_m', e3t_m(:,:) )
1370      ENDIF
1371      !                                                      ! ================================ !
1372      !                                                      !  fraction of solar net radiation !
1373      !                                                      ! ================================ !
1374      IF( srcv(jpr_fraqsr)%laction ) THEN                    ! received by sas in case of opa <-> sas coupling
1375         frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1)
1376         CALL iom_put( 'frq_m', frq_m )
1377      ENDIF
1378     
1379      !                                                      ! ========================= !
1380      IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN   !  heat & freshwater fluxes ! (Ocean only case)
1381         !                                                   ! ========================= !
1382         !
1383         !                                                       ! total freshwater fluxes over the ocean (emp)
1384         IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN
1385            SELECT CASE( TRIM( sn_rcv_emp%cldes ) )                                    ! evaporation - precipitation
1386            CASE( 'conservative' )
1387               zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) )
1388            CASE( 'oce only', 'oce and ice' )
1389               zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1)
1390            CASE default
1391               CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' )
1392            END SELECT
1393         ELSE
1394            zemp(:,:) = 0._wp
1395         ENDIF
1396         !
1397         !                                                        ! runoffs and calving (added in emp)
1398         IF( srcv(jpr_rnf)%laction )     rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1399         IF( srcv(jpr_cal)%laction )     zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1)
1400 
1401         IF( srcv(jpr_icb)%laction )  THEN
1402             fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
1403             rnf(:,:)    = rnf(:,:) + fwficb(:,:)   ! iceberg added to runfofs
1404         ENDIF
1405         !
1406         ! ice shelf fwf
1407         IF( srcv(jpr_isf)%laction )  THEN
1408            fwfisf_oasis(:,:) = - frcv(jpr_isf)%z3(:,:,1)  ! fresh water flux from the isf (fwfisf <0 mean melting) 
1409         END IF
1410       
1411         IF( ln_mixcpl ) THEN   ;   emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:)
1412         ELSE                   ;   emp(:,:) =                              zemp(:,:)
1413         ENDIF
1414         !
1415         !                                                       ! non solar heat flux over the ocean (qns)
1416         IF(      srcv(jpr_qnsoce)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
1417         ELSE IF( srcv(jpr_qnsmix)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
1418         ELSE                                       ;   zqns(:,:) = 0._wp
1419         END IF
1420         ! update qns over the free ocean with:
1421         IF( nn_components /= jp_iam_opa ) THEN
1422            zqns(:,:) =  zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp         ! remove heat content due to mass flux (assumed to be at SST)
1423            IF( srcv(jpr_snow  )%laction ) THEN
1424               zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * rLfus   ! energy for melting solid precipitation over the free ocean
1425            ENDIF
1426         ENDIF
1427         !
1428         IF( srcv(jpr_icb)%laction )  zqns(:,:) = zqns(:,:) - frcv(jpr_icb)%z3(:,:,1) * rLfus ! remove heat content associated to iceberg melting
1429         !
1430         IF( ln_mixcpl ) THEN   ;   qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:)
1431         ELSE                   ;   qns(:,:) =                              zqns(:,:)
1432         ENDIF
1433
1434         !                                                       ! solar flux over the ocean          (qsr)
1435         IF     ( srcv(jpr_qsroce)%laction ) THEN   ;   zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1)
1436         ELSE IF( srcv(jpr_qsrmix)%laction ) then   ;   zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1)
1437         ELSE                                       ;   zqsr(:,:) = 0._wp
1438         ENDIF
1439         IF( ln_dm2dc .AND. ln_cpl )   zqsr(:,:) = sbc_dcy( zqsr )   ! modify qsr to include the diurnal cycle
1440         IF( ln_mixcpl ) THEN   ;   qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:)
1441         ELSE                   ;   qsr(:,:) =                              zqsr(:,:)
1442         ENDIF
1443         !
1444         ! salt flux over the ocean (received by opa in case of opa <-> sas coupling)
1445         IF( srcv(jpr_sflx )%laction )   sfx(:,:) = frcv(jpr_sflx  )%z3(:,:,1)
1446         ! Ice cover  (received by opa in case of opa <-> sas coupling)
1447         IF( srcv(jpr_fice )%laction )   fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1)
1448         !
1449      ENDIF
1450      !
1451   END SUBROUTINE sbc_cpl_rcv
1452   
1453
1454   SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj )     
1455      !!----------------------------------------------------------------------
1456      !!             ***  ROUTINE sbc_cpl_ice_tau  ***
1457      !!
1458      !! ** Purpose :   provide the stress over sea-ice in coupled mode
1459      !!
1460      !! ** Method  :   transform the received stress from the atmosphere into
1461      !!             an atmosphere-ice stress in the (i,j) ocean referencial
1462      !!             and at the velocity point of the sea-ice model:
1463      !!                'C'-grid : i- (j-) components given at U- (V-) point
1464      !!
1465      !!                The received stress are :
1466      !!                 - defined by 3 components (if cartesian coordinate)
1467      !!                        or by 2 components (if spherical)
1468      !!                 - oriented along geographical   coordinate (if eastward-northward)
1469      !!                        or  along the local grid coordinate (if local grid)
1470      !!                 - given at U- and V-point, resp.   if received on 2 grids
1471      !!                        or at a same point (T or I) if received on 1 grid
1472      !!                Therefore and if necessary, they are successively
1473      !!             processed in order to obtain them
1474      !!                 first  as  2 components on the sphere
1475      !!                 second as  2 components oriented along the local grid
1476      !!                 third  as  2 components on the ice grid point
1477      !!
1478      !!                Except in 'oce and ice' case, only one vector stress field
1479      !!             is received. It has already been processed in sbc_cpl_rcv
1480      !!             so that it is now defined as (i,j) components given at U-
1481      !!             and V-points, respectively. 
1482      !!
1483      !! ** Action  :   return ptau_i, ptau_j, the stress over the ice
1484      !!----------------------------------------------------------------------
1485      REAL(wp), INTENT(out), DIMENSION(:,:) ::   p_taui   ! i- & j-components of atmos-ice stress [N/m2]
1486      REAL(wp), INTENT(out), DIMENSION(:,:) ::   p_tauj   ! at I-point (B-grid) or U & V-point (C-grid)
1487      !!
1488      INTEGER ::   ji, jj   ! dummy loop indices
1489      INTEGER ::   itx      ! index of taux over ice
1490      REAL(wp), DIMENSION(jpi,jpj) ::   ztx, zty 
1491      !!----------------------------------------------------------------------
1492      !
1493      IF( srcv(jpr_itx1)%laction ) THEN   ;   itx =  jpr_itx1   
1494      ELSE                                ;   itx =  jpr_otx1
1495      ENDIF
1496
1497      ! do something only if we just received the stress from atmosphere
1498      IF(  nrcvinfo(itx) == OASIS_Rcv ) THEN
1499         !                                                      ! ======================= !
1500         IF( srcv(jpr_itx1)%laction ) THEN                      !   ice stress received   !
1501            !                                                   ! ======================= !
1502           
1503            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
1504               !                                                       ! (cartesian to spherical -> 3 to 2 components)
1505               CALL geo2oce(  frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1),   &
1506                  &          srcv(jpr_itx1)%clgrid, ztx, zty )
1507               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
1508               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
1509               !
1510               IF( srcv(jpr_itx2)%laction ) THEN
1511                  CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1),   &
1512                     &          srcv(jpr_itx2)%clgrid, ztx, zty )
1513                  frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
1514                  frcv(jpr_ity2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
1515               ENDIF
1516               !
1517            ENDIF
1518            !
1519            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
1520               !                                                       ! (geographical to local grid -> rotate the components)
1521               CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx )   
1522               IF( srcv(jpr_itx2)%laction ) THEN
1523                  CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty )   
1524               ELSE
1525                  CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty ) 
1526               ENDIF
1527               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
1528               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 1st grid
1529            ENDIF
1530            !                                                   ! ======================= !
1531         ELSE                                                   !     use ocean stress    !
1532            !                                                   ! ======================= !
1533            frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1)
1534            frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1)
1535            !
1536         ENDIF
1537         !                                                      ! ======================= !
1538         !                                                      !     put on ice grid     !
1539         !                                                      ! ======================= !
1540         !   
1541         !                                                  j+1   j     -----V---F
1542         ! ice stress on ice velocity point                              !       |
1543         ! (C-grid ==>(U,V))                                      j      |   T   U
1544         !                                                               |       |
1545         !                                                   j    j-1   -I-------|
1546         !                                               (for I)         |       |
1547         !                                                              i-1  i   i
1548         !                                                               i      i+1 (for I)
1549         SELECT CASE ( srcv(jpr_itx1)%clgrid )
1550         CASE( 'U' )
1551            p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1)                   ! (U,V) ==> (U,V)
1552            p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
1553         CASE( 'F' )
1554            DO jj = 2, jpjm1                                   ! F ==> (U,V)
1555               DO ji = fs_2, fs_jpim1   ! vector opt.
1556                  p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji,jj,1) + frcv(jpr_itx1)%z3(ji  ,jj-1,1) )
1557                  p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji,jj,1) + frcv(jpr_ity1)%z3(ji-1,jj  ,1) )
1558               END DO
1559            END DO
1560         CASE( 'T' )
1561            DO jj = 2, jpjm1                                   ! T ==> (U,V)
1562               DO ji = fs_2, fs_jpim1   ! vector opt.
1563                  p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj  ,1) + frcv(jpr_itx1)%z3(ji,jj,1) )
1564                  p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji  ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) )
1565               END DO
1566            END DO
1567         CASE( 'I' )
1568            DO jj = 2, jpjm1                                   ! I ==> (U,V)
1569               DO ji = 2, jpim1   ! NO vector opt.
1570                  p_taui(ji,jj) = 0.5 * ( frcv(jpr_itx1)%z3(ji+1,jj+1,1) + frcv(jpr_itx1)%z3(ji+1,jj  ,1) )
1571                  p_tauj(ji,jj) = 0.5 * ( frcv(jpr_ity1)%z3(ji+1,jj+1,1) + frcv(jpr_ity1)%z3(ji  ,jj+1,1) )
1572               END DO
1573            END DO
1574         END SELECT
1575         IF( srcv(jpr_itx1)%clgrid /= 'U' ) THEN
1576            CALL lbc_lnk_multi( 'sbccpl', p_taui, 'U',  -1., p_tauj, 'V',  -1. )
1577         ENDIF
1578         
1579      ENDIF
1580      !
1581   END SUBROUTINE sbc_cpl_ice_tau
1582   
1583
1584   SUBROUTINE sbc_cpl_ice_flx( picefr, palbi, psst, pist, phs, phi )
1585      !!----------------------------------------------------------------------
1586      !!             ***  ROUTINE sbc_cpl_ice_flx  ***
1587      !!
1588      !! ** Purpose :   provide the heat and freshwater fluxes of the ocean-ice system
1589      !!
1590      !! ** Method  :   transform the fields received from the atmosphere into
1591      !!             surface heat and fresh water boundary condition for the
1592      !!             ice-ocean system. The following fields are provided:
1593      !!               * total non solar, solar and freshwater fluxes (qns_tot,
1594      !!             qsr_tot and emp_tot) (total means weighted ice-ocean flux)
1595      !!             NB: emp_tot include runoffs and calving.
1596      !!               * fluxes over ice (qns_ice, qsr_ice, emp_ice) where
1597      !!             emp_ice = sublimation - solid precipitation as liquid
1598      !!             precipitation are re-routed directly to the ocean and
1599      !!             calving directly enter the ocean (runoffs are read but included in trasbc.F90)
1600      !!               * solid precipitation (sprecip), used to add to qns_tot
1601      !!             the heat lost associated to melting solid precipitation
1602      !!             over the ocean fraction.
1603      !!               * heat content of rain, snow and evap can also be provided,
1604      !!             otherwise heat flux associated with these mass flux are
1605      !!             guessed (qemp_oce, qemp_ice)
1606      !!
1607      !!             - the fluxes have been separated from the stress as
1608      !!               (a) they are updated at each ice time step compare to
1609      !!               an update at each coupled time step for the stress, and
1610      !!               (b) the conservative computation of the fluxes over the
1611      !!               sea-ice area requires the knowledge of the ice fraction
1612      !!               after the ice advection and before the ice thermodynamics,
1613      !!               so that the stress is updated before the ice dynamics
1614      !!               while the fluxes are updated after it.
1615      !!
1616      !! ** Details
1617      !!             qns_tot = (1-a) * qns_oce + a * qns_ice               => provided
1618      !!                     + qemp_oce + qemp_ice                         => recalculated and added up to qns
1619      !!
1620      !!             qsr_tot = (1-a) * qsr_oce + a * qsr_ice               => provided
1621      !!
1622      !!             emp_tot = emp_oce + emp_ice                           => calving is provided and added to emp_tot (and emp_oce).
1623      !!                                                                      runoff (which includes rivers+icebergs) and iceshelf
1624      !!                                                                      are provided but not included in emp here. Only runoff will
1625      !!                                                                      be included in emp in other parts of NEMO code
1626      !! ** Action  :   update at each nf_ice time step:
1627      !!                   qns_tot, qsr_tot  non-solar and solar total heat fluxes
1628      !!                   qns_ice, qsr_ice  non-solar and solar heat fluxes over the ice
1629      !!                   emp_tot           total evaporation - precipitation(liquid and solid) (-calving)
1630      !!                   emp_ice           ice sublimation - solid precipitation over the ice
1631      !!                   dqns_ice          d(non-solar heat flux)/d(Temperature) over the ice
1632      !!                   sprecip           solid precipitation over the ocean 
1633      !!----------------------------------------------------------------------
1634      REAL(wp), INTENT(in), DIMENSION(:,:)             ::   picefr     ! ice fraction                [0 to 1]
1635      !                                                !!           ! optional arguments, used only in 'mixed oce-ice' case
1636      REAL(wp), INTENT(in), DIMENSION(:,:,:), OPTIONAL ::   palbi      ! all skies ice albedo
1637      REAL(wp), INTENT(in), DIMENSION(:,:  ), OPTIONAL ::   psst       ! sea surface temperature     [Celsius]
1638      REAL(wp), INTENT(in), DIMENSION(:,:,:), OPTIONAL ::   pist       ! ice surface temperature     [Kelvin]
1639      REAL(wp), INTENT(in), DIMENSION(:,:,:), OPTIONAL ::   phs        ! snow depth                  [m]
1640      REAL(wp), INTENT(in), DIMENSION(:,:,:), OPTIONAL ::   phi        ! ice thickness               [m]
1641      !
1642      INTEGER  ::   ji, jj, jl   ! dummy loop index
1643      REAL(wp) ::   ztri         ! local scalar
1644      REAL(wp), DIMENSION(jpi,jpj)     ::   zcptn, zcptrain, zcptsnw, ziceld, zmsk, zsnw
1645      REAL(wp), DIMENSION(jpi,jpj)     ::   zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip  , zevap_oce, zdevap_ice
1646      REAL(wp), DIMENSION(jpi,jpj)     ::   zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice
1647      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice, zevap_ice    !!gm , zfrqsr_tr_i
1648      !!----------------------------------------------------------------------
1649      !
1650      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
1651      ziceld(:,:) = 1._wp - picefr(:,:)
1652      zcptn (:,:) = rcp * sst_m(:,:)
1653      !
1654      !                                                      ! ========================= !
1655      !                                                      !    freshwater budget      !   (emp_tot)
1656      !                                                      ! ========================= !
1657      !
1658      !                                                           ! solid Precipitation                                (sprecip)
1659      !                                                           ! liquid + solid Precipitation                       (tprecip)
1660      !                                                           ! total Evaporation - total Precipitation            (emp_tot)
1661      !                                                           ! sublimation - solid precipitation (cell average)   (emp_ice)
1662      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
1663      CASE( 'conservative' )   ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp
1664         zsprecip(:,:) =   frcv(jpr_snow)%z3(:,:,1)                  ! May need to ensure positive here
1665         ztprecip(:,:) =   frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:)  ! May need to ensure positive here
1666         zemp_tot(:,:) =   frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:)
1667         zemp_ice(:,:) = ( frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_snow)%z3(:,:,1) ) * picefr(:,:)
1668      CASE( 'oce and ice'   )   ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp
1669         zemp_tot(:,:) = ziceld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + picefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1)
1670         zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * picefr(:,:)
1671         zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1)
1672         ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:)
1673      CASE( 'none'      )       ! Not available as for now: needs additional coding below when computing zevap_oce
1674      !                         ! since fields received are not defined with none option
1675         CALL ctl_stop( 'STOP', 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl' )
1676      END SELECT
1677
1678#if defined key_si3
1679      ! zsnw = snow fraction over ice after wind blowing (=picefr if no blowing)
1680      zsnw(:,:) = 0._wp   ;   CALL ice_thd_snwblow( ziceld, zsnw )
1681     
1682      ! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- !
1683      zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( picefr(:,:) - zsnw(:,:) )  ! emp_ice = A * sublimation - zsnw * sprecip
1684      zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:)                                ! emp_oce = emp_tot - emp_ice
1685
1686      ! --- evaporation over ocean (used later for qemp) --- !
1687      zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) * picefr(:,:)
1688
1689      ! --- evaporation over ice (kg/m2/s) --- !
1690      DO jl=1,jpl
1691         IF (sn_rcv_emp%clcat == 'yes') THEN   ;   zevap_ice(:,:,jl) = frcv(jpr_ievp)%z3(:,:,jl)
1692         ELSE                                  ;   zevap_ice(:,:,jl) = frcv(jpr_ievp)%z3(:,:,1 )   ;   ENDIF
1693      ENDDO
1694
1695      ! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0
1696      ! therefore, sublimation is not redistributed over the ice categories when no subgrid scale fluxes are provided by atm.
1697      zdevap_ice(:,:) = 0._wp
1698     
1699      ! --- Continental fluxes --- !
1700      IF( srcv(jpr_rnf)%laction ) THEN   ! runoffs (included in emp later on)
1701         rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1702      ENDIF
1703      IF( srcv(jpr_cal)%laction ) THEN   ! calving (put in emp_tot and emp_oce)
1704         zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
1705         zemp_oce(:,:) = zemp_oce(:,:) - frcv(jpr_cal)%z3(:,:,1)
1706      ENDIF
1707      IF( srcv(jpr_icb)%laction ) THEN   ! iceberg added to runoffs
1708         fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
1709         rnf(:,:)    = rnf(:,:) + fwficb(:,:)
1710      ENDIF
1711      IF( srcv(jpr_isf)%laction ) THEN   ! iceshelf (fwfisf <0 mean melting)
1712        fwfisf_oasis(:,:) = - frcv(jpr_isf)%z3(:,:,1) 
1713      ENDIF
1714
1715      IF( ln_mixcpl ) THEN
1716         emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
1717         emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
1718         emp_oce(:,:) = emp_oce(:,:) * xcplmask(:,:,0) + zemp_oce(:,:) * zmsk(:,:)
1719         sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
1720         tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
1721         DO jl = 1, jpl
1722            evap_ice (:,:,jl) = evap_ice (:,:,jl) * xcplmask(:,:,0) + zevap_ice (:,:,jl) * zmsk(:,:)
1723            devap_ice(:,:,jl) = devap_ice(:,:,jl) * xcplmask(:,:,0) + zdevap_ice(:,:)    * zmsk(:,:)
1724         END DO
1725      ELSE
1726         emp_tot (:,:)   = zemp_tot (:,:)
1727         emp_ice (:,:)   = zemp_ice (:,:)
1728         emp_oce (:,:)   = zemp_oce (:,:)     
1729         sprecip (:,:)   = zsprecip (:,:)
1730         tprecip (:,:)   = ztprecip (:,:)
1731         evap_ice(:,:,:) = zevap_ice(:,:,:)
1732         DO jl = 1, jpl
1733            devap_ice(:,:,jl) = zdevap_ice(:,:)
1734         END DO
1735      ENDIF
1736
1737#else
1738      zsnw(:,:) = picefr(:,:)
1739      ! --- Continental fluxes --- !
1740      IF( srcv(jpr_rnf)%laction ) THEN   ! runoffs (included in emp later on)
1741         rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
1742      ENDIF
1743      IF( srcv(jpr_cal)%laction ) THEN   ! calving (put in emp_tot)
1744         zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
1745      ENDIF
1746      IF( srcv(jpr_icb)%laction ) THEN   ! iceberg added to runoffs
1747         fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
1748         rnf(:,:)    = rnf(:,:) + fwficb(:,:)
1749      ENDIF
1750      IF( srcv(jpr_isf)%laction ) THEN   ! iceshelf (fwfisf <0 mean melting)
1751        fwfisf_oasis(:,:) = - frcv(jpr_isf)%z3(:,:,1)
1752      ENDIF
1753      !
1754      IF( ln_mixcpl ) THEN
1755         emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
1756         emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
1757         sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
1758         tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
1759      ELSE
1760         emp_tot(:,:) =                                  zemp_tot(:,:)
1761         emp_ice(:,:) =                                  zemp_ice(:,:)
1762         sprecip(:,:) =                                  zsprecip(:,:)
1763         tprecip(:,:) =                                  ztprecip(:,:)
1764      ENDIF
1765      !
1766#endif
1767
1768      ! outputs
1769!!      IF( srcv(jpr_rnf)%laction )   CALL iom_put( 'runoffs' , rnf(:,:) * tmask(:,:,1)                                 )  ! runoff
1770!!      IF( srcv(jpr_isf)%laction )   CALL iom_put( 'iceshelf_cea', -fwfisf(:,:) * tmask(:,:,1)                         )  ! iceshelf
1771      IF( srcv(jpr_cal)%laction )   CALL iom_put( 'calving_cea' , frcv(jpr_cal)%z3(:,:,1) * tmask(:,:,1)                )  ! calving
1772      IF( srcv(jpr_icb)%laction )   CALL iom_put( 'iceberg_cea' , frcv(jpr_icb)%z3(:,:,1) * tmask(:,:,1)                )  ! icebergs
1773      IF( iom_use('snowpre') )      CALL iom_put( 'snowpre'     , sprecip(:,:)                                          )  ! Snow
1774      IF( iom_use('precip') )       CALL iom_put( 'precip'      , tprecip(:,:)                                          )  ! total  precipitation
1775      IF( iom_use('rain') )         CALL iom_put( 'rain'        , tprecip(:,:) - sprecip(:,:)                           )  ! liquid precipitation
1776      IF( iom_use('snow_ao_cea') )  CALL iom_put( 'snow_ao_cea' , sprecip(:,:) * ( 1._wp - zsnw(:,:) )                  )  ! Snow over ice-free ocean  (cell average)
1777      IF( iom_use('snow_ai_cea') )  CALL iom_put( 'snow_ai_cea' , sprecip(:,:) *           zsnw(:,:)                    )  ! Snow over sea-ice         (cell average)
1778      IF( iom_use('rain_ao_cea') )  CALL iom_put( 'rain_ao_cea' , ( tprecip(:,:) - sprecip(:,:) ) * picefr(:,:)         )  ! liquid precipitation over ocean (cell average)
1779      IF( iom_use('subl_ai_cea') )  CALL iom_put( 'subl_ai_cea' , frcv(jpr_ievp)%z3(:,:,1) * picefr(:,:) * tmask(:,:,1) )  ! Sublimation over sea-ice (cell average)
1780      IF( iom_use('evap_ao_cea') )  CALL iom_put( 'evap_ao_cea' , ( frcv(jpr_tevp)%z3(:,:,1)  &
1781         &                                                        - frcv(jpr_ievp)%z3(:,:,1) * picefr(:,:) ) * tmask(:,:,1) )  ! ice-free oce evap (cell average)
1782      ! note: runoff output is done in sbcrnf (which includes icebergs too) and iceshelf output is done in sbcisf
1783      !
1784      !                                                      ! ========================= !
1785      SELECT CASE( TRIM( sn_rcv_qns%cldes ) )                !   non solar heat fluxes   !   (qns)
1786      !                                                      ! ========================= !
1787      CASE( 'oce only' )         ! the required field is directly provided
1788         zqns_tot(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
1789      CASE( 'conservative' )     ! the required fields are directly provided
1790         zqns_tot(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
1791         IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
1792            zqns_ice(:,:,1:jpl) = frcv(jpr_qnsice)%z3(:,:,1:jpl)
1793         ELSE
1794            DO jl = 1, jpl
1795               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) ! Set all category values equal
1796            END DO
1797         ENDIF
1798      CASE( 'oce and ice' )      ! the total flux is computed from ocean and ice fluxes
1799         zqns_tot(:,:) =  ziceld(:,:) * frcv(jpr_qnsoce)%z3(:,:,1)
1800         IF ( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
1801            DO jl=1,jpl
1802               zqns_tot(:,:   ) = zqns_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qnsice)%z3(:,:,jl)   
1803               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,jl)
1804            ENDDO
1805         ELSE
1806            qns_tot(:,:) = qns_tot(:,:) + picefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1)
1807            DO jl = 1, jpl
1808               zqns_tot(:,:   ) = zqns_tot(:,:) + picefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1)
1809               zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1)
1810            END DO
1811         ENDIF
1812      CASE( 'mixed oce-ice' )    ! the ice flux is cumputed from the total flux, the SST and ice informations
1813! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED **
1814         zqns_tot(:,:  ) = frcv(jpr_qnsmix)%z3(:,:,1)
1815         zqns_ice(:,:,1) = frcv(jpr_qnsmix)%z3(:,:,1)    &
1816            &            + frcv(jpr_dqnsdt)%z3(:,:,1) * ( pist(:,:,1) - ( (rt0 + psst(:,:  ) ) * ziceld(:,:)   &
1817            &                                           + pist(:,:,1) * picefr(:,:) ) )
1818      END SELECT
1819      !                                     
1820      ! --- calving (removed from qns_tot) --- !
1821      IF( srcv(jpr_cal)%laction )   zqns_tot(:,:) = zqns_tot(:,:) - frcv(jpr_cal)%z3(:,:,1) * rLfus  ! remove latent heat of calving
1822                                                                                                     ! we suppose it melts at 0deg, though it should be temp. of surrounding ocean
1823      ! --- iceberg (removed from qns_tot) --- !
1824      IF( srcv(jpr_icb)%laction )   zqns_tot(:,:) = zqns_tot(:,:) - frcv(jpr_icb)%z3(:,:,1) * rLfus  ! remove latent heat of iceberg melting
1825
1826#if defined key_si3     
1827      ! --- non solar flux over ocean --- !
1828      !         note: ziceld cannot be = 0 since we limit the ice concentration to amax
1829      zqns_oce = 0._wp
1830      WHERE( ziceld /= 0._wp )   zqns_oce(:,:) = ( zqns_tot(:,:) - SUM( a_i * zqns_ice, dim=3 ) ) / ziceld(:,:)
1831
1832      ! Heat content per unit mass of snow (J/kg)
1833      WHERE( SUM( a_i, dim=3 ) > 1.e-10 )   ;   zcptsnw(:,:) = rcpi * SUM( (tn_ice - rt0) * a_i, dim=3 ) / SUM( a_i, dim=3 )
1834      ELSEWHERE                             ;   zcptsnw(:,:) = zcptn(:,:)
1835      ENDWHERE
1836      ! Heat content per unit mass of rain (J/kg)
1837      zcptrain(:,:) = rcp * ( SUM( (tn_ice(:,:,:) - rt0) * a_i(:,:,:), dim=3 ) + sst_m(:,:) * ziceld(:,:) ) 
1838
1839      ! --- enthalpy of snow precip over ice in J/m3 (to be used in 1D-thermo) --- !
1840      zqprec_ice(:,:) = rhos * ( zcptsnw(:,:) - rLfus )
1841
1842      ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- !
1843      DO jl = 1, jpl
1844         zqevap_ice(:,:,jl) = 0._wp ! should be -evap * ( ( Tice - rt0 ) * rcpi ) but atm. does not take it into account
1845      END DO
1846
1847      ! --- heat flux associated with emp (W/m2) --- !
1848      zqemp_oce(:,:) = -  zevap_oce(:,:)                                      *   zcptn   (:,:)   &        ! evap
1849         &             + ( ztprecip(:,:) - zsprecip(:,:) )                    *   zcptrain(:,:)   &        ! liquid precip
1850         &             +   zsprecip(:,:)                   * ( 1._wp - zsnw ) * ( zcptsnw (:,:) - rLfus )  ! solid precip over ocean + snow melting
1851      zqemp_ice(:,:) =     zsprecip(:,:)                   * zsnw             * ( zcptsnw (:,:) - rLfus )  ! solid precip over ice (qevap_ice=0 since atm. does not take it into account)
1852!!    zqemp_ice(:,:) = -   frcv(jpr_ievp)%z3(:,:,1)        * picefr(:,:)      *   zcptsnw (:,:)   &        ! ice evap
1853!!       &             +   zsprecip(:,:)                   * zsnw             * zqprec_ice(:,:) * r1_rhos  ! solid precip over ice
1854     
1855      ! --- total non solar flux (including evap/precip) --- !
1856      zqns_tot(:,:) = zqns_tot(:,:) + zqemp_ice(:,:) + zqemp_oce(:,:)
1857
1858      ! --- in case both coupled/forced are active, we must mix values --- !
1859      IF( ln_mixcpl ) THEN
1860         qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) + zqns_tot(:,:)* zmsk(:,:)
1861         qns_oce(:,:) = qns_oce(:,:) * xcplmask(:,:,0) + zqns_oce(:,:)* zmsk(:,:)
1862         DO jl=1,jpl
1863            qns_ice  (:,:,jl) = qns_ice  (:,:,jl) * xcplmask(:,:,0) +  zqns_ice  (:,:,jl)* zmsk(:,:)
1864            qevap_ice(:,:,jl) = qevap_ice(:,:,jl) * xcplmask(:,:,0) +  zqevap_ice(:,:,jl)* zmsk(:,:)
1865         ENDDO
1866         qprec_ice(:,:) = qprec_ice(:,:) * xcplmask(:,:,0) + zqprec_ice(:,:)* zmsk(:,:)
1867         qemp_oce (:,:) =  qemp_oce(:,:) * xcplmask(:,:,0) +  zqemp_oce(:,:)* zmsk(:,:)
1868         qemp_ice (:,:) =  qemp_ice(:,:) * xcplmask(:,:,0) +  zqemp_ice(:,:)* zmsk(:,:)
1869      ELSE
1870         qns_tot  (:,:  ) = zqns_tot  (:,:  )
1871         qns_oce  (:,:  ) = zqns_oce  (:,:  )
1872         qns_ice  (:,:,:) = zqns_ice  (:,:,:)
1873         qevap_ice(:,:,:) = zqevap_ice(:,:,:)
1874         qprec_ice(:,:  ) = zqprec_ice(:,:  )
1875         qemp_oce (:,:  ) = zqemp_oce (:,:  )
1876         qemp_ice (:,:  ) = zqemp_ice (:,:  )
1877      ENDIF
1878
1879#else
1880      zcptsnw (:,:) = zcptn(:,:)
1881      zcptrain(:,:) = zcptn(:,:)
1882     
1883      ! clem: this formulation is certainly wrong... but better than it was...
1884      zqns_tot(:,:) = zqns_tot(:,:)                             &          ! zqns_tot update over free ocean with:
1885         &          - (  ziceld(:,:) * zsprecip(:,:) * rLfus )  &          ! remove the latent heat flux of solid precip. melting
1886         &          - (  zemp_tot(:,:)                          &          ! remove the heat content of mass flux (assumed to be at SST)
1887         &             - zemp_ice(:,:) ) * zcptn(:,:) 
1888
1889     IF( ln_mixcpl ) THEN
1890         qns_tot(:,:) = qns(:,:) * ziceld(:,:) + SUM( qns_ice(:,:,:) * a_i(:,:,:), dim=3 )   ! total flux from blk
1891         qns_tot(:,:) = qns_tot(:,:) * xcplmask(:,:,0) +  zqns_tot(:,:)* zmsk(:,:)
1892         DO jl=1,jpl
1893            qns_ice(:,:,jl) = qns_ice(:,:,jl) * xcplmask(:,:,0) +  zqns_ice(:,:,jl)* zmsk(:,:)
1894         ENDDO
1895      ELSE
1896         qns_tot(:,:  ) = zqns_tot(:,:  )
1897         qns_ice(:,:,:) = zqns_ice(:,:,:)
1898      ENDIF
1899
1900#endif
1901      ! outputs
1902      IF( srcv(jpr_cal)%laction       ) CALL iom_put('hflx_cal_cea'    , - frcv(jpr_cal)%z3(:,:,1) * rLfus )                      ! latent heat from calving
1903      IF( srcv(jpr_icb)%laction       ) CALL iom_put('hflx_icb_cea'    , - frcv(jpr_icb)%z3(:,:,1) * rLfus )                      ! latent heat from icebergs melting
1904      IF( iom_use('hflx_rain_cea')    ) CALL iom_put('hflx_rain_cea'   , ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) )        ! heat flux from rain (cell average)
1905      IF( iom_use('hflx_evap_cea')    ) CALL iom_put('hflx_evap_cea'   , ( frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_ievp)%z3(:,:,1) &
1906           &                                                              * picefr(:,:) ) * zcptn(:,:) * tmask(:,:,1) )            ! heat flux from evap (cell average)
1907      IF( iom_use('hflx_prec_cea')    ) CALL iom_put('hflx_prec_cea'   ,  sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) +  &                    ! heat flux from all precip (cell avg)
1908         &                                                               ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) )
1909      IF( iom_use('hflx_snow_cea')    ) CALL iom_put('hflx_snow_cea'   , sprecip(:,:) * ( zcptsnw(:,:) - rLfus )  )               ! heat flux from snow (cell average)
1910      IF( iom_use('hflx_snow_ao_cea') ) CALL iom_put('hflx_snow_ao_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) &
1911           &                                                              * ( 1._wp - zsnw(:,:) )                  )               ! heat flux from snow (over ocean)
1912      IF( iom_use('hflx_snow_ai_cea') ) CALL iom_put('hflx_snow_ai_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) & 
1913           &                                                              *           zsnw(:,:)                    )               ! heat flux from snow (over ice)
1914      ! note: hflx for runoff and iceshelf are done in sbcrnf and sbcisf resp.
1915      !
1916      !                                                      ! ========================= !
1917      SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )                !      solar heat fluxes    !   (qsr)
1918      !                                                      ! ========================= !
1919      CASE( 'oce only' )
1920         zqsr_tot(:,:  ) = MAX( 0._wp , frcv(jpr_qsroce)%z3(:,:,1) )
1921      CASE( 'conservative' )
1922         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1923         IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN
1924            zqsr_ice(:,:,1:jpl) = frcv(jpr_qsrice)%z3(:,:,1:jpl)
1925         ELSE
1926            ! Set all category values equal for the moment
1927            DO jl = 1, jpl
1928               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1)
1929            END DO
1930         ENDIF
1931         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1932         zqsr_ice(:,:,1) = frcv(jpr_qsrice)%z3(:,:,1)
1933      CASE( 'oce and ice' )
1934         zqsr_tot(:,:  ) =  ziceld(:,:) * frcv(jpr_qsroce)%z3(:,:,1)
1935         IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN
1936            DO jl = 1, jpl
1937               zqsr_tot(:,:   ) = zqsr_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qsrice)%z3(:,:,jl)   
1938               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,jl)
1939            END DO
1940         ELSE
1941            qsr_tot(:,:   ) = qsr_tot(:,:) + picefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1)
1942            DO jl = 1, jpl
1943               zqsr_tot(:,:   ) = zqsr_tot(:,:) + picefr(:,:) * frcv(jpr_qsrice)%z3(:,:,1)
1944               zqsr_ice(:,:,jl) = frcv(jpr_qsrice)%z3(:,:,1)
1945            END DO
1946         ENDIF
1947      CASE( 'mixed oce-ice' )
1948         zqsr_tot(:,:  ) = frcv(jpr_qsrmix)%z3(:,:,1)
1949! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED **
1950!       Create solar heat flux over ice using incoming solar heat flux and albedos
1951!       ( see OASIS3 user guide, 5th edition, p39 )
1952         zqsr_ice(:,:,1) = frcv(jpr_qsrmix)%z3(:,:,1) * ( 1.- palbi(:,:,1) )   &
1953            &            / (  1.- ( alb_oce_mix(:,:  ) * ziceld(:,:)       &
1954            &                     + palbi      (:,:,1) * picefr(:,:) ) )
1955      CASE( 'none'      )       ! Not available as for now: needs additional coding 
1956      !                         ! since fields received, here zqsr_tot,  are not defined with none option
1957         CALL ctl_stop( 'STOP', 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_qsr value in namelist namsbc_cpl' )
1958      END SELECT
1959      IF( ln_dm2dc .AND. ln_cpl ) THEN   ! modify qsr to include the diurnal cycle
1960         zqsr_tot(:,:  ) = sbc_dcy( zqsr_tot(:,:  ) )
1961         DO jl = 1, jpl
1962            zqsr_ice(:,:,jl) = sbc_dcy( zqsr_ice(:,:,jl) )
1963         END DO
1964      ENDIF
1965
1966#if defined key_si3
1967      ! --- solar flux over ocean --- !
1968      !         note: ziceld cannot be = 0 since we limit the ice concentration to amax
1969      zqsr_oce = 0._wp
1970      WHERE( ziceld /= 0._wp )  zqsr_oce(:,:) = ( zqsr_tot(:,:) - SUM( a_i * zqsr_ice, dim=3 ) ) / ziceld(:,:)
1971
1972      IF( ln_mixcpl ) THEN   ;   qsr_oce(:,:) = qsr_oce(:,:) * xcplmask(:,:,0) +  zqsr_oce(:,:)* zmsk(:,:)
1973      ELSE                   ;   qsr_oce(:,:) = zqsr_oce(:,:)   ;   ENDIF
1974#endif
1975
1976      IF( ln_mixcpl ) THEN
1977         qsr_tot(:,:) = qsr(:,:) * ziceld(:,:) + SUM( qsr_ice(:,:,:) * a_i(:,:,:), dim=3 )   ! total flux from blk
1978         qsr_tot(:,:) = qsr_tot(:,:) * xcplmask(:,:,0) +  zqsr_tot(:,:)* zmsk(:,:)
1979         DO jl = 1, jpl
1980            qsr_ice(:,:,jl) = qsr_ice(:,:,jl) * xcplmask(:,:,0) +  zqsr_ice(:,:,jl)* zmsk(:,:)
1981         END DO
1982      ELSE
1983         qsr_tot(:,:  ) = zqsr_tot(:,:  )
1984         qsr_ice(:,:,:) = zqsr_ice(:,:,:)
1985      ENDIF
1986
1987      !                                                      ! ========================= !
1988      SELECT CASE( TRIM( sn_rcv_dqnsdt%cldes ) )             !          d(qns)/dt        !
1989      !                                                      ! ========================= !
1990      CASE ('coupled')
1991         IF ( TRIM(sn_rcv_dqnsdt%clcat) == 'yes' ) THEN
1992            zdqns_ice(:,:,1:jpl) = frcv(jpr_dqnsdt)%z3(:,:,1:jpl)
1993         ELSE
1994            ! Set all category values equal for the moment
1995            DO jl=1,jpl
1996               zdqns_ice(:,:,jl) = frcv(jpr_dqnsdt)%z3(:,:,1)
1997            ENDDO
1998         ENDIF
1999      END SELECT
2000     
2001      IF( ln_mixcpl ) THEN
2002         DO jl=1,jpl
2003            dqns_ice(:,:,jl) = dqns_ice(:,:,jl) * xcplmask(:,:,0) + zdqns_ice(:,:,jl) * zmsk(:,:)
2004         ENDDO
2005      ELSE
2006         dqns_ice(:,:,:) = zdqns_ice(:,:,:)
2007      ENDIF
2008
2009#if defined key_si3     
2010      !                                                      ! ========================= !
2011      SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) )             !  ice topmelt and botmelt  !
2012      !                                                      ! ========================= !
2013      CASE ('coupled')
2014         qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:)
2015         qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:)
2016      END SELECT
2017      !
2018      !                                                      ! ========================= !
2019      !                                                      !      Transmitted Qsr      !   [W/m2]
2020      !                                                      ! ========================= !
2021      IF( .NOT.ln_cndflx ) THEN                              !==  No conduction flux as surface forcing  ==!
2022         !
2023         !                    ! ===> used prescribed cloud fraction representative for polar oceans in summer (0.81)
2024         ztri = 0.18 * ( 1.0 - cldf_ice ) + 0.35 * cldf_ice    ! surface transmission parameter (Grenfell Maykut 77)
2025         !
2026         qtr_ice_top(:,:,:) = ztri * qsr_ice(:,:,:)
2027         WHERE( phs(:,:,:) >= 0.0_wp )   qtr_ice_top(:,:,:) = 0._wp            ! snow fully opaque
2028         WHERE( phi(:,:,:) <= 0.1_wp )   qtr_ice_top(:,:,:) = qsr_ice(:,:,:)   ! thin ice transmits all solar radiation
2029         !     
2030      ELSEIF( ln_cndflx .AND. .NOT.ln_cndemulate ) THEN      !==  conduction flux as surface forcing  ==!
2031         !
2032         !                    ! ===> here we must receive the qtr_ice_top array from the coupler
2033         !                           for now just assume zero (fully opaque ice)
2034         qtr_ice_top(:,:,:) = 0._wp
2035         !
2036      ENDIF
2037      !
2038#endif
2039      !
2040   END SUBROUTINE sbc_cpl_ice_flx
2041   
2042   
2043   SUBROUTINE sbc_cpl_snd( kt )
2044      !!----------------------------------------------------------------------
2045      !!             ***  ROUTINE sbc_cpl_snd  ***
2046      !!
2047      !! ** Purpose :   provide the ocean-ice informations to the atmosphere
2048      !!
2049      !! ** Method  :   send to the atmosphere through a call to cpl_snd
2050      !!              all the needed fields (as defined in sbc_cpl_init)
2051      !!----------------------------------------------------------------------
2052      INTEGER, INTENT(in) ::   kt
2053      !
2054      INTEGER ::   ji, jj, jl   ! dummy loop indices
2055      INTEGER ::   isec, info   ! local integer
2056      REAL(wp) ::   zumax, zvmax
2057      REAL(wp), DIMENSION(jpi,jpj)     ::   zfr_l, ztmp1, ztmp2, zotx1, zoty1, zotz1, zitx1, zity1, zitz1
2058      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   ztmp3, ztmp4   
2059      !!----------------------------------------------------------------------
2060      !
2061      isec = ( kt - nit000 ) * NINT( rdt )        ! date of exchanges
2062
2063      zfr_l(:,:) = 1.- fr_i(:,:)
2064      !                                                      ! ------------------------- !
2065      !                                                      !    Surface temperature    !   in Kelvin
2066      !                                                      ! ------------------------- !
2067      IF( ssnd(jps_toce)%laction .OR. ssnd(jps_tice)%laction .OR. ssnd(jps_tmix)%laction ) THEN
2068         
2069         IF ( nn_components == jp_iam_opa ) THEN
2070            ztmp1(:,:) = tsn(:,:,1,jp_tem)   ! send temperature as it is (potential or conservative) -> use of l_useCT on the received part
2071         ELSE
2072            ! we must send the surface potential temperature
2073            IF( l_useCT )  THEN    ;   ztmp1(:,:) = eos_pt_from_ct( tsn(:,:,1,jp_tem), tsn(:,:,1,jp_sal) )
2074            ELSE                   ;   ztmp1(:,:) = tsn(:,:,1,jp_tem)
2075            ENDIF
2076            !
2077            SELECT CASE( sn_snd_temp%cldes)
2078            CASE( 'oce only'             )   ;   ztmp1(:,:) =   ztmp1(:,:) + rt0
2079            CASE( 'oce and ice'          )   ;   ztmp1(:,:) =   ztmp1(:,:) + rt0
2080               SELECT CASE( sn_snd_temp%clcat )
2081               CASE( 'yes' )   
2082                  ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl)
2083               CASE( 'no' )
2084                  WHERE( SUM( a_i, dim=3 ) /= 0. )
2085                     ztmp3(:,:,1) = SUM( tn_ice * a_i, dim=3 ) / SUM( a_i, dim=3 )
2086                  ELSEWHERE
2087                     ztmp3(:,:,1) = rt0
2088                  END WHERE
2089               CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' )
2090               END SELECT
2091            CASE( 'weighted oce and ice' )   ;   ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:)   
2092               SELECT CASE( sn_snd_temp%clcat )
2093               CASE( 'yes' )   
2094                  ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl)
2095               CASE( 'no' )
2096                  ztmp3(:,:,:) = 0.0
2097                  DO jl=1,jpl
2098                     ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl)
2099                  ENDDO
2100               CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' )
2101               END SELECT
2102            CASE( 'oce and weighted ice')    ;   ztmp1(:,:) =   tsn(:,:,1,jp_tem) + rt0 
2103               SELECT CASE( sn_snd_temp%clcat ) 
2104               CASE( 'yes' )   
2105                  ztmp3(:,:,1:jpl) = tn_ice(:,:,1:jpl) * a_i(:,:,1:jpl) 
2106               CASE( 'no' ) 
2107                  ztmp3(:,:,:) = 0.0 
2108                  DO jl=1,jpl 
2109                     ztmp3(:,:,1) = ztmp3(:,:,1) + tn_ice(:,:,jl) * a_i(:,:,jl) 
2110                  ENDDO 
2111               CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%clcat' ) 
2112               END SELECT
2113            CASE( 'mixed oce-ice'        )   
2114               ztmp1(:,:) = ( ztmp1(:,:) + rt0 ) * zfr_l(:,:) 
2115               DO jl=1,jpl
2116                  ztmp1(:,:) = ztmp1(:,:) + tn_ice(:,:,jl) * a_i(:,:,jl)
2117               ENDDO
2118            CASE default                     ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_temp%cldes' )
2119            END SELECT
2120         ENDIF
2121         IF( ssnd(jps_toce)%laction )   CALL cpl_snd( jps_toce, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
2122         IF( ssnd(jps_tice)%laction )   CALL cpl_snd( jps_tice, isec, ztmp3, info )
2123         IF( ssnd(jps_tmix)%laction )   CALL cpl_snd( jps_tmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
2124      ENDIF
2125      !
2126      !                                                      ! ------------------------- !
2127      !                                                      ! 1st layer ice/snow temp.  !
2128      !                                                      ! ------------------------- !
2129#if defined key_si3
2130      ! needed by  Met Office
2131      IF( ssnd(jps_ttilyr)%laction) THEN
2132         SELECT CASE( sn_snd_ttilyr%cldes)
2133         CASE ('weighted ice')
2134            ztmp3(:,:,1:jpl) = t1_ice(:,:,1:jpl) * a_i(:,:,1:jpl) 
2135         CASE default                     ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_ttilyr%cldes' )
2136         END SELECT
2137         IF( ssnd(jps_ttilyr)%laction )   CALL cpl_snd( jps_ttilyr, isec, ztmp3, info )
2138      ENDIF
2139#endif
2140      !                                                      ! ------------------------- !
2141      !                                                      !           Albedo          !
2142      !                                                      ! ------------------------- !
2143      IF( ssnd(jps_albice)%laction ) THEN                         ! ice
2144          SELECT CASE( sn_snd_alb%cldes )
2145          CASE( 'ice' )
2146             SELECT CASE( sn_snd_alb%clcat )
2147             CASE( 'yes' )   
2148                ztmp3(:,:,1:jpl) = alb_ice(:,:,1:jpl)
2149             CASE( 'no' )
2150                WHERE( SUM( a_i, dim=3 ) /= 0. )
2151                   ztmp1(:,:) = SUM( alb_ice (:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 ) / SUM( a_i(:,:,1:jpl), dim=3 )
2152                ELSEWHERE
2153                   ztmp1(:,:) = alb_oce_mix(:,:)
2154                END WHERE
2155             CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%clcat' )
2156             END SELECT
2157          CASE( 'weighted ice' )   ;
2158             SELECT CASE( sn_snd_alb%clcat )
2159             CASE( 'yes' )   
2160                ztmp3(:,:,1:jpl) =  alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl)
2161             CASE( 'no' )
2162                WHERE( fr_i (:,:) > 0. )
2163                   ztmp1(:,:) = SUM (  alb_ice(:,:,1:jpl) * a_i(:,:,1:jpl), dim=3 )
2164                ELSEWHERE
2165                   ztmp1(:,:) = 0.
2166                END WHERE
2167             CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_ice%clcat' )
2168             END SELECT
2169          CASE default      ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_alb%cldes' )
2170         END SELECT
2171
2172         SELECT CASE( sn_snd_alb%clcat )
2173            CASE( 'yes' )   
2174               CALL cpl_snd( jps_albice, isec, ztmp3, info )      !-> MV this has never been checked in coupled mode
2175            CASE( 'no'  )   
2176               CALL cpl_snd( jps_albice, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) 
2177         END SELECT
2178      ENDIF
2179
2180      IF( ssnd(jps_albmix)%laction ) THEN                         ! mixed ice-ocean
2181         ztmp1(:,:) = alb_oce_mix(:,:) * zfr_l(:,:)
2182         DO jl = 1, jpl
2183            ztmp1(:,:) = ztmp1(:,:) + alb_ice(:,:,jl) * a_i(:,:,jl)
2184         END DO
2185         CALL cpl_snd( jps_albmix, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info )
2186      ENDIF
2187      !                                                      ! ------------------------- !
2188      !                                                      !  Ice fraction & Thickness !
2189      !                                                      ! ------------------------- !
2190      ! Send ice fraction field to atmosphere
2191      IF( ssnd(jps_fice)%laction ) THEN
2192         SELECT CASE( sn_snd_thick%clcat )
2193         CASE( 'yes' )   ;   ztmp3(:,:,1:jpl) =  a_i(:,:,1:jpl)
2194         CASE( 'no'  )   ;   ztmp3(:,:,1    ) = fr_i(:,:      )
2195         CASE default    ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
2196         END SELECT
2197         IF( ssnd(jps_fice)%laction )   CALL cpl_snd( jps_fice, isec, ztmp3, info )
2198      ENDIF
2199
2200      IF( ssnd(jps_fice1)%laction ) THEN
2201         SELECT CASE( sn_snd_thick1%clcat )
2202         CASE( 'yes' )   ;   ztmp3(:,:,1:jpl) =  a_i(:,:,1:jpl)
2203         CASE( 'no'  )   ;   ztmp3(:,:,1    ) = fr_i(:,:      )
2204         CASE default    ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick1%clcat' )
2205         END SELECT
2206         CALL cpl_snd( jps_fice1, isec, ztmp3, info )
2207      ENDIF
2208     
2209      ! Send ice fraction field to OPA (sent by SAS in SAS-OPA coupling)
2210      IF( ssnd(jps_fice2)%laction ) THEN
2211         ztmp3(:,:,1) = fr_i(:,:)
2212         IF( ssnd(jps_fice2)%laction )   CALL cpl_snd( jps_fice2, isec, ztmp3, info )
2213      ENDIF
2214
2215      ! Send ice and snow thickness field
2216      IF( ssnd(jps_hice)%laction .OR. ssnd(jps_hsnw)%laction ) THEN
2217         SELECT CASE( sn_snd_thick%cldes)
2218         CASE( 'none'                  )       ! nothing to do
2219         CASE( 'weighted ice and snow' )   
2220            SELECT CASE( sn_snd_thick%clcat )
2221            CASE( 'yes' )   
2222               ztmp3(:,:,1:jpl) =  h_i(:,:,1:jpl) * a_i(:,:,1:jpl)
2223               ztmp4(:,:,1:jpl) =  h_s(:,:,1:jpl) * a_i(:,:,1:jpl)
2224            CASE( 'no' )
2225               ztmp3(:,:,:) = 0.0   ;  ztmp4(:,:,:) = 0.0
2226               DO jl=1,jpl
2227                  ztmp3(:,:,1) = ztmp3(:,:,1) + h_i(:,:,jl) * a_i(:,:,jl)
2228                  ztmp4(:,:,1) = ztmp4(:,:,1) + h_s(:,:,jl) * a_i(:,:,jl)
2229               ENDDO
2230            CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
2231            END SELECT
2232         CASE( 'ice and snow'         )   
2233            SELECT CASE( sn_snd_thick%clcat )
2234            CASE( 'yes' )
2235               ztmp3(:,:,1:jpl) = h_i(:,:,1:jpl)
2236               ztmp4(:,:,1:jpl) = h_s(:,:,1:jpl)
2237            CASE( 'no' )
2238               WHERE( SUM( a_i, dim=3 ) /= 0. )
2239                  ztmp3(:,:,1) = SUM( h_i * a_i, dim=3 ) / SUM( a_i, dim=3 )
2240                  ztmp4(:,:,1) = SUM( h_s * a_i, dim=3 ) / SUM( a_i, dim=3 )
2241               ELSEWHERE
2242                 ztmp3(:,:,1) = 0.
2243                 ztmp4(:,:,1) = 0.
2244               END WHERE
2245            CASE default                  ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%clcat' )
2246            END SELECT
2247         CASE default                     ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_thick%cldes' )
2248         END SELECT
2249         IF( ssnd(jps_hice)%laction )   CALL cpl_snd( jps_hice, isec, ztmp3, info )
2250         IF( ssnd(jps_hsnw)%laction )   CALL cpl_snd( jps_hsnw, isec, ztmp4, info )
2251      ENDIF
2252
2253#if defined key_si3
2254      !                                                      ! ------------------------- !
2255      !                                                      !      Ice melt ponds       !
2256      !                                                      ! ------------------------- !
2257      ! needed by Met Office
2258      IF( ssnd(jps_a_p)%laction .OR. ssnd(jps_ht_p)%laction ) THEN
2259         SELECT CASE( sn_snd_mpnd%cldes) 
2260         CASE( 'ice only' ) 
2261            SELECT CASE( sn_snd_mpnd%clcat ) 
2262            CASE( 'yes' ) 
2263               ztmp3(:,:,1:jpl) =  a_ip(:,:,1:jpl)
2264               ztmp4(:,:,1:jpl) =  v_ip(:,:,1:jpl) 
2265            CASE( 'no' ) 
2266               ztmp3(:,:,:) = 0.0 
2267               ztmp4(:,:,:) = 0.0 
2268               DO jl=1,jpl 
2269                 ztmp3(:,:,1) = ztmp3(:,:,1) + a_ip(:,:,jpl) 
2270                 ztmp4(:,:,1) = ztmp4(:,:,1) + v_ip(:,:,jpl) 
2271               ENDDO 
2272            CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_mpnd%clcat' ) 
2273            END SELECT 
2274         CASE default      ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_mpnd%cldes' )     
2275         END SELECT 
2276         IF( ssnd(jps_a_p)%laction  )   CALL cpl_snd( jps_a_p , isec, ztmp3, info )     
2277         IF( ssnd(jps_ht_p)%laction )   CALL cpl_snd( jps_ht_p, isec, ztmp4, info )     
2278      ENDIF 
2279      !
2280      !                                                      ! ------------------------- !
2281      !                                                      !     Ice conductivity      !
2282      !                                                      ! ------------------------- !
2283      ! needed by Met Office
2284      IF( ssnd(jps_kice)%laction ) THEN
2285         SELECT CASE( sn_snd_cond%cldes) 
2286         CASE( 'weighted ice' )   
2287            SELECT CASE( sn_snd_cond%clcat ) 
2288            CASE( 'yes' )   
2289          ztmp3(:,:,1:jpl) =  cnd_ice(:,:,1:jpl) * a_i(:,:,1:jpl) 
2290            CASE( 'no' ) 
2291               ztmp3(:,:,:) = 0.0 
2292               DO jl=1,jpl 
2293                 ztmp3(:,:,1) = ztmp3(:,:,1) + cnd_ice(:,:,jl) * a_i(:,:,jl) 
2294               ENDDO 
2295            CASE default   ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_cond%clcat' ) 
2296            END SELECT
2297         CASE( 'ice only' )   
2298           ztmp3(:,:,1:jpl) = cnd_ice(:,:,1:jpl) 
2299         CASE default      ;   CALL ctl_stop( 'sbc_cpl_snd: wrong definition of sn_snd_cond%cldes' )     
2300         END SELECT
2301         IF( ssnd(jps_kice)%laction )   CALL cpl_snd( jps_kice, isec, ztmp3, info ) 
2302      ENDIF 
2303#endif
2304
2305      !                                                      ! ------------------------- !
2306      !                                                      !  CO2 flux from PISCES     !
2307      !                                                      ! ------------------------- !
2308      IF( ssnd(jps_co2)%laction .AND. l_co2cpl )   THEN
2309         ztmp1(:,:) = oce_co2(:,:) * 1000.  ! conversion in molC/m2/s
2310         CALL cpl_snd( jps_co2, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ) , info )
2311      ENDIF
2312      !
2313      !                                                      ! ------------------------- !
2314      IF( ssnd(jps_ocx1)%laction ) THEN                      !      Surface current      !
2315         !                                                   ! ------------------------- !
2316         !   
2317         !                                                  j+1   j     -----V---F
2318         ! surface velocity always sent from T point                     !       |
2319         !                                                        j      |   T   U
2320         !                                                               |       |
2321         !                                                   j    j-1   -I-------|
2322         !                                               (for I)         |       |
2323         !                                                              i-1  i   i
2324         !                                                               i      i+1 (for I)
2325         IF( nn_components == jp_iam_opa ) THEN
2326            zotx1(:,:) = un(:,:,1) 
2327            zoty1(:,:) = vn(:,:,1) 
2328         ELSE       
2329            SELECT CASE( TRIM( sn_snd_crt%cldes ) )
2330            CASE( 'oce only'             )      ! C-grid ==> T
2331               DO jj = 2, jpjm1
2332                  DO ji = fs_2, fs_jpim1   ! vector opt.
2333                     zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj  ,1) )
2334                     zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji  ,jj-1,1) ) 
2335                  END DO
2336               END DO
2337            CASE( 'weighted oce and ice' )      ! Ocean and Ice on C-grid ==> T 
2338               DO jj = 2, jpjm1
2339                  DO ji = fs_2, fs_jpim1   ! vector opt.
2340                     zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj) 
2341                     zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj)
2342                     zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj)
2343                     zity1(ji,jj) = 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj)
2344                  END DO
2345               END DO
2346               CALL lbc_lnk_multi( 'sbccpl', zitx1, 'T', -1., zity1, 'T', -1. )
2347            CASE( 'mixed oce-ice'        )      ! Ocean and Ice on C-grid ==> T
2348               DO jj = 2, jpjm1
2349                  DO ji = fs_2, fs_jpim1   ! vector opt.
2350                     zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj)   &
2351                        &         + 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj)
2352                     zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj)   &
2353                        &         + 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj)
2354                  END DO
2355               END DO
2356            END SELECT
2357            CALL lbc_lnk_multi( 'sbccpl', zotx1, ssnd(jps_ocx1)%clgrid, -1.,  zoty1, ssnd(jps_ocy1)%clgrid, -1. )
2358            !
2359         ENDIF
2360         !
2361         !
2362         IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) THEN             ! Rotation of the components
2363            !                                                                     ! Ocean component
2364            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->e', ztmp1 )       ! 1st component
2365            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocx1)%clgrid, 'ij->n', ztmp2 )       ! 2nd component
2366            zotx1(:,:) = ztmp1(:,:)                                                   ! overwrite the components
2367            zoty1(:,:) = ztmp2(:,:)
2368            IF( ssnd(jps_ivx1)%laction ) THEN                                     ! Ice component
2369               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 )    ! 1st component
2370               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 )    ! 2nd component
2371               zitx1(:,:) = ztmp1(:,:)                                                ! overwrite the components
2372               zity1(:,:) = ztmp2(:,:)
2373            ENDIF
2374         ENDIF
2375         !
2376         ! spherical coordinates to cartesian -> 2 components to 3 components
2377         IF( TRIM( sn_snd_crt%clvref ) == 'cartesian' ) THEN
2378            ztmp1(:,:) = zotx1(:,:)                     ! ocean currents
2379            ztmp2(:,:) = zoty1(:,:)
2380            CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 )
2381            !
2382            IF( ssnd(jps_ivx1)%laction ) THEN           ! ice velocities
2383               ztmp1(:,:) = zitx1(:,:)
2384               ztmp1(:,:) = zity1(:,:)
2385               CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 )
2386            ENDIF
2387         ENDIF
2388         !
2389         IF( ssnd(jps_ocx1)%laction )   CALL cpl_snd( jps_ocx1, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info )   ! ocean x current 1st grid
2390         IF( ssnd(jps_ocy1)%laction )   CALL cpl_snd( jps_ocy1, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info )   ! ocean y current 1st grid
2391         IF( ssnd(jps_ocz1)%laction )   CALL cpl_snd( jps_ocz1, isec, RESHAPE ( zotz1, (/jpi,jpj,1/) ), info )   ! ocean z current 1st grid
2392         !
2393         IF( ssnd(jps_ivx1)%laction )   CALL cpl_snd( jps_ivx1, isec, RESHAPE ( zitx1, (/jpi,jpj,1/) ), info )   ! ice   x current 1st grid
2394         IF( ssnd(jps_ivy1)%laction )   CALL cpl_snd( jps_ivy1, isec, RESHAPE ( zity1, (/jpi,jpj,1/) ), info )   ! ice   y current 1st grid
2395         IF( ssnd(jps_ivz1)%laction )   CALL cpl_snd( jps_ivz1, isec, RESHAPE ( zitz1, (/jpi,jpj,1/) ), info )   ! ice   z current 1st grid
2396         !
2397      ENDIF
2398      !
2399      !                                                      ! ------------------------- !
2400      !                                                      !  Surface current to waves !
2401      !                                                      ! ------------------------- !
2402      IF( ssnd(jps_ocxw)%laction .OR. ssnd(jps_ocyw)%laction ) THEN 
2403          !     
2404          !                                                  j+1  j     -----V---F
2405          ! surface velocity always sent from T point                    !       |
2406          !                                                       j      |   T   U
2407          !                                                              |       |
2408          !                                                   j   j-1   -I-------|
2409          !                                               (for I)        |       |
2410          !                                                             i-1  i   i
2411          !                                                              i      i+1 (for I)
2412          SELECT CASE( TRIM( sn_snd_crtw%cldes ) ) 
2413          CASE( 'oce only'             )      ! C-grid ==> T
2414             DO jj = 2, jpjm1 
2415                DO ji = fs_2, fs_jpim1   ! vector opt.
2416                   zotx1(ji,jj) = 0.5 * ( un(ji,jj,1) + un(ji-1,jj  ,1) ) 
2417                   zoty1(ji,jj) = 0.5 * ( vn(ji,jj,1) + vn(ji , jj-1,1) ) 
2418                END DO
2419             END DO
2420          CASE( 'weighted oce and ice' )      ! Ocean and Ice on C-grid ==> T   
2421             DO jj = 2, jpjm1 
2422                DO ji = fs_2, fs_jpim1   ! vector opt.
2423                   zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj)   
2424                   zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj) 
2425                   zitx1(ji,jj) = 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj) 
2426                   zity1(ji,jj) = 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj) 
2427                END DO
2428             END DO
2429             CALL lbc_lnk_multi( 'sbccpl', zitx1, 'T', -1.,  zity1, 'T', -1. ) 
2430          CASE( 'mixed oce-ice'        )      ! Ocean and Ice on C-grid ==> T 
2431             DO jj = 2, jpjm1 
2432                DO ji = fs_2, fs_jpim1   ! vector opt.
2433                   zotx1(ji,jj) = 0.5 * ( un   (ji,jj,1) + un   (ji-1,jj  ,1) ) * zfr_l(ji,jj)   & 
2434                      &         + 0.5 * ( u_ice(ji,jj  ) + u_ice(ji-1,jj    ) ) *  fr_i(ji,jj) 
2435                   zoty1(ji,jj) = 0.5 * ( vn   (ji,jj,1) + vn   (ji  ,jj-1,1) ) * zfr_l(ji,jj)   & 
2436                      &         + 0.5 * ( v_ice(ji,jj  ) + v_ice(ji  ,jj-1  ) ) *  fr_i(ji,jj) 
2437                END DO
2438             END DO
2439          END SELECT
2440         CALL lbc_lnk_multi( 'sbccpl', zotx1, ssnd(jps_ocxw)%clgrid, -1., zoty1, ssnd(jps_ocyw)%clgrid, -1. ) 
2441         !
2442         !
2443         IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) THEN             ! Rotation of the components
2444         !                                                                        ! Ocean component
2445            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocxw)%clgrid, 'ij->e', ztmp1 )       ! 1st component 
2446            CALL rot_rep( zotx1, zoty1, ssnd(jps_ocxw)%clgrid, 'ij->n', ztmp2 )       ! 2nd component 
2447            zotx1(:,:) = ztmp1(:,:)                                                   ! overwrite the components 
2448            zoty1(:,:) = ztmp2(:,:) 
2449            IF( ssnd(jps_ivx1)%laction ) THEN                                     ! Ice component
2450               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->e', ztmp1 )    ! 1st component 
2451               CALL rot_rep( zitx1, zity1, ssnd(jps_ivx1)%clgrid, 'ij->n', ztmp2 )    ! 2nd component 
2452               zitx1(:,:) = ztmp1(:,:)                                                ! overwrite the components 
2453               zity1(:,:) = ztmp2(:,:) 
2454            ENDIF
2455         ENDIF 
2456         !
2457!         ! spherical coordinates to cartesian -> 2 components to 3 components
2458!         IF( TRIM( sn_snd_crtw%clvref ) == 'cartesian' ) THEN
2459!            ztmp1(:,:) = zotx1(:,:)                     ! ocean currents
2460!            ztmp2(:,:) = zoty1(:,:)
2461!            CALL oce2geo ( ztmp1, ztmp2, 'T', zotx1, zoty1, zotz1 )
2462!            !
2463!            IF( ssnd(jps_ivx1)%laction ) THEN           ! ice velocities
2464!               ztmp1(:,:) = zitx1(:,:)
2465!               ztmp1(:,:) = zity1(:,:)
2466!               CALL oce2geo ( ztmp1, ztmp2, 'T', zitx1, zity1, zitz1 )
2467!            ENDIF
2468!         ENDIF
2469         !
2470         IF( ssnd(jps_ocxw)%laction )   CALL cpl_snd( jps_ocxw, isec, RESHAPE ( zotx1, (/jpi,jpj,1/) ), info )   ! ocean x current 1st grid
2471         IF( ssnd(jps_ocyw)%laction )   CALL cpl_snd( jps_ocyw, isec, RESHAPE ( zoty1, (/jpi,jpj,1/) ), info )   ! ocean y current 1st grid
2472         
2473      ENDIF 
2474      !
2475      IF( ssnd(jps_ficet)%laction ) THEN
2476         CALL cpl_snd( jps_ficet, isec, RESHAPE ( fr_i, (/jpi,jpj,1/) ), info ) 
2477      END IF 
2478      !                                                      ! ------------------------- !
2479      !                                                      !   Water levels to waves   !
2480      !                                                      ! ------------------------- !
2481      IF( ssnd(jps_wlev)%laction ) THEN
2482         IF( ln_apr_dyn ) THEN 
2483            IF( kt /= nit000 ) THEN 
2484               ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) ) 
2485            ELSE 
2486               ztmp1(:,:) = sshb(:,:) 
2487            ENDIF 
2488         ELSE 
2489            ztmp1(:,:) = sshn(:,:) 
2490         ENDIF 
2491         CALL cpl_snd( jps_wlev  , isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info ) 
2492      END IF 
2493      !
2494      !  Fields sent by OPA to SAS when doing OPA<->SAS coupling
2495      !                                                        ! SSH
2496      IF( ssnd(jps_ssh )%laction )  THEN
2497         !                          ! removed inverse barometer ssh when Patm
2498         !                          forcing is used (for sea-ice dynamics)
2499         IF( ln_apr_dyn ) THEN   ;   ztmp1(:,:) = sshb(:,:) - 0.5 * ( ssh_ib(:,:) + ssh_ibb(:,:) )
2500         ELSE                    ;   ztmp1(:,:) = sshn(:,:)
2501         ENDIF
2502         CALL cpl_snd( jps_ssh   , isec, RESHAPE ( ztmp1            , (/jpi,jpj,1/) ), info )
2503
2504      ENDIF
2505      !                                                        ! SSS
2506      IF( ssnd(jps_soce  )%laction )  THEN
2507         CALL cpl_snd( jps_soce  , isec, RESHAPE ( tsn(:,:,1,jp_sal), (/jpi,jpj,1/) ), info )
2508      ENDIF
2509      !                                                        ! first T level thickness
2510      IF( ssnd(jps_e3t1st )%laction )  THEN
2511         CALL cpl_snd( jps_e3t1st, isec, RESHAPE ( e3t_n(:,:,1)   , (/jpi,jpj,1/) ), info )
2512      ENDIF
2513      !                                                        ! Qsr fraction
2514      IF( ssnd(jps_fraqsr)%laction )  THEN
2515         CALL cpl_snd( jps_fraqsr, isec, RESHAPE ( fraqsr_1lev(:,:) , (/jpi,jpj,1/) ), info )
2516      ENDIF
2517      !
2518      !  Fields sent by SAS to OPA when OASIS coupling
2519      !                                                        ! Solar heat flux
2520      IF( ssnd(jps_qsroce)%laction )  CALL cpl_snd( jps_qsroce, isec, RESHAPE ( qsr , (/jpi,jpj,1/) ), info )
2521      IF( ssnd(jps_qnsoce)%laction )  CALL cpl_snd( jps_qnsoce, isec, RESHAPE ( qns , (/jpi,jpj,1/) ), info )
2522      IF( ssnd(jps_oemp  )%laction )  CALL cpl_snd( jps_oemp  , isec, RESHAPE ( emp , (/jpi,jpj,1/) ), info )
2523      IF( ssnd(jps_sflx  )%laction )  CALL cpl_snd( jps_sflx  , isec, RESHAPE ( sfx , (/jpi,jpj,1/) ), info )
2524      IF( ssnd(jps_otx1  )%laction )  CALL cpl_snd( jps_otx1  , isec, RESHAPE ( utau, (/jpi,jpj,1/) ), info )
2525      IF( ssnd(jps_oty1  )%laction )  CALL cpl_snd( jps_oty1  , isec, RESHAPE ( vtau, (/jpi,jpj,1/) ), info )
2526      IF( ssnd(jps_rnf   )%laction )  CALL cpl_snd( jps_rnf   , isec, RESHAPE ( rnf , (/jpi,jpj,1/) ), info )
2527      IF( ssnd(jps_taum  )%laction )  CALL cpl_snd( jps_taum  , isec, RESHAPE ( taum, (/jpi,jpj,1/) ), info )
2528
2529#if defined key_si3
2530      !                                                      ! ------------------------- !
2531      !                                                      ! Sea surface freezing temp !
2532      !                                                      ! ------------------------- !
2533      ! needed by Met Office
2534      CALL eos_fzp(tsn(:,:,1,jp_sal), sstfrz)
2535      ztmp1(:,:) = sstfrz(:,:) + rt0
2536      IF( ssnd(jps_sstfrz)%laction )  CALL cpl_snd( jps_sstfrz, isec, RESHAPE ( ztmp1, (/jpi,jpj,1/) ), info)
2537#endif
2538      !
2539   END SUBROUTINE sbc_cpl_snd
2540   
2541   !!======================================================================
2542END MODULE sbccpl
Note: See TracBrowser for help on using the repository browser.